
1

Introduction to ShasraT

RAVITEJA K
Applications Analyst, Cray Inc

2

1. Cray XC architecture overview

2. SahasraT Configuration

3. Cray Software stack

4. Compile applications on SahasraT

5. Run applications on SahasraT

6. Compiler optimization

7. Cray tools

3

What is Supercomputer?

● Broad term for one of the fastest computer currently

available.

● Designed and built to solve difficult computational problems
on extremely large jobs that could not be handled by no
other types of computing systems.

Characteristics :

● The ability to process instructions in parallel (Parallel processing)
● The ability to automatically recover from failures (Fault tolerance)

4

5

What is SahasraT?

● SahasraT is Country’s first petaflops supercomputer.

● SahasraT : Sahasra means “Thousand” and T means
“Teraflop”

● Built and designed by Cray (XC40 Series)

● Debuted at Rank 79 in the world, in the June 2014 top
500 list

6

Cray XC Architecture Overview

7

Cray’s recipe for a good supercomputer
● Select best microprocessor

● Function of time

● Surround it with a bandwidth-rich environment

● Interconnection network

● Local memory

● Scale the system

● Eliminate operating system interference (OS jitter)

● Design in reliability and resiliency

● Provide scalable system management

● Provide scalable I/O

● Provide scalable programming

and performance tools

● System service life

8

Cray XC System Building Blocks

▪ Node

▪ Chassis

▪ Group

▪ System

9

Nodes: The building blocks

The Cray XC is a Massively Parallel Processor (MPP)
supercomputer design. It is therefore built from many thousands
of individual nodes

Compute Node

M

e

m

o

r

y

10

Nodes: Compute node diagram

11

Blade :

● Four nodes together called a Blade

● Each blade have one Aries Chip

Aries Chip Compute Node Memory Blade

12

Blade :

The system contains these blades

▪ I/O Blades
▪ 1 Aries ASCI

▪ 2 nodes

▪ Often called as service nodes

▪ System services such as logins, lustre, lnet etc

▪ Compute Blades
▪ 1 Aries ASIC

▪ 4 nodes.

Nodes are
▪ CPU - CPU

▪ CPU - GPU

▪ CPU – MIC

▪ KNL

13

Blade :

Aries chip Connectivity

14

Chassis : The building blocks

The Chassis is the primary building block of the system
▪ The four nodes on a blade connected to a single Aries chip

▪ 16 Aries chips in a chassis are connected via back plane

▪ Rank 1 network : Intra-chassis Aries chip connectivity

▪ Each Aries chips has a point to point connection to the other Aries in the chassis

Chassis with 16 compute blades

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

15

Chassis : Rank 1 Backplane Network

o Chassis with 16 compute blades

o 128 Sockets

o Inter-Aries communication over

backplane

o Per-Packet adaptive Routing

16

Group: The building blocks

▪ Rank 2 network

▪ A group is from two to six chassis in two cabinets

▪ The copper connections provide intra‐group connections

▪ 15 links in 5 connectors

▪ Cray XC two-cabinet group

▪ 96 Aries Chips

▪ 768 sockets

▪ signals running at 14 Gbps

17

Group: The building blocks

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Slot 7 Slot 15

Slot 6 Slot 14

Slot 5 Slot 13

Slot 4 Slot 12

Slot 3 Slot 11

Slot 2 Slot 10

Slot 1 Slot 9

Slot 0 Slot 8

Cabinet 1 Cabinet 2

18

16 Aries

connected by

backplane

“Green Network”

Group : Rank-2 Copper Network

4 nodes

connect to a

single Aries

6 backplanes

connected with

copper cables in a

2-cabinet group:

“Black Network”

Active optical

cables

interconnect

groups

“Blue Network”

2 Cabinet

Group

768 Sockets

19

Group : Network Routing

S

D

With adaptive routing

we select between

minimal and non-

minimal paths based

on load

The Cray XC Class-2

Group has sufficient

bandwidth to support

full injection rate for all

384 nodes with non-

minimal routing

M
Minimal routes

between any two

nodes in a group

are just two hops

Non-minimal route

requires four hops.

R M

M

20

Rank 3 : System Network Overview

● An all-to-all pattern is wired between the groups using optical cables (blue

network)

● Up to 240 ports are available per 2-cabinet group

● The global bandwidth can be tuned by varying the number of optical cables

in the group-to-group connections

Example: An 4-group system is interconnected with 6 optical “bundles”.

The “bundles” can be configured between 20 and 80 cables wide

Group 0 Group 1 Group 2 Group 3

21

Compute Blade

4 Compute Nodes

Chassis

Rank 1 Network

16 Compute Blades

No Cables

64 Compute Nodes

Group

Rank 2 Network

Passive Electrical
Network

2 Cabinets

6 Chassis

384 Compute
Nodes

System

Rank 3
Network

Active
Optical
Network

Hundreds of
Cabinets

Up to 10s of
thousands of
nodes

Summary : Cray XC System Building Blocks

22

Intra Chassis/ Rank-1
▪ 15 links in backplane

▪ Green Network

▪ 14 Gbps

Intra Group/ Rank-2
▪ Copper cables

▪ 15 links in 5 connectors

▪ Black Network

▪ 14 Gbps

Inter Group/ Rank-3
▪ Optical cables

▪ 10 links in 5 connectors

▪ Blue Network

▪ 12.5 Gbps

Summary : Cray XC System Building Blocks

23

SahasraT hardware configuration:

● Based on Cray Linux Environment.

