
Breadth First Search(BFS)

Given a graph G=(V, E) where V is set of verices and E is the set of edges and a source vertex 's' BFS
explores all the vertices in that graph reachable from s. A path from vertex s to t contains a sequence
of edges (u1, v1), ...,(ui, vi) where u, v є V. The length of the path is the number of edges along the
path. BFS implies that all the vertices of level k (vertices has path length k from s) should be visited
before vertices of level k+1. The output of the algorithm is the level of all the vertices reachable from s.

Serial BFS Algorithm

In serial BFS algorithm starting with the start vertex we explore its neighbours and update their
level as cur_level+1.

Remove all the elements from current frontier and add the next set in frontier. We repeat the same
step until frontier set is empty.

BFS Algorithm

//Initialize level of the vertices by INF
for_each(srcVec.begin(), srcVec.end(),

Initialize()); cur_level = 0;

/ Level of start vertex
is 0 Level[src] =
cur_level;
FS.push_back(src)
;

//repeat until FS is
empty

while(!FS.empty()){

//Find neighbours of frontier set
for_each(FS.begin(), FS.end(), findNeighbour());

//update level of the vertices in the neighbour set which has level=INF
for_each(NS.begin(), NS.end(), updateLevel());

//update level by 1
cur_level++;

//clear current frontier set
FS.clear();

//make newly expolred vertex as frontier set for next iteration
FS = NNS;

//clear Next sets
NS.clear();
NNS.clear();

}

Parallel BFS Algorithm

In parallel distributed BFS algorithm we are using 1D block partitioning method. If the total number of
vertices of the graph is |V| and total number of processes is p then each processor is given |V|/p vertices at
the starting of the algorithm to explore.

The graph is loaded into memory and master process co-ordinates the vertices to each processes for the
elements it will be incharge for all the passes of the algorithm.

BFS Parallel Algorithm

1. Each process intialize the vertices level to INF
for_each(srcVec.begin(), srcVec.end(), Initialize());
cur_level = 0;

2. Master process initialize the src level to 0
if(myRank == 0){

//set the level of root = 0
Level[src] = cur_level;
FS.push_back(src);

}

do{

3. If frontier set of all processes is empty then break

4. Explore the neighbour from frontier set
for_each(FS.begin(), FS.end(), findNeighbour());

5. Pack the explored vertex for correct processor

6. Put the data in buffer for sending to corresponding process

7. MPI_Barrier(MPI_COMM_WORLD);

8. Pairwise exchange method to do all-to-all communication between processes

9. MPI_Barrier(MPI_COMM_WORLD);

10. Put recieved data in NS

11. Now update level of explored vertices
for_each(NS.begin(), NS.end(), updateLevel());

12. Update level by 1
cur_level++;

13. Clear current frontier set
FS.clear();

14. Make newly expolred vertex as frontier set for next iteration FS =
NNS;

15. Clear Next sets
NS.clear();
NNS.clear();

}while(1);

