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Abstract 

 
The prevalent virtualization technologies provide QoS 

support within the software layers of the virtual 

machine monitor(VMM) or the operating system of the 

virtual machine(VM). The QoS features are mostly 

provided as extensions to the existing software used 

for accessing the I/O device because of which the 

applications sharing the I/O device experience loss of 

performance due to crosstalk effects or usable 

bandwidth. In this paper we examine the NIC sharing 

effects across VMs on a Xen virtualized server and 

present an alternate paradigm that improves the 

shared bandwidth and reduces the crosstalk effect on 

the VMs. We implement the proposed hardware-

software changes in a layered queuing network (LQN) 

model and use simulation techniques to evaluate the 

architecture. We find that simple changes in the device 

architecture and associated system software lead to 

application throughput improvement of up to 60%. 

The architecture also enables finer QoS controls at 

device level and increases the scalability of device 

sharing across multiple virtual machines. We find that 

the performance improvement derived using LQN 

model is comparable to that reported by similar but 

real implementations. 
 

1. Introduction 
 
 Multi-core systems are a logical evolution of single 

core processors due to saturation of computing power 
on a single core. In the HPC segment, such systems 

are an attractive alternative to mid-sized distributed 

clusters owing to inherent architecture benefits of low 

latency inter-processor communication. In the 

enterprise segment, coupled with system 

virtualization, multi-core systems are being promoted 

as the one-stop solution to enterprise data-center issues 

like server outages, energy consumption, support for 

legacy applications, etc. Apart from this, multi-core 

systems are also being seriously considered for 

consolidating on-board real-time applications in 
automobile and aerospace application domains. 

The current multi-core systems are well-

suited to facilitating compute workloads that exploit 

the presence of many processors on chip and on-board. 

Also, most efforts are directed at improving system 

architectures for such workloads. In compute intensive 

parallel jobs, inter task/process communication or file 

I/O handling, are well characterized and designed in 

such a way that, very specific tasks carry out the I/O 

activity. While in enterprise segments, where the 

workloads are dominated by a mix of I/O and compute 

intensive jobs, multi-core systems have a disadvantage 

due to the predominance of CPUs over I/O devices. 

Most server consolidation scenarios involve hosting 

on to a physical machine, large numbers of serial or 
parallel applications that require significantly less 

number of CPUs when compared to scientific parallel 

jobs. This brings in the question of many independent 

jobs sharing a common I/O device like the network 

interface (NIC) or a local disk. Many of these 

workloads are either response sensitive or throughput 

sensitive because of which it is essential to specify, 

maintain and cater to application specific quality of 

service (QoS) guarantees [1]. 

 In the prevalent virtualization technologies 

QoS support is mostly provided as extension to the 
existing software used for accessing the I/O device. As 

an example, consider a Xen [2] virtualized server 

hosting multiple VMs that share a common NIC of the 

server. In Xen the NIC is accessed through a 

privileged domain called the independent driver 

domain (IDD) [3] that hosts the device driver of the 

interface and is responsible for the physical data 

transfer to and from the machine. Any VM intending 

to use the NIC is given access through the virtual 

network interface which is implemented in software 

by the netfront and netback drivers. The netfront 
driver is hosted in the VM and netback is hosted in the 

IDD. In such virtualized systems, for every I/O device 

that is shared, the IDD hosting the device is also 

shared amongst the VMs. Each VM can have its own 

ip-address which is enabled by bridging or routing 

software within the IDD. If a VM requests for specific 

bandwidth on the incoming or outgoing traffic, this is 

implemented in software, like netfilter[5] of linux in 

the IDD. Supporting QoS features in software does not 

give fine-grained control on device access which leads 

to either crosstalk* or loss of bandwidth on the device 

                                                
* By crosstalk we refer to loss of performance observed in one VM because of 

sharing the NIC with another VM. 
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access path. In this paper we examine the NIC sharing 

effects across VMs on a Xen virtualized server and 

present an alternate paradigm that improves the shared 

bandwidth and reduces the crosstalk effect on the 

VMs. We implement the proposed hardware-software 

changes in a layered queuing network (LQN) model 
and use simulation techniques to evaluate the 

architecture. 