● Consists of

▪ CPU based Cluster
▪ Equipped with Intel Haswell processors

▪ Accelerated based Cluster
▪ Equipped with Nvidia GPUs

▪ Equipped with Intel KNLs

▪ 2 PB High Speed storage (Lustre file system)

24

System configuration: Compute (H/W)

Compute Node :
No. of Nodes : 1376

Processor type : Intel Haswell

No. of cores per node : 12 cores

Clock Rate : 2.5 GHz

Memory per Node : 128 GB

Total Memory : 176 TB

Accelerator Node :
Accelerator : Intel XeonPhi 7120

No. of Nodes : 24

No. of Cores per node : 64 core

Clock Rate : 1.3 GHz

Memory per node : 96 GB

Total Peak Performance : ~60 TFLOPS

25

System configuration: Utility (H/W)

GPU Node :

No. of Nodes : 44

Processor type : Nvidia tesla K 40

No. of Cores per node : 2880 cores

Memory per Node : 12GB GDDR5

CPU Cores : Sandybridge

26

Types of nodes:

Service nodes:

• Its purpose is managing running jobs, but you can access using an interactive

session.

• It runs a full version of the CLE operating system (all libraries and tools

available)

• They are shared resources, mistakes and misbehaviour can effect jobs of other

users(!).

27

SahasraT Access details:

● Accessed from within the IISc network

● Use sahasrat.serc.iisc.ernet.in address to login
Eg: ssh computational_id@sahasrat.serc.iisc.ernet.in

● Use admin supply password to log in then change password –
follow the institute procedure for this

28

Cray Software

29

What is Cray?

● Cray systems are designed to be High Productivity as
well as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance

● a rich variety of commonly used tools and libraries

● a consistent interface to multiple compilers and libraries

● an increased automation of routine tasks

30

Cray’s Supported Programming Environment
Programming

Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 4.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

•Abnormal
Termination
Processing

STAT

Debugging Support

Tools

Performance Analysis

Scoping Analysis

Reveal

31

Cray Programming Environment:

● Cray supports C, C++, Fortran, Python etc programing
languages

● Cray supports GNU, Intel and other third party compilers

● Cray programming environment and cray compilers are
default user environments.

● Modules application allows you to dynamically modify
your user environment by using modulefiles

32

An introduction to modules

33

What are Environment Modules?

● provides for the dynamic
modification of a user's
environment via modulefiles

● each modulefile contains the
information needed to configure
the shell for an application
● Typically alter or set shell

environment variables such as
PATH, MANPATH, etc.

● Modules can
be loaded and unloaded
dynamically and atomically, in
an clean fashion

● All popular shells are
supported
● including bash,ksh, zsh, sh, csh,

tcsh, as well as some scripting
languages such
as perl and python

● useful in managing different
applications and
versions of applications

● can be bundled into
metamodules
● load an entire suite of different

applications

34

Environment Setup

● The Cray XC system uses modules in the user
environment to support multiple software versions and to
create integrated software packages

● As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

● You can use the default version of an application, or you can choose
another version by using Modules system commands

35

Most important module commands

● Various applications in various versions
available
$> module avail # lists all
$> module avail cce # cce*

● Dynamic modification of a user’s
environment
$> module (un)load PRODUCT/MODULE

● E.g. PrgEnv-xxx changes compilers, linked

libraries, and environment variables

● Version management
$> module switch prod_v1 prod_v2
$> module switch PrgEnv-cray PrgEnv-gnu
$> module switch cce cce/8.5.8

● Metamodules bundles multiple modules
● Can create your own (meta)modules

● Module tool take care
● Environment variables

● PATH, MANPATH,
LD_LIBRARY_PATH,
LM_LICENSE_FILE,....

● Taking care of compiler and
linker arguments of loaded
products
● Include paths, linker paths, …

36

More module commands

• Prints actual loaded modules$> module list

• Prints all module available containing the specified string $> module avail [–S str]

• Adds or remove a module to the actual loaded list

• If no version specified, loading the default version
$> module (un)load [mod_name/version]

• Unload mod1 and load mod2

• e.g. to change versions of loaded modules
$> module switch [mod1] [mod2]

• Prints the module (short) description$> module whatis/help [mod]

• Prints the environmental modification$> module show [mod]

• add $HOME/privatemodules to the list of directories that the
module command will search for modules

$> module load user_own_modules

37

Default module list at SahasraT

38

“Meta”-Module PrgEnv-X

● PrgEnv-X is a “meta”-module
● loading several modules,

● including the compiler,

● the corresponding mathematical
libs,

● MPI,

● system environment needed for
the compiler wrappers

crayadm@login1:~> module show PrgEnv-cray
--
/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict PrgEnv
conflict PrgEnv-x1
conflict PrgEnv-x2
conflict PrgEnv-gnu
conflict PrgEnv-intel
conflict PrgEnv-pgi
conflict PrgEnv-pathscale
conflict PrgEnv-cray
setenv PE_ENV CRAY
prepend-path PE_PRODUCT_LIST CRAY
setenv cce_already_loaded 1
module load cce/8.6.1
setenv craype_already_loaded 1
module swap craype/2.5.12
module swap cray-mpich cray-mpich/7.6.0
module load cray-libsci
module load pmi
module load rca
module load atp
module load perftools-base
setenv CRAY_PRGENVCRAY loaded
--

39

Compile applications
on the Cray XC

40

Things to remember before compiling

● Check loaded programming modules

● Check compiler and their versions

● If not, load relevant modules

41

Compiler Driver Wrappers (1)

● All applications that will run in parallel on the Cray XC should
be compiled with the standard language wrappers.

The compiler drivers for each language are:
● cc – wrapper around the C compiler
● CC – wrapper around the C++ compiler
● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler version, target
architecture options, scientific libraries and their include files
automatically from the current used module environment. Use
the –craype-verbose flag to see the default options.

● Use them exactly like you would the original compiler, e.g. To
compile prog1.f90:

$> ftn -c <any_other_flags> prog1.f90

42

Compiler Driver Wrappers (2)

● The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.
$> module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login. This may differ on
other Cray systems.
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich).
● To support SHMEM load the cray-shmem module.

