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The properties of an n-channel ultra-thin-body �UTB� double-gate field effect transistor �DGFET�,
resulting from the bandstructure of the thin film Si channel, are discussed in this paper. The
bandstructure has been calculated using a ten-orbital sp3d5s� tight-binding method. A number of
intrinsic properties including band gap, density of states, intrinsic carrier concentration, and
parabolic effective mass have been derived from the calculated bandstructure. The spatial
distributions of intrinsic carrier concentration and �100� effective mass, resulting from the wave
functions of different contributing subbands, are analyzed. A self-consistent solution of coupled
Poisson-Schrödinger equations is obtained taking the full bandstructure into account, which is then
applied to analyze volume inversion. The spatial distribution of carriers over the channel of a
DGFET has been calculated and its effect on effective mass and channel capacitance is discussed.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2937186�

I. INTRODUCTION

The interest in ultra-thin-body �UTB� double-gate field
effect transistor �DGFET� has grown in the recent past be-
cause of its superior properties compared to bulk FET. DG-
FET is being considered as one of the promising future al-
ternatives to replace the present day bulk devices.1,2 The
intrinsic quantum confinement provided by its unique geo-
metric structure, coupled with better gate control from both
top and bottom, affects the characteristics of UTB DGFET.3

The different aspects of classical modeling of DGFETs have
been discussed in Refs. 4–6. There are a number of reports
on the quantum mechanical effects on DGFET, both analyti-
cal as well as numerical.3,7–9 For numerical analysis, one has
to solve coupled Poisson-Schrödinger equations
self-consistently.10 This is done either by assuming some

analytical E− k̄ relationship or by taking the full bandstruc-
ture into account. There has been a considerable amount of
work on calculation of the bandstructure of materials,11–17

which can be plugged into the self-consistent Poisson-
Schrödinger equations.18

DGFET has a unique property called “volume inver-
sion,” which improves the transport characteristics
enormously.1,3 This can be explained with the help of quan-
tum effects. Another important aspect is a substantial change
in transport properties depending on the crystallographic
orientation,19–21 which can be analyzed from the detailed
bandstructure calculation. Gradual thinning of the channel
region decreases the intrinsic carrier concentration, leading
to interesting effects on the total channel capacitance of
DGFET.22–24

The aim of this paper is to focus on the detailed analysis
of some of the key effects in UTB-DGFET, which arise en-
tirely because of the bandstructure of the channel material

and are not very apparent. Only silicon has been considered
as the thin channel material in this work, but this can be
easily extended to other channel materials as well. The full-
band structure calculation used here is based on sp3d5s�

tight-binding method.14–16 The calculated bandstructure has
then been used to predict some intrinsic properties of thin
film Si including band gap, density of states, intrinsic carrier
concentration, and effective mass. Interesting deviations in
different characteristics are observed in ultra-thin film silicon
when compared to bulk silicon. Following this, the Poisson-
Schrödinger coupled equations are solved self-consistently
taking care of the full bandstructure. This is used to critically
analyze the volume inversion phenomenon, thereby provid-
ing new physical insights. This, in turn, throws some light on
the spatial distribution of the carriers inside the DGFET
channel. Taking this into account, the total channel capaci-
tance and the evolution of effective mass from the source end
to the drain end along the channel have been analyzed.

The rest of the paper is organized as follows: Sec. II
describes the details of the sp3d5s� tight-binding method of
bandstructure calculation for an ultra-thin film. The different
intrinsic transport properties of ultra-thin film silicon have
been discussed in Sec. III. Poisson-Schrödinger coupled
equations have been solved self-consistently and related
analysis has been performed in Sec. IV. Finally, the paper is
concluded in Sec. V.

II. BANDSTRUCTURE CALCULATION

The tight-binding method of bandstructure calculation
has been studied extensively by many researchers.11–17 In
this work, a ten-orbital sp3d5s� tight-binding method14–16 has
been used to find the bandstructure of the thin film of silicon.
Only the onsite energies and two-center overlap integrals of
nearest neighbors have been taken into account. Spin orbit

