
 - 1 -

Modeling Architecture-OS Interactions using Layered Queuing

Network Models.

J. Lakshmi, S.K. Nandy, Indian Institute of Science, Bangalore, India

{jlakshmi, nandy }@serc.iisc.ernet.in

Abstract

The prevalent virtualization technologies provide QoS

support within the software layers of the virtual

machine monitor(VMM) or the operating system of the

virtual machine(VM). The QoS features are mostly

provided as extensions to the existing software used

for accessing the I/O device because of which the

applications sharing the I/O device experience loss of

performance due to crosstalk effects or usable

bandwidth. In this paper we examine the NIC sharing

effects across VMs on a Xen virtualized server and

present an alternate paradigm that improves the

shared bandwidth and reduces the crosstalk effect on

the VMs. We implement the proposed hardware-

software changes in a layered queuing network (LQN)

model and use simulation techniques to evaluate the

architecture. We find that simple changes in the device

architecture and associated system software lead to

application throughput improvement of up to 60%.

The architecture also enables finer QoS controls at

device level and increases the scalability of device

sharing across multiple virtual machines. We find that

the performance improvement derived using LQN

model is comparable to that reported by similar but

real implementations.

1. Introduction

 Multi-core systems are a logical evolution of single

core processors due to saturation of computing power
on a single core. In the HPC segment, such systems

are an attractive alternative to mid-sized distributed

clusters owing to inherent architecture benefits of low

latency inter-processor communication. In the

enterprise segment, coupled with system

virtualization, multi-core systems are being promoted

as the one-stop solution to enterprise data-center issues

like server outages, energy consumption, support for

legacy applications, etc. Apart from this, multi-core

systems are also being seriously considered for

consolidating on-board real-time applications in
automobile and aerospace application domains.

The current multi-core systems are well-

suited to facilitating compute workloads that exploit

the presence of many processors on chip and on-board.

Also, most efforts are directed at improving system

architectures for such workloads. In compute intensive

parallel jobs, inter task/process communication or file

I/O handling, are well characterized and designed in

such a way that, very specific tasks carry out the I/O

activity. While in enterprise segments, where the

workloads are dominated by a mix of I/O and compute

intensive jobs, multi-core systems have a disadvantage

due to the predominance of CPUs over I/O devices.

Most server consolidation scenarios involve hosting

on to a physical machine, large numbers of serial or
parallel applications that require significantly less

number of CPUs when compared to scientific parallel

jobs. This brings in the question of many independent

jobs sharing a common I/O device like the network

interface (NIC) or a local disk. Many of these

workloads are either response sensitive or throughput

sensitive because of which it is essential to specify,

maintain and cater to application specific quality of

service (QoS) guarantees [1].

 In the prevalent virtualization technologies

QoS support is mostly provided as extension to the
existing software used for accessing the I/O device. As

an example, consider a Xen [2] virtualized server

hosting multiple VMs that share a common NIC of the

server. In Xen the NIC is accessed through a

privileged domain called the independent driver

domain (IDD) [3] that hosts the device driver of the

interface and is responsible for the physical data

transfer to and from the machine. Any VM intending

to use the NIC is given access through the virtual

network interface which is implemented in software

by the netfront and netback drivers. The netfront
driver is hosted in the VM and netback is hosted in the

IDD. In such virtualized systems, for every I/O device

that is shared, the IDD hosting the device is also

shared amongst the VMs. Each VM can have its own

ip-address which is enabled by bridging or routing

software within the IDD. If a VM requests for specific

bandwidth on the incoming or outgoing traffic, this is

implemented in software, like netfilter[5] of linux in

the IDD. Supporting QoS features in software does not

give fine-grained control on device access which leads

to either crosstalk* or loss of bandwidth on the device

* By crosstalk we refer to loss of performance observed in one VM because of

sharing the NIC with another VM.

 - 2 -

access path. In this paper we examine the NIC sharing

effects across VMs on a Xen virtualized server and

present an alternate paradigm that improves the shared

bandwidth and reduces the crosstalk effect on the

VMs. We implement the proposed hardware-software

changes in a layered queuing network (LQN) model
and use simulation techniques to evaluate the

architecture.

The rest of the paper is organized as follows. In

section 2 we detail the effects of NIC device sharing in

the existing Xen virtual machine architecture to bring out

the motivation for this work. In section 3 we define the

goals and detail improvements on the existing NIC

architecture, the VMM and VM’s OS. In this section we

also detail the modeling of the architecture using layered

queuing network model and describe the network data

reception and transmission workflow for the architecture.

