e e
RSy
.

Introduction to ShasraT

RAVITEJA K
Applications Analyst, Cray Inc

1. Cray XC architecture overview
2. SahasraT Configuration

3. Cray Software stack

4. Compile applications on Sahasra
5. Run applications on SahasraT
6. Compiler optimization

/. Cray tools

® e
C Ry

What Is Supercomputer? ~

* \
N

e Broad term for one of the fastest computer currently
available.

e Designed and built to solve difficult computational problems
on extremely large jobs that could not be handled by no
other types of computing systems.

Characteristics :

e The ability to process instructions in parallel (Parallel processing)
e The ability to automatically recover from failures (Fault tolerance)

3

What is SahasraT? S S SR

e SahasraT is Country’s first petaflops supercomputer.

e SahasraT : Sahasra means “Thousand” and T means
“Teraflop”

e Built and designed by Cray (XC40 Series)

e Debuted at Rank 79 in the world, in the June 2014 top
500 list

® e
C Ry
§

Cray XC Architecture Overview

® e
Ry
oM

Cray'’s recipe for a good supercomputer
e Select best microprocessor
e Function of time
e Surround it with a bandwidth-rich environment
e Interconnection network
e Local memory
e Scalethe system
e Eliminate operating system interference (OS jitter)
e Design in reliability and resiliency
e Provide scalable system management
e Provide scalable 1/0

e Provide scalable programming
and performance tools

e System service life

Cray XC System Building Blocks
= Node
= Chassis
= Group

= System

Nodes: The building blocks =SS

The Cray XC is a Massively Parallel Processor (MPP)
supercomputer design. It is therefore built from many thousands
of individual nodes

Compute Node

Nodes: Compute node diagram

7

Socket O

DIMMs

Processor

Aries

PCle Connection

__

Socket 1
B
Processor QP
Connections
-
DIMMs
| Processors:

Intel® Xeon® E5-2670 (Sandy Bridge) - Quad Processor Daughter Card (QPDC)

2.6 GHz, 8 core, 20 MB L3 Cache, DDR3 memory

Intel® Xeon® E5-2695 or E5-2697 (lvy Bridge)

24 0r 27 GHz, 12 core, 30 MB L3 Cache, DDR3 memory
Intel® Xeon® E5-2698V3 (Haswell) — new Socket—new HPDC
2.3 GHz, 16 core, 40 MB L3 Cache, DDR4 memory
Intel® Xeon® E5-2698V4 (Broadwell)

2.2GHz, 22 core, 50 MB L3 Cache, DDR4 memory

10

Blade :

e Four nodes together called a Blade
e Each blade have one Aries Chip

11

Blade :

The system contains these blades

= |/O Blades
= 1 Aries ASCI
= 2 nodes

= Often called as service nodes
= System services such as logins, lustre, Inet etc

= Compute Blades

= 1 Aries ASIC
= 4 nodes.

Nodes are
CPU - CPU
CPU - GPU
CPU — MIC
KNL

12

Blade :

Aries chip Connectivity

13

Chassis : The building blocks

C Ry

®

The Chassis is the primary building block of the system

The four nodes on a blade connected to a single Aries chip
= 16 Aries chips in a chassis are connected via back plane
= Rank 1 network : Intra-chassis Aries chip connectivity

= Each Aries chips has a point to point connection to the other Aries in the chassis

Slot 7 Slot 15
Slot 6 Slot 14
Slot 5 Slot 13
Slot 4 Slot 12
Slot 3 Slot 11
Slot 2 Slot 10
Slot 1 Slot 9
Slot 0 Slot 8

Chassis with 16 compute blades

\

\
L}

14

Aries
Slot 4
Aries
Slot 5
Aries
Slot 6
Aries
Slot 7
|
'.
\(Aries
Slot 8
Aries
Slot9
Aries
Slot 10
Aries
Slot 11

Aries
Slot 12

Aries
Slot 2
Aries
Slot 1
' A A A Aries
Slot 0
Aries
Slot 15
Aries
A Slot 14
Aries
Slot 13

o Chassis with 16 compute blades

o 128 Sockets

15

Group: The building blocks

= Rank 2 network

= Agroup is from two to six chassis in two cabinets

= The copper connections provide intra-group connections
= 15 Iinks in 5 connectors

= Cray XC two-cabinet group

= 96 Aries Chips

= 768 sockets

= signals running at 14 Gbps

16

Grou

0: The building blocks

Cabinet 1 Cabinet 2

Slot 7 Slot 15 Slot 7 Slot 15

Slot 6 Slot 14 Slot 6 Slot 14

Slot 5 Slot 13 Slot 5 Slot 13

Slot 4 Slot 12 Slot 4 Slot 12

Slot 3 Slot 11 Slot 3 Slot 11

Slot 2 Slot 10 Slot 2 Slot 10

Slot 1 Slot 9 >< Slot 1 Slot 9

Slot 0 Slot 8 Slot 0 Slot 8
Slot 7 Slot 15 >< Slot 7 Slot 15
Slot 6 Slot 14 Slot 6 Slot 14
Slot 5 Slot 13 Slot 5 Slot 13
Slot 4 Slot 12 Slot 4 Slot 12
Slot 3 Slot 11 Slot 3 Slot 11
Slot 2 Slot 10 Slot 2 Slot 10
Slot 1 Slot 9 =< Slot 1 Slot 9
Slot 0 Slot 8 / Slot 0 Slot 8

Slot 7 Slot 15 Slot 7 Slot 15

Slot 6 Slot 14 Slot 6 Slot 14

Slot 5 Slot 13 Slot 5 Slot 13

Slot 4 Slot 12 Slot 4 Slot 12

Slot 3 Slot 11 Slot 3 Slot 11

Slot 2 Slot 10 Slot 2 Slot 10

Slot 1 Slot 9 Slot 1 Slot 9

Slot 0 Slot 8 Slot 0 Slot 8

17

® e
C Ry
§

2 Cabinet) \

S o8 Somkers. ‘

Group : Rank-2 Copper Network

6 backplanes
' / connected W|th

cables

é\iﬁ 4 nodes
e R

16 Aries
connected by

— .Q. AN N ‘\,\//) Active optical

Group : Network Routing ~

Minimal routes
between any two
nodes in a group
are just two hops

4h

Non-minimal route
requires four hops.

*

With adaptive routing
we select between

19

® e
C Ry
§

Rank 3 : System Network Overview

*® \
N

e An all-to-all pattern is wired between the groups using optical cables (blue
network)

e Up to 240 ports are available per 2-cabinet group

e The global bandwidth can be tuned by varying the number of optical cables
In the group-to-group connections

Example: An 4-group system is interconnected with 6 optical “bundles”.
The “bundles” can be configured between 20 and 80 cables wide

20

Summary : Cray XC System Building Blocks ==as

System
Group Rank 3
Rank 2 Network Network
Passive Electrical Active
Chassis Network Optical
. Network
Rank 1 Network 2 Cabinets
® : Hundreds of
16 Compute Blades 6 Chassis Cabinets
Compute Blade No Cables 384 Compute Up to 10s of
4 Compute Nodes 64 Compute Nodes Nodes thousands of

nodes

21

Summary : Cray XC System Building Blocks =Ra

Intra Chassis/ Rank-1

= 15 links in backplane
= Green Network

= 14 Gbps
pCle-3
6 bits at 80 C7°
er direction
Intra Group/ Rank-2 pual i
aplI SMP
= Copper cables Links
= 15 links in 5 connectors
= Black Network 4 Channels
« 14 Gbps BpEs
AriesdB-Port
Router
Inter Group/ Rank-3 W
- Optical cables 4°i;‘t’;‘:f;,f:§itf°'

