
PARALLEL FILE SYSTEMS

Filbert Minj

Storage Team

SERC, Indian Institute of Science

filbert@iisc.ac.in

OUTLINE OF THE CONTENTS

 File Systems

 Parallel File Systems

 Parallel vs. Distributed

 Storage Device

 What is Parallel I/O?

 Parallel I/O Tools

 High Level Libraries

 I/O Middleware

 MPI-IO

 Parallel File Systems and Performance

 Parallel File System Architectures

 Lustre Overview

 Summary

 References

SERC STORAGE SPACE

 Cray XC-40 (SahasraT) SUPERCOMPUTER

2 PB of storage space

Used for scratch space

 NFS File server

100 GB space

Provides user’s home area

FILE SYSTEMS

 File Systems have two key roll

 Organizing and maintaining the named space

o Directory hierarchy and file names that let us find things

 Storing contents of files

o Providing an interface through which we can read and write data

 Local file systems are used by a single operating system instance (client) with direct access to the disk

 E.g NTFS, ext3 on laptop

 Networked file systems provide access to one or more clients who might not have direct access to
the disk

 e.g. NFS, AFS, etc.

WHAT IS PARALLEL FILE SYSTEMS

 A parallel file system is a software component designed to store data across multiple
networked servers and to facilitate high-performance access through simultaneous,
coordinated input/output operations (IOPS) between clients and storage nodes

 Breaks up a data set and distributes, or stripes, the blocks to multiple storage drives,
which can be located in local and/or remote servers

 Uses a global namespace to facilitate data access often use a metadata server to
store information about the data, such as the file name, location and owner

 Reads and writes data to distributed storage devices using multiple Input/Output(
I/O) paths concurrently and provide a significant performance benefit

 Capacity and bandwidth can be scaled to accommodate enormous quantities of data

WHY PARALLEL FILE SYSTEMS?

 HPC and Big Data applications increasingly rely on I/O subsystems

 Large input datasets, checkpointing, visualization

 Programmers need interfaces that match their problem

 Multidimensional arrays, typed data, portable formats

 Two issues to be resolved by I/O system

 Performance requirements (concurrent access to HW)

 Gap between app. abstractions and HW abstractions

 Software is required to address both of these problems

COMMON USE CASES OF PARALLEL FILE SYSTEMS

 Parallel file systems historically have targeted high-performance
computing (HPC) environments that require access to large
files, massive quantities of data or simultaneous access from
multiple compute servers

 Applications include climate modeling, computer-aided
engineering, exploratory data analysis, financial modeling,
genomic sequencing, machine learning and artificial intelligence,
seismic processing, video editing and visual effects rendering

DISTRIBUTED FILE SYSTEM (DFS)

 Distributed File System (DFS) is a method of storing and accessing files
based in a client/server architecture

 In a distributed file system, one or more central servers store files that
can be accessed, with proper authorization rights, by any number of
remote clients in the network

 Example: Network File System (NFS)

PARALLEL VS. DISTRIBUTED

 How are Parallel File Systems different from Distributed File Systems?

 Data distribution

 Distributed file systems often store objects (files) on a single storage node

 Parallel file systems distribute data of a single object across muliple storage nodes

 Symmetry

 Distributed file systems often run on architectures where the storage is co-located with the application (not always, e.g. GoogleFS, Ceph)

 Parallel file systems are often run on architectures where storage is physically separate from the compute system (not always true here
either)

 Fault-tolerance

 Distributed file systems take on fault‐tolerance responsibilities

 Parallel file systems run on enterprise shared storage

 Workloads

 Distributed file systems are geared for loosely coupled, distributed applications

 Parallel file systems target HPC applications, which tend to perform highly coordinated I/O accesses, and have massive bandwidth
requirements

WHAT MEANS I/O?

 Input/Output(I/O) stands for data transfer/migration from memory to disk (or vice
versa)

 Important (time-sensitive) factors within HPC environments

 Characteristics of the computational system (e.g. dedicated I/O nodes)

 Characteristics of the underlying filesystem (e.g. parallel file systems, etc.)