The rest of the paper is organized as follows. In 

section 2 we detail the effects of NIC device sharing in 

the existing Xen virtual machine architecture to bring out 

the motivation for this work. In section 3 we define the 

goals and detail improvements on the existing NIC 

architecture, the VMM and VM’s OS. In this section we 

also detail the modeling of the architecture using layered 

queuing network model and describe the network data 

reception and transmission workflow for the architecture. 

In section 0 we describe the architecture evaluation and 
present the results. Finally, in section 5 we conclude 

highlighting the issues of shared I/O devices in 

virtualized systems and ways of tackling these issues.  

 

2. Effects of I/O device sharing 
 
 It is expected that any device sharing would lead to 

some overheads and this issue is more prominent in 

virtualized multi-core systems. In a non-virtualized 

server, for general purpose operating systems like 

Unix, I/O is performed by routing every device’s 

access through the operating system’s I/O system call 

interface. Virtualization adds one more layer of 

indirection to this path; in Xen this additional 

overhead manifests due to the data transfer and page 

address translations at the IDD hosting the device and 

VM layer, and the virtualization of device interrupts 

through the event channel. How this overhead affects 
the realized throughput, measured as reply rate, at the 

application level is depicted in Figure 1. The figure 

contains a plot of throughput achieved by the httperf 

[4] benchmark for a specified request rate. The 

throughput is measured as the reply rate of the http 

server in response to httperf request rate. The chart 

shows three graphs each depicting the case when an 

http server is hosted on a non-virtualized, virtualized 

and a virtualized-consolidated single-core server. The 

non-virtualized server is realized on a standard linux 

OS and the virtualized server on Xen and Xeno-linux.  
The virtualized and virtualized-consolidated 

servers differ by the number of virtual machines 

running on the virtualized system. In the case of 

virtualized server, only one Xen-VM hosting the http 

server is activated. In the case of virtualized-

consolidated server, two Xen-VMs are activated, both 

of them sharing the same NIC. Each of the VMs hosts 

an http server that responds to a different httperf 

client. From Figure 1 we observe that while the 

throughput increases linearly with the increase in 

request rate for the non-virtualized server, there is a 

gradual drop of throughput for the virtualized server 

from the request rate of 500reqs/s. This is due to the 

virtualization overheads on I/O operations caused due 
to not only sharing of the device but also sharing of 

the VMM and the IDD. This sharing increases the 

device access latency and causes loss of bandwidth 

thereby loss of achievable application throughput. 

 

 
 

Figure 1: httperf throughput chart for http server 
hosted on a non-virtualized and virtualized Xen 
server. 
 

This loss of bandwidth is additive and is depicted in 

the case of consolidated server. The non-virtualized 

server achieves a throughput of 950 replies/s for a 

request rate of 950 requests/s, after which the server 
exhibits packet loss which results in throughput loss 

for the application. For the virtualized servers the loss 

of throughput starts off as early as 500 requests/s, in 

the case of single VM consolidated server, and at 450 

requests/s for the two-VMs consolidated server. In 

Figure 1 each graph refers to the achievable 

throughput for a single client of httperf. We also 

observe that for one-VM consolidated server case the 

virtualization overheads do not allow complete 

utilization of the NIC bandwidth when compared to 

the non-virtualized case. For the two-VMs 
consolidated server case, the per VM achievable 

throughput without, any loss, further drops but the 

total throughput, for both VMs put together, supported 

by the NIC is 10% less than the non-virtualized server.    

This raises the issue of scalability in terms of sharing 

the I/O device with multiple VMs. We notice that in 

Xen with an addition of VM, sharing the NIC, a 

reduction in the usable bandwidth of the device 

occurs. This indicates the need for reducing the device 

access latencies and also fine-grained QoS controls for 
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device shared by the VMs.  In Xen, I/O device access 

is routed through the IDD, which incurs CPU resource 

consumption on behalf of the VM whose access it is 

servicing. There is no control on the amount of this 

resource consumption on a per VM basis [6]. This can 

cause crosstalk effect leading to performance loss in 
one VM due to an errant application in the other VM. 

