
C O M P U T E | S T O R E | A N A L Y Z E

User Orientation
on Cray XC40

SERC, IISc

Copyright 2014 Cray Inc.
1

Sudhakar Yerneni & Patricia Balle

C O M P U T E | S T O R E | A N A L Y Z E

Agenda

Copyright 2014 Cray Inc.

• Introduction to Cray XC40 architecture.

• IISc's Cray system configuration

• Login & Filesystems

• Cray Programming environment

• Modules

• Compiling applications for the Cray XC

• Running applications on the Cray XC40

• Cray Scientific Libraries

2

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC40 Architecture
& Packaging

Copyright 2014 Cray Inc.
3

C O M P U T E | S T O R E | A N A L Y Z E

Compute
Blade
4 Compute
Nodes

Chassis
Rank 1
Network
16 Compute
Blades
No Cables
64 Compute
Nodes

Group
Rank 2
Network
Passive
Electrical
Network
2 Cabinets
6 Chassis
384 Compute
Nodes

System
Rank 3
Network
Active
Optical
Network
1 – 400+
Cabinets
Up to 10s of
thousands of
nodes

Cray XC Series Building Blocks

Copyright 2014 Cray Inc.

XC40

4

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC Aries Network
● The Cray XC system is built around the idea of opti mizing

interconnect bandwidth and associated cost at every level

Rank-1
Backplane

Rank-2
Passive CU

Rank-3
Active Optics

5

C O M P U T E | S T O R E | A N A L Y Z E

XC40 Compute Blade

Copyright 2014 Cray Inc.
6

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC40 Compute Node

Copyright 2014 Cray Inc.

Haswell
12 Core
2.5 GHz

P
C

Ie
-3

 x
16

Node

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

QPI

Southbridge

Chip

QPI

Haswell
12 Core
2.5 GHz

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

64, 128 or 256 GB, 2133

7

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC Xeon Phi Node

Ivybridge

~200GF
P

C
Ie

-3
 x

16

Node

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

Southbridge

Chip

64 GBs

KNC Card

~255 GB/s

Intel
Xeon Phi (KNC)

~1TF

GDDR5
Memory
8 GBs

PCIe-2 x16

Copyright 2014 Cray Inc.
8

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC Kepler Node

Ivybridge

~200GF
P

C
Ie

-3
 x

16

Node

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

DDR3
DIMM
16GBs

64 GBs

SXM Card

~200 GB/s

NVIDIA
Kepler K40

~1.4TF

GDDR5
Memory
12 GB

PCIe-3 x16

Copyright 2014 Cray Inc.

Southbridge

Chip

9

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC Rank1 Network

o Chassis with 16 compute
blades

o 128 Sockets
o Inter-Aries communication over

backplane
o Per-Packet adaptive Routing

Copyright 2014 Cray Inc.
10

C O M P U T E | S T O R E | A N A L Y Z E

16 Aries connected
by backplane

“Green Network”

16 Aries connected
by backplane

“Green Network”

Cray XC Rank-2 Copper Network

4 nodes
connect to a
single Aries

4 nodes
connect to a
single Aries

6 backplanes
connected with

copper cables in a 2-
cabinet group:

“Black Networ k”

6 backplanes
connected with

copper cables in a 2-
cabinet group:

“Black Networ k”

2 Cabinet
Group

768 Sockets

2 Cabinet
Group

768 Sockets

Copyright 2014 Cray Inc.
11

C O M P U T E | S T O R E | A N A L Y Z E

768 Sockets less than 1µs away

Copyright 2014 Cray Inc.
12

2-cabinet Group

Copper cables
between chassis

Backplane
connections within

chassis

This basic structure
is repeated in large
systems

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC Network Overview – Rank-3 Network

● An all-to-all pattern is wired between the
groups using optical cables

● Up to 240 ports are available per 2-cabinet
group

● The global bandwidth can be tuned by
varying the number of optical cables in the
group-to-group connections

SERC, IISc system: 4-group system is
interconnected with 6 optical “bundles”.

Group 0 Group 1 Group 2 Group 3

Copyright 2014 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

Load & Go Tune & Go Code & Go

No Code
Development

New Code
Development

Full Support for Diverse Users

Build & Go

Cray provides great support across the full
spectrum of HPC user types

Copyright 2014 Cray Inc.
14

C O M P U T E | S T O R E | A N A L Y Z E

CLE Can Adapt to Different Application Requirements

• No compromise scalability
• Low-Noise Kernel for scalability
• Native Comm. & Optimized MPI
• Application-specific performance

tuning and scaling

ESM – Extreme Scalability
Mode

• No compromise compatibility
• Fully standard x86/Linux
• Standardized Communication Layer
• Out-of-the-box ISV Installation
• ISV applications simply install and run

CCM –Cluster Compatibility
Mode

CLE run mode is set by the user on a job-by-job basis to provide full flexibility

Copyright 2014 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

Cray Programming Environment Distribution
Focus on Performance and Productivity

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific
Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3 rd party

3rd Party
Compilers

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming
models

Distributed
Memory
(Cray MPT)

• MPI
• SHMEM

PGAS & Global
View

• UPC (CCE)
• CAF (CCE)
• Chapel

Shared Memory

• OpenMP 3.0
• OpenACC

Python

•CrayPat

• Cray
Apprentice 2

Tools

Environment setup

Debuggers

Modules

DDT

lgdb

Modules

Debugging Support
Tools

•Abnormal
Termination
Processing

Performance
Analysis

STAT

Scoping Analysis

Reveal

PGI

Copyright 2014 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

XC Series Transvers Cooling Advantage

Room Air
Out

Room
Air
In

Copyright 2014 Cray Inc.