= 10 links in 5 connectors
= Blue Network
= 125 Gbps

SahasraT hardware configuration:

e Based on Cray Linux Environment.

e Consists of

= CPU based Cluster

Equipped with Intel Haswell processors

= Accelerated based Cluster
Equipped with Nvidia GPUs
Equipped with Intel KNLs

= 2 PB High Speed storage (Lustre file system)

23

System configuration: Compute (H/W)

Compute Node :

No. of Nodes : 1376
Processor type . Intel Haswell
No. of cores per node : 12 cores
Clock Rate . 2.5 GHz
Memory per Node : 128 GB
Total Memory . 176 TB

Accelerator Node :

Accelerator . Intel XeonPhi 7120
No. of Nodes . 24

No. of Cores per node : 64 core

Clock Rate : 1.3 GHz

Memory per node : 96 GB
Total Peak Performance : ~60 TFLOPS

24

System configuration: Utility (H/W)

GPU Node :

No. of Nodes : 44

Processor type : Nvidia tesla K 40
No. of Cores per node : 2880 cores
Memory per Node : 12GB GDDR5
CPU Cores : Sandybridge

25

e e
C R Ay
%

Types of nodes:

Service nodes:

Its purpose is managing running jobs, but you can access using an interactive
session.

It runs a full version of the CLE operating system (all libraries and tools
available)

They are shared resources, mistakes and misbehaviour can effect jobs of other
users(!).

26

SahasraT Access detalls:

e Accessed from within the IISc network

e Use sahasrat.serc.lisc.ernet.in address to login
Eg: ssh computational id@sahasrat.serc.lisc.ernet.in

e Use admin supply password to log in then change password —
follow the institute procedure for this

27

® e
C Ry
§

Cray Software

What is Cray?

e Cray systems are designed to be High Productivity as
well as High Performance Computers

e The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
e Focus on improving scalability and reducing complexity

e The default Programming Environment provides:
e the highest levels of application performance
e arich variety of commonly used tools and libraries
e a consistent interface to multiple compilers and libraries
e an increased automation of routine tasks

29

Cray’s Supported Programming Environment

Programming

Programming

Languages models
Distributed
Fortran ?gﬁg]yoli/)llPT)
\ J * MPI
> 5 « SHMEM
C
L) Shared Memory
g § * OpenMP 4.0
* OpenACC
C++
PGAS & Global
> < View
f) « UPC (CCE)
Python » CAF (CCE)
* Chapel
\. /

Cray developed
Licensed ISV SW
3d party packaging
Cray added value to 3" party

Compilers

Cray Compiling
Environment
(CCE)

3d Party
Compilers

+ Intel
Composer

* PGI

Tools

Environment setup

Allinea (DDT)

Debugging Support
Tools

*Abnormal
Termination
Processing

STAT
Performance Analysis

«CrayPat

* Cray
Apprentice?

Scoping Analysis

Optimized Scientific

Libraries

LAPACK

ScaLAPACK
BLAS (libgoto)

Iterative
Refinement
Toolkit

FFTW

Cray PETSc
(with CASK)

o W N

Cray Trilinos

(with CASK)

|
|

C Ry
§

I/O Libraries

NetCDF

L}

\

30

Cray Programming Environment:

e Cray supports C, C++, Fortran, Python etc programing
languages

e Cray supports GNU, Intel and other third party compilers

e Cray programming environment and cray compilers are
default user environments.

e Modules application allows you to dynamically modify
your user environment by using modulefiles

31

® e
C Ry
§

An Introduction to modules

What are Environment Modules? ST
e provides for the dynamic e All popular shells are
modification of a User's _ supported
environment via modulefiles e including bash,ksh, zsh, sh, csh,
tcsh, as'well as some scripting

e each maodulefile contains the ?snggﬁgfnsdsgﬁrﬁon

Information needed to configure

the shell for an application e useful in managing different

e Typically alter or set shell applications and
gRronmenibyanables such as versions of applications
e Modules can e can be bundled into
be loaded and unloaded . metamodules |
dynamically and atomically, in e load an entire suite of different

an clean fashion applications

33

Environment Setup SR

e The Cray XC system uses modules in the user

environment to support multiple software versions and to
create integrated software packages

e As new versions of the supported software and associated man pages
become avallable, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

e You can use the default version of an application, or you can choose
another version by using Modules system commands

34

Most important module commands

Various applications in various versions
available

$> module avail
$> module avail cce

lists all
H cce*

Dynamic modification of a user’s
environment

$> module (un)load PRODUCT/MODULE
e E.g. PrgEnv-xxx changes compilers, linked
libraries, and environment variables

Version management

$> module switch prod vl prod v2

$> module switch PrgEnv-cray PrgEnv-gnu
$> module switch cce cce/8.5.8

Metamodules bundles multiple modules
Can create your own (meta)modules

e Module tool take care

e Environment variables

e PATH, MANPATH,
LD LIBRARY PATH,
LM_LICENSE_FILE,....
e Taking care of compiler and
linker arguments of loaded
products

e Include paths, linker paths, ...

35

More module commands

4)

$> module list

$> module avail [-S str]

—_—

$> module (un)load [mod_name/version]

) EERERREEE——E—E—m——————————————SSSSmRmRRR
- T/

$> module switch [modl] [mod2]

S ———————————————
T

$> module whatis/help [mod]

-/
-/

$> module show [mod]

EEEEEEEEEEE—S—————————————s
-

$> module load user_own_modules

\. J

C Ry
§

* Prints actual loaded modules

* Prints all module available containing the specified string

» Adds or remove a module to the actual loaded list
* If no version specified, loading the default version

* Unload mod1 and load mod2
* e.g. to change versions of loaded modules

* Prints the module (short) description

* Prints the environmental modification

» add $HOME/privatemodules to the list of directories that the
module command will search for modules

36

Default module list at SahasraT S AR

crayadm@loginl:~> module list
Currently Loaded Modulefiles:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)

modules/3.2.10.6
alps/6.4.1-6.0.4.0 7.2 g86dof3d.ari

nodestat/2.3.78-6.0.4.0 7.2 gbe57af8.ari
sdb/3.3.729-6.0.4.0_16.2 gb405b22.ari
udreg/2.3.2-6.0.4.0 12.2 g2f9c3ee.ari
ugni/6.0.14-6.0.4.0 14.1 ge7dbda2.ari
gni-headers/5.0.11-6.0.4.0 7.2 __97136988. ari
dmapp/7.1.1-6.0.4.0 46.2 gb8abda2.ari
xpmem/2.2.2-6.0.4.0 3, __g43b6535 ari

.1 gbe30105.ari

 12.4 @g3427370.aril
.0.4.0 6.1 gcﬁ?ﬂd?f ari
~14.2 gcab7125.ari

1lm/21.3.446-6.0.4.0
nodehealth/5.4.0-6.0.
system-config/3.4.244
sysadm/2.4.119-6.0.4,