In section 0 we describe the architecture evaluation and
present the results. Finally, in section 5 we conclude

highlighting the issues of shared I/O devices in

virtualized systems and ways of tackling these issues.

2. Effects of I/O device sharing

 It is expected that any device sharing would lead to

some overheads and this issue is more prominent in

virtualized multi-core systems. In a non-virtualized

server, for general purpose operating systems like

Unix, I/O is performed by routing every device’s

access through the operating system’s I/O system call

interface. Virtualization adds one more layer of

indirection to this path; in Xen this additional

overhead manifests due to the data transfer and page

address translations at the IDD hosting the device and

VM layer, and the virtualization of device interrupts

through the event channel. How this overhead affects
the realized throughput, measured as reply rate, at the

application level is depicted in Figure 1. The figure

contains a plot of throughput achieved by the httperf

[4] benchmark for a specified request rate. The

throughput is measured as the reply rate of the http

server in response to httperf request rate. The chart

shows three graphs each depicting the case when an

http server is hosted on a non-virtualized, virtualized

and a virtualized-consolidated single-core server. The

non-virtualized server is realized on a standard linux

OS and the virtualized server on Xen and Xeno-linux.
The virtualized and virtualized-consolidated

servers differ by the number of virtual machines

running on the virtualized system. In the case of

virtualized server, only one Xen-VM hosting the http

server is activated. In the case of virtualized-

consolidated server, two Xen-VMs are activated, both

of them sharing the same NIC. Each of the VMs hosts

an http server that responds to a different httperf

client. From Figure 1 we observe that while the

throughput increases linearly with the increase in

request rate for the non-virtualized server, there is a

gradual drop of throughput for the virtualized server

from the request rate of 500reqs/s. This is due to the

virtualization overheads on I/O operations caused due
to not only sharing of the device but also sharing of

the VMM and the IDD. This sharing increases the

device access latency and causes loss of bandwidth

thereby loss of achievable application throughput.

Figure 1: httperf throughput chart for http server
hosted on a non-virtualized and virtualized Xen
server.

This loss of bandwidth is additive and is depicted in

the case of consolidated server. The non-virtualized

server achieves a throughput of 950 replies/s for a

request rate of 950 requests/s, after which the server
exhibits packet loss which results in throughput loss

for the application. For the virtualized servers the loss

of throughput starts off as early as 500 requests/s, in

the case of single VM consolidated server, and at 450

requests/s for the two-VMs consolidated server. In

Figure 1 each graph refers to the achievable

throughput for a single client of httperf. We also

observe that for one-VM consolidated server case the

virtualization overheads do not allow complete

utilization of the NIC bandwidth when compared to

the non-virtualized case. For the two-VMs
consolidated server case, the per VM achievable

throughput without, any loss, further drops but the

total throughput, for both VMs put together, supported

by the NIC is 10% less than the non-virtualized server.

This raises the issue of scalability in terms of sharing

the I/O device with multiple VMs. We notice that in

Xen with an addition of VM, sharing the NIC, a

reduction in the usable bandwidth of the device

occurs. This indicates the need for reducing the device

access latencies and also fine-grained QoS controls for

 - 3 -

device shared by the VMs. In Xen, I/O device access

is routed through the IDD, which incurs CPU resource

consumption on behalf of the VM whose access it is

servicing. There is no control on the amount of this

resource consumption on a per VM basis [6]. This can

cause crosstalk effect leading to performance loss in
one VM due to an errant application in the other VM.

Also, in terms of device resource and bandwidth

limiting, the controls are within the IDD. While this

control may work well on the outgoing route, on the

incoming route the NIC receives the packet after

which the IDD takes a decision on acceptance or

rejection. The effort spent on a rejected packet

manifests as loss of utilizable bandwidth on the device

path.

3. Enabling QoS at the device level

 In order to overcome the crosstalk effect and

performance loss we propose an alternate architecture

for the NIC. The goals of this design are:

• I/O devices to be made virtualization aware;

physical device should enable logical partitioning

of device resources guided by QoS guarantees.
• VMM to control and define a virtual device, using

the logical partitioning of a device. A virtual

device is exported to a VM.

• The virtual device is private to a VM and is

managed by the VM. IDD is eliminated.