interaction has been neglected, and thus each k̄ point in the
Brillouin zone is assumed to be degenerate with two spin
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states. Infinite crystal periodicity has been assumed along the
channel length and width directions and thus Bloch’s theo-
rem is assumed to hold good in those directions. However,
along the thickness of the channel, the crystal is truncated to
a few monolayers of atoms and, thus, the crystal periodicity
cannot be assumed in this direction. Suppose the thickness
contains N atomic monolayers. Then, the truncated crystal
can be formed by taking a basis of N atoms along the thick-
ness direction and spanning them over the whole 2-D space.
Figure 1 shows a 7 monolayer thick channel with the basis
atoms shown as black dots. The channel region can be
formed by spanning the basis atoms along x and y. The tight-
binding fitting parameters for Si, used in this work, have
been taken from Refs. 15 and 16. An N monolayer thick film
will produce a 10N�10N tight-binding Hamiltonian
matrix.18 To get rid of the huge number of surface states
�whose energy eigenvalues often fall inside the semiconduc-
tor band gap� caused by the dangling bonds, it has been
assumed that the surfaces are completely passivated by hy-
drogen. This has been achieved by artificially increasing the
onsite energies of the s and p orbitals of the surface atoms, as
described in Ref. 17.

The assumption of this method is that the electronic
wave function is strictly guided in the x−y plane. Thus, the

Brillouin zone comprises of a 2-D k̄ space, as opposed to a
3-D one in the bulk case. kz has been assumed to be zero
throughout this paper. The whole 2−D Brillouin zone has
been discretized using a step size of 0.05� �2� /a� for both
kx and ky, where a is the lattice constant �=5.43 Å for Si�. In
this paper, the film thickness has been referenced to the num-
ber of monolayers �AL� in the film. An N AL thick Si film
translates to a thickness of a�N−1� /4. Figure 2 shows the
energy dispersion plot of a 17 monolayer thick
��2.17 nm� Si film over the whole 2-D Brillouin zone. Only
the top-most valence subband and the bottom-most conduc-
tion subband have been included in Fig. 2 for clarity.
Throughout this paper, the valleys occurring at � point and at
�0.8�2� /a� along the X direction are termed as � valley and
X valley, respectively.

III. INTRINSIC PROPERTIES OF THIN FILM SI

In this section, different intrinsic electrical properties of
ultra-thin Si film have been derived from the calculated
bandstructure.

A. Bandgap and density of states

It has been well established in literature, both theoreti-
cally as well as experimentally, that at the nano-scale, band
gap of semiconductors is a function of the size of the mate-
rial. As the size reduces, the band gap of the material in-
creases. Figure 3 shows how the � gap and X gap of a Si film
vary as a function of the film thickness. One should note that,
for a sufficiently thin film, as opposed to the bulk case, the
conduction band minimum occurs at direct � point and not in
the X direction. Thus the electrons will first populate the �
valley and, hence, one can expect to see drastic change in
transport properties for a thin film Si channel compared to
bulk. As the film thickness increases, the energy difference
�E�X between � and X valleys decreases, and electrons start
populating the X valley as well. Finally, at sufficiently large
film thickness, at the bulk limit, the X valley is of lower
energy compared to the � valley. In Fig. 4, the 2-D density of
states has been plotted as a function of electron energy in the
conduction band, for four different film thickness values. In
the calculation, the energy has been discretized in steps of
0.2 eV. Just above the cut-off energy �conduction band mini-
mum�, only the � valley contributes. However, as energy

FIG. 1. �Color online� A 7 monolayer thick film with basis atoms �black
dots�. The basis atoms can be spanned in whole 2−D along x and y to
construct the thin film.

FIG. 2. E−k relationship of top-most valence subband and bottom-most
conduction subband over the whole 2−D Brillouin zone of a 17 monolayer
thick Si film. The conduction band minimum occurs at � point. The X valley
is fourfold degenerate.

FIG. 3. �Color online� Calculated � and X gap of silicon thin film as a
function of film thickness. For sufficiently small thickness, direct � gap is
much larger compared to the next gap occurring at the X valley.
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increases, other regions of the Brillouin zone also start con-
tributing. As expected, the density of states for thicker film is
larger.

