
PARALLEL FILE SYSTEMS

Filbert Minj

Storage Team

SERC, Indian Institute of Science

filbert@iisc.ac.in

OUTLINE OF THE CONTENTS

 File Systems

 Parallel File Systems

 Parallel vs. Distributed

 Storage Device

 What is Parallel I/O?

 Parallel I/O Tools

 High Level Libraries

 I/O Middleware

 MPI-IO

 Parallel File Systems and Performance

 Parallel File System Architectures

 Lustre Overview

 Summary

 References

SERC STORAGE SPACE

 Cray XC-40 (SahasraT) SUPERCOMPUTER

2 PB of storage space

Used for scratch space

 NFS File server

100 GB space

Provides user’s home area

FILE SYSTEMS

 File Systems have two key roll

 Organizing and maintaining the named space

o Directory hierarchy and file names that let us find things

 Storing contents of files

o Providing an interface through which we can read and write data

 Local file systems are used by a single operating system instance (client) with direct access to the disk

 E.g NTFS, ext3 on laptop

 Networked file systems provide access to one or more clients who might not have direct access to
the disk

 e.g. NFS, AFS, etc.

WHAT IS PARALLEL FILE SYSTEMS

 A parallel file system is a software component designed to store data across multiple
networked servers and to facilitate high-performance access through simultaneous,
coordinated input/output operations (IOPS) between clients and storage nodes

 Breaks up a data set and distributes, or stripes, the blocks to multiple storage drives,
which can be located in local and/or remote servers

 Uses a global namespace to facilitate data access often use a metadata server to
store information about the data, such as the file name, location and owner

 Reads and writes data to distributed storage devices using multiple Input/Output(
I/O) paths concurrently and provide a significant performance benefit

 Capacity and bandwidth can be scaled to accommodate enormous quantities of data

WHY PARALLEL FILE SYSTEMS?

 HPC and Big Data applications increasingly rely on I/O subsystems

 Large input datasets, checkpointing, visualization

 Programmers need interfaces that match their problem

 Multidimensional arrays, typed data, portable formats

 Two issues to be resolved by I/O system

 Performance requirements (concurrent access to HW)

 Gap between app. abstractions and HW abstractions

 Software is required to address both of these problems

COMMON USE CASES OF PARALLEL FILE SYSTEMS

 Parallel file systems historically have targeted high-performance
computing (HPC) environments that require access to large
files, massive quantities of data or simultaneous access from
multiple compute servers

 Applications include climate modeling, computer-aided
engineering, exploratory data analysis, financial modeling,
genomic sequencing, machine learning and artificial intelligence,
seismic processing, video editing and visual effects rendering

DISTRIBUTED FILE SYSTEM (DFS)

 Distributed File System (DFS) is a method of storing and accessing files
based in a client/server architecture

 In a distributed file system, one or more central servers store files that
can be accessed, with proper authorization rights, by any number of
remote clients in the network

 Example: Network File System (NFS)

PARALLEL VS. DISTRIBUTED

 How are Parallel File Systems different from Distributed File Systems?

 Data distribution

 Distributed file systems often store objects (files) on a single storage node

 Parallel file systems distribute data of a single object across muliple storage nodes

 Symmetry

 Distributed file systems often run on architectures where the storage is co-located with the application (not always, e.g. GoogleFS, Ceph)

 Parallel file systems are often run on architectures where storage is physically separate from the compute system (not always true here
either)

 Fault-tolerance

 Distributed file systems take on fault‐tolerance responsibilities

 Parallel file systems run on enterprise shared storage

 Workloads

 Distributed file systems are geared for loosely coupled, distributed applications

 Parallel file systems target HPC applications, which tend to perform highly coordinated I/O accesses, and have massive bandwidth
requirements

WHAT MEANS I/O?

 Input/Output(I/O) stands for data transfer/migration from memory to disk (or vice
versa)

 Important (time-sensitive) factors within HPC environments

 Characteristics of the computational system (e.g. dedicated I/O nodes)

 Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

STORAGE DEVICE

 Single hard drive

 File system resides entirely on a single disk

 RAID (Redundant Array of Independent Disks)

 A logical disk built of many physical disks

 A stripe of data is stored across multiple disks

 Each chunk is placed on a single disk

 Several different levels of RAID with different protection and performance
characteristics

 RAID-6 is typically used for distributed, parallel storage

STORAGE DEVICE

 RAID-6 (N+M)

