Introduction to Parallel Computing

Bootcamp for SahasraT
/th September 2018

Aditya Krishna Swamy
adityaks@iisc.ac.in
SERC, 1ISc

mailto:adityaks@iisc.ac.in

Acknowledgments

* Akhila, SERC

e S. Ethier, PPPL

* P. Messina, ECP

* LLNL HPC tutorials

What is scientific computing?

» "Computational Science" - 3rd paradigm

 “Scientific Computing” - encompass engineering computations as well as
the classical scientific applications such as computational physics,
chemistry, and astronomy

* Included in “computing” are the associated systems of networks,
visualization, and data storage and retrieval
* not just the numerical computation aspects

* Scientific computing is an experimental endeavor, the use of real systems s
essential, it has an engineering flavor

* Often the first experiments with a new approach are crude but they serve
to identify what works

e At that point it is possible to abstract the key features and devise a better
design AND implementation; the latter steps may be taken by others

In scientific computing there is always demand
for more speed, capacity

 Computational scientists have an insatiable need for more powerful
computers (faster, able to handle more data)

e Resolution (finer grid, more atoms)

* Dimensionality (1-D, 2-D, 3-D, etc.)

* Complexity (multi-physics, multiple time and spatial scales)

* Fidelity (equations, geometry, realistic conditions and dimensions)
* Time to solution

e Algorithmic complexity, e.g., O(N*7)

High Resolution Hurricane Studies

Greg Holland, NCAR
Sample results from simulation of 2005 hurricane season.

These data are freely available to download from NCAR, useful for research

on the role resolution playsin representation of individual weather events and on seasonal statistics

Image : Strongest hurricane (not necessarily the same) produced per simulation at
36km, 12km and 4km.

CFD Has Significantly Improved
the Wing Development Process ‘

Increased computational capability & accuracy

CFD _ Sl —
Tools Boeing TRANAR TLNSI0M8 cunzeys P gd
Tools sz mm TRANAR Opumetion s CFDes S
| | |
1980 1985 1990 199 2000 2005
Boeing
1980 state of the art. Modsrn close coupled 21% thicker faster Highly constrained Successful Faster and CFD for
nacelle Instaliation, wing than 757, wing design muttipoint optl- mors efficlent Loads and
7 0.02 Mach faster than 767 technology Faster wing than mization design than previous Stabllity and
737200 737-300 alrcraft Control
& 60x
Wind Tunnel Wings Tested
vs. CFD CFD runy'
i)

1 4x
ib_"se =

Less testing, lower cost, better products

COPYRIGNT © 2006 THE DOENG CONPANY

Scientific computing requires broad expertise
in addition to the research domain

* Knowledge of computer architectures, mathematical models and
numerical algorithms

* Proficiency in programming methodologies and languages

e Software architecture, debugging and performance measurement
tools, visualization

* Software engineering for working in teams
* Methods for building “community codes”
* Methodologies and tools relevant for data-intensive applications

* Frameworks for scientific workflows

Serial Computing

* Traditionally, software has been written for serial computation
* A problem is broken into a discrete series of instructions

* Instructions are executed sequentially one after another

* Executed on a single processor

* Only one instruction may execute at any moment in time

do_payroll()
instructions

—_— processor

emp1_deduc

2_hrs
empi_check

empd_deduc
empd_rate
empZ_check

empi_rate

empi_hrs

:

-
=
@
[
-

-y

Parallel Computing

e Simultaneous use of multiple problom instructions
compute resources to solve a re——
computational problem.

do_payroll{emp2)

* Run on multiple CPUs

* Problem is decomposed into
multiple parts that can be solved
concurrently. 40 payroliemi)

do_payroll{emp3)

Vol

o “instrucz “instrucz W “instrucz W instrucz |

o istrucs J “insirucs g “insirucs S insirucs |

* Each part is decomposed into a set
of instructions.

* Instructions are executed
simultaneously on different CPUs

Parallel Computer Architecture

Compute Resources

Single Computer with
multiple processors.
A number of
Computers connected
by a network.

Example: Networks connect multiple standalone computers
(nodes) to make larger parallel computer clusters.

Parallel Computer Memory Architectures

Shared Memory — sharing the same address space

Symmetric Multiprocessor (SMP) machines

Bus Interconnect

Shared Memory (UMA) Shared Memory (NUMA)

Parallel Computer Memory Architectures

Shared Memory
* Advantages

* Global address space provides a user-friendly programming perspective to
memory

e Data sharing between tasks is fast
* NUMA - One SMP can directly access memory of another SMP

e Disadvantages

 Lack of scalability between memory and CPUs.

* Programmer responsibility for synchronization constructs that ensure
"correct" access of global memory.

* NUMA - inequal access time to all memories, Memory access across link is
slower

Parallel Computer Memory Architectures
Distributed Memory

e A communication network to connect inter-
processor memaory.

* Processors have their own local memory. No
concept of global address space across all
pProcessors.