Water temperature up to 25
degrees C

17

C O M P U T E | S T O R E | A N A L Y Z E

IISc system Configuration

Copyright 2014 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

System Configuration – Compute (H/W)

Copyright 2014 Cray Inc.
19

Cray XC40 System System Configuration
Cray XC40 cabinets 8

Interconnect Network Cray Aries with Dragonfly topology
Total Memory (TiB) 169.5

Total Peak Performance 1.45 PF
Compute Nodes

Number of CPU Nodes 1376
CPU Type Intel Haswell 12-Core 2.5 GHz

Memory Per Node / Total 128GB / 176 TB
Peak Performance Per Node / Total 960 GF / 1.32 PF

GPU NVIDIA K40
Number of CPU-GPU Nodes 44

Xeon Phi / MIC Intel Xeon-Phi
Number of CPU-Phi nodes 48

Service & IO nodes 56

C O M P U T E | S T O R E | A N A L Y Z E

System Configuration – Storage (H/W)

Copyright 2014 Cray Inc.
20

Cray XC40 System System Configuration
Storage cabinets 4
System Storage Boot RAID

Storage Technology and File System
Type

Cray Lustre File System, Lustre

Useable Storage Capacity 2 PB
Storage Array 2 x DDN SFA12000-40

OSS Disks - Density 960 x 3 TB NL SAS

C O M P U T E | S T O R E | A N A L Y Z E

System Configuration - Software

Copyright 2014 Cray Inc.
21

Software License

OS Cray Linux Environment Yes

Compiler

Cray Compilation
Environment (CCE)

30 seats

GNU Complier Yes

Intel Composer XE for Linux 5 Seats

gdb and PAPI gdb and PAPI Yes

Programming Environment Cray Developer Toolkit (CDT) Yes

Profilers Cray Performance and
Analysis Toolkit (CPAT)

1 seat

Job schedler Workload Manager: PBS Pro Yes

Parallel debugger Allinea DDT 2,048 processes

C O M P U T E | S T O R E | A N A L Y Z E

System Access

Copyright 2014 Cray Inc.
22

Service
Nodes
Executing the
batch script

Compute nodes
where the jobs are
executed

qsub apruneslogin

External Login
Servers

Cray XC40 mainframe includes service nodes,
network nodes and many compute nodes

C O M P U T E | S T O R E | A N A L Y Z E

How do I get to the system?

● Send a request to for new-user request – follow the institute procedure
for this.

● Once your new account has been created, log in to:
“xc40.serc.iisc.ernet.in”

● Your home area � /home/user_account (UFS)
● Limited size (around 1.4 TB)

● Lustre is mounted at “/mnt/lustre/”
● Compile and execute your programs from this location

● Separate directories have been created for each user

● Quota system may kick in as per the institute procedure

Copyright 2014 Cray Inc.
23

Vision

Sli

de

1

● Cray systems are designed to be High Productivity a s well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers .
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance
● a rich variety of commonly used tools and libraries
● a consistent interface to multiple compilers and libraries
● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users
● Strong collaborations with third-party developers

Cray’s Supported Programming Environment

2

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific
Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3 rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming
models

Distributed
Memory
(Cray MPT)

• MPI
• SHMEM

PGAS & Global
View

• UPC (CCE)
• CAF (CCE)
• Chapel

Shared Memory

• OpenMP 3.0
• OpenACC

Python

•CrayPat

• Cray
Apprentice 2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Modules

Debugging Support
Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

The Cray Compilation Environment (CCE)

3

● The default compiler on XC systems
● Specifically designed for HPC applications
● Takes advantage of Cray’s experience with automatic vectorization and

and shared memory parallelization

● Excellent standards support for multiple languages and
programming models
● Fortran 2008 standards compliant
● C++98/2003 compliant (C++11 schedule for v8.4)
● OpenMP 3.1 compliant (OpenMP 4.0 coming soon)
● OpenACC 2.0 compliant

● Full integrated and optimised support for PGAS langu ages
● UPC 1.3 and Fortran 2008 coarray support
● No preprocessor involved
● Full debugger support (With Allinea DDT)

● OpenMP and automatic multithreading fully integrated
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

Cray MPI & SHMEM

4

● Cray MPI
● Implementation based on MPICH2 from ANL
● Includes many improved algorithms and tweaks for Cray hardware

