
OpenMP Day 2
WorkSharing, Schedule, 
Synchronization and 
OMP best practices



✓ What is OPENMP?
✓ Fork/Join Programming model
✓ OPENMP Core Elements
✓ #pragma omp parallel OR Parallel construct
✓ run time variables
✓ environment variables
✓ data scoping (private, shared…)
✓ compile and run openmp program in c++ and fortran
✓ work sharing constructs

#pragma omp for
sections
tasks

➢ schedule clause
➢ synchronization 

Recap of Day 1



Work Sharing: sections

SECTIONS directive is a non-iterative 
work-sharing construct. 

It specifies that the enclosed 
section(s) of code are to be divided 
among the threads in the team. 

Each SECTION is executed ONCE by a 
thread in the team.



Work Sharing: sections



OpenMP: lastprivate Clause

• Creates private memory location for each thread. 
• Does not initialize the private variable.
• The sequentially last iteration of the associated loops, or the 

lexically last section construct [...] to the original list item.

!$OMP DO PRIVATE(I) 

LASTPRIVATE(B) 

DO i = 1, 1000 

B = i

ENDDO

!$OMP END DO 

!—value of B here is 

1000

!$OMP SECTIONS 

LASTPRIVATE(B)

!$OMP SECTION 

B = 2

!$OMP SECTION 

B = 4

!$OMP SECTION 

D = 6

!$OMP END SECTIONS



Work Sharing: tasks

#pragma omp task [clauses]……

• Tasks allow to parallelize irregular problems 
(Unbounded loops & Recursive algorithms )

• A task has  - Code to execute – Data environment (It 
owns its data) – Internal control variables – An 
assigned thread that executes the code and the data 

• Each encountering thread packages a new instance of 
a task (code and data) 

• Some thread in the team executes the task at some 
later time



Work Sharing: tasks

#pragma omp taskwait



Work Sharing: single

!$OMP SINGLE [clause ...] 
PRIVATE (list) 
FIRSTPRIVATE (list) 

block
!$OMP END SINGLE [ NOWAIT ]

#pragma omp single [clause ...] newline private (list) 
firstprivate (list) nowait structured_block

• The SINGLE directive specifies that the enclosed code 
is to be executed by only one thread in the team.

• May be useful when dealing with sections of code that 
are not thread safe (such as I/O)



Schedule Clause

How is the work is divided among threads?
Directives for work distribution



Schedule Clause: Types
A schedule kind is passed to an OpenMP loop schedule clause: 
• Provides a hint for how iterations of the corresponding 

OpenMP loop should be assigned to threads in the team of 
the OpenMP region surrounding the loop. 

• Five kinds of schedules for OpenMP loop1: 
static 
dynamic
guided 
auto 
runtime

• The OpenMP implementation and/or runtime defines how to 
assign chunks to threads of a team given the kind of schedule 
specified by as a hint.



STATIC: Iterations of a loop are divided into chunks of size ceiling(iterations/threads). Each 
thread is assigned a separate chunk.
STATIC, N: Iterations of a loop are divided into chunks of size N. Each chunk is assigned to a 
thread in round-robin fashion. N >= 1 (integer expression)

DYNAMIC: Iterations of a loop are divided into chunks of size 1.
Chunks are assigned to threads on a first-come, first-serve basis as threads become available. 
This continues until all work is completed.
DYNAMIC, N: Same as above, all chunks are set to size N

GUIDED: Chunks are made progressively smaller until a chunk size of one is reached. The first 
chunk is of size ceiling(iterations/threads). Remaining chunks are of 
size ceiling(iterations_remaining/threads).Chunks are assigned to threads on a first-come, 
first-serve basis as threads become available. This continues until all work is completed.
GUIDED, N: Minimum chunk size is N

AUTO: Delegated the decision of the scheduling to the compiler and/or runtime system
RUNTIME: Scheduling policy is determined at run time. OMP_SCHEDULE/ 
OMP_SET_SCHEDULE

Schedule Clause



OpenMP: Synchronization

• The programmer needs finer control over how variables are shared. 
• The programmer must ensure that threads do not interfere with each other so 

that the output does not depend on how the individual threads are scheduled. 
• In particular, the programmer must manage threads so that they read the 

correct values of a variable and that multiple threads do not try to write to a 
variable at the same time. 

• Data dependencies and Task Dependencies

• MASTER, CRITICAL, BARRIER, FLUSH, TASKWAIT, ORDERED, NOWAIT



Data Dependencies

OpenMP assumes that there is NO data-
dependency across jobs running in parallel

When the omp parallel directive is placed around 
a code block, it is the programmer’s 
responsibility to make sure data dependency is 
ruled out



Synchronization Constructs

1) Mutual Exclusion (Data Dependencies)
Critical Sections : Protect access to shared & modifiable data, 
allowing ONLY ONE thread to enter it at a given time

#pragma omp critical
#pragma omp atomic – special case of critical, less overhead

Locks

Only one thread 
updates this at a 

time



Synchronization Constructs

To impose order constraints and protect shared data. 