B. Intrinsic carrier concentration

Since the band gap increases at nano-scale, one expects
lower intrinsic carrier concentration as the film thickness re-
duces. The per unit area intrinsic electron concentration at
temperature T is given by

nA = �
j

�
k̄

2f�Ej
k̄� , �1�

where the first sum is over different subband indices j of the

conduction band and the second sum is over different k̄

points in the first Brillouin zone. Ej
k̄ represents the energy

eigenvalue at the kth point of the jth subband index. The

Fermi-Dirac probability f�Ej
k̄� is given by

f�Ej
k̄� =

1

1 + e�Ej
k̄−��/kBT

. �2�

kB is the Boltzmann constant and � is the chemical potential.
Figure 5 shows that the intrinsic carrier concentration per
unit area decreases as the film thickness is reduced. How-
ever, apart from the reduction in carrier concentration, an-
other important observation is that the carrier concentration
has a distribution along the film thickness, which peaks at the
center of the film. This is due to the spatial distribution of the
wave functions of the electronic states contributing to the
carrier concentration. If the film of thickness t has N mono-
layers, then the film can be assumed to be discretized by N
points. The volume concentration of carriers at each of these
points is given by

n0�z� =
N

t
�

j
�

k̄

2f�Ej
k̄�	� j

k̄�z�	2, �3�

where � j
k̄�z� is the wave function of the electronic state �j , k̄�

at z. Figure 6 plots the fractional contribution of different
subbands to the total electron concentration for a thin film of
Si. �i and Xj represent the ith subband of the � valley and the
jth subband of the X valley, respectively. It is clear that, for
very small thickness, only �1 and �2 subbands contribute,
but as thickness increases, other subbands also start contrib-
uting. In Figs. 7 and 8, the spatial distribution of intrinsic
carrier concentration, contributed from different subbands,
has been shown for 9 and 33 monolayer thick Si films, re-
spectively. Since for a 9 monolayer thick film
��1.086 nm� only �1 and �2 contribute, the spatial distribu-
tion of the total electron concentration is dictated by the
wave functions of only these two subands. The peak concen-
tration comes at the middle of the film and reduces as it
approaches the surface. However, for a 33 monolayer thick
film ��4.344 nm�, four � subbands and the bottom most X

FIG. 4. �Color online� 2-D DOS as a function of electronic energy for
different thickness values of the Si film. The energy space is discretized by
steps of 0.2 eV.

FIG. 5. �Color online� Intrinsic carrier concentration per unit area �i.e., total
number of carriers contained in the film with unity area� as a function of Si
film thickness.

FIG. 6. �Color online� Percentage contribution to per unit area intrinsic
carrier concentration from different Si subbands lying in � and X valleys.
For very small thickness only �1 and �2 contribute, but at larger thickness,
electrons start populating other valleys as well.
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subband contribute, and this, in turn, affects the total carrier
distribution, as shown in Fig. 8.

C. Parabolic effective mass and its validity

A simple parabolic effective mass has been derived in
this section at the minima of different subbands to show
some interesting transport properties of thin film. Parabolic
effective mass m��i , j� for the ith valley and jth subband is
defined as

m��i, j� =
�2

�2E�i, j�/� k̄2�i, j�
. �4�

The parabolic effective mass �m�� has been calculated at the
minima of the two bottom-most subbands �1 and �2 for four
different film thickness values. It is plotted in Figs. 9 and 10
along different crystal directions after normalization with re-
spect to the electron rest mass �m0�. It is observed that, in
both cases, for 9 monolayer thick film, the effective mass is
highly anisotropic. For �1, the effective mass increases as
one moves from �10� direction to �11� direction, whereas it

reduces for the �2 valley. However, for larger thickness, the
effective mass in both the valleys becomes fairly isotropic.
Since the effective mass varies with subbands, and the elec-
tron concentration in different subbands has different spatial
distributions, it is expected that the effective mass should
also have a spatial distribution. A “distributed effective
mass,” say M��z�, a function of the depth z along the thick-
ness of the film, has been defined as

M��z� =
1

�i,j

Wij�z�
m*�i,j�

, �5�

where Wij�z� represents the fractional contribution to the
electron concentration at depth z from the jth subband of the
ith valley. This way of defining �100� M��z� has the under-
lying assumption that all the electrons �more generally, an
equal fraction of electrons from each subband of every val-
ley� are moving along the �100� direction. Figure 11 shows
that for thinner films, �100� M��z� is more or less uniform
�which is because all the electrons are in �1 and �2 subbands

FIG. 7. �Color online� Carrier distribution along channel thickness of dif-
ferent subbands lying in � and X valleys for a 9 atomic layer thick Si film.

FIG. 8. �Color online� Carrier distribution along channel thickness of dif-
ferent subbands lying in � and X valleys for a 33 atomic layer thick Si film.

