
Introduction to Parallel Computing

Bootcamp for SahasraT
7th September 2018

Aditya Krishna Swamy
adityaks@iisc.ac.in

SERC, IISc

mailto:adityaks@iisc.ac.in

Acknowledgments

• Akhila, SERC
• S. Ethier, PPPL
• P. Messina, ECP
• LLNL HPC tutorials

What is scientific computing?

• "Computational Science" - 3rd paradigm
• “Scientific Computing” - encompass engineering computations as well as

the classical scientific applications such as computational physics,
chemistry, and astronomy

• Included in “computing” are the associated systems of networks,
visualization, and data storage and retrieval

• not just the numerical computation aspects
• Scientific computing is an experimental endeavor, the use of real systems is

essential, it has an engineering flavor
• Often the first experiments with a new approach are crude but they serve

to identify what works
• At that point it is possible to abstract the key features and devise a better

design AND implementation; the latter steps may be taken by others

In scientific computing there is always demand
for more speed, capacity
• Computational scientists have an insatiable need for more powerful

computers (faster, able to handle more data)
• Resolution (finer grid, more atoms)
• Dimensionality (1-D, 2-D, 3-D, etc.)
• Complexity (multi-physics, multiple time and spatial scales)
• Fidelity (equations, geometry, realistic conditions and dimensions)
• Time to solution
• Algorithmic complexity, e.g., O(N^7)

High Resolution Hurricane Studies

Greg Holland, NCAR
Sample results from simulation of 2005 hurricane season.

These data are freely available to download from NCAR, useful for research

on the role resolution plays in representation of individual weather events and on seasonal statistics

Image : Strongest hurricane (not necessarily the same) produced per simulation at
36km, 12km and 4km.

Scientific computing requires broad expertise
in addition to the research domain
• Knowledge of computer architectures, mathematical models and

numerical algorithms
• Proficiency in programming methodologies and languages
• Software architecture, debugging and performance measurement

tools, visualization
• Software engineering for working in teams
• Methods for building “community codes”
• Methodologies and tools relevant for data-intensive applications
• Frameworks for scientific workflows

Serial Computing
• Traditionally, software has been written for serial computation
• A problem is broken into a discrete series of instructions
• Instructions are executed sequentially one after another
• Executed on a single processor
• Only one instruction may execute at any moment in time

Parallel Computing
• Simultaneous use of multiple

compute resources to solve a
computational problem.

• Run on multiple CPUs
• Problem is decomposed into

multiple parts that can be solved
concurrently.

• Each part is decomposed into a set
of instructions.

• Instructions are executed
simultaneously on different CPUs

Parallel Computer Architecture

Compute Resources
• Single Computer with

multiple processors.
• A number of

Computers connected
by a network.

Example: Networks connect multiple standalone computers
(nodes) to make larger parallel computer clusters.

Parallel Computer Memory Architectures
Shared Memory – sharing the same address space
Symmetric Multiprocessor (SMP) machines

Shared Memory (UMA) Shared Memory (NUMA)

Parallel Computer Memory Architectures

• Advantages
• Global address space provides a user-friendly programming perspective to

memory
• Data sharing between tasks is fast
• NUMA - One SMP can directly access memory of another SMP

• Disadvantages
• Lack of scalability between memory and CPUs.
• Programmer responsibility for synchronization constructs that ensure

"correct" access of global memory.
• NUMA - inequal access time to all memories, Memory access across link is

slower

Shared Memory

Parallel Computer Memory Architectures
Distributed Memory
• A communication network to connect inter-

processor memory.
• Processors have their own local memory. No

concept of global address space across all
processors.

• Changes it makes to its local memory have no
effect on the memory of other processors.

• Task of the programmer to explicitly define
how and when data is communicated.
Synchronization between tasks is likewise the
programmer's responsibility.