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

43

Compiler Versions

● There are usually multiple versions of each compiler
available to users.
● The most recent version is usually the default and will be loaded when

swapping the PrgEnv.

● To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce cce/8.3.10

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

PrgEnv-pgi pgi

44

EXCEPTION: Cross Compiling Environment

● The wrapper scripts, ftn, cc, and CC, will create a highly
optimized executable tuned for the Cray XC’s compute nodes
(cross compilation).

● This executable may not run on the login nodes (nor pre/post
nodes)
● Login nodes do not support running distributed memory applications
● Some Cray architectures may have different processors in the login and

compute nodes. Typical error is ‘… illegal Instruction …’

● If you are compiling for the login nodes
● You should use the original direct compiler commands, e.g. ifort, pgcc,

crayftn, gcc, … PATH will change with modules. All libraries will have to
be linked in manually.

● Conversely, you can use the compiler wrappers {cc,CC,ftn} and use the
-target-cpu= option among {abudhabi, haswell, interlagos, istanbul,
ivybridge, mc12, mc8, sandybridge, shanghai, x86_64. The x86_64 is the
most compatible but also less specific.

45

Compiler man Pages

● For more information on individual compilers

● To verify that you are using the correct version of a compiler,
use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray
● --version option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

PrgEnv-pgi man pgcc man pgCC man pgf90

Wrappers man cc man CC man ftn

46

More module commands

• Prints actual loaded modules$> module list

• Prints all module available containing the specified string $> module avail [–S str]

• Adds or remove a module to the actual loaded list

• If no version specified, loading the default version
$> module (un)load [mod_name/version]

• Unload mod1 and load mod2

• e.g. to change versions of loaded modules
$> module switch [mod1] [mod2]

• Prints the module (short) description$> module whatis/help [mod]

• Prints the environmental modification$> module show [mod]

• add $HOME/privatemodules to the list of directories that the
module command will search for modules

$> module load user_own_modules

47

“Meta”-Module PrgEnv-X

● PrgEnv-X is a “meta”-module
● loading several modules,

●including the compiler,

●the corresponding mathematical libs,

●MPI,

●system environment needed for the
compiler wrappers

crayadm@elogin04:~> module show PrgEnv-cray
--
/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict PrgEnv
conflict PrgEnv-x1
conflict PrgEnv-x2
conflict PrgEnv-gnu
conflict PrgEnv-intel
conflict PrgEnv-pgi
conflict PrgEnv-pathscale
conflict PrgEnv-cray
setenv PE_ENV CRAY
prepend-path PE_PRODUCT_LIST CRAY
setenv cce_already_loaded 1
module load cce/8.6.3
setenv craype_already_loaded 1
module swap craype/2.5.13
module swap cray-mpich cray-mpich/7.6.3
module load cray-libsci
module load udreg
module load ugni

48

What module does ?

49

Targeting different node types

● Compiling for the CPU nodes
● module load craype-haswell

(enables the haswell specific instructions. Default is x86_64)

● Compiling for KNL nodes
● module load craype-mic-knl

● Compiling for the GPU nodes
● module load craype-accel-nvidia35

● “module display craype-accel-nvidia35” tells you that this module

also loads cudatoolkit and cray-libsci-acc

50

Summary

● Four compiler environments available on the XC:
● Cray (PrgEnv-cray is the default)
● Intel (PrgEnv-intel)
● GNU (PrgEnv-gnu)
● PGI (PrgEnv-pgi)

● All of them accessed through the wrappers ftn, cc and CC – just do module
swap to change a compiler or a version.

● There is no universally fastest compiler
● Performance strongly depends on the application (even input)
● We try however to excel with the Cray Compiler Environment
● If you see a case where some other compiler yields better performance, let

us know!

● Compiler flags do matter
● be ready to spend some effort for finding the best ones for your application.
● More information is given at the end of this presentation.

51

Run applications on XC

52

How to run application on a XC 40 ?

● Two ways to run applications :

● Interactive mode
▪ Log in to service node
▪ Less response time
▪ Prompt the user for input as data or commands
▪ Best suited for Short tasks, those which require frequent user

interaction

● Batch mode
▪ Submitted to a job scheduler
▪ Best for longer running processes
▪ Avoids idling the computing resources

53

How to run application on a XC 40?

Most Cray XCs are batch systems

● Users submit batch job scripts to a scheduler from a login node (e.g. PBS,
MOAB, SLURM) for execution at some point in the future.
Each job requires resources and a prediction how long it will run.

● The scheduler (running on an external server) chooses which jobs to run and
allocates appropriate resources

● The batch system will then execute the user’s job script on an a different node
as the login node.

● The scheduler monitors the job and kills any that overrun their runtime
prediction.

● The batch script contains one or more parallel job runs executed via aprun

54

● The main Cray system uses the workload manager and the Application Level Placement Scheduler

(ALPS)

● In your daily work you will mainly encounter the following commands:

qsub – Submit a batch script to PBS.

aprun – Run parallel jobs within the script.

qdel – Signal jobs under the control of PBS

qstat – information about running jobs

● Plenty of information can be found in the corresponding man pages on the system

● The entire information about your simulation execution is contained in a batch script which is submitted

via qsub.

● Nodes are used exclusively.

55

Running a job on HPC system :

● Prepare job submission script

● Script file defines the commands and cluster resources used for the
job

● Log in to “External Log-in node”

● The qsub command is used to submit a job to the PBS queue

● PBS queue used to allocate resources.