 Erasure encoding allows up to M
devices to fail without data loss

 Trade off capacity/performance
with data protection

Diagram is a 3+2 RAID-6
configuration

 8+2 typical configuration

CHARACTERISTICS OF PARALLEL FILE SYSTEMS

 Three Key Characteristics:

 Various hardware I/O data storage resources

 Multiple connections between these hardware devices and
compute resources

 High-performance, concurrent access to these I/O
resources

 Multiple physical I/O devices and paths ensure
sufficient bandwidth for the high performance
desired

 Parallel I/O systems include both the hardware and
number of layers of software

Storage Hardware

Parallel File System

Parallel I/O (MPI I/O)

High-Level I/O Library

CLASSES OF PARALLEL FILE SYSTEMS: BLOCKS VS. OBJECTS

 Block‐Based Parallel File Systems (AKA “Shared‐disk”)
 Blocks are fixed-width

 File growth requires more blocks

 Blocks distributed over storage nodes

 Suffer from block allocation issues, lock managers

 Example: GPFS

 Object‐based Parallel File Systems
 Variable‐length regions of the file

 A file has a constant number of objects

 Objects are given global identifiers (object‐ids, handles, etc.)

 File growth increases the size of object(s)

 Objects are easier to manage and distribute

 Space allocation is managed locally on a per-object basis

 Examples: Lustre, PVFS

EXAMPLES OF PARALLEL FILE SYSTEMS

 General Parallel File System (GPFS) / IBM Spectrum Scale

 Developed by IBM

 Available for AIX and Linux

 Lustre

 Developed by Cluster File Systems, Inc. (bought by Sun)

 Movement towards OpenLustre

 Name is amalgam of Linux and clusters

 Parallel Virtual File System (PVFS)

 Platform for I/O research and production file system for cluster of workstations

 Developed by Clemson University and Argonne National Laboratory

WHAT IS PARALLEL I/O?

 From user’s perspective:

 Multiple processes or threads of a parallel program accessing data concurrently
from a common file

 Results in a single file and we can get good performance

WHAT IS PARALLEL I/O? …

 From system perspective:

 Files striped across multiple I/O servers

 File system designed to perform well for concurrent writes and reads (parallel file
system)

SERIAL I/O: SPOKESPERSON

 One process performs I/O.

 Data aggregation or duplication

 Limited by single I/O process

 Simple solution, easy to manage, but

 Pattern does not scale

o Time increases linearly with amount of data

o Time increases with number of processes

PARALLEL I/O: FILE-PER-PROCESS

 All processes perform I/O to individual
files

 Limited by file system

 Pattern does not scale at large process
counts

 Number of files creates bottleneck
with metadata operations

 Number of simultaneous disk
accesses creates contention for file
system resources

PARALLEL I/O: SHARED FILE

 Shared File
 Each process performs I/O to a single

file which is shared
 Performance
o Data layout within the shared file is

very important
o At large process counts contention

can build for file system resources

Not all programming languages
support it

PARALLEL I/O TOOLS

 System software and libraries have
grown up to address I/O issues

Parallel file systems

MPI-IO (Message Passing Interface)

High level libraries

 Relationships between these are not
always clear

 Choosing between tools can be difficult

PARPARALLEL I/O TOOLS

PARALLEL I/O TOOLS FOR COMPUTATIONAL SCIENCE

 Application require more software than just a parallel file system

 Break up support into multiple layers with distinct roles:

 Parallel file system (PFS) maintains logical space, provides efficient access to data (e.g. PVFS, GPFS,
Lustre)

 Middleware layer deals with organizing access by many processes (e.g. MPI-IO, UPC-IO)

 High level I/O library maps app. abstractions to a structured, portable file format (e.g. HDF5, Parallel
netCDF)

PARALLEL FILE SYSTEM

Manage storage hardware
Present single view

Focus on concurrent, independent access

Transparent : files accessed over the network can be treated the same
as files on local disk by programs and users

Scalable

I/O MIDDLEWARE

 Facilitate concurrent access by groups of processes

 Expose a generic interface

 Good building block for high-level libraries

 Match the underlying programming model (e.g. MPI)

 Efficiently map middleware operations into PFS ones

 Leverage any rich PFS access constructs

HIGH LEVEL LIBRARIES

 Examples: HDF-5, PnetCDF

 Provide an appropriate abstraction for domain

 Multidimensional datasets

 Typed variables

 Attributes

 Self-describing, structured file format

 Map to middleware interface

 Encourage collective I/O

 Provide optimizations that middleware cannot

 e.g. caching attributes of variables

HIGH LEVEL I/O LIBRARIES (HDF5)