Also, in terms of device resource and bandwidth 

limiting, the controls are within the IDD. While this 

control may work well on the outgoing route, on the 

incoming route the NIC receives the packet after 

which the IDD takes a decision on acceptance or 

rejection. The effort spent on a rejected packet 

manifests as loss of utilizable bandwidth on the device 

path. 

  

3. Enabling QoS at the device level 
 
 In order to overcome the crosstalk effect and 

performance loss we propose an alternate architecture 

for the NIC. The goals of this design are:  

• I/O devices to be made virtualization aware; 

physical device should enable logical partitioning 

of device resources guided by QoS guarantees. 
• VMM to control and define a virtual device, using 

the logical partitioning of a device. A virtual 

device is exported to a VM. 

• The virtual device is private to a VM and is 

managed by the VM. IDD is eliminated. 

The proposed device architecture supports multiple 

virtual devices on a single physical device. Each 

virtual device is defined using a subset of device 

resources and is exported through a virtual device 

interface. The virtual device interface incorporates 

identity and protection in the virtual device itself. The 

VMM is modified to manage the virtual device to VM 
association and handle the device interrupt 

virtualization. We eliminate the IDD functionality and 

replace it by the device driver resident within the VM. 

This device driver accesses the virtual device interface 

rather than the physical device which allows for native 

device access to the VM and thus reduces the latency 

on the device access path. Since a single device can 

now support multiple virtual devices, concurrent 

device access support is built into the device and the 

VMM. To allow for direct access into a VM, the 

device and the VMM also support I/O device page 
translation tables that are initialized based on the 

virtual device interface.  

 

3.1 NIC architecture description 
 
 Figure 2 gives a block schematic diagram of the 

proposed architecture. The picture depicts a NIC card 
that would be housed within a multi-core server. The 

card would have a controller that manages the DMA 

transfer to and from the device memory. The standard 

device memory is now replaced by the resizable 

memory partitions supported with n sets of device 

registers, multiple DMA channels and interrupt lines. 

A device memory partition, a specific set of device 
registers along-with dedicated DMA channels and 

interrupt line forms the virtual-NIC. Ideally the device 

memory should be reconfigurable and the VM’s QoS 

requirements would drive the sizing of this memory.  

The controller is capable of generating message 

signaled interrupts (MSI). The number of interrupts 

supported by the controller restricts the number of 

virtual-NICs that can be exported. The proposed 

architecture can be achieved by the following 

modifications.  

• Virtual-NIC: Device hardware should support 

time-sharing in hardware. For a NIC this can be 
achieved by using MSI and concurrent access to 

multiple device memory partitions. Each virtual device 

has a specific logical device address, like the MAC 

address in case of NICs, based on which the MSI is 

routed. The virtual-NIC, which is now a subset of the 

physical device resources, is exported to a VM when it 

is started. It forms a restricted address space on the 

device and is usable only by the VM it is exported to. 

The VM retains the possession of the virtual-NIC till it 

is active or till it relinquishes the virtual-NIC. The VM 

possessing the virtual-NIC can use it for native device 
access or can become the IDD for VMs wanting to 

share the virtual-NIC.  

 

 
 

Figure 2: Proposed architecture of the NIC 
supporting MSI interrupts with 3 device memory 
partitions and three device register sets enabling 
three virtual-NICs. 

 

• Accessing virtual-NIC: For accessing the virtual-

NIC the hypervisor layer for network I/O in Xen is 



 - 4 - 

replaced by a VM’s native device driver. This device 

driver can only manipulate the restricted device 

address space which was exported through the virtual-

NIC interface by the VMM. With the virtual-NIC, the 

VMM only identifies and forwards the device interrupt 

to the destination VM and handles concurrent device 
access, eliminating the IDD altogether. The OS of the 

VM now handles the I/O access and thus can be 

accounted for the resource usage it incurs [Figure 3]. 