56

$> cat job.pbs
#!/bin/bash
#PBS –l select=1:ncpus=24

#PBS –l walltime=00:10:00

#PBS –j oe

cd <my_work_dir>
aprun –n 24 –N 24 <exe>
rm –r <my_work_dir>/<tmp_files>

Lifecycle of a batch script

Login Node

qsub job.pbs

PBS

Queue

Manager

MOM

Node

Cray XC Compute Nodes

Parallel

Serial

Scheduler

Resources

57

Requesting Resources

● Job requirements
as #PBS comments
in the headers of
the batch script

● Common options:

These can be overridden or supplemented by adding arguments
to the qsub command line, e.g.

$> qsub –l nodes=20:ppn24 run.pbs

Option Description

-l nodes=<nnodes>:ppn=24 Requests X full nodes

(only full nodes are available on HazelHen)

-l walltime <HH:MM:SS> Maximum wall time job will occupy

-N <job_name> Name of the job

-A <code> Account to run job under (for controlling budgets)

-j oe collect both stderr and stdout to a single file

specified by the –o option or the default file for

stdout.

–o <my_output_file_name>
–e <my_error_file_name>

Redirects stdout and stderr to two separate files.

If not specified, the script output will be written to

files of the form <script_name>.e<JOBID> and

<script_name>.o<JOBID>.

-q <queue> Submit job to a specific queues

58

Running an application using ALPS + aprun

●aprun is the ALPS application launcher
● Runs applications on the XC compute nodes.
aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

Option Description

-n Total Number of PEs used by the application

-N Number of PEs per compute node

-d “stride” between 2 PEs on a node,

usually used for: Number of threads per PE

-S Pes per numa node (can have effects for memory bandwidth)

-j -j 2 enables hyperthreading

● Cannot get more
resources for aprun than
requested via WLM.

● The most important
parameters (manpage
for more examples)

● Applications started without aprun, are executed on mom nodes
and can affect other users jobs

59

Cray XC Job launch examples (1)

● Pure MPI application using 48 ranks (i.e 2 nodes)

$ aprun –n 48 ./mpi_program

● MPI with 48 ranks and spread across four nodes

$ aprun –n 48 –N 12 ./mpi_program

60

Cray XC Job launch examples (2)

● Hybrid application (MPI +OpenMP)

240 ranks in total ranks, using 12 PEs per node,

and 2 threads per PE, a total of 20 nodes

$ export OMP_NUM_THREADS=2

$ aprun –n 240 –N 12 –d $OMP_NUM_THREADS $./hyb_program

61

Monitoring your Job

● After submitting your job, you can monitor its status

Command Description

$> qsub <batch_script> <JOBID> Start your job with from the shell with qsub.

The <JOBID> is printed.

$> qstat -u $USER Prints status of all your jobs. Always check that the

reported resources are what you expect.

$> showq –u $USER information of active, eligible, blocked and completed

jobs

$> checkjob <JOBID> Detailed job state information and diagnostic output

$> qdel <JOBID> Only if you think that your job is not running properly

after inspecting your output files, you can cancel it with

qdel.

62

Queues on SERC System

crayadm@login1:~> qstat -q

server: sdb

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- ----- ----- ---- -----

large -- -- 24:00:00 -- 0 0 -- E R

medium -- -- 24:00:00 -- 8 17 -- E R

small72 -- -- 72:00:00 -- 15 16 -- E R

small -- -- 24:00:00 -- 20 38 -- E R

gpu -- -- 24:00:00 4 30 20 -- E R

mgpu -- -- 24:00:00 24 1 3 -- E R

knl -- -- 24:00:00 -- 2 0 -- E R

idqueue -- -- 02:00:00 -- 9 22 -- E R

----- -----

86 136

63

Queues on SERC System

Batch Strategies and Queues :

Queue name: Batch

Queue type: Route

Max_queued_by_each_user: 2

Route destinations: idqueue, small, small72, medium, large, gpu, knl

==============================

Queue Name: idqueue

Queue Type: Execution

Job type: CPU MPI based/ openmp based

Max_job_queued_per_user: 2

Core ranges: 24 – 256 ~ 10 nodes

Max_walltime: 2hrs

Max_user_job_run: 1

Total_job_runs: 32

64

Queues on SERC System
Queue Name: small

Queue Type: Execution

Max_job_queued_per_user: 3

Job type: CPU MPI based/openmp based

Core ranges: 24 – 1032

Max_walltime: 24hrs

Max_user_job_run: 2

Total_job_runs: 20

==================================

Queue Name: small72

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 24 – 1032

Max_walltime: 72hrs

Max_user_job_run: 1

Total_job_runs: 15

Queue Name: medium

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 1033 - 8208

Max_walltime: 72hrs

Max_user_job_run: 1

Total_job_runs: 10

==================================

Queue Name: large

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 8209 - 22800

Max_walltime: 24hrs

Max_user_job_run: 1

Total_job_runs: 4

65

Queues on SERC System
Queue Name: gpu

Queue Type: Execution

Job Type: Cuda based code/Opencl code/ GPU applications

Max_job_queued_per_user: 5

Core ranges: 1 – 48

Min no. of accelerators (Nvidia): 1

Max no. of accelerators (Nvidia): 4

Max_walltime: 24hrs

Max_user_job_run: 3

Total_job_runs: 30

=====================================

Queue Name: knl

Queue Type: Execution

Job Type: intel-xeon phi coprocessor job

Max_job_queued_per_user: 3

Core ranges: 1 - 480

Max_walltime: 24hrs

Max_user_job_run: 2

66

Limitations of SahasraT:

● Resources are shared between users

● User will get 1.5GB of /home area

● 1TB of high speed storage (Lustre Storage)

Location : /mnt/lustre/<user>

● Third party applications’ licenses are to be provided by users

67

Compiler Optimizations

68

Vectorization (1):

● Hardware Perspective:
● Specialized instructions, registers, or functional units to allow in-

core parallelism for operations on arrays (vectors) of data.