● Improved algorithms for many collectives
● Asynchronous progress engine allows overlap of computation and comms
● Customizable collective buffering when using MPI-IO
● Optimized Remote Memory Access (one-sided) fully supported including

passive RMA
● Full MPI-3 support with the exception of

● Dynamic process management (MPI_Comm_spawn)

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Fully compliant with OpenSHMEM v1.0
● Cray XC implementation close to the T3E model

Cray Scientific Libraries

5

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit
CASK – Cray Adaptive Sparse Kernels
CRAFFT – Cray Adaptive FFT
CASE – Cray Adaptive Simplified Eigensolver

Cray Performance Analysis Tools (PAT)

6

● From performance measurement to performance analysi s

● Assist the user with application performance analys is and
optimization
● Help user identify important and meaningful information from

potentially massive data sets
● Help user identify problem areas instead of just reporting data
● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation
● Automatic analysis

● Target scalability issues in all areas of tool deve lopment

Debuggers on Cray Systems

7

● Systems with hundreds of thousands of threads of ex ecution
need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● running at 216K back-end processes

● ATP - Abnormal Termination Processing
● Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

● Fast Track Debugging
● Allows debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging
● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanisms
● DDT and gdb at SERC

An introduction to modules

How to use modules to control the
environment

Sli

de

8

Environment Setup

9

● The Cray XC system uses the GNU “modules” framework in the
user environment to support multiple software versi ons and to
create integrated software packages

● As new versions of the supported software and assoc iated man
pages become available, they are added automaticall y to the
Programming Environment as a new version, while ear lier
versions are retained to support legacy application s

● System admins will set the default version of an ap plication, or
you can choose another version by using modules sys tem
commands

● Users can create their own modules or admins can in stall site-
specific modules available to many users

● Modules are very flexible and powerful and allow th e user to
dynamically manage their programming environment

Viewing the current module state

● Each login session has its own module state which c an be
modified by loading, swapping or unloading the avai lable
modules

● This state affects the functioning of the compiler wrappers
and in some cases runtime of applications

● A standard, default set of modules is always loaded at
login for all users

● Current state can be viewed by running:

$> module list

Default modules example from SERC system

$ module list

Currently Loaded Modulefiles:

1) modules/3.2.6.7 12) Base-opts/1.0.2-1.0502.53325.1.2.ari

2) nodestat/2.2-1.0502.53712.3.109.ari 13) craype-network-aries

3) sdb/1.0-1.0502.55976.5.27.ari 14) craype/2.2.1

4) alps/5.2.1-2.0502.9072.13.1.ari 15) cce/8.3.5

5) lustre-cray_ari_s/2.5_3.0.101_0.31.1_1.0502.8394.10.1-1.0502.17871.10.3

16) cray-libsci/13.0.1

6) udreg/2.3.2-1.0502.9275.1.12.ari 17) pmi/5.0.6-1.0000.10439.140.2.ari

7) ugni/5.0-1.0502.9685.4.24.ari 18) rca/1.0.0-2.0502.53711.3.127.ari

8) gni-headers/3.0-1.0502.9684.5.2.ari 19) atp/1.7.5

9) dmapp/7.0.1-1.0502.9501.5.219.ari 20) PrgEnv-cray/5.2.40

10) xpmem/0.1-2.0502.55507.3.2.ari 21) nodehealth/5.1-1.0502.56494.9.2.ari

11) hss-llm/7.2.0 22) pbs/12.2.402.142964

(13 Jan: Note to Cray admin – cray-mpich module is missing!)

Viewing available modules

● There may be many hundreds of possible modules
available to users
● Beyond the pre-loaded defaults there are many additional packages

provided by Cray
● Sites may choose to install their own versions

● Users can see all the modules that can be loaded us ing
the command:
● module avail

● Searches can be narrowed by passing the first few
characters of the desired module, e.g.

1006 $ module avail gcc

--- /opt/modulefiles -----------------

gcc/4.8.1 gcc/4.9.1(default)

Further refining available modules

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering
● -U, --usermodules

● List all modulefiles of interest to a typical user

● -D, --defaultversions
● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules
● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>
● List all <product> versions available

Modifying the default environment

● Loading, swapping or unloading modules:
● The default version of any individual module can be loaded by name

● e.g.: module load perftools
● A specific version can be specified after the forward slash

● e.g.: module load perftools/6.1.0
● Modules can be swapped out in place

● e.g.: module swap intel intel/13.1.1.163
● Or removed entirely

● e.g.: module unload perftools

● Modules will automatically change values of variabl es like
PATH, MANPATH, LM_LICENSE_FILE... etc
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts

Summary of useful module commands

● Which modules are available?
● module avail, module avail cce

● Which modules are currently loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.3.3 cce/8.2.6

● Unload module
● module unload cce

● Display module release notes
● module help cce

● Show summary of module environment changes
● module show cce

Targeting different node types

Sli

de

16

● Compiling for the CPU nodes:
● module load craype-haswell
(module craype-ivybridge will give an executable that works on the
Haswell nodes but won’t enable the Haswell-specific instructions)

● Compiling for the GPU nodes:
● module load craype-accel-nvidia35
● “module display craype-accel-nvidia35” tells you that this module also

loads cudatoolkit and cray-libsci-acc

● Compiling for Phi nodes (offload mode):
● module load craype-ivybridge (since the host nodes are Ivybridge)

● Compiling for the Phi nodes (native mode):
● module load craype-intel-knc

Compiling applications for the Cray XC

Compiler Driver Wrappers

● All applications that will run in parallel on the C ray XC
should be compiled with the standard language wrapp ers.