The proposed device architecture supports multiple

virtual devices on a single physical device. Each

virtual device is defined using a subset of device

resources and is exported through a virtual device

interface. The virtual device interface incorporates

identity and protection in the virtual device itself. The

VMM is modified to manage the virtual device to VM
association and handle the device interrupt

virtualization. We eliminate the IDD functionality and

replace it by the device driver resident within the VM.

This device driver accesses the virtual device interface

rather than the physical device which allows for native

device access to the VM and thus reduces the latency

on the device access path. Since a single device can

now support multiple virtual devices, concurrent

device access support is built into the device and the

VMM. To allow for direct access into a VM, the

device and the VMM also support I/O device page
translation tables that are initialized based on the

virtual device interface.

3.1 NIC architecture description

 Figure 2 gives a block schematic diagram of the

proposed architecture. The picture depicts a NIC card
that would be housed within a multi-core server. The

card would have a controller that manages the DMA

transfer to and from the device memory. The standard

device memory is now replaced by the resizable

memory partitions supported with n sets of device

registers, multiple DMA channels and interrupt lines.

A device memory partition, a specific set of device
registers along-with dedicated DMA channels and

interrupt line forms the virtual-NIC. Ideally the device

memory should be reconfigurable and the VM’s QoS

requirements would drive the sizing of this memory.

The controller is capable of generating message

signaled interrupts (MSI). The number of interrupts

supported by the controller restricts the number of

virtual-NICs that can be exported. The proposed

architecture can be achieved by the following

modifications.

• Virtual-NIC: Device hardware should support

time-sharing in hardware. For a NIC this can be
achieved by using MSI and concurrent access to

multiple device memory partitions. Each virtual device

has a specific logical device address, like the MAC

address in case of NICs, based on which the MSI is

routed. The virtual-NIC, which is now a subset of the

physical device resources, is exported to a VM when it

is started. It forms a restricted address space on the

device and is usable only by the VM it is exported to.

The VM retains the possession of the virtual-NIC till it

is active or till it relinquishes the virtual-NIC. The VM

possessing the virtual-NIC can use it for native device
access or can become the IDD for VMs wanting to

share the virtual-NIC.

Figure 2: Proposed architecture of the NIC
supporting MSI interrupts with 3 device memory
partitions and three device register sets enabling
three virtual-NICs.

• Accessing virtual-NIC: For accessing the virtual-

NIC the hypervisor layer for network I/O in Xen is

 - 4 -

replaced by a VM’s native device driver. This device

driver can only manipulate the restricted device

address space which was exported through the virtual-

NIC interface by the VMM. With the virtual-NIC, the

VMM only identifies and forwards the device interrupt

to the destination VM and handles concurrent device
access, eliminating the IDD altogether. The OS of the

VM now handles the I/O access and thus can be

accounted for the resource usage it incurs [Figure 3].

This eliminates the VM-crosstalk due to the sharing of

IDD.

• QoS and virtual-NIC: The device memory

partition acts as a dedicated device buffer for each of

the VMs. With appropriate logic on the NIC one can

easily implement QoS based service level agreements

(SLAs) on the device. For example the QoS

requirement of specific bandwidth can be

implemented by allocating appropriate device memory
to the virtual-NIC interface exported to the VM. While

communicating, the NIC controller then decides on

whether to accept or reject the incoming packet based

on the bandwidth specification or the device memory

free level. This gives a fine-grained control on the

incoming traffic and helps reduce the crosstalk effects.

The outbound traffic can be controlled by the VM

itself, as is done in the non-virtualized server. The

NIC controller can also implement the notion of

priority by raising the appropriate MSI depending on

the assigned priority of the VM.

Figure 3: Architecture of system software for the
proposed virtual-NIC.

3.2 Network Packet workflow

In Figure 4 and Figure 5 the workflow for network

data reception and transmission using the proposed

device virtualization architecture is shown. When a

packet arrives at the NIC, it deciphers and checks the

destination address of the packet, then copies the

packet into the destination VM’s portion of the device

memory. The VM’s device driver receives the data

from the VM specific device memory using DMA as it

would do in the case of non-virtualized server.

Subsequently the device would raise an interrupt that
is received by the VMM and forwarded to the

respective VM. In the case of transmission, the reverse

process of reception occurs.

Figure 4: Network packet reception workflow.

Concurrent device access by multiple VMs is enabled

by the supporting multiple DMA channels on the

device with MSI. The proposed NIC architecture

assumes an intelligent device that offloads tasks like

virtual device interface identification, DMA channel

arbitration based on priority, etc.