● Compiler Perspective:
● Determine how and when it is possible to express computations

in terms of vector instructions

● User Perspective:
● Determine how to write code in a manner that allows the compiler

to deduce that vectorization is possible

Source : http://www.cac.cornell.edu

69

Vectorization (2):

● Goal:
● Parallelize computations over vector arrays

● Two major approaches:

● Pipelining :
● Several different tasks executing simultaneously

● SIMD (Single Instruction Multiple Data) :
● Many instances of a single task executing

simultaneously

70

Vectorization (3):

● Vector Registers :
Floating Pointer

Single Precision : 32 bit

Double Precision : 64 bit

● SSE :

● AVX :

● AVX2 :

71

Using Compiler Feedback

● Compilers can generate annotated listing of your source
code indicating important optimizations. Useful for
targeted use of compiler flags.

● CCE
● ftn -rm
● {cc,CC} -hlist=a

● Intel
● ftn/cc -opt-report 3 -vec-report6
● If you want this into a file: add -opt-report-file=filename
● See ifort --help reports

● GNU
● -ftree-vectorizer-verbose=9

72

Compiler feedback: Loopmark

● For example, with the Cray compiler

%%% L o o p m a r k L e g e n d %%%
Primary Loop Type Modifiers
------- ---- ---- ---------
A - Pattern matched a - vector atomic memory operation

b – blocked
C - Collapsed f – fused
D - Deleted i – interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r – unrolled
P - Parallel/Tasked s – shortloop
V - Vectorized t - array syntax temp used

w - unwound

73

Compiler feedback: Loopmark (cont.)

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

74

Compiler Feedback: Loopmark (cont.)
ftn-6289 ftn: VECTOR File = resid.f, Line = 29
A loop starting at line 29 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized.

75

What did that loopmark note mean? Use “explain”
for more information

% explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a
recurrence was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear
recurrence. The following loop would cause this message to be issued:

DO I = 2,100
B(I) = A(I-1)
A(I) = B(I)

ENDDO

“explain” utility works for any Cray PE messages, e.g., ftn-*, cc-*, ld-*

76

Some Cray, Intel, and GNU compiler flags

Feature Cray Intel GNU

Listing -ra (“report all”) or

-rmo (“loop Mark” and “Opts

used”)

-list -vec-report3 -opt-

report -opt-report-

file=name

-fdump-tree-all

Diagnostic (produced by -ra) -help diagnostic -Wall (and other opts)

Free format -f free -free -ffree-form

Preprocessing -eZ -P –fpp (Fortran) -cpp

Suggested

Optimization

-O2

(default)

-O3 –xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive

Optimization

-O3,fp3 -ffast-math -funroll-loops -

ftree-vectorize –xAVX

-Ofast -mavx

-funroll-loops

Variables size -s real64

-s integer64

-real-size 64

-integer-size 64

-fdefault-real-8

-fdefault-integer-8

Byte swap -h byteswapio -convert big_endian -fconvert=swap

Enab. OpenMP (default) -openmp -fopenmp

77

Recommended compiler optimization levels

● Cray compiler

● The default optimization level (i.e. no flags) is equivalent to –O3 of most other
compilers. CCE optimizes rather aggressively by default, but this is also most
thoroughly tested configuration

● Try with –O3 –hfp3 (also tested this thoroughly)
● -hfp3 gives you a lot more floating point optimization, esp. 32-bit

● In case of precision errors, try a lower –hfp<number> (-hfp1 first, only -hfp0 if
absolutely necessary)

● GNU compiler

● Almost all HPC applications compile correctly with using -O3, so do that instead of the
cautious default.

● -ffast-math may give some extra performance

● Intel compiler

● The default optimization level (equal to -O2) is safe.

● Try with –O3. If that works still, you may try with -Ofast -fp-model fast=2
● Use –craype-verbose flag to {cc,CC,ftn} to show options

78

Inlining & inter-procedural optimization

● Cray compiler

● Inlining within a file is enabled by default.

● Command line options –OipaN (ftn) and –hipaN (cc/CC) where N=0..4, provides a set of
choices for inlining behavior

● 0 disables inlining, 3 is the default, 4 is even more elaborate

● The –Oipafrom= (ftn) or –hipafrom= (cc/CC) option instructs the compiler to look for
inlining candidates from other source files, or a directory of source files.

● The -hwp combined with -h pl=… enables whole program automatic inlining.

● GNU compiler

● Quite elaborate inlining enabled by –O3

● Intel compiler

● Inlining within a file is enabled by default

● Multi-file inlining enabled by the flag -ipo

79

Loop transformations

● Cray compiler
● Most useful techniques in their aggressive state already by default

● One may try to improve loop restructuration for better vectorization
with –h vector3

● GNU compiler
● Loop blocking (aka tiling) with-floop-block
● Loop unrolling -funroll-loops or -funroll-all-loops

● Intel compiler
● Loop unrolling with -funroll-loops or -unroll-aggressive

80

CRAY tools

Debugging and profiling at scale

81

Overview

● Debugging tools
● Stack Trace Analysis Tool (STAT)

● Abnormal Termination Processing (ATP)

● Profiling
● Perftools

● CrayPAT-lite

● CrayPAT

● Apprentice2

● Reveal

82

Overview

Debugging
Get your code up and

running correctly.

Profiling
Locate performance

bottlenecks.

Light weight
At most relinking. Get a

first picture of a

performance or problems

during execution.