FIG. 9. �Color online� Variation of parabolic effective mass at the minimum
of first � subband with crystal direction and Si film thickness. Anisotropy is
observed at small film thickness.

FIG. 10. �Color online� Variation of parabolic effective mass at the mini-
mum of second � subband with crystal direction and Si film thickness. For
very small thickness ��1 nm�, �111� effective mass is smaller than �100�
effective mass.
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possess almost the same �100� effective mass�. However,
with the increase in film thickness, M��z� at positions closer
to the surface becomes larger than that of the central part of
the film. Thus, for larger film thickness, the carriers closer to
the center of the film are expected to have higher mobility
than those that are closer to the surface. This effect is inher-
ent to the intrinsic film, arising from the spatial distribution
of the wave functions associated with different subbands.
Another interesting observation is that a 9 monolayer thick
film has �marginally� larger �100� effective mass than a 17
monolayer thick film at all z. This is because of the fact that
the �2 valley has larger �100� effective mass for 9 monolayer
thick film �Fig. 10�.

However, one should note that parabolic effective mass
approximation is valid only for electrons with smaller energy
in the conduction band. The solid curves in Fig. 12 show the

E− k̄ relationship along the �100� direction for the four
bottom-most conduction subbands, calculated from the tight-
binding method, as described in Sec. II. The dotted curves
show the fitted parabolic bands with same effective masses,
as calculated from Eq. �4�. �Es represents the electronic en-

ergy range in the sth subband between which the parabolic

E− k̄ tracks the tight-binding E− k̄ fairly well. From Fig. 12,
it is clearly visible that parabolic bands fail to track the ac-
tual bands for electron energies in excess of �0.5 eV, ref-
erenced from corresponding band minimum, in all the cases.
Nevertheless, the above simple analysis gives a good quali-
tative insight about transport and mobility.

IV. SELF-CONSISTENT SOLUTION OF COUPLED
POISSON-SCHRÖDINGER EQUATIONS

To study the effect of gate voltage on this structure, a
model device has been assumed which consists of a top gate
and a bottom gate separated from the film by thin insulator
layers, as shown in Fig. 1. The Si film is assumed to be
undoped. Thus the channel charge corresponds to only mo-
bile charge. If ��z� is the potential at z, then one can write
the 1-D Poisson equation as4,10

�2��z�
�z2 =

qN

	0	rst
��

j
�

k̄

2f�Ej
k̄�	� j

k̄��,z�	2�e�q��z�/kBT�, �6�

where q is electronic charge, 	0 is permittivity of vacuum,
and 	rs is the relative permittivity of the channel material.
The boundary conditions are derived from the fact that the
normal component of the displacement vectors inside Si and
insulators will be the same at z=0 and z= t. Thus, at the
boundaries, one can have


	rs
���z�

�z



z=0
= − 	r1

Vg1 − Vfb1 − ��0�
tox1

�7�

and


	rs
���z�

�z



z=t

= 	r2
Vg2 − Vfb2 − ��t�

tox2
. �8�

	r1 and 	r2 are the relative permittivities of insulator1 and
insulator2, respectively, and tox1 and tox2 are the correspond-
ing thickness values of the insulators. Vfbi is the flatband
voltage between the ith gate and the channel. Equation �6�
can be solved iteratively to find ��z�. First an initial potential
profile ��z� is assumed, and then the bandstructure is calcu-
lated. This in turn provides the correction to ��z�. The pro-
cess is iterated until the change in ��z� between two succes-
sive iterations becomes less than some predefined threshold.
However, every iteration requires calculation of the band-
structure. This is because the potential ��z� adds a z depen-

dent perturbation to the crystal potential, and thus both Ej
k̄

and � j
k̄ are dependent on ��z�. This makes the problem com-

putationally intensive.
To reduce the computation, the following approximation

has been made. Since the potential ��z� changes very little
along z �which is shown later�, as far as the change in band-
structure is concerned, it is a fair assumption that ��z� is
constant �=�c� along z. Suppose H0 is the original unper-
turbed 10N�10N tight-binding Hamiltonian, and E0 and �0

are the unperturbed eigenvalues and eigenfunctions, respec-
tively. If it is assumed that the external potential only
changes the on-site energies, and does not the overlap inte-
grals, then the perturbation �H can be written as

FIG. 11. Distribution of �100� M��z� along film thickness for various values
of Si film thickness. Increasing thickness increases M��z� and reduces spa-
tial uniformity.