I—'-G‘-E.‘l

14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

lustre-utils/2.3.5-6.0.4.0 10.2 g3d4bf80.ari
Base-opts/2.4.123-6.0.4.0 10.1 gb6460790.ari
cce/8.6.1

craype-network-aries

craype/2.5.12

cray-libsci/17.06.1

pmi/5.0.12
rca/2.2.11-6.0.4.0 13.2 g84deb7a.ari
atp/2.1.1

perftools-base/6.5.1

PrgEnv-cray/6.0.4

cray-mpich/7.6.0

pbs/default

37

“Meta”-Module PrgEnv-X

e PrgEnv-Xis a “meta”-module
e |oading several modules,

iIncluding the compiller,

the corresponding mathematical

libs,
MPI,

system environment needed for

the compiler wrappers

C Ry

crayadm@loginl:~> module show PrgEnv-cray

/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict
conflict
conflict
conflict
conflict
conflict
conflict
conflict
setenv
prepend-path
setenv
module
setenv
module
module
module
module
module
module
module
setenv

PrgEnv

PrgEnv-x1

PrgEnv-x2

PrgEnv-gnu
PrgEnv-intel
PrgEnv-pgi
PrgEnv-pathscale
PrgEnv-cray

PE_ENV CRAY
PE_PRODUCT_LIST CRAY
cce_already_loaded 1
load cce/8.6.1
craype_already loaded 1
swap craype/2.5.12
swap cray-mpich cray-mpich/7.6.0
load cray-libsci

load pmi

load rca

load atp

load perftools-base
CRAY_PRGENVCRAY loaded

38

® e
C Ry
§

Compile applications
on the Cray XC

Things to remember before compiling
e Check loaded programming modules
e Check compiler and their versions

e |f not, load relevant modules

40

Compiler Driver Wrappers (1) :

e All applications that will run in parallel on the Cray XC should
be compiled with the standard language wrappers.

The compiler drivers for each language are:
e CC - wrapper around the C compiler

e CC - wrapper around the C++ compiler

e ftn - wrapper around the Fortran compiler

e These scripts will choose the required compiler version, target
architecture options, scientific libraries and their include files
automatically from the current used module environment. Use
the -craype-verbose flag to see the default options.

e Use them exactly like you would the original compiler, e.g. To
compile progl.f90:
$> ftn -c <any_other flags> progl.f9eo

41

e e
RSy
§

Compiler Driver Wrappers (2)

* \
N

e The scripts choose which compiler to use from the PrgEnv
module loaded

Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC
PrgEnv-intel Intel Composer Suite ifort, icc, icpc
PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++
PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

e Use module swap to change PrgEnv, e.g.
$> module swap PrgEnv-cray PrgEnv-intel

e PrgEnv-cray Is loaded by default at login. This may differ on
other Cray systems.
e use module list to check what is currently loaded

e The Cray MPI module is loaded by default (cray-mpich).
e To support SHMEM load the cray-shmem module.

42

® e
C Ry
§

Compiler Versions

*® \
N

e There are usually multiple versions of each compiler
available to users.

e The most recent version is usually the default and will be loaded when
swapping the PrgEnv.

e To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce cce/8.3.10

PrgEnv-cray cce
PrgEnv-intel intel
PrgEnv-gnu gcc

PrgEnv-pgi pgi

43

EXCEPTION: Cross Compiling Environment <~ .

e The WrapOPer scripts, ftn, cc, and CC, will create a highly
optimiz executable tuned for the Cray XC’s compute nodes
(cross compilation).

® Th|ds e>)<ecutab|e may not run on the login nodes (hor pre/post
nodes

e Login nodes do not support running distributed memory applications

e Some Cray architectures may. have different Processors In the login and
compute nodes. Typical erroris “... illegal Instruction

e If you are compiling for the login nodes

e You should use the OI‘I%IH&U direct compiler commands,A\I(IeI(_:gJ ifort, pgcc,
r

crayftn, gcc, .. PATH will change with modules aries will'have ' to
be linked'in manua

e Conversely, you can use the compller wraR pers {cc,CC,ftn} and use the
-target-cpu=_option amon% dhabi, haswell, interlagos; istanbul,
Ivybridge, mc12, mc8 sandybridg e shanghal X86_64. The x86_64 is the
most compatible but also Iess speC| IC.

44

Compiler man Pages

e For more information on individual compilers

PrgEnv-cray man craycc man crayCC man crayftn
PrgEnv-intel man icc man icpc man ifort
PrgEnv-gnu man gcc man g++ man gfortran
PrgEnv-pgi man pgcc man pgCC man pgfoo
Wrappers man cc man CC man ftn

e To verify that you are using the correct version of a compiler,
use:
e -V option on a cc, CC, or ftn command with PGlI, Intel and Cray
e --version option on a cc, CC, or ftn command with GNU

45

More module commands

4)

$> module list

$> module avail [-S str]

—_—

$> module (un)load [mod_name/version]

) EERERREEE——E—E—m——————————————SSSSmRmRRR
- T/

$> module switch [modl] [mod2]

S ———————————————
T

$> module whatis/help [mod]

-/
-/

$> module show [mod]

EEEEEEEEEEE—S—————————————s
-

$> module load user_own_modules

\. J

C Ry
§

* Prints actual loaded modules

* Prints all module available containing the specified string

» Adds or remove a module to the actual loaded list
* If no version specified, loading the default version

* Unload mod1 and load mod2
* e.g. to change versions of loaded modules

* Prints the module (short) description

* Prints the environmental modification

» add $HOME/privatemodules to the list of directories that the
module command will search for modules

46

“Meta”-Module PrgEnv-X

e PrgEnv-Xis a “meta”-module
e |loading several modules,

eincluding the compiler,

ethe corresponding mathematical libs,

o MPI,

e System environment needed for the

compiler wrappers

C Ry

crayadm@elogin@4:~> module show PrgEnv-cray

/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict
conflict
conflict
conflict
conflict
conflict
conflict
conflict
setenv
prepend-path
setenv
module
setenv
module
module
module
module
module

PrgEnv

PrgEnv-x1

PrgEnv-x2

PrgEnv-gnu

PrgEnv-intel

PrgEnv-pgi
PrgEnv-pathscale
PrgEnv-cray

PE_ENV CRAY
PE_PRODUCT_LIST CRAY
cce_already_loaded 1
load cce/8.6.3
craype_already loaded 1
swap craype/2.5.13

swap cray-mpich cray-mpich/7.6.3
load cray-libsci

load udreg

load ugni

47

What module does ? ERIESTRS

crayadm@loginl:~>= module show cce

Jopt/cray/pe/modulefiles/cce/8.6.1:

conflict
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
prepend-path
setenv
setenv
setenv
setenv
setenv
setenv
setenv
prepend-path
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
setenv
prepend-path
prepend-path
prepend-path
prepend-path
prepend-path

cce

GCC_X86 64 /opt/gcc/6.1.0/snos \
CRAY BINUTILS ROOT X86 64 /opt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/../

CRAY BINUTILS BIN X86 64 /opt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/bin

LINKER _X86 64 /Jopt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/bin/1d

ASSEMBLER X86 64 /opt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/bin/as