 HDF5 = Hierarchical Data Format, v5

 Open file format

Designed for high volume or complex data

 Open source software

Works with data in the format

 An extensible data model

Structures for data organization and specification

MPI-IO

 I/O interface specification for use in MPI apps

 Data Model:

 Stream of bytes in a file

 Portable data format (external32)

o Not self-describing - just a well-defined encoding of types

 Features:

 Collective I/O

 Noncontiguous I/O with MPI datatypes and file views

 Nonblocking I/O

 Fortran bindings (and additional languages)

 Implementations available on most platforms

USING MPI FOR SIMPLE I/O

Each process needs to read a chunk of data from a common file

WHY MPI IS A GOOD SETTING FOR PARALLEL I/O

 Writing is like sending and reading is like receiving

 Any parallel I/O system will need:

collective operations

user-defined datatypes to describe both memory and file layout

communicators to separate application-level message passing from
I/O-related message passing

non-blocking operations

 i.e. lots of MPI-like machinery

PARALLEL FILE SYSTEMS AND PERFORMANCE

 Striping is the basic mechanism used in parallel file system to improve
performance

 Striping refers to a technique where one file is split into fixed-sized blocks that are
written to separate disks in order to facilitate parallel access

 Primarily striping allows multiple servers, disks, network links to be leveraged during
concurrent I/O operations

 Eliminates bottlenecks

 Can also improve serial performance over a single, local disk

 Coordinating access can re-introduce bottlenecks

 But is necessary for coherence

PARALLEL FILE SYSTEM ARCHITECTURES

 Two types of parallel file systems

 Shared Storage Architectures

Make blocks of disk array accessible by many clients

Clients operate on disk blocks

 Object Server Architectures

Distribute file data to multiple servers

Clients operate on regions of files or objects and Disk blocks are not
visible to clients

 Clients share access to disk blocks on real or virtual disks

 Directly via Fibre-Channel SAN, iSCSI, AT over Ethernet

 Indirectly via storage servers

o e.g. Virtual Shared Disk, Network Shared Disk

o May expose devices directly, or pool them into a larger whole

 Lock server coordinates shared access to blocks

 May be a distributed service to reduce contention

SHARED STORAGE ARCHITECTURES

OBJECT SERVER ARCHITECTURES

 Clients share access to files or objects

 Servers are “smart”

 Understand something about the structure of data on storage

 I/O servers (IOS) manage local storage allocation

o Map client accesses into local storage operations

 Metadata server (MDS) stores directory and file metadata

 Often a single metadata server stores all metadata for file
system

 Locking is often required for consistency of data and metadata

 Typically integrated into other servers

 Atomic metadata operations can eliminate need for metadata
locking

REDUNDANCY WITH SHARED STORAGE

 For directly attached storage

 Single disk array can provide hardware redundancy

 Clients can stripe data across multiple disk arrays

 For virtual shared storage

 Storage servers replicate blocks, store redundant data across physical resources

 SAN may be used behind storage servers for connectivity

REDUNDANCY WITH OBJECT SERVER

 Data may be stored on multiple servers for tolerance of server failure

 Orchestrated either by client or servers

 Servers may have access to other server’s data

 Take over when a server fails

 In both cases, each server is primarily responsible only for its own data

LUSTRE OVERVIEW

 Open source object-based parallel file system

 Global single-namespace

 POSIX-compliant (Portable Operating System Interface)

 Distributed parallel file system designed for scalability, high-performance,
and high-availability

 Lustre runs on Linux-based operating systems and employs a client-
server network architecture

LUSTRE SCALABLE STORAGE

Lustre Scalable Storage

MANAGEMENT SERVER (MGS)

 Communicates over a network

 Provides services related to file system configuration
information

 Uses locally attached storage MGT (management service
storage target) to store configuration data

 /mnt/lustre (Lustre file system at SERC) has one MGS and one
MGT

LUSTRE COMPONENTS …

 Metadata Server (MDS)

Communicates over a network

 Provides services related to file system metadata such as directory contents,
file names, attributes, and file layout

Uses locally attached storage MDT(Metadata Target) to store metadata
information

o An MDS can have one or more MDTs

 /mnt/lustre has one MDS and one MDT

LUSTRE COMPONENTS …

 Object Storage Server (OSS)

Communicates over a network

Provides file data services (objects)

Uses locally attached storage to store file data

o Object Storage Metadata Target (OST)

o An OSS can have one or more OSTs

 /mnt/lustre has 96 OSTs on 16 OSSes (6 OSTs per OSS)