This eliminates the VM-crosstalk due to the sharing of  

IDD.  

• QoS and virtual-NIC: The device memory 

partition acts as a dedicated device buffer for each of 

the VMs. With appropriate logic on the NIC one can 

easily implement QoS based service level agreements 

(SLAs) on the device. For example the QoS 

requirement of specific bandwidth can be 

implemented by allocating appropriate device memory 
to the virtual-NIC interface exported to the VM. While 

communicating, the NIC controller then decides on 

whether to accept or reject the incoming packet based 

on the bandwidth specification or the device memory 

free level. This gives a fine-grained control on the 

incoming traffic and helps reduce the crosstalk effects. 

The outbound traffic can be controlled by the VM 

itself, as is done in the non-virtualized server.  The 

NIC controller can also implement the notion of 

priority by raising the appropriate MSI depending on 

the assigned priority of the VM. 
 

 
 

Figure 3: Architecture of system software for the 
proposed virtual-NIC. 
 

3.2  Network Packet workflow  
 
In Figure 4 and Figure 5 the workflow for network 

data reception and transmission using the proposed 

device virtualization architecture is shown. When a 

packet arrives at the NIC, it deciphers and checks the 

destination address of the packet, then copies the 

packet into the destination VM’s portion of the device 

memory. The VM’s device driver receives the data 

from the VM specific device memory using DMA as it 

would do in the case of non-virtualized server. 

Subsequently the device would raise an interrupt that 
is received by the VMM and forwarded to the 

respective VM. In the case of transmission, the reverse 

process of reception occurs.  

 

 
 
Figure 4: Network packet reception workflow. 
 
Concurrent device access by multiple VMs is enabled 

by the supporting multiple DMA channels on the 

device with MSI. The proposed NIC architecture 

assumes an intelligent device that offloads tasks like 

virtual device interface identification, DMA channel 

arbitration based on priority, etc.   

 

 
 

Figure 5: Network packet transmission workflow. 
 

Each VM will now install a device driver that 

understands the virtual device interface. This device 

driver is similar to the standard device driver of the 
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non-virtualized server but works with a restricted 

device address. Also, since the device is exported for 

native VM access, the device driver uses the I/O page 

translation tables that are setup by the VMM during 

the virtual device initialization. 

 

3.3  Layered Queuing Network (LQN) 

modeling 
 

The proposed architecture involves changes in the 

hardware and system software accessing and using the 

hardware. In order to evaluate the end-to-end 

application performance based on these architecture-

OS interaction changes, we need a setup to capture the 

architecture parameters in terms of the interacting 

component service times and the associated queuing 

delays when sharing software components and/or 

devices. LQN models are layered queuing network 

models that capture such software and device 

contentions when multiple processes share a common 
software or device. Using method of layers (MOL) on 

such models one can make performance estimates and 

studies of the modeled system. Various issues like 

which server in the system is a bottleneck, what kind 

of throughput or response times are sustainable in the 

given setup, what are the server and device utilizations 

for a given workload, etc., can be studied in detail 

using LQNs. For further details on LQN modeling and 

MOL refer [7] and [8] respectively. Figure 6 is a 

diagrammatic representation of the device and 

software sharing in the proposed architecture. In the 
picture, solid lines show software interaction, and 

dashed lines indicate usage of a device, like a 

processor or NIC card, by any of the software 

component.  

 

 
 

Figure 6: Software and device contention model 
for proposed I/O device sharing architecture. 
 

Merging of lines at a software component or a device 

indicates contention. LQNs allow for intuitive 

modeling of the system of interest from the interaction 

workflow. For this study we generate the LQN model 

manually using the LQNDEF [9] software developed 

at the RADS lab of Carleton University. In the model 
each functional unit is modeled as an entity and the 

interactions across these entities are modeled as 

synchronous or asynchronous communication links 

based on the actual implementation in the system.  