STORAGE DEVICE

 Single hard drive

 File system resides entirely on a single disk

 RAID (Redundant Array of Independent Disks)

 A logical disk built of many physical disks

 A stripe of data is stored across multiple disks

 Each chunk is placed on a single disk

 Several different levels of RAID with different protection and performance
characteristics

 RAID-6 is typically used for distributed, parallel storage

STORAGE DEVICE

 RAID-6 (N+M)

 Erasure encoding allows up to M
devices to fail without data loss

 Trade off capacity/performance
with data protection

Diagram is a 3+2 RAID-6
configuration

 8+2 typical configuration

CHARACTERISTICS OF PARALLEL FILE SYSTEMS

 Three Key Characteristics:

 Various hardware I/O data storage resources

 Multiple connections between these hardware devices and
compute resources

 High-performance, concurrent access to these I/O
resources

 Multiple physical I/O devices and paths ensure
sufficient bandwidth for the high performance
desired

 Parallel I/O systems include both the hardware and
number of layers of software

Storage Hardware

Parallel File System

Parallel I/O (MPI I/O)

High-Level I/O Library

CLASSES OF PARALLEL FILE SYSTEMS: BLOCKS VS. OBJECTS

 Block‐Based Parallel File Systems (AKA “Shared‐disk”)
 Blocks are fixed-width

 File growth requires more blocks

 Blocks distributed over storage nodes

 Suffer from block allocation issues, lock managers

 Example: GPFS

 Object‐based Parallel File Systems
 Variable‐length regions of the file

 A file has a constant number of objects

 Objects are given global identifiers (object‐ids, handles, etc.)

 File growth increases the size of object(s)

 Objects are easier to manage and distribute

 Space allocation is managed locally on a per-object basis

 Examples: Lustre, PVFS

EXAMPLES OF PARALLEL FILE SYSTEMS

 General Parallel File System (GPFS) / IBM Spectrum Scale

 Developed by IBM

 Available for AIX and Linux

 Lustre

 Developed by Cluster File Systems, Inc. (bought by Sun)

 Movement towards OpenLustre

 Name is amalgam of Linux and clusters

 Parallel Virtual File System (PVFS)

 Platform for I/O research and production file system for cluster of workstations

 Developed by Clemson University and Argonne National Laboratory

WHAT IS PARALLEL I/O?

 From user’s perspective:

 Multiple processes or threads of a parallel program accessing data concurrently
from a common file

 Results in a single file and we can get good performance

WHAT IS PARALLEL I/O? …

 From system perspective:

 Files striped across multiple I/O servers

 File system designed to perform well for concurrent writes and reads (parallel file
system)

SERIAL I/O: SPOKESPERSON

 One process performs I/O.

 Data aggregation or duplication

 Limited by single I/O process

 Simple solution, easy to manage, but

 Pattern does not scale

o Time increases linearly with amount of data

o Time increases with number of processes

PARALLEL I/O: FILE-PER-PROCESS

 All processes perform I/O to individual
files

 Limited by file system

 Pattern does not scale at large process
counts

 Number of files creates bottleneck
with metadata operations

 Number of simultaneous disk
accesses creates contention for file
system resources

PARALLEL I/O: SHARED FILE

 Shared File
 Each process performs I/O to a single

file which is shared
 Performance
o Data layout within the shared file is

very important
o At large process counts contention

can build for file system resources

Not all programming languages
support it

PARALLEL I/O TOOLS

 System software and libraries have
grown up to address I/O issues

Parallel file systems

MPI-IO (Message Passing Interface)

High level libraries

 Relationships between these are not
always clear

 Choosing between tools can be difficult

PARPARALLEL I/O TOOLS

PARALLEL I/O TOOLS FOR COMPUTATIONAL SCIENCE

 Application require more software than just a parallel file system

 Break up support into multiple layers with distinct roles:

 Parallel file system (PFS) maintains logical space, provides efficient access to data (e.g. PVFS, GPFS,
Lustre)

 Middleware layer deals with organizing access by many processes (e.g. MPI-IO, UPC-IO)

 High level I/O library maps app. abstractions to a structured, portable file format (e.g. HDF5, Parallel
netCDF)

PARALLEL FILE SYSTEM

Manage storage hardware
Present single view

Focus on concurrent, independent access

Transparent : files accessed over the network can be treated the same
as files on local disk by programs and users

Scalable

I/O MIDDLEWARE

 Facilitate concurrent access by groups of processes

 Expose a generic interface

 Good building block for high-level libraries

 Match the underlying programming model (e.g. MPI)

 Efficiently map middleware operations into PFS ones

 Leverage any rich PFS access constructs

HIGH LEVEL LIBRARIES

 Examples: HDF-5, PnetCDF

 Provide an appropriate abstraction for domain

 Multidimensional datasets

 Typed variables

 Attributes

 Self-describing, structured file format

 Map to middleware interface

 Encourage collective I/O

 Provide optimizations that middleware cannot

 e.g. caching attributes of variables

HIGH LEVEL I/O LIBRARIES (HDF5)

 HDF5 = Hierarchical Data Format, v5

 Open file format

Designed for high volume or complex data

 Open source software

Works with data in the format

 An extensible data model

Structures for data organization and specification

MPI-IO

 I/O interface specification for use in MPI apps

 Data Model:

 Stream of bytes in a file

 Portable data format (external32)

o Not self-describing - just a well-defined encoding of types

 Features:

 Collective I/O

 Noncontiguous I/O with MPI datatypes and file views

 Nonblocking I/O

 Fortran bindings (and additional languages)

 Implementations available on most platforms

USING MPI FOR SIMPLE I/O

Each process needs to read a chunk of data from a common file

WHY MPI IS A GOOD SETTING FOR PARALLEL I/O

 Writing is like sending and reading is like receiving

 Any parallel I/O system will need:

collective operations

user-defined datatypes to describe both memory and file layout

communicators to separate application-level message passing from
I/O-related message passing

non-blocking operations

 i.e. lots of MPI-like machinery

PARALLEL FILE SYSTEMS AND PERFORMANCE

 Striping is the basic mechanism used in parallel file system to improve
performance

 Striping refers to a technique where one file is split into fixed-sized blocks that are
written to separate disks in order to facilitate parallel access

 Primarily striping allows multiple servers, disks, network links to be leveraged during
concurrent I/O operations

 Eliminates bottlenecks

 Can also improve serial performance over a single, local disk

 Coordinating access can re-introduce bottlenecks

 But is necessary for coherence

PARALLEL FILE SYSTEM ARCHITECTURES

 Two types of parallel file systems

 Shared Storage Architectures

Make blocks of disk array accessible by many clients

Clients operate on disk blocks

 Object Server Architectures

Distribute file data to multiple servers

Clients operate on regions of files or objects and Disk blocks are not
visible to clients

 Clients share access to disk blocks on real or virtual disks

 Directly via Fibre-Channel SAN, iSCSI, AT over Ethernet

 Indirectly via storage servers

o e.g. Virtual Shared Disk, Network Shared Disk

o May expose devices directly, or pool them into a larger whole

 Lock server coordinates shared access to blocks

 May be a distributed service to reduce contention

SHARED STORAGE ARCHITECTURES

OBJECT SERVER ARCHITECTURES

 Clients share access to files or objects

 Servers are “smart”

 Understand something about the structure of data on storage

 I/O servers (IOS) manage local storage allocation

o Map client accesses into local storage operations

 Metadata server (MDS) stores directory and file metadata

 Often a single metadata server stores all metadata for file
system

 Locking is often required for consistency of data and metadata

 Typically integrated into other servers

 Atomic metadata operations can eliminate need for metadata
locking

REDUNDANCY WITH SHARED STORAGE

 For directly attached storage

 Single disk array can provide hardware redundancy

 Clients can stripe data across multiple disk arrays

 For virtual shared storage

 Storage servers replicate blocks, store redundant data across physical resources

 SAN may be used behind storage servers for connectivity

REDUNDANCY WITH OBJECT SERVER

 Data may be stored on multiple servers for tolerance of server failure

 Orchestrated either by client or servers

 Servers may have access to other server’s data

 Take over when a server fails

 In both cases, each server is primarily responsible only for its own data

LUSTRE OVERVIEW

 Open source object-based parallel file system

 Global single-namespace

 POSIX-compliant (Portable Operating System Interface)

 Distributed parallel file system designed for scalability, high-performance,
and high-availability

 Lustre runs on Linux-based operating systems and employs a client-
server network architecture

LUSTRE SCALABLE STORAGE

Lustre Scalable Storage

MANAGEMENT SERVER (MGS)

 Communicates over a network

 Provides services related to file system configuration
information

 Uses locally attached storage MGT (management service
storage target) to store configuration data

 /mnt/lustre (Lustre file system at SERC) has one MGS and one
MGT

LUSTRE COMPONENTS …

 Metadata Server (MDS)

Communicates over a network

 Provides services related to file system metadata such as directory contents,
file names, attributes, and file layout

Uses locally attached storage MDT(Metadata Target) to store metadata
information

o An MDS can have one or more MDTs

 /mnt/lustre has one MDS and one MDT

LUSTRE COMPONENTS …

 Object Storage Server (OSS)

Communicates over a network

Provides file data services (objects)

Uses locally attached storage to store file data

o Object Storage Metadata Target (OST)

o An OSS can have one or more OSTs

 /mnt/lustre has 96 OSTs on 16 OSSes (6 OSTs per OSS)

LUSTRE COMPONENTS …

 Clients

 Lustre clients mount each Lustre file system instance using the Lustre Network protocol
(LNet)