* Changes it makes toits local memory have no
effect on the memory of other processors.

* Task of the programmer to explicitly define
how and when data is communicated.
Synchronization between tasks is likewise the

programmer's responsibility.

* The network "fabric" used for data transfer
varies widely

Parallel Computer Memory Architectures

Hybrid Distributed -Shared Memory

* The shared memory component can be a shared memory
machine and/or graphics processing units (GPU).

* network communicationsare required to move data from one
machine to another.

* Increased programmer complexity/effort

Parallel Computing Terminology

* Supercomputing / High Performance Computing (HPC) : Using the
'class' of fastest and largest computers to solve large problems.

* Node : a standalone "computer in a box". Usually comprised of
multiple CPUs/processors/cores, memory, network interfaces, etc.
Nodes are networked together to comprise a supercomputer.

* CPU / Processor / Core : It Depends..... (A Node has multiple Cores or
Processors)

* Rank — Identifying number of a process

Limits and Costs of Parallel Programming

Parallel programs contain
e Serial Section
e Parallel Section

* Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution

wall-clock time of parallel execution

Amdhal's Law

Time = 5 units Time = 3 units

Speedup is limited \ m—
by the non- Y

parallelizable/ serial
por"l'ion of the work. Parallelizable Serial

§60b-0—

Gustafson's Law

> As more cores are integrated, the workloads are
also growing!
Let s be the serial time of a program and p the time
that can be done in parallel

Let f = p/(s+p)

—

S

= (C cores

s+ pC
S+ p

Spheedup = =1-f+ fC=1+ f(C-1)

Amdhal's Law & Gustafson's Law

workload
increases with
number of
proCessors
more speedup
iz obtained

Workload
remains
constant

How quickly can we complete analysis | Can we analyze more data in approx.

on a particular data set by increasing | same amount of time by increasing
Processor count? Processor count?

Designing Parallel Programs

e Can the problem be parallelized?

e Calculation of the Fibonacci series (0,1,1,2,3,5,8,13,21,...) by use of the formula: F(n)
= F(n-1) + F(n-2)

* |dentify the program's hotspots (real work)
* |dentify bottlenecks in the program

* |dentify Data Dependencies and Task Dependencies (inhibitors to
parallelism)

* |Investigate other algorithms if possible & take advantage of optimized third
party parallel software.

* third party parallel software and highly optimized math libraries available

Designing Parallel Programs

Partitioning
 domain decomposition and functional decomposition

1. Domain/Data Decomposition

Data associated with the problemiis
decomposed BLOCK cvcuc

*, BLOCK BLOCK, BLOCK

Problem Data Set

BLOCK, *

CYCLIC, * *, CYCLIC CYCLIC, CYCLIC

Data Decomposition

For problems that operate on large amounts of data Data is divided up
between CPUs : Each CPU has its own chunk of dataset to operate upon

and then the results are collated.

Which data should we partition?
Input Data

Output Data

Intermediate Data

Ensure Load Balancing : Equal sized tasks not necessarily equal size data sets.

e Static Load Balancing
* Dynamic Load Balancing

Designing Parallel Programs

* Functional/ Task Decomposition

* The problem is decomposed according to the work that must be done. Each
task then performs a portion of the overall work

Land/Surface Model
- - - o -+ —
to P5 to P1
- - - - —
-— —» — — «— —
v
P2 P3 P4 P5

Problem Instruction Set

time
T

Plants

Data Dependencies

* The order of statement execution affects the results of the program.
e Multiple use of the same location(s) in storage by different tasks.

DO J= MYSTART, MYEND Task 1 Task 2
A()=A(-1)*20 T s
END DO X =2 =2

Loop carried dependence
Y=X**2 Y=X**3

Loop independent data dependency

Data Dependencies

DO J= MYSTART, MYEND
A(J)=A(-1)*20 T
END DO X=2 X=4

If Task 2 has A(J) and task 1 has A(J-1)

* Distributed memory architecture -

Y=X**%2 Y=X**3

task 2 must obtain the value of A(J- (Race Condition) The value of Y is dependent on:
1) from task 1 after task 1 finishes
its computation Distributed memory architecture - if or when the value of X is

. communicated between the tasks.
* Shared memory architecture - task 2

must rea.d A(J-1) after task 1 Shared memory architecture - which task last stores the value
updates it of X

Handling Dependencies

e Distributed memory architectures - communicate required data at
synchronization points

e Shared memory architectures -synchronize read/write operations
between tasks.
e Data Dependencies:- Mutual Exclusion, Locks & Critical Sections

* Task Dependencies:- Explicit or Implicit Synchronization points called
Barriers

Load Distribution

GOAL : Assigning the tasks/ processes to Processors while Minimizing
Parallel Processing Overheads

* Maximize data locality

* Minimize volume of data-exchange

* Minimize frequency of interactions

* Minimize contention and hot spots

* Overlap computation with interactions

* Selective data and computation replication

THANK YOU