Figure 5: Network packet transmission workflow.

Each VM will now install a device driver that

understands the virtual device interface. This device

driver is similar to the standard device driver of the

 - 5 -

non-virtualized server but works with a restricted

device address. Also, since the device is exported for

native VM access, the device driver uses the I/O page

translation tables that are setup by the VMM during

the virtual device initialization.

3.3 Layered Queuing Network (LQN)

modeling

The proposed architecture involves changes in the

hardware and system software accessing and using the

hardware. In order to evaluate the end-to-end

application performance based on these architecture-

OS interaction changes, we need a setup to capture the

architecture parameters in terms of the interacting

component service times and the associated queuing

delays when sharing software components and/or

devices. LQN models are layered queuing network

models that capture such software and device

contentions when multiple processes share a common
software or device. Using method of layers (MOL) on

such models one can make performance estimates and

studies of the modeled system. Various issues like

which server in the system is a bottleneck, what kind

of throughput or response times are sustainable in the

given setup, what are the server and device utilizations

for a given workload, etc., can be studied in detail

using LQNs. For further details on LQN modeling and

MOL refer [7] and [8] respectively. Figure 6 is a

diagrammatic representation of the device and

software sharing in the proposed architecture. In the
picture, solid lines show software interaction, and

dashed lines indicate usage of a device, like a

processor or NIC card, by any of the software

component.

Figure 6: Software and device contention model
for proposed I/O device sharing architecture.

Merging of lines at a software component or a device

indicates contention. LQNs allow for intuitive

modeling of the system of interest from the interaction

workflow. For this study we generate the LQN model

manually using the LQNDEF [9] software developed

at the RADS lab of Carleton University. In the model
each functional unit is modeled as an entity and the

interactions across these entities are modeled as

synchronous or asynchronous communication links

based on the actual implementation in the system.

Figure 7: LQN model generated for a
consolidated Xen server incorporating the
proposed architecture. The server is modeled to
be hosting two virtual machines, each catering to
an httperf stream

Synchronous communication is used where the

requesting entity can service requests serially. For

example, when the IDD/VM is receiving data from the

device buffer into I/O ring buffer it is a synchronous

and a blocked operation. This blocking causes queuing

delays at the shared device or software and is captured

using synchronous communication link in the LQN

model. In the case of multiple kernel entities, like

device driver DMA transmit and receive calls, only

one of them can be active at a time. We represent such

 - 6 -

software components as tasks within an entity, to

capture serialization. For example, between the timer

and device interrupt, only one can be serviced at a

time. The LQN model follows the interaction

workflow and each entity of the model represents

receive or transmit component of the workflow
functional element. We model the LQN as an open

queuing network model and measure the performance

in terms of the maximum throughput achieved. The

LQN model used for evaluating the proposed

architecture is depicted in Figure 7. The service times

[Table 1] of the entities of the LQN model are arrived

at using the xenoprof[10] kernel profiler. All the

service times specified are for a single http request and

are measured in seconds. We use the httperf request
rate to represent the mean arrival rate of the workload

for the LQN. We make one assumption to simplify the

LQN model; while in reality every http get request is

broken into a sequence of packets that are passed

through the various layers of OS, we model it as a

single service request. This assumption tends to give

optimistic throughputs in the simulation results since it

does not capture the packet queuing delays. As can be

observed from the validation graphs in Figure 8 for the
application throughput, the deviation of the simulation

results from the observed measurements is less than

10% and is thus suitable for evaluation of the

architecture. One element that is incorporated in the

LQN model and not shown in the workflow is the

system timer interrupt using the server element

”Timer”. This element is introduced in the LQN to

account for the queuing delays accrued while the OS is

handling timer interrupts.

Table 1: Execution service time demands for
entries used in LQN model.