The compiler drivers for each language are:
● cc – wrapper around the C compiler

● CC – wrapper around the C++ compiler

● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler ver sion,
target architecture options, scientific libraries a nd their
include files automatically from the module environ ment.

● Use them exactly like you would the original compil er, e.g.
to compile prog1.f90 run

ftn -c prog1.f90

Compiler Driver Wrappers (cont.)

The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.
● module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login.
● This may differ on other Cray systems
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich).
● To support SHMEM load the cray-shmem module.

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

Which compiler do I use?

20

● All compilers provide Fortran, C, C++ and OpenMP
support

● If your site offers you a choice, experiment with t he
various compilers
● Mixing binaries created by different compilers may cause issues

Compiler Versions

● There are usually multiple versions of each compile r
available to users.
● The most recent version is usually the default and will be loaded when

swapping PrgEnvs.
● To change the version of the compiler in use, swap the Compiler

Module. e.g. module swap cce cce/8.1.6

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

About the –I, –L and –l flags

● For libraries and include files being triggered by module
files, you should NOT add anything to your Makefile
● No additional MPI flags are needed (included by wrappers)
● You do not need to add any -I, -l or –L flags for the Cray provided

libraries

● If your Makefile needs an input for –L to work correctly, try
using ‘.’

● If you really, really need a specific path, try che cking
‘module show X’ for some environment variables

OpenMP

● OpenMP is support by all of the PrgEnvs.

● CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by
default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with –hnoomp

PrgEnv Enable OpenMP Disable OpenMP
PrgEnv-cray -homp -hnoomp

PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

Compiler man Pages

● For more information on individual compilers

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray
● --version option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

Wrappers man cc man CC man ftn

Running applications on the Cray XC40

First Steps...

How applications run on a Cray XC

● Most Cray XC40s are batch systems.
● Users submit batch job scripts to a scheduler from a login node (e.g.

PBS for SERC) for execution at some point in the future.
● Each job requires resources and a prediction of how long it will run.
● The scheduler (running on an external server) chooses which jobs to

run and allocates appropriate resources
● The batch system will then execute the user’s job script on a different

login or batch “MOM” node.
● The scheduler monitors the job and kills any that overrun their runtime

prediction.

● User job scripts typically contain two types of sta tements.
1. Serial commands that are executed by the MOM node, e.g.

● quick setup and post processing commands such as rm, cd, mkdir, etc.
2. Parallel executables that run on compute nodes.

● Launched using the aprun command.

The Two types of Cray XC Nodes

Compute nodes

● The nodes on which production jobs
are executed

● Optimized for running batch jobs
using Compute Node Linux (CNL)

● Can only be accessed by submitting
jobs through ALPS

● Exclusive resources that may only be
used by a single user.

● There are many more compute nodes
in any Cray XC40 than login or
service nodes.

● Always directly connected to the Cray
Aries.

Login or service nodes

● This is the node you access when
you first log in to the system.

● Runs a full version of the CLE
operating system (all libraries and
tools available)

● Used for editing files, compiling code,
submitting jobs to the batch queue
and other interactive tasks.

● Shared resources that may be used
concurrently by multiple users.

● There may be many login nodes in
any Cray XC40 and can be used for
various system services (IO routers,
daemon servers).

● They can be either connected to the
Cray Aries network (internal login
nodes) or proxies (external or esLogin
nodes).

Running a batch job

Login Node

qsub run.sh

PBS
Queue

Manager

PBS
MOM Node

Cray XC Compute Nodes

#!/bin/bash

#PBS –l

select=10:ncpus=24:mpiprocs=24

cd $WORKDIR

aprun –n 240 –N 24 simulation.exe

rm –r $WORKDIR/tmp

Example Batch Job Script – run.sh

Parallel
Serial

Scheduler
Resources

Scheduling a batch application with PBS

● module load pbs (should be loaded by default)

● The number of required nodes can be specified in the job header

● The job is submitted by the qsub command

● At the end of the exection, output and error files are returned to submission
directory

● You can check the status of jobs with: qstat

● You can delete a job with: qdel

Other PBS options

#PBS –j oe
● Combine stderr and stdout into one file

#PBS –mppwidth=N DEPRECATED!
● Start N PEs (tasks)

#PBS –mppnppn=M DEPRECATED!
● Start M tasks per node. Total Nodes used are N/M (+1 if mod(N,M)!=0)

#PBS –mppdepth=D DEPRECATED!
● Number of threads per task. Most used together with OMP_NUM_THREADS

#PBS –l select=10:ncpus=24:mpiprocs=24
● NEW way to reserve 10 nodes with 24 CPUs and 24 ranks per node