ATP

STAT

CrayPAT-lite

(IOBUF)

(Profiler library)

In-depth
Recompile/Relink. Provides

detailed information at user

routine level.

lgdb, (ccdb)

Fast track

Allinea DDT

(Intel Inspector)

CrayPAT

Apprentice2

Reveal

(Intel Vtune)

● More information about Cray Tools on pubs.cray.com

83

The porting optimization Cycle

Port or update your application to the XC

Debug your application (get right results).
● Stack Trace Analysis Tool (STAT)
● Abnormal Termination Processing (ATP)
● Fast Track Debugger (FTD)
● Allinea DDT
● lgdb, (ccdb)

Profile your application for performance.
● Cray Performance Analysis Toolkit CrayPAT
● CrayPAT lite for faster profiling

84

Debugging in production and scale

● Even with the most rigorous testing, bugs may occur during
development or production runs.
● It can be very difficult to recreate a crash without additional information

● Even worse, for production codes need to be efficient so usually have
debugging disabled

● The failing application may have been using tens of or
hundreds of thousands of processes
● If a crash occurs one, many, or all of the processes might issue a signal.

● We don’t want the core files from every crashed process, they’re slow and
too big!

● We don’t want a backtrace from every process, they’re difficult to
comprehend and analyze.

85

Performance Analysis
with CrayPat

86

The Optimization Cycle

Profile

InspectDiagnose

Optimize

Major code
change

Process
Results

Debug
& Run

Loop while

time and

resources

permit

87

New Program Instrumentation Modules

● loaded low-impact module perftools-base
● Instrumentation modules available after

perftools-base is loaded:
● perftools-lite (sampling experiments)

● perftools-lite-events (tracing experimants)

● perftools-lite-loops (collect data for auto-parallelization / loop estimates in Reveal)

● perftools-lite-gpu (gpu kernel and data movemnets)

● perftools (fully adjustable CrayPAT, using pat_build and pat_report)

88

What Do the Instrumentation Modules Do?

perftools-lite
● Default CrayPat-lite profiling
● Load before building and running program to get a basic

performance profile sent to stdout
● Equivalent to loading perftools-lite module in earlier releases

perftools-lite-events
● CrayPat-lite event profile
● Load before building and running program to get more in-depth

performance data sent to stdout
● Equivalent to loading perftools-lite module and setting

CRAYPAT_LITE environment variable to event_profile in earlier
release

89

Perftools Instrumentation Modules

perftools-lite-loops
● CrayPat-lite loop work estimates

● Must be used with Cray compiler

● Load before building and running program to get loop work estimates
sent to stdout and to .ap2 file for use with Reveal

● Automates loop work experiment by modifying the compile and link
steps to include CCE’s –h profile_generate option and instrumenting
the program for tracing (pat_build -w).

● Remember that –h profile_generate reduces compiler optimization
levels. After experiment is complete, unload perftools-lite-loops to
prevent further program instrumentation.

90

Perftools Instrumentation Modules

perftools-lite-gpu
● CrayPat-lite GPU kernel and data movement information
● Load before building and running program to get GPU-specific

performance data sent to stdout
● Equivalent to loading the perftools-lite module and setting

CRAYPAT_LITE environment variable to gpu in earlier releases

perftools
● Full access to CrayPAT functionality
● Use pat_build to instrument, pat_report to process data and

collect reports
● (more details follow)

91

Components of Perftools

● CrayPAT-lite-XXX – automatic instrumentation and profiling

● CrayPAT – instrumentation and performance analysis tool,

including pat_build and pat_report (details follow)

● Cray Apprentice2 - A graphical analysis tool

that can be used to visualize and explore

the performance data captured during program execution.

● Reveal - A graphical source code analysis tool

that can be used to correlate performance analysis

data with annotated source code listings,

to identify key opportunities for optimization.

92

Components of Perftools (cont.)

● grid_order - Generates MPI rank order information that can be used

with the MPICH_RANK_REORDER environment variable to override the

default MPI rank placement scheme and specify a custom rank

placement. (For more information, see the intro_mpi(3) man page.)

● pat_help - Help system, which contains extensive usage information

and examples. This help system can be accessed by entering pat_help

at the command line.

● Documentation - The individual components of CrayPat are

documented in the following man pages (info on hardware counters will

follow):

● intro_craypat(1), pat_build(1), pat_report(1), pat_help(1), grid_order(1),

app2(1), reveal(1)

93

CrayPAT - lite

Examples of sampling, tracing and
loop profiling

94

Generate a Sampling Profile

• Provide basic tools and environment settings

• Set environment for sampling experiments

$> module load perftools-base

$> module load perftools-lite

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

95

Sampling Report
$> make
...
INFO: A maximum of 51 functions from group 'io' will be traced.
INFO: A maximum of 208 functions from group 'mpi' will be traced.
INFO: A maximum of 20 functions from group 'realtime' will be traced.
INFO: A maximum of 56 functions from group 'syscall' will be traced.
INFO: creating the CrayPat-instrumented executable
'/a/certain/dir/cp2k.pdbg' (sample_profile) ...OK

> cat job.out
...
###
#
CrayPat-lite Performance Statistics
#
###

CrayPat/X: Version 6.3.0 Revision 14378 (xf 14041) 09/15/15 10:48:06
Experiment: lite lite/sample_profile
Number of PEs (MPI ranks): 48
Numbers of PEs per Node: 24 PEs on each of 2 Nodes
Numbers of Threads per PE: 1
Number of Cores per Socket: 12
Execution start time: Wed Oct 14 14:07:17 2015
System name and speed: mom11 2501 MHz

Avg Process Time: 5.14 secs
High Memory: 2,070 MBytes 43.13 MBytes per PE
MFLOPS: Not supported (see observation below)
I/O Read Rate: 4.803892 MBytes/sec
I/O Write Rate: 88.963763 MBytes/sec
Avg CPU Energy: 1,499 joules 749.50 joules per node
Avg CPU Power: 291.59 watts 145.80 watts per node

...
Table 1: Profile by Function Group and Function (top 8 functions shown)