Task Name Entry Name Phase 1 Phase 2

httperf1_post Request1 1e-10 0

NIC_IN DMA1_IN 9.24e-05 0

NIC_IN DMA2_IN 9.24e-05 0

VMM_ISRIN ISRIN1 1e-10 0

VMM_ISRIN ISRIN2 1e-10 0

VMM_ISRIN Tintr1H 4.7783e-05 0

DD1_Recv Recv1_Pkt 2.3297e-05 0

httpS1_Recv Recv1_Req 0.00021069 0

httpS1_Reply Send1_Rep 0.00021069 0

DD1_RevC Rev1_Pkt 1e-10 3.7767e-05

DD1_Send Send1_Pkt 2.3297e-05 0

VMM_ISROUT ISR1OUT 1e-10 0

VMM_ISROUT ISR2OUT 1e-10 0

NIC_OUT DMA1_OUT 9.24e-05 0

NIC_OUT DMA2_OUT 9.24e-05 0

httperf1_recv Reply1 1e-10 0

Timer1 Timer1_intr 1e-10 0

DD1_ForwC Forw1_Pkt 3.7767e-05 1e-10

httperf2_post Request2 1e-10 0

httpS2_Recv Recv2_Req 0.00021069 0

httpS2_Reply Send2_Rep 0.00021069 0

httperf2_recv Reply2 1e-10 0

VM1_ISRIN Tintr2H 4.7783e-05 0

VM2_ISRIN Tintr3H 4.7783e-05 0

Timer2 Timer2_intr 1e-10 0

Timer3 Timer3_intr 1e-10 0

DD2_ForwC Forw2_Pkt 3.7767e-05 1e-10

DD2_Recv Recv2_Pkt 2.3297e-05 0

DD2_RevC Rev2_Pkt 1e-10 3.7767e-05

DD2_Send Send2_Pkt 2.3297e-05 0

4. Evaluation of Architecture

 To evaluate the proposed architecture we use the

parasrvn[9] simulator of the LQNS software

distribution from Carleton University. First we

generate and validate the LQN model for the existing

network I/O workflow in Xen with the experimental

data. As can be observed from Figure 8 a,b, and c,

LQN simulation results are almost in accordance to

the observed values.

a: httperf throughput for non-virtualized server

b: httperf throughput for one-VM consolidated
server

c: httperf throughput for two-VMs consolidated
server

Figure 8: LQN model validation for httperf
throughput against experimental data for the http
server hosted on a non-virtualized and virtualized
Xen VM for a single-core system.

 - 7 -

The cut-off httperf request rate for the simulated

results corresponds to the stage where the server is

saturated. The experimental data collected was for a

single core machine and the LQN model is validated
for such a system. In order to understand the benefits

of the existing Xen-virtualization architecture on a

multi-core system, we extend the LQN model to a

multi-core server by hosting the VMM/IDD and each

of the VMs on an independent core. The expected

difference between a single core and multi-core

environment in terms of VMM overheads are VM

context switching for the single core server and timer

scheduling across multiple cores for the multi-core

server. Each of these overheads is about 10% of the

observed experimental CPU utilization values and one
effect compensates the other. We have not included

these effects into the LQN model to keep it simple.

Figure 9 and Figure 10 below depict the results of

achievable throughput and server CPU utilization,

respectively, for a multi-core server with two VMs

consolidated. In both the graphs, the curves for the

VMs are overlapping.

Figure 9: httperf throughput graph with two VMs
consolidated on a multi-core Xen server with the

VMM/IDD, and the VMs pinned to an
independent core.

The throughput graph for both the VMs is similar and

appears overlapped in the chart. As can be noted from

Figure 9, in a multi-core environment with Xen IDD,

VM1 and VM2 each pinned to a core, and each VM

servicing one httperf stream, the maximum
throughput achievable per stream is 950requests/s as

against 450requests/s in the case of single-core hosting

both the VMs and the IDD. Moving to a multi-core

server the consolidated throughput, including both the

streams, at the NIC doubles. But, for the maximum

throughput, we observe that the Xen-IDD CPU

utilization saturates [Figure 10]. This indicates that

further increase in throughput is not possible since the

IDD’s CPU does not have any computing power left.

Figure 11 and Figure 12 show these statistics for a

similar situation but with the proposed architecture. As

we can observe, the maximum throughput achievable

per stream increases to 1500 req/s, which is an

increase of about 60% more throughput.

Figure 10: http server CPU utilization graph for
two VMs consolidated on a multi-core Xen server
with the VMM/IDD, and the VMs pinned to an
independent core

The total throughput achievable at the NIC, derived

from consolidating the throughput of both the streams,

also increases by 60% when compared to what was

achieved on the existing architecture. If we look at the

CPU utilization of the VMs and the VMM, we observe

that the CPU utilization by the VMM is very small.

The reason for this is that, the NIC is now offloading

the identity of the destination of the packet from the
IDD and this identification happens due to MSI based

interrupts which execute at hardware speeds.