#PBS –V
● Export current environment to PBS job

#PBS –W depend=afterany:JOBID
● Don’t start PBS job until after job JOBID has finished

(Note: #PBS –lnodes=4:ppn=24 is also deprecated)

Quick Old/New Syntax Comparison

Sli

de

31

select = number of compute nodes
ncpus = number of CPUs per compute node
mpiprocs = number of MPI processes per compute node

Example: 8 nodes with 24 CPUS each

● See “man pbs_resources” or the PBS Pro Users Guide for more
details

● Note: important to set OMP_NUM_THREADS in run script explicitly
otherwise the default sets it to the value of ncpus

● Look out for the placement policy setting (need place=scatter to
avoid packing onto minimum node count)

Select Syntax MPP Syntax

-l select=8:ncpus=24:mpiprocs=8 -l mppwidth=64,mppnppn=8,mppdepth=3

-l select=8:ncpus=24,place=scatter -l mppwidth=8,mppnppn=1,mppdepth=2

PBS Queues on SERC System

Sli

de

32

Can select batch queue for a particular node type (CPU, GPU or
PHI)

● qsub –q cpu_nodes myjob

crayadm@clogin72:~> qstat -q

server: sdb

Queue Memory CPU Time Walltime Node Ru n Que Lm
State
---------------- ------ -------- -------- ---- ----- ----- ---- -----
workq -- -- -- -- 1 0 -- D R
ccm_queue -- -- -- -- 0 0 -- E R
cpu_nodes -- -- -- -- 11 1 -- E R
gpu_nodes -- -- -- -- 0 0 -- E R
phi_nodes -- -- -- -- 0 0 -- E R

----- -----
12 1

Simple Job Scripts (old and new syntax)

33

#!/bin/sh
#PBS -j oe
#PBS -l mppwidth=4
#PBS -l mppdepth=6
#PBS -l mppnppn=4
#PBS -l walltime=00:30:00
$PBS –q cpu_queue
Change to the directory where job was submitted
cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=6
aprun –n 4 –N 4 –d 6 –j 1 program [options]

#!/bin/sh
#PBS -j oe
#PBS -l select=1:ncpus=24:mpiprocs=4
#PBS -l walltime=00:30:00
#PBS –q cpu_queue
cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=6
aprun –n 4 –N 4 –d 6 –j 1 program [options]

Using mpp* with PBS

Using select and ncpus with PBS Pro

Batch Job Submission

34

● qsub returns a Job ID of 574.sdb
● Use qstat -a to show the status of job 574
● Default filename for stdout is runjob.o574

● Script contains -oe option so only one output file
● For an interactive session use -I

● Submitting an interactive batch job

% qsub -I -l select=1:ncpus=24,walltime=00:30:00

qsub: waiting for job 148535.sdb to start

qsub: job 148535.sdb ready

%

% qsub runjob

574.sdb

% ls -l *574

-rw------- 1 rns hwpt 460 Nov 21 12:01 runjob.o574

%

Batch Job Status

35

% > qstat -a

sdb:
Req'd Req'd

Elap
Job ID Username Queue Jobname SessID NDS TSK M emory Time S Time
--------- -------- -------- ---------- ------ --- --- ---- -- ----- - -----
573.sdb crayadm workq phi 7495 42 504 -- 24:00 R 00:38
575.sdb crayadm workq runit 7858 8 8 -- 24:00 R 00:00

E - Job is exiting after having run (if stays in E t oo long use qdel –
Wforce)
H - Job is held
Q - job is queued, eligible to run or routed
R - job is running
T - job is being moved to new location
W - job is waiting for its execution time (-a option) to

be reached
S - job is suspended

Running an application on the Cray XC
ALPS + aprun

● ALPS : Application Level Placement Scheduler
● aprun is the ALPS application launcher

● It must be used to run application on the XC compute nodes:
interactively or in a batch job

● If aprun is not used, the application is launched on the MOM node
(and will most likely fail).

● aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

● aprun man page contains several useful examples
● The 3 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE
(More precise, the “stride” between 2 PEs on a node)

-d

ALPS Basics

37

Terminology

● Node
● All resources managed by a single CNL instance
● Once you have reserved a node, nobody else can use it

● Processing Element (PE)
● PEs are instances of the executable

● NUMA node
● On a Cray XC40 system a numa node is a multi-core socket (so two

numa nodes/sockets per physical node)

Important Note: Applications must be run from the l ustre file system
(/mnt/lustre/) – compute nodes are unable to read th e $HOME
filesystem!