 

 
 

Figure 7: LQN model generated for a 
consolidated Xen server incorporating the 
proposed architecture. The server is modeled to 
be hosting two virtual machines, each catering to 
an httperf stream 
 
Synchronous communication is used where the 

requesting entity can service requests serially. For 

example, when the IDD/VM is receiving data from the 

device buffer into I/O ring buffer it is a synchronous 

and a blocked operation. This blocking causes queuing 

delays at the shared device or software and is captured 

using synchronous communication link in the LQN 

model. In the case of multiple kernel entities, like 

device driver DMA transmit and receive calls, only 

one of them can be active at a time. We represent such 
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software components as tasks within an entity, to 

capture serialization. For example, between the timer 

and device interrupt, only one can be serviced at a 

time. The LQN model follows the interaction 

workflow and each entity of the model represents 

receive or transmit component of the workflow 
functional element. We model the LQN as an open 

queuing network model and measure the performance 

in terms of the maximum throughput achieved. The 

LQN model used for evaluating the proposed 

architecture is depicted in Figure 7.  The service times 

[Table 1] of the entities of the LQN model are arrived 

at using the xenoprof[10] kernel profiler. All the 

service times specified are for a single http request and 

are measured in seconds. We use the httperf request 
rate to represent the mean arrival rate of the workload 

for the LQN. We make one assumption to simplify the 

LQN model; while in reality every http get request is 

broken into a sequence of packets that are passed 

through the various layers of OS, we model it as a 

single service request. This assumption tends to give 

optimistic throughputs in the simulation results since it 

does not capture the packet queuing delays. As can be 

observed from the validation graphs in Figure 8 for the 
application throughput, the deviation of the simulation 

results from the observed measurements is less than 

10% and is thus suitable for evaluation of the 

architecture. One element that is incorporated in the 

LQN model and not shown in the workflow is the 

system timer interrupt using the server element 

”Timer”. This element is introduced in the LQN to 

account for the queuing delays accrued while the OS is 

handling timer interrupts. 

 

Table 1: Execution service time demands for 
entries used in LQN model. 

 
Task Name Entry Name Phase 1 Phase 2     

httperf1_post Request1 1e-10 0           

NIC_IN DMA1_IN 9.24e-05 0           

NIC_IN DMA2_IN 9.24e-05 0           

VMM_ISRIN ISRIN1 1e-10 0           

VMM_ISRIN ISRIN2 1e-10 0           

VMM_ISRIN Tintr1H 4.7783e-05 0           

DD1_Recv Recv1_Pkt 2.3297e-05 0           

httpS1_Recv Recv1_Req 0.00021069 0           

httpS1_Reply Send1_Rep 0.00021069 0           

DD1_RevC Rev1_Pkt 1e-10 3.7767e-05  

DD1_Send Send1_Pkt 2.3297e-05 0           

VMM_ISROUT ISR1OUT 1e-10 0           

VMM_ISROUT ISR2OUT 1e-10 0           

NIC_OUT DMA1_OUT 9.24e-05 0           

NIC_OUT DMA2_OUT 9.24e-05 0           

httperf1_recv Reply1 1e-10 0           

Timer1 Timer1_intr 1e-10 0           

DD1_ForwC Forw1_Pkt 3.7767e-05 1e-10       

httperf2_post Request2 1e-10 0           

httpS2_Recv Recv2_Req 0.00021069 0           

httpS2_Reply Send2_Rep 0.00021069 0           

httperf2_recv Reply2 1e-10 0           

VM1_ISRIN Tintr2H 4.7783e-05 0           

VM2_ISRIN Tintr3H 4.7783e-05 0           

Timer2 Timer2_intr 1e-10 0           

Timer3 Timer3_intr 1e-10 0           

DD2_ForwC Forw2_Pkt 3.7767e-05 1e-10       

DD2_Recv Recv2_Pkt 2.3297e-05 0           

DD2_RevC Rev2_Pkt 1e-10 3.7767e-05  

DD2_Send Send2_Pkt 2.3297e-05 0           

 