FTN_X86 64 /opt/cray/pe/cce/8.6.1/cce/x86 64

CC_X86_64 /opt/cray/pe/cce/8.6.1/cce/x86_64

CRAY_CXX_IPA LIBS X86 64 /opt/cray/pe/cce/8.6.1/cce/x86 64/1ib/libcray-c++-rts.a

CRAYLIBS X86 64 /opt/cray/pe/cce/8.6.1/cce/x86 64/1ib

INCLUDE_PATH_X86_64 /opt/cray/pe/cce/8.6.1/cce/x86 64/include/craylibs

GCC_AARCH64 /opt/gcc-cross-aarch64/6.1.0/aarchbd

CRAY BINUTILS ROOT AARCH64 /fopt/cray/pefcce/8.6.1/binutils/cross/x86 64-aarch64/aarch64-unknowun-linux-gnu/../
CRAY BINUTILS BIN AARCH64 /opt/cray/pe/cce/8.6.1/binutils/cross/x86 64-aarch64/aarch64-unknowun-linux-gnu/bin
LINKER AARCH64 /fopt/cray/pe/cce/8.6.1/binutils/cross/x86 64-aarch64/aarch64-unknowun-1linux-gnu/bin/1d
ASSEMBLER AARCH64 /opt/cray/pe/cce/8.6.1/binutils/cross/x86 64-aarch64/aarch64-unknowun-linux-gnu/bin/as
CRAY CXX IPA LIBS AARCH64 /opt/cray/pe/cce/8.6.1/cce/aarch64/1ib/1libcray-c++-rts.a

CRAYLIBS AARCH64 /opt/cray/pe/cce/8.6.1/cce/aarch64/1ib

INCLUDE_PATH_AARCH64 /fopt/cray/pe/cce/8.6.1/ccefaarchbd/include/craylibs

CRAYLMD LICENSE FILE /fopt/cray/pe/cce/cce.lic

CRAY BINUTILS ROOT fopt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/../

CRAY _BINUTILS VERSION /opt/cray/pe/cce/8.6.1

CRAY BINUTILS BIN fopt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/bin

CRAY_CCE_SHARE /opt/cray/pe/cce/8.6.1/cce/x86_64/share

CRAY_CXX_IPA LIBS /opt/cray/pefcce/8.6.1/cce/x86 64/1ib/libcray-c++-rts.a

CRAY_FTN_VERSION 8.6.1

CRAY CC VERSION 8.6.1

PE LEVEL 8.6

FORTRAN SYSTEM MODULE NAMES ftn _1lib definitions

MANPATH /opt/cray/pe/cce/8.6.1/man

NLSPATH /opt/cray/pe/cce/8.6.1/cce/x86 64/share/nls/En/%N.cat

CRAY LD LIBRARY PATH /opt/cray/pe/cce/8.6.1/cce/x86 64/1ib

PATH /opt/cray/pe/cce/8.6.1/binutils/x86 64/x86 64-pc-linux-gnu/bin:/opt/cray/pe/cce/8.6.1/binutils/cross/x86_64-aarch64/aarch64-unknowun-linux-gnu/.

./bin: fopt/cray/pe/cce/8.6.1/utils/x86_64/bin

append-path

MANPATH /usr/share/man

48

Targeting different node types ==Rasy,

e Compiling for the CPU nodes
e module load craype-haswell
(enables the haswell specific instructions. Default is x86_64)

e Compiling for KNL nodes
e module load craype-mic-knl

e Compiling for the GPU nodes
e module load craype-accel-nvidia35
“module display craype-accel-nvidia35” tells you that this module
also loads cudatoolkit and cray-libsci-acc

49

Summary

e Four compiler environments available on the XC:

e Cray (PrgEnv-cray is the default)
e Intel (PrgEnv-intel)
e GNU (PrgEnv-gnu)
e PGl (PrgEnv-pgi) _
e All of them accessed through the wrappers ftn, cc and CC — just do module
swap to change a compiler-or a version.

e There is no universally fastest compiler
o Performance strongly depends on the application (even input)
e We try however to excel with the Cray Compiler Environment

o |If yclzu see a case where some other compiler yields better performance, let
us know!

e Compiler flags do matter
e be ready to spend some effort for finding the best ones for your application.
e More information is given at the end of this presentation.

50

® e
C Ry
§

Run applications on XC

How to run application on a XC 40 ?
e Two ways to run applications :

e Interactive mode
= Log In to service node
= Less response time
= Prompt the user for input as data or commands
= Best suited for Short tasks, those which require frequent user
Interaction

e Batch mode
= Submitted to a job scheduler
= Best for longer running processes
= Avoids idling the computing resources

52

How to run application on a XC 407?
Most Cray XCs are batch systems

e Users submit batch job scripts to a scheduler from a login node (e.g. PBS,
MOAB, SLURM) for execution at some point in the future.
Each job requires resources and a prediction how long it will run.

e The scheduler (running on an external server) chooses which jobs to run and
allocates appropriate resources

e The batch system will then execute the user’s job script on an a different node
as the login node.

e The scheduler monitors the job and kills any that overrun their runtime
prediction.

e The batch script contains one or more parallel job runs executed via aprun

53

e e
RSy
.

® \
\

The main Cray system uses the workload manager and the Application Level Placement Scheduler
(ALPS)

In your daily work you will mainly encounter the following commands:

gsub - Submit a batch script to PBS.

aprun - Run parallel jobs within the script.
gdel - Signal jobs under the control of PBS
gstat - information about running jobs

Plenty of information can be found in the corresponding man pages on the system

The entire information about your simulation execution is contained in a batch script which is submitted
via gsub.

Nodes are used exclusively.

54

Running a job on HPC system :

e Prepare Job submission script

e Script file defines the commands and cluster resources used for the
job

e Log in to “External Log-in node”

e The gsub command is used to submit a job to the PBS queue

e PBS gueue used to allocate resources.

55

Lifecycle of a batch script

@

Serial

Paralle

>

$> cat job.pbs
#!/bin/bash

(#PBS -1 select=1:ncpus=24

#PBS -1 walltime=00:10:00

#PBS -j oe

cd <my_work dir>

aprun -n 24 -N

24 <exe>

rm -r <my_work dir>/<tmp_files>

Cray XC Compute Nodes

56

Requesting Resources

® ‘\

e Job requirements
as #PBS comments
In the headers of
the batch script

e Common options:

-1 nodes=<nnodes>:ppn=24

-1 walltime <HH:MM:SS>
-N <job_name>
-A <code>

-j oe

-0 <my_output_file_name>
-e <my_error_file_name>

-q <queue>

e e
RSy
§

Requests X full nodes .

(only full nodes are available on HazelHen)
Maximum wall time job will occupy

Name of the job

Account to run job under (for controlling budgets)

collect both stderr and stdout to a single file
specified by the -o option or the default file for
stdout.

Redirects stdout and stderr to two separate files.
If not specified, the script output will be written to
files of the form <script_name>.e<JOBID> and
<script_name>.0<JOBID>.

Submit job to a specific queues

These can be overridd_én or supplemented by adding arguments
to the qsub command line, e.q.
$> gsub -1 nodes=20:ppn24 run.pbs

57

Running an application using ALPS + aprun

e aprun Is the ALPS application launcher

e Runs applications on the XC compute nodes.
aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

e Cannot get more

resources for aprun than -n Total Number of PEs used by the application
requeSted via WLM. -N Number of PEs per compute node
e The most important -d “stride” between 2 PEs on a node,

usually used for: Number of threads per PE

parameters (manpage
fOr more examp|es) -S Pes per numa node (can have effects for memory bandwidth)

] -j 2 enables hyperthreading

e Applications started without aprun, are executed on mom nodes
and can affect other users jobs

58

LI
C Ry
§

Cray XC Job launch examples (1)

\
\

\

o Pure MPI application using 48 ranks (I.e 2 nodes)

[$ aprun —n 48 ./mpi_program]

o MPI with 48 ranks and spread across four nodes

[$ aprun —n 48 —N 12 ./mpi_program J

59

Cray XC Job launch examples (2)

o Hybrid application (MPIl +OpenMP)
240 ranks In total ranks, using 12 PEs per node,
and 2 threads per PE, a total of 20 nodes

$ export OMP_NUM_THREADS=2
$ aprun —n 240 —N 12 —d $OMP_NUM_THREADS $./hyb_program

60

e e
C Ry
§

Monitoring your Job

\
\

After submitting your job, you can monitor its status

$> qsub <batch_script> <JOBID> Start your job with from the shell with qsub.
The <JOBID> is printed.