ALPS aprun Basic Job Control

38

● Width (aprun -n)
● Number of PEs to launch (the default value is 1)

● A PE is an instance of a binary copied to a node
● Determines the number of MPI Ranks an application uses

● Node List (aprun -L)
● A user-supplied list of candidate nodes to constrain placement

● List must be specified in an increasing range
● Could use “cnselect” output here

● To run in Multiple Program Multiple Data (MPMD) mod e, a
colon (:) separates programs

● There must be a space on both sides of the colon
● Example: aprun –n 960 –N24 ./atm : -n240 –N24 ./ocean : -n8 –N1 ./cpl

ALPS Multicore Control

39

PEs Per Node / PPN (aprun -N):

● Number of PEs per CNL instancei
● When specified:

● Places specified number of PEs per node
● A sufficient number of cores must exist on each node

● When unspecified:
● Allows ALPS to pack PEs tightly
● Behavior dependent upon application and system resources

● ALPS assigns the same number of PEs to all nodes,
regardless of whether PPN is specified. (This is re quired
for distributed memory (DM).)

ALPS Multicore Control (cont.)

40

Depth (aprun -d)

● Specifies number of threads per PE
● The meaning of this option depends on the programming model.

Specify this option when you use OpenMP code.
● Compute nodes must have at least depth cores

● ALPS reserves (width * depth) processor cores for t he use
of the application

● ALPS invokes width (-n) instances of the binary
● Application spawns (d - 1) threads per PE
● Running two threads on a core is not a good idea

ALPS Multisocket Control

41

aprun Description

-S # Defines the number of PEs per NUMA node

-sl # Defines the NUMA node to use: 0 or 1

-sn # Defines the number of NUMA nodes to use: 1 or 2

-ss Specifies strict memory containment per NUMA node

-cc Defines a CPU list for binding, can also use keywords:
cpu (default) binds a PE to a CPU in the NUMA node
numa_node binds a PE to the CPUs within a NUMA node, any
threads created by the PE are bound to the same NUMA node

-cp Defines a file name to use for CPU binding

-j # Specifies how many CPUs to use per compute unit for an ALPS job
-j 0 - use all CPUs (or –j2)
-j 1 - use only one (default on XC30)

ALPS Memory Control

42

Memory allocation is controlled with the -m option
● The option is in Megabytes per PE
● Don’t use this option when first trying a new program – it is generally

used only when necessary.

● -m size
● -m sizeh

● Requests size of huge pages to be allocated to each processing
element. All nodes use as much huge page memory as they are able
to allocate and 4 KB pages afterward.

● -m sizehs
● Requires size of huge pages to be allocated to each processing

element. If aprun cannot satisfy the request, it issues an error
message and the application terminates.

Hyperthreads

● Intel Hyper-Threading is a method of improving the
throughput of a CPU by allowing two independent
program threads to share the execution resources of one
CPU
● When one thread stalls the processor can execute ready instructions

from a second thread instead of sitting idle
● Typically much less than 2x with two hyperthreads

● With aprun, hyper-threading is controlled with the switch -j
● -j 1 = no hyper-threading (a node is treated to contain 24 cores)
● -j 2 or –j 0 = hyper-threading enabled (a node is treated to contain 48

cores)
● Default at SERC is –j1 (I think)

● It may improve or degrade the performance of your
application
● Try it, if it does not help, turn it off

Running applications on the Cray XC40:
Some basic examples

Assume an XC40 with Haswell nodes (24 real cores per node)

● Pure MPI application using 48 ranks (2 nodes)
$ aprun –n 48 –j1 ./a.out

● Same number of ranks, but spread to four nodes
$ aprun -j1 -n 48 -N 12 -S 6 ./a.out

● Can be used to increase the amount of memory available for each PE

● To launch a hybrid MPI+OpenMP application
● 1024 ranks in total, 1 CPU per Compute Unit
● Use 4 PEs per node and 6 threads per PE -> 256 nodes

$ export OMP_NUM_THREADS=6
$ aprun -n 1024 -N 4 -d $OMP_NUM_THREADS ./a.out

● Launch the same hybrid application with 2 CPUs per CU
● 1024 ranks in total, 2 CPUs per Compute Unit

$ export OMP_NUM_THREADS=12
$ aprun -n 1024 -N 4 -d $OMP_NUM_THREADS -j 2 ./a.out

Matching PBS and aprun

It is important to reserve enough resources through PBS to
satisfy the aprun command in your run script. If y ou don’t,
aprun will fail on launch with a message about lack of
resources.

For instance, suppose the aprun command is
aprun -j1 -n 48 -N 12 -S 6 ./a.out

We want 4 nodes, with 12 ranks on each. Therefore , the
PBS request should be

qsub –lselect=4:mpiprocs=12:ncpus=24

Selecting Nodes using cnselect

Sli

de

46

● Can select the nodes to submit jobs to via “cnselec t”.
● Convenient MySQL interface to attributes table
● Returns a list of compute nodes based on user-speci fied criteria
● Must be run on a login node

● Select the CPU nodes (48 “cores” per node includin g hyperthreads):
> cnselect -e numcores.eq.48

8-27,29-63,88-95,120-123,125-127,132-191,200-219,221-255,260-319,324-383,392-
411,413-447,452-511,516-575,580-603,605-639,644-703,708-795,797-987,989-1179,1181-
1371,1376-1415,1440-1447,1472-1535