4. Evaluation of Architecture 
 
 To evaluate the proposed architecture we use the 

parasrvn[9] simulator of the LQNS software 

distribution from Carleton University. First we 

generate and validate the LQN model for the existing 

network I/O workflow in Xen with the experimental 

data. As can be observed from Figure 8 a,b, and c, 

LQN simulation results are almost in accordance to 

the observed values.  
 

 
a: httperf throughput for non-virtualized server 

  

 
b: httperf throughput for one-VM consolidated 
server  
 

 
c: httperf throughput for two-VMs consolidated 
server 
 

Figure 8: LQN model validation for httperf 
throughput against experimental data for the http 
server hosted on a non-virtualized and virtualized 
Xen VM for a single-core system. 
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The cut-off httperf request rate for the simulated 

results corresponds to the stage where the server is 

saturated. The experimental data collected was for a 

single core machine and the LQN model is validated 
for such a system. In order to understand the benefits 

of the existing Xen-virtualization architecture on a 

multi-core system, we extend the LQN model to a 

multi-core server by hosting the VMM/IDD and each 

of the VMs on an independent core. The expected 

difference between a single core and multi-core 

environment in terms of VMM overheads are VM 

context switching for the single core server and timer 

scheduling across multiple cores for the multi-core 

server. Each of these overheads is about 10% of the 

observed experimental CPU utilization values and one 
effect compensates the other. We have not included 

these effects into the LQN model to keep it simple. 

Figure 9 and Figure 10 below depict the results of 

achievable throughput and server CPU utilization, 

respectively, for a multi-core server with two VMs 

consolidated. In both the graphs, the curves for the 

VMs are overlapping. 

 

 
 

Figure 9: httperf throughput graph with two VMs 
consolidated on a multi-core Xen server with the 

VMM/IDD, and the VMs pinned to an 
independent core. 
 

The throughput graph for both the VMs is similar and 

appears overlapped in the chart. As can be noted from 

Figure 9, in a multi-core environment with Xen IDD, 

VM1 and VM2 each pinned to a core, and each VM 

servicing one httperf stream, the maximum 
throughput achievable per stream is 950requests/s as 

against 450requests/s in the case of single-core hosting 

both the VMs and the IDD. Moving to a multi-core 

server the consolidated throughput, including both the 

streams, at the NIC doubles. But, for the maximum 

throughput, we observe that the Xen-IDD CPU 

utilization saturates [Figure 10]. This indicates that 

further increase in throughput is not possible since the 

IDD’s CPU does not have any computing power left. 

Figure 11 and Figure 12 show these statistics for a 

similar situation but with the proposed architecture. As 

we can observe, the maximum throughput achievable 

per stream increases to 1500 req/s, which is an 

increase of about 60% more throughput. 

 

 
 

Figure 10: http server CPU utilization graph for 
two VMs consolidated on a multi-core Xen server 
with the VMM/IDD, and the VMs pinned to an 
independent core 
 

The total throughput achievable at the NIC, derived 

from consolidating the throughput of both the streams, 

also increases by 60% when compared to what was 

achieved on the existing architecture.  If we look at the 

CPU utilization of the VMs and the VMM, we observe 

that the CPU utilization by the VMM is very small. 

The reason for this is that, the NIC is now offloading 

the identity of the destination of the packet from the 
IDD and this identification happens due to MSI based 

interrupts which execute at hardware speeds.  

 

 
 

Figure 11: Maximum achievable httperf 
throughput for a multi-core consolidated Xen 
server hosting two VMs incorporating the 
proposed I/O virtualization architecture.  
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Hence a very low value of service time is assigned for 

this service in the LQN model. Also, in the existing 

model, bridging software that takes care of routing the 

packets to a VM, has a substantial overhead. This is 

done away with in the proposed architecture. 

 

 
 

Figure 12: CPU Utilization of VMM and VM for 
the consolidated multi-core Xen server 
incorporating the proposed I/O virtualization 
architecture and hosting two VMs. 
 