• The network "fabric" used for data transfer
varies widely

Parallel Computer Memory Architectures
Hybrid Distributed -Shared Memory
• The shared memory component can be a shared memory

machine and/or graphics processing units (GPU).
• network communications are required to move data from one

machine to another.
• Increased programmer complexity/effort

Parallel Computing Terminology

• Supercomputing / High Performance Computing (HPC) : Using the
'class' of fastest and largest computers to solve large problems.

• Node : a standalone "computer in a box". Usually comprised of
multiple CPUs/processors/cores, memory, network interfaces, etc.
Nodes are networked together to comprise a supercomputer.

• CPU / Processor / Core : It Depends..... (A Node has multiple Cores or
Processors)

• Rank – Identifying number of a process

Limits and Costs of Parallel Programming

Parallel programs contain
• Serial Section
• Parallel Section

• Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution
wall-clock time of parallel execution

Amdhal’s Law

Parallelizable Serial

Time = 5 units Time = 3 units

2 3 4 51

1

2

3

4 5

Speedup is limited
by the non-
parallelizable/ serial
portion of the work.

Gustafson's Law

Amdhal’s Law & Gustafson's Law

How quickly can we complete analysis
on a particular data set by increasing
Processor count?

Can we analyze more data in approx.
same amount of time by increasing
Processor count?

Amdhal’s Law / Strong Scaling Gustafson’s Law / Weak Scaling

Designing Parallel Programs

• Can the problem be parallelized?
• Calculation of the Fibonacci series (0,1,1,2,3,5,8,13,21,...) by use of the formula: F(n)

= F(n-1) + F(n-2)

• Identify the program's hotspots (real work)
• Identify bottlenecks in the program
• Identify Data Dependencies and Task Dependencies (inhibitors to

parallelism)
• Investigate other algorithms if possible & take advantage of optimized third

party parallel software.
• third party parallel software and highly optimized math libraries available

Designing Parallel Programs
Partitioning
• domain decomposition and functional decomposition

1. Domain/Data Decomposition

Data associated with the problem is
decomposed

Data Decomposition
For problems that operate on large amounts of data Data is divided up
between CPUs : Each CPU has its own chunk of dataset to operate upon
and then the results are collated.
Which data should we partition?
Input Data
Output Data
Intermediate Data

Ensure Load Balancing : Equal sized tasks not necessarily equal size data sets.
• Static Load Balancing
• Dynamic Load Balancing

Designing Parallel Programs
• Functional/ Task Decomposition

• The problem is decomposed according to the work that must be done. Each
task then performs a portion of the overall work

Data Dependencies

• The order of statement execution affects the results of the program.
• Multiple use of the same location(s) in storage by different tasks.

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Loop carried dependence

Task 1

X = 2
….
….
Y = X**2

Task 2

X = 4
….
….
Y = X**3

Loop independent data dependency

Data Dependencies

If Task 2 has A(J) and task 1 has A(J-1)
• Distributed memory architecture -

task 2 must obtain the value of A(J-
1) from task 1 after task 1 finishes
its computation

• Shared memory architecture - task 2
must read A(J-1) after task 1
updates it

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Task 1

X = 2
….
Y = X**2

Task 2

X = 4
….
Y = X**3

(Race Condition) The value of Y is dependent on:

Distributed memory architecture - if or when the value of X is
communicated between the tasks.

Shared memory architecture - which task last stores the value
of X

Handling Dependencies

• Distributed memory architectures - communicate required data at
synchronization points

• Shared memory architectures -synchronize read/write operations
between tasks.

• Data Dependencies:- Mutual Exclusion, Locks & Critical Sections

• Task Dependencies:- Explicit or Implicit Synchronization points called
Barriers

Load Distribution

GOAL : Assigning the tasks/ processes to Processors while Minimizing
Parallel Processing Overheads

• Maximize data locality
• Minimize volume of data-exchange
• Minimize frequency of interactions
• Minimize contention and hot spots
• Overlap computation with interactions
• Selective data and computation replication

THANK YOU