● Select the GPU nodes:
> cnselect -e name.eq.Tesla_K40s

68-87,96-119

● Select the Phi nodes:
> cnselect -e name.eq.Xeon_Phi

1416-1439,1448-1471

● There are many other attributes can be applied to c nselect (see man
page). The output from cnselect can be passed to “ aprun –L”

Watching a launched job on the Cray XC

● xtnodestat
● Shows how XC nodes are allocated and corresponding aprun

commands

● apstat
● Shows aprun processes status (apps, nodes, reservations etc)
● apstat overview
● apstat –a[apid] info about all the applications or a specific one
● apstat –n info about the status of the nodes

● Batch qstat command
● shows batch jobs

● To kill a running job
● apkill [-signal] apid
● -signal: specify name or integer of signal (default = SIGTERM = 15)

xtnodestat Example (not from SERC system)
users/rns> xtnodestat
Current Allocation Status at Tue May 21 22:34:07 20 13

C0-0 C1-0
n3 cdchcmcqcucycDcHcLcPcVc5c9dd
n2 SSSScccgckcpctcxcCcGcKcOcUc4c8dc
n1 SSSScbcfcjcocscwcBcFcJcNcTc3c7db

c2n0 cacecicncrcvczcEcIcMcQc2c6da
n3 bdbhbmbqbubybDbHbLbPbVb5b9
n2 SSSSSSbcbgbkbpbtbxbCbGbKbObUb4b8
n1 SSSSSSbbbfbjbobsbwbBbFbJbNbTb3b7

c1n0 babebibnbrbvbzbEbIbMbQb2b6
n3 adahamaqauayaDaHaLaPaVa5a9 dhdmdqd udydDdHdLdPdVd5d9
n2 SSSSSSacagakapataxaCaGaKaOaUa4a8 SSSSSSSSdgdkdpd tdxdCdGdKdOdUd4d8
n1 SSSSSSabafajaoasawaBaFaJaNaTa3a7 SSSSSSSSdfdjdod sdwdBdFdJdNdTd3d7

c0n0 aaaeaianaravazaEaIaMaQa2a6 dedidndrdvdzdEdIdM dQd2d6
s00112233445566778899aabbccddeeff 00112233445566778 899aabbccddeeff

Legend:
nonexistent node S service no de

; free interactive compute node - free batc h compute node
A allocated (idle) compute or ccm node ? suspect compute node
W waiting or non-running job X down co mpute node
Y down or admindown service node Z admindow n compute node

Available compute nodes: 0 interactive, 702 batch
Job ID User Size Age State command line
--- ------- -------- ----- -------- ------- ------------- ------------
aa 2950362 rns 1 0h38m run serv

48

Application Status (apstat)

49

% apstat
Compute node summary

arch config up resv use avail down
XT 1464 767 95 95 672 697

No pending applications are present

Total placed applications: 8
Apid ResId User PEs Nodes Age State Command

265385 272459 nisaadi 48 2 4h57m run vasp
265388 272460 sectanuj 408 17 4h57m run l1_16K_ 4_16_w
265389 272461 sectanuj 408 17 4h57m run l1_shar ed_16K
265394 272464 nisaadi 24 1 4h55m run vasp
265398 272465 nisaadi 72 3 4h55m run vasp
265400 272467 sectanuj 408 17 4h55m run l1_shar ed_16K
265403 272468 sectanuj 410 18 4h55m run l1_16K _8_way
265408 272470 phyprtek 480 20 4h55m run pluto

No applications or reservations are being cleaned u p

Reservation status (apstat –r)

50

users/rns> apstat
Compute node summary

arch config up use held avail down
XT 148 148 1 0 147 0

No pending applications are present

Total placed applications: 1
Placed Apid ResId User PEs Nodes Age State Co mmand

1479335 1049 rns 4 1 0h04m run sfreduce
users/rns>

users/rns> apstat -r
ResId ApId From Arch PEs N d Memory State
1049 1479334 batch:1879368 XT 4 4 1 2000 NID li st,conf,claim

A 1049 1479335 batch: 1879368 XT 4 - - 2000 conf,claim
users/rns>

users/rns> qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- --- ----- - -----
1879368.sdb sfreduce.pbs rns 00:00:00 R qcnodes
users/rns>

NID list : From a batch job
conf : Batch job has started
and is running the job script
and is placing the application
claim : Application has started

Self-Guided XC40 Demo

Sli

de

51

● Guided set of commands and scripts to demonstrate u se
of various aspects of Cray XC40 system

● Simple to follow and provides a great introduction to
working with PBS and ALPS to run jobs on CPU, GPU a nd
Phi nodes

● Find it at /mnt/lustre/crayadm/BM/XC40_Demo (or
wherever your friendly support guy moves it to)

● Few bugs to be shaken out – hopefully all are noted.

● Many thanks to Dave Strenski

● Please contact Tricia (pballe@cray.com) if anything
doesn’t work!

Cray Scientific Libraries

Overview

What are libraries for?