$> gqstat -u $USER Prints status of all your jobs. Always check that the
reported resources are what you expect.

$> showq -u $USER Information of active, eligible, blocked and completed
jobs

$> checkjob <JOBID> Detailed job state information and diagnostic output

$> qdel <JOBID> Only if you think that your job is not running properly

after inspecting your output files, you can cancel it with
gdel.

61

Queues on SERC System

crayadm@loginl:~> gstat -qg

server: sdb

Queue Memory CPU Time Walltime Node Run Que Lm
large -- -- 24:00:00 -- 0 0 —--
medium -- -- 24:00:00 -- 8 17 --
small72 -- -= 72:00:00 -- 15 16 -=
small -- -= 24:00:00 -- 20 38 -=
gpu -- -- 24:00:00 4 30 20 --
mgpu -- -- 24:00:00 24 1 3 --
knl -- -= 24:00:00 -- 2 0 -=
idqueue -- -- 02:00:00 -- 9 22 --

e I e I ca I I 3 I 3 I s I o
v VI I I VR I v IV

62

Queues on SERC System

Batch Strategies and Queues

Queue name: Batch

Queue type: Route

Max_queued by each user: 2

Route destinations: idqueue, small, small72, medium, large, gpu, knl

Queue Name: idqueue

Queue Type: Execution

Job type: CPU MPI based/ openmp based
Max_job _queued per _user: 2

Core ranges: 24 — 256 ~ 10 nodes
Max_walltime: 2hrs

Max_user_job_run: 1

Total _job_runs: 32

63

Queues on SERC System

Queue Name: small

Queue Type: Execution

Max_job_queued per_user: 3

Job type: CPU MPI based/openmp based
Coreranges: 24 - 1032

Max_walltime: 24hrs

Max_user_job _run: 2

Total_job_runs: 20

Queue Name: small72

Queue Type: Execution
Max_job_queued per_user: 1

Job type: CPU MPI based/openmp based
Coreranges: 24 - 1032

Max_walltime: 72hrs

Max_user_job _run:1

Total job_runs: 15

Queue Name: medium

Queue Type: Execution

Max_job _queued per _user: 1

Job type: CPU MPI based/openmp based
Coreranges: 1033 - 8208

Max_walltime: 72hrs

Max_user_job run:1

Total_job_runs: 10

Queue Name: large

Queue Type: Execution
Max_job_queued_per user: 1

Job type: CPU MPI based/openmp based
Core ranges: 8209 - 22800
Max_walltime: 24hrs

Max_user_job_run: 1

Total_job_runs: 4

64

Queues on SERC System

Queue Name: gpu
Queue Type: Execution

Job Type: Cuda based code/Opencl code/ GPU applications

Max_job_queued_per_user: 5

Core ranges: 1 -48

Min no. of accelerators (Nvidia): 1
Max no. of accelerators (Nvidia): 4
Max_walltime: 24hrs
Max_user_job_run: 3
Total_job_runs: 30

Queue Name: knl

Queue Type: Execution

Job Type: intel-xeon phi coprocessor job
Max_job_queued_per_user: 3

Core ranges: 1 - 480

Max_walltime: 24hrs

Max_user_job_run: 2

65

Limitations of SahasraT: S

e Resources are shared between users

e User will get 1.5GB of /home area

e 1TB of high speed storage (Lustre Storage)
Location : /mnt/lustre/<user>

e Third party applications’ licenses are to be provided by users

66

® e
C Ry
§

Compiler Optimizations

Vectorization (1):

e Hardware Perspective:

e Specialized instructions, registers, or functional units to allow In-
core parallelism for operations on arrays (vectors) of data.

e Compiler Perspective:

e Determine how and when it is possible to express computations
INn terms of vector instructions

e User Perspective:

e Determine how to write code in a manner that allows the compiler
to deduce that vectorization is possible

Source : http://www.cac.cornell.edu

68

Vectorization (2):

e Goal:
e Parallelize computations over vector arrays

e Two major approaches:

e Pipelining :
e Several different tasks executing simultaneously

e SIMD (Single Instruction Multiple Data) :

e Many instances of a single task executing
simultaneously

69

Vectorization (3): ==as

e Vector Reqgisters :
Floating Pointer

Single Precision : 32 bit -
Double Precision : 64 bit -

o -
. 00
- NN

| N N N
A

70

Using Compiler Feedback

e Compilers can generate annotated listing of

0
code indicatincf:; Important optimizations. Usefu

targeted use o
e CCE

e ftn -rm
e {cc,CC} -hlist=a

compiler flags.

e Intel
e ftn/cc -opt-report 3 -vec-reporté

Y,

u
|

e e
RSy
.

®
N

r source
for

e If you want this into a file: add -opt-report-file=filename

e See ifort --help reports
e GNU

e -ftree-vectorizer-verbose=9

\

71

\

Compiler feedback: Loopmark

e For example, with the Cray compiler

%7%6%

Loopmark

Primary Loop Type

< U=RHMOAN

Pattern matched

Collapsed
Deleted

Cloned

Inlined
Multithreaded
Parallel/Tasked
Vectorized

Legend %7676

Modifiers

S +tW0V 5T S H -h T O

vector atomic memory operation
blocked

fused

interchanged

streamed but not partitioned
conditional, partial and/or computed
unrolled

shortloop

array syntax temp used

unwound

72

Compiler feedback: Loopmark (cont.)

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

b

b

b

b

b

b Vr-->
b Vr--<
b
b
b
b
b

COO0CUOCO0OCOoOCO0OCOCO0OCO0OCOOCOoO O

do i3=

do

2,n3-1
i2=2,n2-1
do i1l=1,n1
ul(il) = u(i1,i2-1,i3) + u(il,i2+1,i3)
+ u(il,i2,i3-1) + u(il,i2,i3+1)
u2(il) = u(i1,i2-1,i3-1) + u(il,i2+1,i3-1)
+ u(il,i2-1,i3+1) + u(il,i2+1,i3+1)
enddo
do i1=2,n1-1
r(i1,i2,i3) = v(i1,i2,i3)
- a(9) * u(i1,i2,i3)
- a(2) * (u2(il1l) + ul(i1l-1) + ul(i1+1))
- a(3) * (u2(i1-1) + u2(i1+1))
enddo

C Ry
§

73

C Ry

Compiler Feedback: Loopmark (cont.)

ftn-6289 ftn: VECTOR File = resid.f, Line = 29
A loop starting at line 29 was not vectorized because a recurrence was found
on "Ul" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a recurrence was found
on "Ul" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized.

74

What did that loopmark note mean? Use “explain” —==ac
for more information . .

L}

% explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a
recurrence was found on "var" between lines num and num.