Figure 11: Maximum achievable httperf
throughput for a multi-core consolidated Xen
server hosting two VMs incorporating the
proposed I/O virtualization architecture.

 - 8 -

Hence a very low value of service time is assigned for

this service in the LQN model. Also, in the existing

model, bridging software that takes care of routing the

packets to a VM, has a substantial overhead. This is

done away with in the proposed architecture.

Figure 12: CPU Utilization of VMM and VM for
the consolidated multi-core Xen server
incorporating the proposed I/O virtualization
architecture and hosting two VMs.

The net result is improved throughput, reduced

virtualization overhead, and reduction of VMM
resource consumption on behalf of VMs. We also

notice that the CPU utilization by the VMM is almost

constant which results in eliminating the crosstalk

effect and also improves the scalability of sharing the

device across VMs. With this architecture each VM is

now accountable for all the resource consumption,

thereby leading to better QoS controls. These results

of performance improvements predicted by the LQNs

model in this paper are comparable with the

improvements achieved and reported in [11] and [12].

The reason that the reported improvements in this
paper are slightly lower (60% versus 70%) than what

is reported in literature is due to the fact that we are

reporting performance improvements at the

application level, while in [11] and [12] the

performance is measured at the interface. It is

understandable that moving from the interface to the

application there will be software overheads involved

due to processing across various network layers.

5. Conclusion

 In this paper we have explored the issues, from the

point of view of enabling QoS guarantees, involved in

sharing I/O devices in virtualized systems. We

established the issues of loss of performance due to

crosstalk and loss of usable bandwidth existing in Xen

architecture for a NIC that is shared across two virtual

machines. We then proposed a new I/O device

virtualization architecture to overcome these issues.

We used layered queuing network models to

implement and evaluate the proposed architecture. We

found that simple changes in the I/O device

architecture and the associated system lead to

improvements in application throughputs of up to
60%. We also found that the performance

improvement predicted by the LQN model is

comparable to that of reported real implementations.

Hence, the proposed architecture can be easily

extended to other I/O devices like disk/storage and

memory and LQN model used to evaluate the

applicability and improvement in overall application

performance.

6. References

[1] M. Welsh and D. Culler, “Virtualization considered

harmful: OS design directions for well-conditioned
services”, Hot Topics in OS, 8th Workshop, 2001.

[2] Paul Barham , Boris Dragovic , Keir Fraser , Steven

Hand , Tim Harris , Alex Ho , Rolf Neugebauer , Ian
Pratt , Andrew Warfield, “Xen and the art of
virtualization”, 19th ACM SIGOPS, Oct. 2003.

[3] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A.
War_eld, and M. Williamson, “Safe hardware access
with the Xen virtual machine monitor.” 1

st
 Workshop

on OASIS, Oct 2004.
[4] D. Mosberger and T. Jin, “httperf: A Tool for

Measuring Web Server Performance,” ACM, Workshop

on Internet Server Performance, pp. 59-67, June 1998.
[5] Nils Radtke, “Linux Ethernet Bridge + Netfilter

HOWTO”, available online at
http://www.linux.org/docs/ldp/howto/Ethernet-Bridge-
netfilter-HOWTO.html

[6] L. Cherkasova and R. Gardner, “Measuring CPU
overhead for I/O processing in the Xen virtual machine

monitor.” In USENIX Annual Technical Conference,
Apr 2005.

[7] C. M. Woodside, J. E. Neilson, D. C. Petriu and S.
Majumdar, “The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-Server-
like Distributed Software”, IEEE Trans. on Computers,
vol. 44, no. 1, January 1995, pp. 20-34.

[8] J.A. Rolia and K. C. Sevcik, “The Method of Layers”,
IEEE Transactions on Software Engineering, Vol. 21,

No.8, Aug 1995.
[9] Layered Queueing Network Solver software package,

http://www.sce.carleton.ca/rads/lqns/
[10] Menon, J. R. Santos, Y Turner, and G. Janakiraman,

“Xenoprof - Performance profiling in Xen”
http://xenoprof.sourceforge.net/xenoprof_2.0.txt

[11] Himanshu Raj and Karsten Schwan, High performance
and scalable I/O virtualization via self-virtualized

devices, HPDC’07, p179-188.
[12] Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner,

S., Cox, A. L., Zwaenepoel, W. Concurrent direct
network access for virtual machine monitors. HPCA
2007 (February).