Achieved by Mutual Exclusion & Barriers

2) Barriers (Task Dependencies)
Implicit : Sync points exist at the end of

parallel –necessary barrier – cant be removed
for – can be removed by using the nowait clause
sections – can be removed by using the nowait clause
single – can be removed by using the nowait clause

Explicit : Must be used when ordering is required
#pragma omp barrier 

each thread waits until all threads arrive at the barrier



Explicit Barrier

Implicit Barrier at end 
of parallel region

No Barrier
nowait cancels barrier 

creation

Synchronization: Barrier



OPENMP Synchronization: review
PRAGMA DESCRIPTION

#pragma omp taskwait
!$OMP TASKWAIT

Specifies a wait on the completion of child tasks generated 
since the beginning of the current task

#pragma omp critical
!$OMP CRITICAL
!$OMP END CRITICAL

Code within the block or pragma is only executed on one 
thread at a time.

#pragma omp critical
!$OMP ATOMIC
!$OMP END ATOMIC

Provides a mini-CRITICAL section. specific memory location 
must be updated atomically (Atomic statements)

#pragma omp barrier
!$OMP BARRIER
!$OMP END BARRIER

Synchronizes all threads in a team; all threads pause at the 
barrier, until all threads execute the barrier.



OPENMP Synchronization: review
PRAGMA DESCRIPTION

#pragma omp for ordered
[clauses...] (loop region) #pragma 
omp ordered structured_block

Used within a DO / for loop
Iterations of the enclosed loop will be executed in the 
same order as if they were executed on a serial 
processor. Threads will need to wait before executing 
their chunk of iterations if previous iterations haven't 
completed yet.

#pragma omp flush (list) Synchronization point at which all threads have the 
same view of memory for all shared objects.
FLUSH is implied for
barrier
parallel - upon entry and exit
critical - upon entry and exit
ordered - upon entry and exit
for - upon exit
sections - upon exit
single - upon exi



Performance in OPENMP 
Programs



Performance in OPENMP programs

Might not change speed much or break code! 

Must understand application and use wisely 

Performance of single threaded code 

Percentage of code that is run in parallel and scalability 

CPU utilization, effective data sharing, data locality and load balancing 

Amount of synchronization and communication 

Overhead to create, resume, manage, suspend, destroy and synchronize 
threads 

Memory conflicts due to shared memory or falsely shared memory 

Performance limitations of shared resources e.g memory, bus bandwidth, CPU 
execution units



Computing Efficiency of Parallel Code

Tserial = Speed Up

Tparallel

Tserial = Efficiency, P = number of processors

P xTparallel



Key Steps in Parallel Algorithms
• Dividing a computation into smaller computations 

• Assign them to different processors for parallel execution

• The process of dividing a computation into smaller parts, some or all of which 
may potentially be executed in parallel, is called decomposition

• The number and size of tasks into which a problem is decomposed 
determines the granularity of the decomposition. 

• Decomposition into a large number of small tasks is called fine-grained and a 
decomposition into a small number of large tasks is called coarse-grained

• Decomposition for matrix-vector multiplication is fine-grained because each 
of a large number of tasks performs a single dot-product.

• A coarse-grained decomposition of the same problem into 4 tasks, where 
each task computes n/4 of the entries of the output vector of length n.

• The mechanism by which tasks are assigned to processes for execution is 
called mapping.



Data decomposition & mapping to Processors
OR
Task decomposition & mapping to Processors
Objective 
All tasks complete in the shortest amount of elapsed time
How to achieve the objective?

Reduce overheads:
Time spent in inter-process interaction/ Overheads of data sharing 

between processes.
Time that some processes may spend being idle.

Uneven load distribution may cause some processes to finish earlier than 
others. 
Unfinished tasks mapped onto a process could  be waiting for tasks 
mapped onto other processes to finish in order to satisfy the constraints 
imposed by the task-dependency graph. 



Load Balancing: Gaussian Elimination

When eliminating a column, processors to the left of are idle 
Each processor is active for only part of the computation 

Conversion of a Matrix into its Upper Triangular Equivalent
Simple Data Partitioning method for parallel processing –
1D vertical strip partitioning
Each process owns N/P columns of data
The     represents outstanding work in successive K iterations



Several Data & Task Decomposition and mapping techniques (Beyond 
the scope of this talk)

Some simple techniques to avoid overheads.



Parallel Overhead

The amount of time required to coordinate parallel threads, 
as opposed to doing useful work. 

Thread start-up time 
Synchronization 
Software overhead imposed by parallel compilers, libraries, 
tools, operating system, etc. 
Thread termination time



Overheads of Parallel Directives



Overheads of Scheduling



Optimize the use of barriers



Prefer Atomic to Critical &
Avoid Large critical regions



Maximize Parallel Regions

Single parallel region enclosing all work sharing for loops.