Scalar code was]generated for the loop because it contains a linear
recurrence. The following loop would cause this message to be issued:

DO | =2,100
B() =A(l-1)

A(l) = B(l)
ENDDO

“explain” utility works for any Cray PE messages, e.g., ftn-*, cc-*, Id-*

75

Some Cray, Intel, and GNU compiler flags

Listing

Diagnostic

Free format
Preprocessing

Suggested
Optimization

Aggressive
Optimization

Variables size

Byte swap

Enab. OpenMP

-ra (“report all’) or
-rmo (“loop Mark” and “Opts
used”)

(produced by -ra)

-f free
-eZ

-02
(default)

-03,fp3

-s real64
-s integer64

-h byteswapio

(default)

-list -vec-report3 -opt-
report -opt-report-
file=name

-help diagnostic

-free
-P —fpp (Fortran)

-O3 —xXAVX

-ffast-math -funroll-loops -
ftree-vectorize —xAVX

-real-size 64
-integer-size 64

-convert big_endian

-openmp

e e
C Ry
&

-fdump-tree-all

-Wall (and other opts)
-ffree-form
-Cpp

-O2 -mavx -ftree-vectorize
-ffast-math -funroll-loops

-Ofast -mavx
-funroll-loops

-fdefault-real-8
-fdefault-integer-8

-fconvert=swap

-fopenmp

\

76

e e
RSy
.

® \
\

Recommended compiler optimization levels

e Cray compiler

e The default optimization level (i.e. no flags) is equivalent to -03 of most other
compilers. CCE optimizes rather aggressively by default, but this is also most
thoroughly tested configuration

e Try with -03 -hfp3 (also tested this thoroughly)
e -hfp3 gives you a lot more floating point optimization, esp. 32-bit

e In case of precision errors, try a lower —hfp<number> (-hfpl first, only -hfpe Iif
absolutely necessary)

e GNU compiler

e Almost all HPC applications compile correctly with using -03, so do that instead of the
cautious default.

o -ffast-math may give some extra performance
e Intel compiler

e The default optimization level (equal to -02) is safe.

e Try with -03. If that works still, you may try with -Ofast -fp-model fast=2
e Use -craype-verbose flag to {cc,CC,ftn} to show options

77

Inlining & Inter-procedural optimization

e Cray compiler
e Inlining within a file is enabled by default.
e Command line options -0ipaN (ftn) and -hipaN (cc/CC) where N=0..4, provides a set of
choices for inlining behavior
e O disables inlining, 3 is the default, 4 is even more elaborate

e The -0Oipafrom= (fin) or —hipafrom= (cc/CC) option instructs the compiler to look for
Inlining candidates from other source files, or a directory of source files.

e The -hwp combined with -h pl=.. enables whole program automatic inlining.

e GNU compiler
e Quite elaborate inlining enabled by -03

e Intel compiler
e Inlining within a file is enabled by default
e Multi-file inlining enabled by the flag -ipo

L}

C Ry |
oM

\

78

Loop transformations

e Cray compiler
e Most useful technigues in their aggressive state already by default

e One may try to improve loop restructuration for better vectorization
with -h vector3

e GNU compiler
o Loop blocking (aka tiling) with-floop-block
e Loop unrolling -funroll-loops or -funroll-all-loops

e Intel compiler
e Loop unrolling with -funroll-loops or -unroll-aggressive

79

CRAY tools

Debugging and profiling at scale

80

Overview

e Debugging tools
e Stack Trace Analysis Tool (STAT)
e Abnormal Termination Processing (ATP)

e Profiling
Perftools
CrayPAT-lite
CrayPAT
Apprentice?
Reveal

81

- C R Ay
Overview | | :
Light weight In-depth s N
At most relinking. Get a Recompile/Relink. Provides
first picture of a detailed information at user

performance or problems routine level.
during execution.

- -
Debugging lgdb, (ccdb)
Get your code up and Fast track
running correctly. Allinea DDT
(Intel Inspector)
. .

CrayPAT

Profiling CrayPAT-lite Apprentice2
Locate performance (IOBUF) Reveal
bottlenecks. (Profiler library)

(Intel Vtune)

e More information about Cray Tools on pubs.cray.com

82

The porting optimization Cycle

Port or update your application to the XC

\/

e Stack Trace Analysis Tool (STAT)

e Abnormal Termination Processing (ATP)
e Fast Track Debugger (FTD)

e Allinea DDT

e |gdb, (ccdb)

<

/" Debug your application (get right results).

/

e Cray Performance Analysis Toolkit CrayPAT |
e CrayPAT lite for faster profiling

N

83

e e
C Ry |
.

Debugging in production and scale R

L}

e Even with the most rigorous testing, bugs may occur during \
development or production runs.
e |t can be very difficult to recreate a crash without additional information
e Even worse, for production codes need to be efficient so usually have
debugging disabled
e The failing application may have been using tens of or
hundreds of thousands of processes
e If a crash occurs one, many, or all of the processes might issue a signal.
e \We don’t want the core files from every crashed process, they're slow and

too big!
e \We don’t want a backtrace from every process, they're difficult to
comprehend and analyze.

84

® e
C Ry
§

Performance Analysis
with CrayPat

The Optimization Cycle

Viajor code

change

Optimize
time and

resources
nermit

<=

DEECESS
Results

COMPUTE | STORE | ANALYZE

86

New Program Instrumentation Modules

e l[oaded low-impact module perftools-base

e Instrumentation modules available after
perftools -base is loaded.:

nerftoo
nerftoo
nerftoo
nerftoo

nerftoo

s-lite (sampling experiments)

s-lite-events (tracing experimants)

S- ite-Ioops (collect data for auto-parallelization / loop estimates in Reveal)
S- ite-gpu (gpu kernel and data movemnets)

S (fully adjustable CrayPAT, using pat_build and pat_report)

87

What Do the Instrumentation Modules Do? RS K AR

perftools-lite | N
e Default CrayPat-lite profiling

e Load before building and running program to get a basic
performance profile sent to stdout

e Equivalent to loading perftools-lite module in earlier releases

perftools-lite-events
e CrayPat-lite event profile

e Load before building and running program to get more in-depth
performance data sent to stdout

EcF]auivaIent to loading perftools-lite module and settin

®
CRAYPAT LITE environment variable to event_profiFJe In earlier
release

88

Perftools Instrumentation Modules .

perftools-lite-loops
®

CrayPat-lite loop work estimates
Must be used with Cray compiler

Load before building and running program to get loop work estimates
sent to stdout and to .ap2 file foruse with Reveal

Automates loop work experiment by modifying the compile and link
steps to include CCE’s —h profile generate option and instrumenting
the program for tracing (pat_build™-w).

Remember that —h profile _generate reduces compiler gptimization
levels. After experiment IS Complete, unload perftools-lite-loops to
prevent further program instrumentation.

89

Perftools Instrumentation Modules

perftools-lite-gpu
e CrayPat-lite GPU kernel and data movement information

e Load before building and running program to get GPU-specific
performance data sent to stdout

o Eg{uivalent to loading the perftools-lite module and settin
CRAYPAT LITE environment variable to gpu in earlier releases

perftools
e Full access to CrayPAT functionality

e Use pat_build to instrument, pat_report to process data and
collect reports

e (more detalils follow)

90

Components of Perftools

e CrayPAT-lite-XXX — automatic instrumentation and profiling
e CrayPAT - instrumentation and performance analysis tool,

Including pat_build and pat_report (detalls follow)
e Cray Apprentice2 - A graphical analysis tool

that can be used to visualize and explore
the performance data captured during program execution.

e Reveal - A graphical source code analysis tool

that can be used to correlate performance analysis

data with annotated source code listings,

to identify key opportunities for optimization.