LUSTRE COMPONENTS …

 Clients

 Lustre clients mount each Lustre file system instance using the Lustre Network protocol
(LNet)

 Presents a POSIX-compliant file system to the OS

 Provides concurrent and coherent read and write access

 Accesses MDS and OSS resources in parallel

 Provides client caching capabilities

COMPONENTS INTO A WHOLE FILE SYSTEM

 Clients access metadata and object data by making requests to MDSes and OSSes

 Clients do not directly modify data or metadata

 A distributed lock manager is used to provide coherency

 Each OST manages locks for objects it contains

 A single file can be stored across many different OSTs

 How a file is distributed between OSTs is done by default settings or end-user
requested behavior
 Stripe Count: The number of OSTs the file should store stripes on

 Stripe Size: The size of data that should be stored on a single OST before using the next
OST

 Any client can place files on any OST

LUSTRE ARCHITECTURE ON SAHASRAT AT SERC (CRAY XC-40)

LUSTRE PARALLEL I/O

Stephen Simms, Indiana University

STRIPING DATA

 Lustre allows you to control how data is
written, if you want

 Stripe data across multiple OSTs

o can stripe files OR directories

 Can increase I/O performance with reading and
writing

 With DNE2 (Distributed Namespace Environment)
metadata can be Striped across multiple MDTs

 Striping analogous to RAID 0

 Default striping set by sysadmin

Stephen Simms, Indiana University

STRIPING EXAMPLE

Stephen Simms, Indiana University

LUSTRE AND HIGH AVAILABILITY

 Every major enterprise operating system offers a high-availability cluster software
framework

 Red Hat Enterprise Linux (RHEL) makes use of PCS (Pacemaker/Corosync
Configuration System)

 SuSE Linux Enterprise Server (SLES) has CRMSH (Cluster Resource Management
Shell)

 Both PCS and CRMSH are open-source applications

 HAWK (HIGH AVAILABILITY WEB KONSOLE) Web interface to CRMSH and PCS
has its own web-based UI

LUSTRE AND HIGH AVAILABILITY

 MGS and MDS usually paired into a high availability server configuration

 Each Lustre file system comprises, at a minimum:

 1 x Management service (MGS, with MGT storage)

 1 x Metadata service (MDS, with MDT storage)

 1+ Object storage service (OSS, with OST storage)

 For High Availability, the minimum working configuration is:

 2 Metadata servers, running MGS and MDS in failover configuration

o MGS service on one node 1, MDS service on the other node

o Shared storage for the MGT and MDT

 2 Object storage servers, running multiple OSTs in failover configuration

 Shared storage for the OSTs

 All OSTs evenly balanced across the OSS servers

SUMMARY

 Large-scale data-intensive supercomputing relies on parallel file systems, such as
Lustre, GPFS, PVFS etc. for high-performance I/O (Huaiming Song et al. 2011)

 I/O performance is a critical aspect of data-intensive scientific computing (Glenn K.
Lockwood et al., 2018)

 Parallel I/O is one technique used to access data on disk simultaneously from
different application processes to maximize bandwidth and speed things up (The
HDF Group)

 Parallel I/O is a subset of parallel computing that performs multiple input/output
operations simultaneously

ONLINE RESOURCES

 Introduction to Lustre: http://wiki.lustre.org/Introduction_to_Lustre

 Introduction to Lustre* Architecture: http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

 The NetCDF Tutorial: http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf

 Introduction to HDF5: http://ww.hdfgroup.org/HDF5/doc/H5.intro.html

 The HDF group: https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/

 Parallel I/O Techniques and Performance Optimization:
https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf

 Parallel I/O in Practice: http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f13/M02.tutorial.pdf

 Parallel file system: https://searchstorage.techtarget.com/definition/parallel-file-system

 Introduction to Parallel I/O: https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

ONLINE RESOURCES …

 Parallel File Systems: http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/lecture17-pfs-sam-lang.pdf

 Parallel I/O and MPI-IO: http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf

 Overview of Luster File System and I/O strategies: http://www.serc.iisc.ac.in/serc_web/wp-
content/uploads/2018/01/SERC_IO_Workshop_Day1.pdf

 LUSTRE OVERVIEW: https://indico.fnal.gov/event/2538/session/27/contribution/17/material/slides/1.pdf

 Advanced MPI Techniques: http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-
Advanced-MPI-Techniques-Public.pdf

 Architecture of a Next-Generation Parallel File System:
https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf

 High Level Introduction to HDF5: https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

Thank you