Avoid Parallel Regions in inner loops



Caching issues in multicore performance



Memory 
Architecture



Caching issues in multicore performance



Caching issues in multicore performance



Array[N]
N is large. A[1] is accessed by one processor & A[2] 
by another

False Sharing



False Sharing

When threads on different processors modify variables that reside on the same cache line. 
This invalidates the cache line and forces a memory update to maintain cache coherency.
Potential false sharing on the array sum_local. 

“place” data on different blocks  OR  Reduce block size 



False Sharing: Solution 1

Adding a schedule clause with chunksize that ensures that 2 threads 
do not step over the same cache line

#pragma omp for schedule(static,chunkSize)



False Sharing: Solution 2

Array padding and memory alignment to reduce false sharing. This works 
because successive Array elements are forced onto different cache lines, so 
less (or no) cache line conflicts exist

sum_local[NUM_THREADS][cacheline];

sum_local[me][0]

Use compiler directives to force 
individual variable alignment. 
__declspec(align(n)) (n =64) 
(64 byte boundary) to align the 
individual variables on cache 
line boundaries.

__declspec (align(64)) int 
thread1_global_variable; 
__declspec (align(64)) int 
thread2_global_variable; 



False Sharing: Solution 2

Array of data structures 
• Pad the structure to the end of a 

cache line to ensure that the array 
elements begin on a cache line 
boundary.

• If you cannot ensure that the array 
is aligned on a cache line boundary, 
pad the data structure to twice the 
size of a cache line. 

• If the array is dynamically allocated, 
increase the allocation size and 
adjust the pointer to align with a 
cache line boundary.

Padding a data structure to a cache line boundary 
Ensuring the array is also aligned using the 
compiler
__declspec (align(n)) [ n = 64 (64 byte boundary)]



False Sharing: Solution 3
Use of private variables

Note: Shared data that is read-only in a loop does not lead to false sharing.

ThreadLocalSum

private(ThreadLocalSum)

ThreadLocalSum



One large global memory block – Shared
False Sharing?
Make sure each individual-block starts and ends at the cache 
boundary

Separate blocks each local to its own core (i.e. private)
No false sharing but detailed code to identify where each private 
block begins and ends.

False Sharing



Cache hits and misses

Cache could be KB or MB, but  bytes are transferred in much 
smaller sizes. Typical size of cache line is 64MB
When CPU asks for a value from the memory
If the value is already in the cache -> Cache Hit
Value is not in the cache, has to be fetched from the memory -> 
Cache Miss

• Compulsory (cold start or process migration): – First access to 
a block in memory impossible to avoid 

• Capacity: Cache cannot hold all blocks accessed by the program
• Conflict (collision): – Multiple memory locations map to same 

cache location



Cache hits and misses

Coherence Misses: Misses caused by coherence traffic with other processor 
Also known as communication misses because represents data moving 
between processors working together on a parallel program 
For some parallel programs, coherence misses can dominate total misses

Spatial Coherence
“If you need one memory address’s contents now, then you will probably also 
need the contents of some of the memory locations around it soon.”

Temporal Coherence
“If you need one memory address’s contents now, then you will probably also 
need its contents again soon.”



Cache hits and misses

Sequential memory order

Jump in memory order



Cache hits 
and misses



Where Cache Coherence Really 
Matters: Matrix Multiply

Code simplicity! 
Blindly marches 
through memory 
(how does this 
affect the 
cache?)
This is a problem in 
a C /C++ program 
because B is not 
doing a unit stride



Where Cache 
Coherence 

Really Matters: 
Matrix Multiply



Where Cache Coherence Really 
Matters: Matrix Multiply

I, k, j



Block Dense Matrix Multiplication

Usually size of matrices (N) much larger than number of processors (p).
Divide matrix into s2 submatrices. 
Each submatrix has N/s x N/s elements.



Block Dense Matrix Multiplication



Cache hits and misses

Mathematically calculating cache misses using cache block and line sizes 
and size of objects in the code.

Using some performance tools, like perf. One can identify cache hits 
and misses.

Perf comes with linux platforms.
$ perf stat -e task-clock,cycles,instructions,cache-references,cache-misses 
./stream_c.exe 

Exercise : Run perf on Matrix Vector multiplication code



Loop Unrolling



Loop Fusion



OpenMP Parallel Programming

▪ Start with a parallelizable algorithm
Loop level parallelism /tasks

▪ Implement Serially : Optimized Serial Program

▪ Test, Debug & Time to solution

▪ Annotate the code with parallelization and Synchronization 
directives

▪ Remove Race Conditions, False Sharing

▪ Test and Debug

▪ Measure speed-up (T-serial/T-parallel)