91

S e
C Ry |
oM

* \
\

Components of Perftools (cont.)

e grid_order - Generates MPI rank order information that can be used \
with the MPICH_RANK REORDER environment variable to override the
default MPI rank placement scheme and specify a custom rank
placement. (For more information, see the intro_mpi(3) man page.)

e pat_help - Help system, which contains extensive usage information
and examples. This help system can be accessed by entering pat_help
at the command line.

e Documentation - The individual components of CrayPat are
documented in the following man pages (info on hardware counters will
follow):

e Intro_craypat(1), pat_build(1), pat_report(1), pat_help(1), grid _order(1),
app2(1), reveal(l)

92

CrayPAT - lite

Examples of sampling, tracing and
loop profiling

93

Generate a Sampling Profile

p

$> module load perftools-base

LI
C Ry
§

$> module load perftools-lite |

* Provide basic tools and environment settings
« Set environment for sampling experiments

$> make clean; make

 Builds already instrumented binary e.g. app.exe

$> aprun -n 24 app.exe >& job.out

$> less job.out |

* Running the instrumented binary creates a *.rpt and a *.ap2 file
« The report is additionally printed to stdout

94

Sampling Report

$> make
INFO:
INFO:
INFO:

A maximum of 51 functions from group 'io' will be traced.

A maximum of 208 functions from group 'mpi' will be traced.

A maximum of 20 functions from group 'realtime' will be traced.
INFO: A maximum of 56 functions from group 'syscall' will be traced.
INFO: creating the CrayPat-instrumented executable
'/a/certain/dir/cp2k.pdbg’ (sample_profile) ...0K

> cat job.out

T

#
CrayPat-lite Performance Statistics
#

BRI n L L e s s s s s s S s e e e S

CrayPat/X: Version 6.3.0 Revision 14378 (xf 14041) 09/15/15 10:48:06
Experiment: lite lite/sample_profile

Number of PEs (MPI ranks): 48

Numbers of PEs per Node: 24 PEs on each of 2 Nodes

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Wed Oct 14 14:07:17 2015
momll 2501 MHz
/_
5.14 secs
2,070 MBytes 43.13 MBytes per PE
Not supported (see observation below)
4.803892 MBytes/sec
88.963763 MBytes/sec
1,499 joules 749.50 joules per node
291.59 watts 145.80 watts per node

Execution start time:

System name and speed: . . .

General job information
Avg Process Time:
High Memory:
MFLOPS:
I/0 Read Rate:
I/0 Write Rate:
Avg CPU Energy:

| Avg CPU Power:

Table 1: Profile by _Fdnction Group and Function
Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE
100.0% | 263.4 | S -- |Total

| 62.4% | 164.4 | 115.6 | 42.2% |mpi_bcast
| 10.4% | 27.4 | 186.6 | 89.1% |MPI_ALLREDUCE
| 4.7% | 12.4 | 86.6 | 89.3% |MPI_IPROBE

) s
Portions of samples

| 3.3% | 8.6 | 61.4 | 89.5% |__message_passing_MOD_mp_probe

| 2.8 | 7.5 | 8.5 | 54.4% |__fist_nonbond_force_MOD_force_nonbond

| 2.0% | 5.2 | 5.8 | 53.6% |__ewalds_MOD_ewald_evaluate

| 1.2% | 2.9 | 3.1] 52.5% |__splines_methods_MOD_potential_s

| Mt
8.2% | 21.5 | - | -~ |eTC

| ...

| 2.5% | 6.6 | 9.4 | 59.7% |__memmove_ssse3

| 1.7% | 4.4 | 4.6 | 52.7% |__memset_sse2

LR
C Ry
§

\

(top 8 functions shown)

Significant portion

of communication

95

Sampling report

e e
C Ry
§

Observations and suggestions
Metric-Based Rank Order:

When the use of a shared resource like memory bandwidth is unbalanced
across nodes, total execution time may be reduced with a rank order
that improves the balance. The metric used here for resource usage
is: USER Samp

For each node, the metric values for the ranks on that node are
summed. The maximum and average value of those sums are shown below
for both the current rank order and a custom rank order that seeks
to reduce the maximum value.

A file named MPICH_RANK_ORDER.USER_Samp was generated
along with this report and contains usage instructions and the
Custom rank order from the following table.

Rank Node Reduction Maximum Average
Order Metric in Max Value Value
Imb. Value

Current 11.17%
Custonm 2.59%

9.310e+02 8.270e+02
8.808% 8.490e+02 8.270e+02
End Observations

Rank reorder suggestions

Table 2: File Input
Read | Read |
Time | MBytes

0.113291 | 0.544238 |

| ©.057170 | 0.214447
| ©.026845 | 0.138477
| ©.014117 | ©.000700
| ©.007784 | 0.098442
| ©.006957 | 0.078669
Table 3: File Output
Write | Write
Time | MBytes

0.162883 | 14.490714

| Write Rate | Writes |
| MBytes/sec | | Call | PE=HIDE

88.963763 | 5,203.0 | 2,920.36 |Total
g
| ©.096137 | 13.861026 | 144.179480 | 3,805.0 | 3,819.80 |tmc_traj_T270.xyz
| 0.021800 | ©.064217 2.945740 | 18.0 | 3,740.89 |tmc_E_worker_1.out
| 0.016016 | ©.064296 4.014441 | 18.0 | 3,745.50 |tmc_E_worker_6.out
| ©.013735 | ©.155310 11.307340 | 761.0 | 214.00 |tmc_traj_T270.cell
| ©.004775 | 0.063504 13.300140 | 18.0 | 3,699.39 |tmc_E_worker_7.out
| ©.003025 | ©.026007 8.596676 | 505.0 | 54.00 |stdout
| ©.001983 | 0.064375 32.470347 | 19.0 | 3,552.74 |tmc_E_worker_3.out
| ©.001915 | ©.064375 33.624425 | 19.0 | 3,552.74 |tmc_E_worker_2.out
| ©.001905 | ©.063979 33.588895 | 18.0 | 3,727.06 |tmc_E_worker_4.out
| 0.001582 | ©.063504 40.142573 | 18.0 | 3,699.39 |tmc_E_worker_5.ou
| 0.000011 | ©.000122 11.053907 | 4.0 | 32.00 |_UnknownFil

Stats by Filename

Stats by Filename

| MBytes/sec |

Read Rate | | Bytes/ |File Name[max15]
| Call | PE=HIDE
|

192.54 |Total

Reads

4.803892 | 2,964.0

3.751054 | 1,586.0 | 141.78 |topology fist WAT.psf
5.158328 | 844.0 | 172.04 |H20_ice.inp

0.049586 | 3.0 | 244.67 |TMC_NPT.inp
12.646622 | 176.0 | 586.50 |/proc/meminfo
11.307646 | 25.0 | ice Th 96

Input/Output analysis

96

Generate a Tracing Profile

p

$> module load perftools-base

LI
C Ry
§

$> module load perftools-lite-events |

* Provide basic tools and environment settings
« Set environment for tracing experiments

$> make clean; make

 Builds already instrumented binary e.g. app.exe

$> aprun -n 24 app.exe >& job.out

$> less job.out |

* Running the instrumented binary creates a *.rpt and a *.ap2 file
« The report is additionally printed to stdout

97

Tracing report

e Comparable to sampling
experiment, but now the
function are really traced
from beginning to end

e Again observations and
suggestions are printed
e E.g. rank reordering
e And IO observations