FIG. 12. �Color online� Original tight-binding bandstructure data and cor-
responding parabolic fits at four bottom-most � subbands and bottom-most
X subband for �100� Si. The fits are reasonable for energy values less than
�0.5 eV referenced from corresponding subband minima.
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�H = − q�cI , �9�

where I is 10N�10N diagonal unity matrix. Then,

H�0 = �H0 + �H��0 = �E0 − q�c��0. �10�

This essentially means that all the energy eigenvalues will be
shifted by the same energy �in other words, no relative
change in the energy eigenvalues�, and the wave functions
remain in the unperturbed states. Thus, it is sufficient to cal-

culate the bandstructure only once, and the same Ej
k̄ and � j

k̄

can be used through all the iterations. This reduces the total
runtime by a factor of 20 to 200, depending on the number of
iterations required to solve the Poisson equation.

To validate the approximation, the amount of error being
incurred in the worst case �maximum gate voltage where
band bending is maximum� has been examined and the re-
sults are tabulated in Table I, for both 9 and 33 monolayer
thick films. The error here has been defined as Perror

= ��Papprox− Pexact� / Pexact��100%, where Papprox is the ap-
proximate value of parameter P and Pexact is the exact value
of the parameter obtained from a full calculation.

In the following, to simplify the analysis, metal gates
with mid-gap workfunction are assumed and the charge trap-
ping inside the insulators is taken to be zero. This essentially
means that the flatband voltages Vfb1 and Vfb2 are assumed to
be zero. For simulation, it has been assumed that tox1= tox2

=1 nm, Vg1=Vg2, and 	r1=	r2=3.9.

A. Volume inversion

With the assumption that the bandstructure remains rela-
tively the same under application of gate voltage, the carrier
density distribution n�z� can be expressed as

n�z� = n0�z�eq��z�/kBT, �11�

where n0�z� is the intrinsic carrier density at z and is given by
Eq. �3�, and ��z� is the potential profile obtained by solving
the Eq. �6�. Figures 13 and 14 show the distribution of carrier
density over different subbands and the total density, for 9
and 33 monolayer thick films, respectively, with Vg1=Vg2

=1 V. The shape of this distribution is quite different from
the intrinsic carrier distribution. Also, the 9 monolayer thick
film shows a higher peak carrier density compared to the 33
monolayer thick one, although the total integrated carrier
concentration is higher for thicker film. This can be ex-
plained with the “potential pinning” effect, as discussed later.
However, at any z, the fractional contribution from a sub-
band to the total carrier density remains the same for differ-
ent gate voltages. Figures 15 and 16 show the normalized
carrier distribution along the depth z at different gate volt-

FIG. 13. �Color online� Total electron density distribution along the thick-
ness and contribution from different subbands for a 9 atomic layer thick Si
film with Vg=1.0 V.

FIG. 14. �Color online� Total electron density distribution along the thick-
ness and contribution from different subbands for a 33 atomic layer thick Si
film with Vg=1.0 V.

TABLE I. Mean and standard deviation values of percentage error in ��z�
and n�z� for 9 and 33 monolayer thick films with Vg=1.5 V.

Thickness �error�%� nerror�%�
�AL� Mean SD Mean SD

9 −0.14 0.03 0.51 2.09
33 0.65 0.31 2.98 6.28

FIG. 15. Normalized total electron density distribution along the film thick-
ness for a 9 atomic layer thick Si film with Vg=0.5, 1.0, and 1.5 V. Single
peak is observed even at larger gate voltages.
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ages, for 9 and 33 monolayer thick films. The corresponding
potential distribution is shown in Fig. 17. As gate voltage
increases, the carriers of the “central-peaked” channel start
spreading toward the channel-insulator interface, and beyond
a particular threshold gate voltage Vvt, the carrier distribution
will start showing two “humps” representing the separation
of peaks of the carrier concentration inside the channel. Vvt is
defined by the condition


