


TALK OUTLINE

Why debuggers?

What can they do to help you enhance your program
development?

Parallel program debugging
What are profilers and why you could need them?

MAILTO: JLAKSHMI@IISC.AC.IN @



PROGRAM DEBUGGING
Why do we need debuggers?

= Programming errors not detectable by compilation or
linking
= Such errors cause change in runtime behavior

MAILTO: JLAKSHMI@IISC.AC.IN @



WHAT IS A DEBUGGER?

-A software tool that is used to detect the source of
program or script errors, by performing step-by-step
execution of application code and viewing the
content of code variables.”

-MSDN

5/30/2019 MAILTO: JLAKSHMI@IIS



WHAT IS A DEBUGGER? (CON'T)
A debugger is not an IDE

= Though the two can be integrated, they are separate
entities.

A debugger loads in a program (compiled executable,
or interpreted source code) and allows the user to
trace through the execution.

Debuggers typically can do disassembly, stack traces,
expression watches, and more.

MAILTO: JLAKSHMI@IISC.AC.IN @



OTHER FORMS OF DEBUGGING

Periodic printf/cout/print/write ... etc.
= Statements with relevant information

Assert statements
Desk Checking or Code Walkthroughs!

MAILTO: JLAKSHMI@IISC.AC.IN




WHY USE A DEBUGGER?

No need for precognition of what the error might be.
Flexible

= Allows for “live” error checking — no need to re-write and

re-compile when you realize a certain type of error may
be occurring

= Dynamic
= Can view the entire relevant scope

MAILTO: JLAKSHMI@IISC.AC.IN @



RELUCTANCE TO USING A DEBUGGER

With simple errors, may not want to bother with

starting up the debugger environment.
= QObvious error

= Simple to check using prints/asserts
Hard-to-use debugger environment
Error occurs in optimized code

Changes execution of program (error doesn’t occur
while running debugger)

MAILTO: JLAKSHMI@IISC.AC.IN



DEBUGGERS FOR COMPILED LANGUAGES

Debuggers are special programs that can
= Read your executables and connect with the source code

= Maintain runtime order, scope and variables of your
program as it is being executed

= Generally, would like information about source code (not
normally included in compiled executables)

= Work on a lower level
Need special “debug” executables.

MAILTO: JLAKSHMI@IISC.AC.IN



FUNCTIONS OF A DEBUGGER

= Disassembly
= Execution Tracing/Stack tracing
= Symbol watches

MAILTO: JLAKSHMI@IISC.AC.IN @



DISASSEMBLY

= Most basic form of debugging

= Translating machine code into assembly
Instructions that are more easily understood by the
user.

= Typically implementable as a simple lookup table
= No higher-level information (variable names, etc.)

MAILTO: JLAKSHMI@IISC.AC.IN @



EXECUTION TRACING

Follows the program through the execution.
Users can step through line-by-line, or use
breakpoints.

Typically allows for “watches” on - registers,
memory locations, symbols

Allows for tracing up the stack of runtime
errors (back traces)

Allows user to trace the causes of unexpected
behavior and fix them

MAILTO: JLAKSHMI@IISC.AC.IN

(=)



SYMBOL INFORMATION

= Problem - a compiler/assembler translates
variable names and other symbols into
internally consistent memory addresses

= How does a debugger know which location is
denoted by a particular symbol?

= We need a “debug” executable.

MAILTO: JLAKSHMI@IISC.AC.IN




DEBUG VS. RELEASE BUILDS

Debug builds usually are not optimized

Debug executables contain:
= program's symbol tables
= |location of the source file
= line number tags for assembly instructions.

MAILTO: JLAKSHMI@IISC.AC.IN




DEBUGGING PARALLEL PROGRAMS

Parallel programs introduce additional issues
like deadlocks and race conditions

=Timing

= Synchronization

Side-effects

= Error behavior may not be repeatable!

= Error location too may change in different runs!

Debugging Parallel Programs

MAILTO: JLAKSHMI@IISC.AC.IN


https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf
https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf

TIMING YOUR CODE

/usr/bin/time -p a.out
real 9.95 user 9.86 sys 0.06

You can also time a portion of your code by using
clock() system call!

MAILTO: JLAKSHMI@IISC.AC.IN @



PROFILERS
What are profilers?
= Profilers are tools that help you analyze where your program
spent its time or put its code in memory while in execution.
Time Profilers:

= Tells you where your program spent its time

= Tells you which functions called which other functions while it
was executing

Space Profilers:
= Also called “heap profiling” or “memory profiling”

e profiling i oful to help re o the amount of

MAILTO: JLAKSHMI@IISC.AC.IN



HOW DO THEY WORK - TIME PROFILER?