— Real time in functions

Synchronization
> cat job.out

Table 1: Profile| by Function Group and Function (top 4 functions shown)

Time% | Time | . | Imb. | Calls |Group

-- | 552,576.7 |MPI

| | Tigie | Time% | | Function
| | | | | PE=HIDE
100.0% | 3.075490 | -- -- | 562,739.2 |Total

| ___
| 74.2% | 2.282250 | -- -- | 9,855.8 |[MPI_SYNC
ST TIPELEELELRLRTES
|| 50.8% | 1.562708 | 1.551026 | 99.3% | 3,131.2 |mpi_bcast_(sync)
|| 12.9% | ©.396947 | ©.396920 | 100.0% | 1.0 |mpi_init_(sync)
|| 10.5% | ©.322147 | ©.293341 | 91.1% | 6,721.6 |mpi_allred_(sync)
I | Tttt
| -- -- 2.0 |USER
[[=m oo m oo oo
|| 19.2% | @.590584/| ©.661898 | 54.0% | 1.0 |main
I
I
I
I

User functions

Communication

98

Generate a loop Profile

p
$> module load perftools-base

LI
C Ry
§

$> module load perftools-lite-loops |

* Provide basic tools and environment settings
« Set environment for tracing experiments with loop profiling

$> make clean; make ‘

 Builds already instrumented binary e.g. app.exe

i

$> aprun -n 24 app.exe >& job.out

$> less job.out |

* Running the instrumented binary creates a *.rpt and a *.ap2 file
« The report is additionally printed to stdout

99

Loop timing report

Line number

Table 1: Inclusive and Exclusive|Time in Loops (from -hprofile_generate)
Loop | Loop Incl | Time | Loop | Loop | Loop | Loop |[Function=/.LOOP][.]
Incl | Time | (Loop | Hit | Trips | Trips | Trips |“PE=HIDE
Time% | | Adj.) | | Avg | Min | Max |
I --- e R
| 93.0% | 19.232051 | ©0.000849 | 2 | 26.5 | 3 | 50 |jacobi.LOOP.1.1i.236
| (77.8% | 16.092021 | ©.001350 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.2.1i.240
| [77.8% | 16.090671 || ©.110827 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.3.1i.241
| 77. : [15.979844 | 3446325 | 511.0 | 511 | 5 jacobi. Y. 9
| 14.1% | 2.906115 || ©0.001238 | 53 | 255.0 | 255 | 255 |jacobi.LOOP.5.1i.263
| 14.0% | 2.904878 || ©.688611 | 13515 | 255.0 | 255 | 255 |jacobi.LOOP.6.1i.264
| 10.7% | 2.216267 || 2.216267 | 3446325 | 511.0 | 511 | 511 |jacobi.LOOP.7.1i.265
| 4.3% | ©.881573 || 0.000010 | 1| 259.0 | 259 | 259 |initmt.LOOP.1.1i.191
| 4.3% | ©0.881563 || ©0.000645 | 259 | 259.0 | 259 | 259 |initmt.LOOP.2.1i.192
| 4. 2220019 2220918 | 67081 | 515.0 | 515 | 515 |initmt.LOOP.3.1i.193
| 2. Nested Loops 055 | 1| 257.0 | 257 | 257 |initmt.LOOP.4.1i.210
| 2.7% . .006603 | 257 | 257.0 | 257 | 257 |initmt.LOOP.5.1i.211
| 2.7% | ©.553842 | .553842 | 66049 | 513.0 | 513 | 513 |initmt.LOOP.6.1i.212

100

CrayPAT

fully adjustable profiling

101

Profiling with CrayPAT

$> module load perftools-base

$> module load perftools)

* Makes the default version of CrayPAT available.

$> make clean; make |

« If your application is already built with perftools loaded you do not have to rebuild when switching the experiment.

$> pat _build <pat options> app.exe |

* pat_options are described below
* Creates instrumented binary app.exe+pat

$> aprun -n 24 ./app.exe+pat |

$> pat _report -o myrep.txt himeno+pat+* |

* Running the “+pat” binary creates a data file or directory
* pat_report reads that data file and prints lots of human-readable performance data. Creates an *.ap2 file.

[S

102

e e
RSy
§

Some pat_build options R

Option Description

Sampling profile \
-u tracing of functions in source file owned by the user
-W Tracing is default experiment
-T <func> Specifies a function which will be traced
-t <file> All functions in the specified file will be traces
-g <group> Instrument all functions belonging to the specified trace function group, e.g. blas, io, mpi,
netcdf, syscall

e More information:
e Isgiveninman pat build page
e functions in tracegroups are given in $CRAYPAT _ROOT/share/traces after loading the perftools module

e Only true function calls can be traced. Functions that are inlined by the compiler or that have
local scope in a compilation unit cannot be traced.

103

Using pat_report ='=*A.~Y‘

e pat_report perform data conversion
e Combines information from *.xf output (raw data files, optimized for writing to disk) \
e Instrumented binary must still exist when data is converted!

e produce *.ap2 file (compressed performance file, optimized for visualization analysis)
e ap?2 file is the input for subsequent pat_report calls and Reveal or Apprentice?
e *.xf files and instrumented binary files can be removed once ap?2 file is generated.
e Generates atext report of performance results
e Many options for sorting, slicing or dicing data in the tables.
$> pat_report -0 <table option> *.ap2
$> pat_report -0 help (list of available profiles)
e Volume and type of information depends upon sampling vs tracing.
o Several output formats {plot | rpt | ap2 | ap2-xml | ap2-txt | xf-xml | xf-txt |
html} available through - option.
e filter the gathered data
$> pat_report -sfilter input=‘condition’ ..
e The ‘condition’ could be an expression involving 'pe' such as 'pe<1024' or 'pe%2==0".

104

Combining Sampling and Tracing: APA R S R
e Automatic Profiling Analysis:

e Target: large, long-running program (general a trace will inject
considerable overhead)

e Goal: limit tracing to those functions that consume the most time.

e Procedure: use a preliminary sampling experiment to determine and
Instrument functions consuming the most time

$> module load perftools J——————— ‘__{ $> vi *.apa %————

» The *.apa file contains instructions for the next instrumentation step.

» Modify it according to your needs.
$> make clean; make .
$> pat_build myapp.exe $> pat_build -0 *.apa

» The APA is the default experiment. No option needed. .G

-

enerates an instrumented binary *.exe+apa for tracing

$> aprun -n 24 ./myapp.exe+pat \ ($> aprun -n 24 ./myapp.exe+apa
$> pat_report -o myrep.txt myapp+pat+* J L $> pat_report -o myrep.txt myapp+apa+*

« Applying pat_report to the *.xf generates an *.apa file in addition to the *.ap2 file. * Applying pat_report to the *.xf generates a new*.ap2 file.

105

® e
C Ry
§

Loop Work Estimates
e Gives information on inclusive time spent in the loop nests and
typical trip count of the loops
e Please use only one thread (OMP_NUM_ THREADS=1)
e Only available with CCE.

\
$> module load perftools-base ‘
$> module load perftools |

\
$> ftn -c -h profile_generate himeno.f90

$> ftn -o myapp.exe myapp.o _J

*® \
N

* Recompile your program for gathering loop statistics
* It is recommended to turn off OpenMP and OpenACC for the loop work estimates via -h noomp -h noacc

4[$> pat_build -w[-u] myapp.exe J

* Instrument the application for tracing (APA also possible)

106

® e
C Ry
§

Questions?

Thank You

Email : raviteja@cray.com

108