 �2n�z = t
2�

�z2 

Vg=Vvt

= 0. �12�

Vvt for a thinner film is expected to be larger than a thicker
one. In other words, the carriers tend to stay closer to the
center for thinner film. With the increase in gate voltage, the
shifting of carrier density peaks toward the gates can be
thought of as a “carrier pulling effect” of the gate voltage.
The effect can be explained from the potential profile ��z�,
which is smaller at points closer to the center of the film. It is
observed from Eq. �11� that the overall carrier density profile
is the product of the two terms, n0�z� and eq��z�/kBT. n0�z�
peaks at the center of the film and reduces toward the sur-

face, whereas eq��z�/kBT follows the opposite trend. Thus, at a
sufficiently large voltage, it is possible that the peak of the
carrier density occurs at the surface. This is qualitatively the
same as the classical picture, where the exponential term
dominates over the “quantum mechanical” distribution of in-
trinsic carrier concentration. As evident from Fig. 17, the
potential profile for thinner films is more uniform and is
actually “pinned” at a higher value compared to the films of
larger thickness. This leads to a higher peak carrier concen-
tration in thinner films, as shown in Figs. 13 and 14.

The above explanation becomes even more clear from
Fig. 18. Initially, for small gate voltage, both the surface
potential �s and film center potential �0 increase simulta-
neously at the same rate, and thus there will be only a single
channel whose peak is at the center of the film. Beyond a
certain gate voltage, �s and �0 bifurcate, and �0 saturates
very quickly. However, �s keeps increasing, though at a
much slower rate than earlier, causing higher carrier concen-
tration at points closer to the surface. Finally, the single
peaked channel is split and the double hump shaped channel
is created. Note that, for 9 monolayer thick film, the pinning
voltages are higher than for the 33 monolayer film.

B. Spatial channel charge distribution

The carrier pulling effect explained in the previous sec-
tion can have an immense impact on the spatial distribution
of total channel charge and hence the device performance.
Consider a DGFET where the source end is grounded and
Vds=Vgs=VDD. At any point x along the channel �with x=0
being taken as the source end�, suppose the quasi-Fermi level
is Vqf�x�. Vqf�x� can be assumed to be independent of z.
Then, the Poisson equation in Eq. �6� gets modified as6

�2��x,z�
�z2 =

qN

	0	rst
��

j
�

k̄

2f�Ej
k̄�	� j

k̄��,z�	2�

� eq���x,z�−Vqf�x��/kBT, �13�

where all references have been made from a grounded source
chemical potential. The carrier density n�x ,z� should now be
a function of Vqf�x� as well, which in turn depends on the

FIG. 16. Normalized total electron density distribution along the film thick-
ness for a 33 atomic layer thick Si film with Vg=0.5, 1.0, and 1.5 V. “Double
hump” characteristics are clear at higher gate voltages.

FIG. 17. �Color online� Potential distribution ��z� along the thickness of
thin Si film with three different gate voltages: 0.5, 1.0, and 1.5 V. The solid
and dotted curves represent 33 and 9 monolayer thick films, respectively.

FIG. 18. �Color online� Variation of surface potential �s �solid lines� and
film center potential �0 �dotted lines� with applied gate voltage Vg, for two
different film thicknesses.
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drain voltage. Deriving the exact drain current for a nano-
MOSFET needs proper attention on the carrier transport
model. However, to get a quantitative estimate, a long chan-
nel device �L=1 �m, W=1 �m� with a constant mobility
has been assumed. The drain current and Vqf�x� have been
calculated using a similar procedure as in Ref. 6 by self-
consistently solving Eq. �13� with the drain current continu-
ity equation. The extracted normalized carrier concentration
n��x ,z� is plotted over the whole channel region in Fig. 19
for different cases. At any x=x0, n��x0 ,z� has been defined as

n��x0,z� =
n�x0,z�

MAXz�n�x0,z��
, �14�

where MAXz�.� represents the maximum value of �.� over z.
The normalization is done in such a way which clearly
shows the spatial shape of carrier distribution at different x’s.
It is observed that at the source end �x=0�, due to larger
potential difference between the gate and the channel, there
clearly exist two distinct carrier density peaks. However, as
one moves toward the drain end, the potential difference be-
tween gate and channel reduces, and the two distinct peaks
merge together producing a single center-peaked channel.
Also, the magnitude of the total carrier concentration reduces
near the drain end. In other words, the carriers stay closer to
the surface near the source end whereas, near the drain end,
the carriers stay closer to the center of the channel. Thus,
closer to the source end, one expects higher mobility degra-
dation due to vertical field effect and surface scattering effect
compared to the drain end. Similar effects are true for gate
leakage and gate capacitance, which can no longer be as-
sumed to be uniform along the channel. It is evident from
Fig. 19 that this effect is more pronounced in the thicker
channel devices and at higher operating voltages. If the chan-
nel is thin enough, as is the case of �b2� in Fig. 19, it is
possible to have a single peaked channel all over the device.

