
HPC Course - January 2020HPC Course - January 2020

OPENMP Hands on ExercisesOPENMP Hands on Exercises

Hello World [folder:OMPHelloWorld]
Openmp Schedules [folder:OMPSchedules]
Data Scoping (private firstprivate..) [folder:OMPDataScoping]
Compute PI [folder: OMPComputePI]
Fibonacci series computation [folder:OMPFibonacci]
Matrix Multiplication [folder:OMPMatrixMult]
Mandelbrot set computation [folder:OMPmandelbrot]

1. Copy Sample Code for OPEMP Lab Session1. Copy Sample Code for OPEMP Lab Session

Before starting the course, the example programs and jobscripts used in this tutorial must be copied to your
home directory, so that you can work with your personal copy. All examples are present in the
“/home/proj/16/secpraba/2020JanOPENMP” directory. Copy folder and change permissions to read write and
execute all files in the folder that you created.

a. Create a folder/directory with your name. Try to make it as unique as possible.a. Create a folder/directory with your name. Try to make it as unique as possible.

 $mkdir <yourname>[Number]

b. Copy all code for openmp lab sessions into your folder that you just createdb. Copy all code for openmp lab sessions into your folder that you just created

 $scp -r /home/proj/16/secpraba/2020JanOPENMP /<workingdirectory>/<yourname>[Number]

##

Exercise 6 - Matrix MultiplicationExercise 6 - Matrix Multiplication

Write code that computes the product of 2 matrices A and B (see the program or write soemthing like the code
below)

void matmul(long N, double *a, double *b, double *c) {
long i, j, k;

for (i = 0; i < N; i ++)
for (j = 0; j < N; j ++)
for (k = 0; k < N; k ++)
 c[i * N + j] += a[i * N + k] * b[k * N + j];
}
````
Program
```sh
Function Name: MatrixMultSerial(int NRA, int NCA, int NCB)
input:
 Number of Rows of Matrix A (NRA)
 Number of Cols of Matrix A (NCA)
 Number of Cols of Matrix B (NCB)
Process:
 generates the 2 matrices A and B using random numbers
 multiplies the 2 matrices to compute the product
Output:
 Result of matrix multiplication is written to a file MatrixMultiplyOutput.txt
 returns the time taken in seconds to complete Matrix Multiplication

1. Compile and run the program and see the time taken for the serial code1. Compile and run the program and see the time taken for the serial code

2. Using OPENMP Write matrix multiplication code in parallel2. Using OPENMP Write matrix multiplication code in parallel

(see MatrixMultWithOMPFOR(...)) using #pragma omp for with NO schedule clause a) Which variables are
private and which ones need to be shared - elaborate The function should have the same inputs as the serial
function with an additional input parameter - int numThreads. This will allow you to time the parallel code for
various number of threads. outputs to the parallel function should be similar to the serial code // Result of
matrix multiplication is written to a file MatrixMultiplyOutput.txt // returns the time taken in seconds to
complete Matrix Multiplication

3. For fixed matrix size, comopute the speedup using varies thread sizes3. For fixed matrix size, comopute the speedup using varies thread sizes

4. How does speedup change with increasing number of threads?4. How does speedup change with increasing number of threads?

5. What would you expect to happen if the number of threads was increased to more than the5. What would you expect to happen if the number of threads was increased to more than the
number of cores?number of cores?

6. Do you think there will be a change in the speed up if Schedule - chunk clause was used?6. Do you think there will be a change in the speed up if Schedule - chunk clause was used?

7. Add a new function which is similar to the parallel function, but accepts as input a chunk size7. Add a new function which is similar to the parallel function, but accepts as input a chunk size

 double MatrixMultWithScheduleChunk(int num_threads, int chunk_size, int NRA, int NCA, int NCB)

8. add a static schedule with chunk size in the #pragma omp for8. add a static schedule with chunk size in the #pragma omp for

9. Evaluate speedup for various chunk sizes.9. Evaluate speedup for various chunk sizes.

10. Use Blocking (Cache blocking) where matrices are divided into chunks or blocks and block10. Use Blocking (Cache blocking) where matrices are divided into chunks or blocks and block
matrix multiplication is performed.matrix multiplication is performed.

This should give a better performance than the serial code and should be the optimal serial code. Parallelise
Blocked matrix multiplication using openmp. Identify the optimal block size for Cray.

b_t:=b transpose
num=N/BLOCK_SIZE;

for(i=0;i<num;i++){
 for (j=0; j<num; j++){
 for (k=0; k<BLOCK_SIZE; k++){
 for (m=0; m<BLOCK_SIZE; m++) {
 double sum=0.0;
 for (r = 0; r < num; r++){
 for(p=0; p<BLOCK_SIZE; p++){
 sum += a[i*BLOCK_SIZE*N + r*BLOCK_SIZE + k*N + p]*
 b_t[j*BLOCK_SIZE*N + r*BLOCK_SIZE + m*N + p];
 }
 }
 c[i*BLOCK_SIZE*N + j*BLOCK_SIZE + k*N + m] = sum;
 }
 }
 }
}

	HPC Course - January 2020
	OPENMP Hands on Exercises
	1. Copy Sample Code for OPEMP Lab Session
	a. Create a folder/directory with your name. Try to make it as unique as possible.
	b. Copy all code for openmp lab sessions into your folder that you just created
	#

	Exercise 6 - Matrix Multiplication
	1. Compile and run the program and see the time taken for the serial code
	2. Using OPENMP Write matrix multiplication code in parallel
	3. For fixed matrix size, comopute the speedup using varies thread sizes
	4. How does speedup change with increasing number of threads?
	5. What would you expect to happen if the number of threads was increased to more than the number of cores?
	6. Do you think there will be a change in the speed up if Schedule - chunk clause was used?
	7. Add a new function which is similar to the parallel function, but accepts as input a chunk size
	8. add a static schedule with chunk size in the #pragma omp for
	9. Evaluate speedup for various chunk sizes.
	10. Use Blocking (Cache blocking) where matrices are divided into chunks or blocks and block matrix multiplication is performed.