Time profiler:

= Profiling works by changing how every function in your
program is compiled so that when it is called, it will
stash away some information about where it was called
from.

= From this, the profiler can figure out what function
called it, and can count how many times it was called

MAILTO: JLAKSHMI@IISC.AC.IN



HOW DO THEY WORK - SPACE PROFILER?

Space Profiler:
= Stops execution and examines the stack
= Stops execution when a page of memory is allocated

= Collects Data about which function asked for the
memory

MAILTO: JLAKSHMI@IISC.AC.IN



HOW DO THEY WORK - PROFILED DATA?

= After the data is collected by the profiler, an
interpreter must be run to display the data in an
understandable format

= Can be text-based or graphical

MAILTO: JLAKSHMI@IISC.AC.IN @



WHY DO | NEED A TIME PROFILER?

Find where the program is spending most of it's time
= That’s where you should focus optimization efforts

The program performs the proper functions, but is
too slow

= I[mportant in real time systems
= Important to web applications

The program is too large or too complex to analyze
by reading the source

MAILTO: JLAKSHMI@IISC.AC.IN @



WHY DO | NEED A SPACE PROFILER?

The program needs to use a fixed amount of memory

The program is too large to conceive of the overall

memory usage or how often memory requests are
made

Profilers can show the memory usage of libraries
used by your program

MAILTO: JLAKSHMI@IISC.AC.IN @



SOME PROFILER EXAMPLES - GPROF

gprof — OpenSource Profiler

(http://www.thegeekstuff.com/2012/08/gpro
f-tutorial/)

=compile programs with the —pg option

= execute program to generate data

= run gprof to interpret the profiled data

MAILTO: JLAKSHMI@IISC.AC.IN



GPROF SAMPLE DATA - FLAT PROFILE

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 143 1.43 write
16.67 0.06 0.01 mcount
0.00 0.06 0.00 236 0.00 0.00 tzset
0.00 0.06 0.00 192 0.00 0.00 tolower

MAILTO: JLAKSHMI@IISC.AC.IN @



GPROF SAMPLE DATA - CALL GRAPH

index % time self children called name
0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]
0.00 0.00 8/16 skipspace [44]

MAILTO: JLAKSHMI@IISC.AC.IN




SOME PROFILER EXAMPLES -
SPACE

Massif (http://valgrind.org/docs/manual/ms-
manual.html)
= Space Profiler for C and C++

= Provides relative space data on 5 different areas:
= Heap blocks
= Heap administration blocks
= Stack sizes
= Code size
= Data size

MAILTO: JLAKSHMI@IISC.AC.IN @



MASSIF SAMPLE DATA - BASIC
==1012== Total spacetime: 917,098,589 ms.B

==1012== heap: 0.0%
==1012== heap admin: 0.0%
==1012== stack(s): 0.0%

==1012== static code: 44.4%
==1012== static data: 55.3%

MAILTO: JLAKSHMI@IISC.AC.IN



MASSIF SAMPLE DATA - SPACE-TIME GRAPH

| date |1 me'zample) 532,072 bytes x ms (time and date) |
H
=3
o
- =Hack =]
Sk
- _n_imarn_lkcalla_d
[ ] read_ala=_fia
ok |:| __A\zfila_raad
- axdand ala= 1abla
4k - heap-admin
|:| __fopan_intarnal
- _n_kad koala fro
2k ]
- ] =Hrdup
- _nl_maka_I10nrl=A

MAILTO: JLAKSHMI@IISC.AC.IN



READING LIST - DEBUGGING &
PROFILING PARALLEL CODES

Debugging and Profiling basics
(https://cvw.cac.cornell.edu/Profiling/debugging_
distributed)

Profiling and optimizing serial and parallel codes
(https://portal.tacc.utexas.edu/c/document_libra
ry/get_file?uuid=fc609b77-b727-4bff-81a4-
d30caa4013d4&groupld=13601)

|dentifying bottlenecks in parallel codes
(http://www.it.northwestern.edu/bin/docs/resear
ch/bottlenecks-in-HPC.pdf)

MAILTO: JLAKSHMI@IISC.AC.IN


https://cvw.cac.cornell.edu/Profiling/debugging_distributed
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf

NP

Q

Q\Q/ MAILTO: JLAKSHMI@IISC.AC.IN @
o