● Building blocks for writing scientific applications
● Historically – allowed the first forms of code re-us e
● Later – became ways of running optimized code
● These days the complexity of the hardware is very h igh
● Cray PE insulates the user from that complexity

• Cray module environment
• CCE
• Performance tools
• Tuned MPI libraries (+PGAS)
• Optimized Scientific libraries

Cray Scientific Libraries are designed to provide t he
maximum possible performance from Cray systems with
minimum effort.

FFT

FFTW

CRAFFT

Sparse
Trilinos

PETSc

CASK

Dense
BLAS

LAPACK

ScaLAPACK

IRT

Scientific libraries on XC – functional view

What makes Cray libraries special

1. Node performance
● Highly tuned routines at the low-level (ex. BLAS)

2. Network performance
● Optimized for network performance
● Overlap between communication and computation
● Use the best available low-level mechanism
● Use adaptive parallel algorithms

3. Highly adaptive software
● Use auto-tuning and adaptation to give the user the known best (or

very good) codes at runtime
4. Productivity features

● Simple interfaces into complex software

LibSci usage

● LibSci
● The drivers should do it all for you - no need to explicitly link
● For threads, set OMP_NUM_THREADS

● Threading is used within LibSci
● If you call within a parallel region, single thread used

● FFTW
● module load fftw (there are also wisdom files available)

● PETSc
● module load petsc (or module load petsc-complex)
● Use as you would your normal PETSc build

● Trilinos
● module load trilinos

● Cray Adaptive Sparse Kernels (CASK)
● You get optimizations for free

Check you got the right library!

● Add options to the linker to make sure you have the
correct library loaded.

● -Wl adds a command to the linker from the driver
● You can ask for the linker to tell you where an obj ect was

resolved from using the –y option.
● E.g. –Wl, -ydgemm_

Note: do not explicitly link “-lsci”. This will not be found from libsci
11+ and means a single core library for 10.x.

.//main.o: reference to dgemm_

/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):

definition of dgemm_

Threading

● LibSci is compatible with OpenMP
● Control the number of threads to be used in your program using

OMP_NUM_THREADS
● e.g., in job script export OMP_NUM_THREADS=16
● Then run with aprun –n1 –d16

● What behavior you get from the library depends on y our
code
1. No threading in code

● The BLAS call will use OMP_NUM_THREADS threads
2. Threaded code, outside parallel regions

● The BLAS call will use OMP_NUM_THREADS threads
3. Threaded code, inside parallel regions

● The BLAS call will use a single thread

Threaded LAPACK

● Threaded LAPACK works exactly the same as threaded
BLAS

● Anywhere LAPACK uses BLAS, those BLAS can be
threaded

● Some LAPACK routines are threaded at the higher lev el
● No special instructions

Performance Focus and Autotuning

● Some components of the library are performance crit ical
● For example BLAS and specifically GEMM

● It is a significant challenge to get best performan ce across
a range of architectures and problem sizes and
thread counts

● Cray has an autotuning framework to address this:
● It uses a general GEMM framework
● Offline tuning runs are done for a wide range of problem sizes
● CPU and GPU targets
● Knowledge gained from offline runs incorporated into the runtime

library.

A
B

C

Tuning requests

● CrayBLAS is an auto-tuned library
● Generally, excellent performance is possible for all shapes and sizes

● However, the adaptive CrayBLAS can be improved by
tuning for exact sizes and shapes

● Send your specific tuning requirements to
crayblas@cray.com
● Send the routine name and the list of calling sequences

ScaLAPACK and IRT

● ScaLAPACK in LibSci is optimized for Aries intercon nect
● New collective communication procedures are added
● Default topologies are changed to use the new optimizations
● Much better strong scaling

● It also benefits from the optimizations in CrayBLAS
● Iterative Refinement Toolkit (IRT) can provide furt her

improvements
● Uses mixed precision
● For some targets (CPU vector instructions and GPUs) single-precision

can be much faster
● Used for serial and parallel LU, Cholesky and QR
● Either set IRT_USE_SOLVERS to 1

or use the advanced API.

Third-party libraries

● The modules cray-trilinos and cray-petsc / cray-petsc -
complex contain the popular Trilinos and PETSc pack ages
● These will automatically employ the Cray Adaptive Sparse Kernels

● The module cray-tpsl contains ready builds of some other
quite common libraries and solvers:
● MUMPS, ParMetis, SuperLU, SuperLU_DIST, Hypre, Scotch, Sundials
● These are for your convenience (i.e. no need to build the library

yourself) but do not feature Cray-specific modifications

Intel MKL

● The Intel Math Kernel Libraries (MKL) is an alterna tive to
LibSci
● Features tuned performance for Intel CPUs as well

● Linking quite complicated, but the Intel MKL Link L ine
Advisor can tell you what to add to your link line
● http://software.intel.com/sites/products/mkl/

● Using MKL together with the Intel compilers (PrgEnv -intel)
is usually straightforward

Summary

● Do not re-invent the wheel but use scientific libra ries
wherever you can!

● All the most widely used library families and frame works
readily available as XC optimized versions
● And if the cornerstone library of your application is still missing, let us

know about it!
● Make sure you use the optimized version provided by the

system instead of a reference implementation

● ... and give us feedback!