C. Evolution of effective mass along DGFET channel

In Sec. III, the variation of �100� M��z� along the thick-
ness for a thin film Si has been discussed in detail. Now, in a
DGFET channel, the potential difference between gate and
channel changes from the source end to the drain end. Thus
the total number of carriers at different subbands also
changes along the channel. Keeping this in mind, one can
define an “average effective mass,” Me

��x�,

Me
��x� =



0

t

n�x,z�dz



0

t
n�x,z�
M��z�dz

, �15�

which is basically a harmonic average over the carriers along
the thickness at a particular position x along the channel
length. Physically, this indicates the “average” effective mass
of an electron located at distance x from the source along the
channel. Strictly speaking, Eq. �15� is valid only under the
assumption that the vertical field is fairly constant and each
electron suffers the same scattering rate. Although this is not
a very good approximation, it gives an idea of how the chan-
nel charge distribution can affect the spatial distribution of
carrier effective mass. It is observed from Fig. 20 that for
very thin channel �e.g., 9 monolayer�, Me

��x� hardly varies
with x or Vg. However, for higher channel thickness, a
gradual decrease in Me

��x� is observed from the source end to
the drain end, and the effect is more prominent for higher
gate voltages.

D. Channel capacitance

Qualitatively, the charge distribution in a quantum analy-
sis has two major differences compared to the classical
analysis: �1� The total charge in the channel reduces and �2�
the charge distribution peak shifts from the surface toward
the center of the film. The extent of the shift depends on the
applied gate voltage. Both these effects cause a change in the
total channel capacitance.5 The channel capacitance per unit
volume Csi�z� at a depth z can be defined as the rate of
change of charge per unit volume with respect to the poten-
tial at that point. Mathematically,

FIG. 19. Normalized carrier distribution over the whole Si channel for four
different cases: �a1� 33 monolayer thick channel, Vg=1.5 V, VDD=1.5
V; �a2� 33 monolayer thick channel, Vg=1.0 V, VDD=1.0 V; �b1� 9 mono-
layer thick channel, Vg=1.5 V, VDD=1.5 V; and �b2� 9 monolayer thick
channel, Vg=1.0 V, VDD=1.0 V.

FIG. 20. �Color online� Variation of average effective mass Me
��x� of carriers

with channel along �100� direction for different channel thickness values
and different gate voltages Vg with VDD=Vg.
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Csi�z� =
�Qsi�z�
���z�

, �16�

where Qsi�z� is given by

Qsi�z� =
qN

t ��j
�

k̄

2f�Ej
k̄�	� j

k̄��,z�	2�eq��z�/kBT. �17�

Figure 21 shows the variation of channel capacitance with z
and Vg. One should note that the position z=zmax inside the
film, where Csi�z� is maximum, varies with gate voltage and,
as the gate voltage increases, zmax shifts toward the surface.

V. CONCLUSION

A detailed analysis of UTB DGFET has been performed
in this work. The channel material has been chosen to be Si,
but the analysis and methodology can be readily extended to
other promising channel materials as well. Ultra-thin film of
Si has been shown to have larger �and direct� band gap,
compared to bulk. It has also been shown that the intrinsic
carrier concentration is not only less compared to bulk, but
also has a distribution over the channel thickness, peaking at
the center. The contributions of different subbands from the
different valleys to both intrinsic carrier concentration as
well as effective mass have been analyzed. The spatial varia-
tion of distributed �100� effective mass along the thickness
has been studied. It has also been shown that along the �100�
direction, parabolic effective mass concept is valid until an
electronic energy of �0.5 eV from the corresponding sub-

band minima in all the relevant valleys. A detailed analysis
of volume inversion has been performed with the help of the
self-consistent solution of coupled Poisson-Schrödinger
equations. Channel charge distribution in a DGFET has been
predicted using the concept of carrier pulling effect of gate
voltage. The effects of channel charge distribution on effec-
tive mass and channel capacitance have been analyzed.
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