The net result is improved throughput, reduced 

virtualization overhead, and reduction of VMM 
resource consumption on behalf of VMs. We also 

notice that the CPU utilization by the VMM is almost 

constant which results in eliminating the crosstalk 

effect and also improves the scalability of sharing the 

device across VMs. With this architecture each VM is 

now accountable for all the resource consumption, 

thereby leading to better QoS controls.  These results 

of performance improvements predicted by the LQNs 

model in this paper are comparable with the 

improvements achieved and reported in [11] and [12]. 

The reason that the reported improvements in this 
paper are slightly lower (60% versus 70%) than what 

is reported in literature is due to the fact that we are 

reporting performance improvements at the 

application level, while in [11] and [12] the 

performance is measured at the interface. It is 

understandable that moving from the interface to the 

application there will be software overheads involved 

due to processing across various network layers. 

 

5. Conclusion 
 
 In this paper we have explored the issues, from the 

point of view of enabling QoS guarantees, involved in 

sharing I/O devices in virtualized systems. We 

established the issues of loss of performance due to 

crosstalk and loss of usable bandwidth existing in Xen 

architecture for a NIC that is shared across two virtual 

machines.  We then proposed a new I/O device 

virtualization architecture to overcome these issues. 

We used layered queuing network models to 

implement and evaluate the proposed architecture. We 

found that simple changes in the I/O device 

architecture and the associated system lead to 

improvements in application throughputs of up to 
60%. We also found that the performance 

improvement predicted by the LQN model is 

comparable to that of reported real implementations. 

Hence, the proposed architecture can be easily 

extended to other I/O devices like disk/storage and 

memory and LQN model used to evaluate the 

applicability and improvement in overall application 

performance.  

 

6. References 
 
[1] M. Welsh and D. Culler, “Virtualization considered 

harmful: OS design directions for well-conditioned 
services”, Hot Topics in OS, 8th Workshop, 2001. 

[2] Paul Barham , Boris Dragovic , Keir Fraser , Steven 

Hand , Tim Harris , Alex Ho , Rolf Neugebauer , Ian 
Pratt , Andrew Warfield, “Xen and the art of 
virtualization”,  19th ACM SIGOPS, Oct. 2003.  

[3] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. 
War_eld, and M. Williamson, “Safe hardware access 
with the Xen virtual machine monitor.” 1

st
 Workshop 

on  OASIS, Oct 2004. 
[4] D. Mosberger and T. Jin, “httperf: A Tool for 

Measuring Web Server Performance,” ACM, Workshop 

on Internet Server Performance, pp. 59-67, June 1998. 
[5] Nils Radtke, “Linux Ethernet Bridge + Netfilter 

HOWTO”, available online at  
http://www.linux.org/docs/ldp/howto/Ethernet-Bridge-
netfilter-HOWTO.html 

[6] L. Cherkasova and R. Gardner, “Measuring CPU 
overhead for I/O processing in the Xen virtual machine 

monitor.” In USENIX Annual Technical Conference, 
Apr 2005. 

[7] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. 
Majumdar, “The Stochastic Rendezvous Network 
Model for Performance of Synchronous Client-Server-
like Distributed Software”, IEEE Trans. on Computers, 
vol. 44, no. 1, January 1995, pp. 20-34. 

[8] J.A. Rolia and K. C. Sevcik, “The Method of Layers”, 
IEEE Transactions on Software Engineering, Vol. 21, 

No.8, Aug 1995. 
[9] Layered Queueing Network Solver software package, 

http://www.sce.carleton.ca/rads/lqns/ 
[10] Menon, J. R. Santos, Y Turner, and G. Janakiraman, 

“Xenoprof - Performance profiling in Xen” 
http://xenoprof.sourceforge.net/xenoprof_2.0.txt  

[11] Himanshu Raj and Karsten Schwan, High performance 
and scalable I/O virtualization via self-virtualized 

devices, HPDC’07, p179-188. 
[12]  Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, 

S., Cox, A. L., Zwaenepoel, W. Concurrent direct 
network access for virtual machine monitors. HPCA 
2007 (February). 