 Presents a POSIX-compliant file system to the OS

 Provides concurrent and coherent read and write access

 Accesses MDS and OSS resources in parallel

 Provides client caching capabilities

COMPONENTS INTO A WHOLE FILE SYSTEM

 Clients access metadata and object data by making requests to MDSes and OSSes

 Clients do not directly modify data or metadata

 A distributed lock manager is used to provide coherency

 Each OST manages locks for objects it contains

 A single file can be stored across many different OSTs

 How a file is distributed between OSTs is done by default settings or end-user
requested behavior
 Stripe Count: The number of OSTs the file should store stripes on

 Stripe Size: The size of data that should be stored on a single OST before using the next
OST

 Any client can place files on any OST

LUSTRE ARCHITECTURE ON SAHASRAT AT SERC (CRAY XC-40)

LUSTRE PARALLEL I/O

Stephen Simms, Indiana University

STRIPING DATA

 Lustre allows you to control how data is
written, if you want

 Stripe data across multiple OSTs

o can stripe files OR directories

 Can increase I/O performance with reading and
writing

 With DNE2 (Distributed Namespace Environment)
metadata can be Striped across multiple MDTs

 Striping analogous to RAID 0

 Default striping set by sysadmin

Stephen Simms, Indiana University

STRIPING EXAMPLE

Stephen Simms, Indiana University

LUSTRE AND HIGH AVAILABILITY

 Every major enterprise operating system offers a high-availability cluster software
framework

 Red Hat Enterprise Linux (RHEL) makes use of PCS (Pacemaker/Corosync
Configuration System)

 SuSE Linux Enterprise Server (SLES) has CRMSH (Cluster Resource Management
Shell)

 Both PCS and CRMSH are open-source applications

 HAWK (HIGH AVAILABILITY WEB KONSOLE) Web interface to CRMSH and PCS
has its own web-based UI

LUSTRE AND HIGH AVAILABILITY

 MGS and MDS usually paired into a high availability server configuration

 Each Lustre file system comprises, at a minimum:

 1 x Management service (MGS, with MGT storage)

 1 x Metadata service (MDS, with MDT storage)

 1+ Object storage service (OSS, with OST storage)

 For High Availability, the minimum working configuration is:

 2 Metadata servers, running MGS and MDS in failover configuration

o MGS service on one node 1, MDS service on the other node

o Shared storage for the MGT and MDT

 2 Object storage servers, running multiple OSTs in failover configuration

 Shared storage for the OSTs

 All OSTs evenly balanced across the OSS servers

SUMMARY

 Large-scale data-intensive supercomputing relies on parallel file systems, such as
Lustre, GPFS, PVFS etc. for high-performance I/O (Huaiming Song et al. 2011)

 I/O performance is a critical aspect of data-intensive scientific computing (Glenn K.
Lockwood et al., 2018)

 Parallel I/O is one technique used to access data on disk simultaneously from
different application processes to maximize bandwidth and speed things up (The
HDF Group)

 Parallel I/O is a subset of parallel computing that performs multiple input/output
operations simultaneously

ONLINE RESOURCES

 Introduction to Lustre: http://wiki.lustre.org/Introduction_to_Lustre

 Introduction to Lustre* Architecture: http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

 The NetCDF Tutorial: http://www.unidata.ucar.edu/software/netcdf/docs/netcdftutorial.pdf

 Introduction to HDF5: http://ww.hdfgroup.org/HDF5/doc/H5.intro.html

 The HDF group: https://www.hdfgroup.org/2015/04/parallel-io-why-how-and-where-to-hdf5/

 Parallel I/O Techniques and Performance Optimization:
https://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf

 Parallel I/O in Practice: http://www.eecs.ucf.edu/~jwang/Teaching/EEL6760-f13/M02.tutorial.pdf

 Parallel file system: https://searchstorage.techtarget.com/definition/parallel-file-system

 Introduction to Parallel I/O: https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

ONLINE RESOURCES …

 Parallel File Systems: http://www.cs.iit.edu/~iraicu/teaching/CS554-F13/lecture17-pfs-sam-lang.pdf

 Parallel I/O and MPI-IO: http://www.training.prace-ri.eu/uploads/tx_pracetmo/pio1.pdf

 Overview of Luster File System and I/O strategies: http://www.serc.iisc.ac.in/serc_web/wp-
content/uploads/2018/01/SERC_IO_Workshop_Day1.pdf

 LUSTRE OVERVIEW: https://indico.fnal.gov/event/2538/session/27/contribution/17/material/slides/1.pdf

 Advanced MPI Techniques: http://morrisriedel.de/wp-content/uploads/2018/03/HPC-Lecture-4-HPC-
Advanced-MPI-Techniques-Public.pdf

 Architecture of a Next-Generation Parallel File System:
https://events.static.linuxfound.org/images/stories/pdf/lfcs2012_wilson.pdf

 High Level Introduction to HDF5: https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

Thank you