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 263.4 | -- | -- |Total
|--
| 78.0% | 205.3 | -- | -- |MPI
||---
|| 62.4% | 164.4 | 115.6 | 42.2% |mpi_bcast
|| 10.4% | 27.4 | 186.6 | 89.1% |MPI_ALLREDUCE
|| 4.7% | 12.4 | 86.6 | 89.3% |MPI_IPROBE
||===
| 13.1% | 34.5 | -- | -- |USER
||---
|| 3.3% | 8.6 | 61.4 | 89.5% |__message_passing_MOD_mp_probe
|| 2.8% | 7.5 | 8.5 | 54.4% |__fist_nonbond_force_MOD_force_nonbond
|| 2.0% | 5.2 | 5.8 | 53.6% |__ewalds_MOD_ewald_evaluate
|| 1.1% | 2.9 | 3.1 | 52.5% |__splines_methods_MOD_potential_s
||===
| 8.2% | 21.5 | -- | -- |ETC
||---
|| 2.5% | 6.6 | 9.4 | 59.7% |__memmove_ssse3
|| 1.7% | 4.4 | 4.6 | 52.7% |__memset_sse2
|==..
...

Significant portion

of communication

General job information

Portions of samples

96

Sampling report

...
=================== Observations and suggestions ===================
Metric-Based Rank Order:

When the use of a shared resource like memory bandwidth is unbalanced
across nodes, total execution time may be reduced with a rank order
that improves the balance. The metric used here for resource usage
is: USER Samp

For each node, the metric values for the ranks on that node are
summed. The maximum and average value of those sums are shown below
for both the current rank order and a custom rank order that seeks
to reduce the maximum value.

A file named MPICH_RANK_ORDER.USER_Samp was generated
along with this report and contains usage instructions and the
Custom rank order from the following table.

Rank Node Reduction Maximum Average
Order Metric in Max Value Value

Imb. Value

Current 11.17% 9.310e+02 8.270e+02
Custom 2.59% 8.808% 8.490e+02 8.270e+02

========================= End Observations =========================
...

...
Table 2: File Input Stats by Filename

Read | Read | Read Rate | Reads | Bytes/ |File Name[max15]
Time | MBytes | MBytes/sec | | Call | PE=HIDE

0.113291 | 0.544238 | 4.803892 | 2,964.0 | 192.54 |Total
|--
| 0.057170 | 0.214447 | 3.751054 | 1,586.0 | 141.78 |topology_fist_WAT.psf
| 0.026845 | 0.138477 | 5.158328 | 844.0 | 172.04 |H2O_ice.inp
| 0.014117 | 0.000700 | 0.049586 | 3.0 | 244.67 |TMC_NPT.inp
| 0.007784 | 0.098442 | 12.646622 | 176.0 | 586.50 |/proc/meminfo
| 0.006957 | 0.078669 | 11.307646 | 25.0 | 3,299.60 |./ice_Ih_96.xyz
|==

Table 3: File Output Stats by Filename
Write | Write | Write Rate | Writes | Bytes/ |File Name[max15]
Time | MBytes | MBytes/sec | | Call | PE=HIDE

0.162883 | 14.490714 | 88.963763 | 5,203.0 | 2,920.36 |Total
|--
| 0.096137 | 13.861026 | 144.179480 | 3,805.0 | 3,819.80 |tmc_traj_T270.xyz
| 0.021800 | 0.064217 | 2.945740 | 18.0 | 3,740.89 |tmc_E_worker_1.out
| 0.016016 | 0.064296 | 4.014441 | 18.0 | 3,745.50 |tmc_E_worker_6.out
| 0.013735 | 0.155310 | 11.307340 | 761.0 | 214.00 |tmc_traj_T270.cell
| 0.004775 | 0.063504 | 13.300140 | 18.0 | 3,699.39 |tmc_E_worker_7.out
| 0.003025 | 0.026007 | 8.596676 | 505.0 | 54.00 |stdout
| 0.001983 | 0.064375 | 32.470347 | 19.0 | 3,552.74 |tmc_E_worker_3.out
| 0.001915 | 0.064375 | 33.624425 | 19.0 | 3,552.74 |tmc_E_worker_2.out
| 0.001905 | 0.063979 | 33.588895 | 18.0 | 3,727.06 |tmc_E_worker_4.out
| 0.001582 | 0.063504 | 40.142573 | 18.0 | 3,699.39 |tmc_E_worker_5.out
| 0.000011 | 0.000122 | 11.053907 | 4.0 | 32.00 |_UnknownFile_
|===

Input/Output analysis

Rank reorder suggestions

97

Generate a Tracing Profile

• Provide basic tools and environment settings

• Set environment for tracing experiments

$> module load perftools-base

$> module load perftools-lite-events

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

98

Tracing report

● Comparable to sampling
experiment, but now the
function are really traced
from beginning to end

● Again observations and
suggestions are printed
● E.g. rank reordering
● And IO observations

> cat job.out
...
Table 1: Profile by Function Group and Function (top 4 functions shown)

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 3.075490 | -- | -- | 562,739.2 |Total
|--
| 74.2% | 2.282250 | -- | -- | 9,855.8 |MPI_SYNC
||---
|| 50.8% | 1.562708 | 1.551026 | 99.3% | 3,131.2 |mpi_bcast_(sync)
|| 12.9% | 0.396947 | 0.396920 | 100.0% | 1.0 |mpi_init_(sync)
|| 10.5% | 0.322147 | 0.293341 | 91.1% | 6,721.6 |mpi_allred_(sync)
||===
| 19.2% | 0.590622 | -- | -- | 2.0 |USER
||---
|| 19.2% | 0.590584 | 0.661898 | 54.0% | 1.0 |main
||===
| 5.4% | 0.166062 | -- | -- | 552,576.7 |MPI
||---
|| 4.1% | 0.126472 | 0.779788 | 87.9% | 541,104.1 |MPI_IPROBE
|==
...

Synchronization

Real time in functions

User functions Communication

99

Generate a loop Profile

• Provide basic tools and environment settings

• Set environment for tracing experiments with loop profiling

$> module load perftools-base

$> module load perftools-lite-loops

• Builds already instrumented binary e.g. app.exe

$> make clean; make

• Running the instrumented binary creates a *.rpt and a *.ap2 file

• The report is additionally printed to stdout

$> aprun –n 24 app.exe >& job.out
$> less job.out

100

Table 1: Inclusive and Exclusive Time in Loops (from -hprofile_generate)
Loop | Loop Incl | Time | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
Incl | Time | (Loop | Hit | Trips | Trips | Trips | PE=HIDE
Time% | | Adj.) | | Avg | Min | Max |
|---
| 93.0% | 19.232051 | 0.000849 | 2 | 26.5 | 3 | 50 |jacobi.LOOP.1.li.236
| 77.8% | 16.092021 | 0.001350 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.2.li.240
| 77.8% | 16.090671 | 0.110827 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.3.li.241
| 77.3% | 15.979844 | 15.979844 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.4.li.242
| 14.1% | 2.906115 | 0.001238 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.5.li.263
| 14.0% | 2.904878 | 0.688611 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.6.li.264
| 10.7% | 2.216267 | 2.216267 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.7.li.265
| 4.3% | 0.881573 | 0.000010 | 1 | 259.0 | 259 | 259 |initmt.LOOP.1.li.191
| 4.3% | 0.881563 | 0.000645 | 259 | 259.0 | 259 | 259 |initmt.LOOP.2.li.192
| 4.3% | 0.880918 | 0.880918 | 67081 | 515.0 | 515 | 515 |initmt.LOOP.3.li.193
| 2.7% | 0.560499 | 0.000055 | 1 | 257.0 | 257 | 257 |initmt.LOOP.4.li.210
| 2.7% | 0.560444 | 0.006603 | 257 | 257.0 | 257 | 257 |initmt.LOOP.5.li.211
| 2.7% | 0.553842 | 0.553842 | 66049 | 513.0 | 513 | 513 |initmt.LOOP.6.li.212

Subroutine

Loop timing report

Line number

Nested Loops

101

CrayPAT

fully adjustable profiling

102

Profiling with CrayPAT

• Makes the default version of CrayPAT available.

$> module load perftools-base

$> module load perftools

• If your application is already built with perftools loaded you do not have to rebuild when switching the experiment.

$> make clean; make

• pat_options are described below

• Creates instrumented binary app.exe+pat

$> pat_build <pat_options> app.exe

$> aprun –n 24 ./app.exe+pat

• Running the “+pat” binary creates a data file or directory

• pat_report reads that data file and prints lots of human-readable performance data. Creates an *.ap2 file.

$> pat_report –o myrep.txt himeno+pat+*

103

Some pat_build options

● More information:

● is given in man pat_build page

● functions in tracegroups are given in $CRAYPAT_ROOT/share/traces after loading the perftools module

● Only true function calls can be traced. Functions that are inlined by the compiler or that have

local scope in a compilation unit cannot be traced.

Option Description

Sampling profile

-u tracing of functions in source file owned by the user

-w Tracing is default experiment

-T <func> Specifies a function which will be traced

-t <file> All functions in the specified file will be traces

-g <group> Instrument all functions belonging to the specified trace function group, e.g. blas, io, mpi,

netcdf, syscall

104

Using pat_report

● pat_report perform data conversion

● Combines information from *.xf output (raw data files, optimized for writing to disk)

● Instrumented binary must still exist when data is converted!

● produce *.ap2 file (compressed performance file, optimized for visualization analysis)

● ap2 file is the input for subsequent pat_report calls and Reveal or Apprentice2

● *.xf files and instrumented binary files can be removed once ap2 file is generated.

● Generates a text report of performance results

● Many options for sorting, slicing or dicing data in the tables.

$> pat_report –O <table option> *.ap2

$> pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

● Several output formats {plot | rpt | ap2 | ap2‐xml | ap2‐txt | xf‐xml | xf‐txt |
html} available through –f option.

● filter the gathered data
$> pat_report –sfilter_input=‘condition’ …

● The ‘condition’ could be an expression involving 'pe' such as 'pe<1024' or 'pe%2==0'.

105

Combining Sampling and Tracing: APA

● Automatic Profiling Analysis:

● Target: large, long-running program (general a trace will inject
considerable overhead)

● Goal: limit tracing to those functions that consume the most time.
● Procedure: use a preliminary sampling experiment to determine and

instrument functions consuming the most time

$> module load perftools

• The APA is the default experiment. No option needed.

$> make clean; make
$> pat_build myapp.exe

• Applying pat_report to the *.xf generates an *.apa file in addition to the *.ap2 file.

$> aprun –n 24 ./myapp.exe+pat
$> pat_report –o myrep.txt myapp+pat+*

• The *.apa file contains instructions for the next instrumentation step.

• Modify it according to your needs.

$> vi *.apa

• Generates an instrumented binary *.exe+apa for tracing

$> pat_build –O *.apa

• Applying pat_report to the *.xf generates a new*.ap2 file.

$> aprun –n 24 ./myapp.exe+apa
$> pat_report –o myrep.txt myapp+apa+*

106

Loop Work Estimates

$> module load perftools-base

$> module load perftools

• Recompile your program for gathering loop statistics

• It is recommended to turn off OpenMP and OpenACC for the loop work estimates via –h noomp –h noacc

$> ftn -c -h profile_generate himeno.f90

$> ftn -o myapp.exe myapp.o

• Instrument the application for tracing (APA also possible)

$> pat_build –w[-u] myapp.exe

● Gives information on inclusive time spent in the loop nests and
typical trip count of the loops

● Please use only one thread (OMP_NUM_THREADS=1)
● Only available with CCE.

107

Questions?

108

Thank You

Email : raviteja@cray.com

