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What is scientific computing?
• "Computational Science" - 3rd paradigm after Theoretical & 

Experimental Science

• “Scientific Computing” - encompass computations for science and 
engineering research and applications

• “computing” <- numerical computation aspects PLUS associated 
systems of networks, visualization, and data storage and retrieval

• Technological advance <-> limitations of analytic tractability, 
expensive experimentation



HPC for Scientific Computing
• HPC is Computing at the bleeding edge of performance

• In scientific computing there is always demand for more 
speed, capacity

• Computational scientists have an insatiable need for more powerful 
computers (faster, able to handle more data)

• Resolution (finer grid, more atoms)

• Dimensionality (1-D, 2-D, 3-D, etc.)

• Complexity (multi-physics, multiple time and spatial scales)

• Fidelity (equations, geometry, realistic conditions and dimensions)

• Time to solution (ex. ~1ns/day)

• Algorithmic complexity, e.g., O(N^7) 



Exascale Applications Will Address National Challenges
Summary of current DOE Science & Energy application development projects

Nuclear Energy 
(NE)

Accelerate 
design and 

commercialization 
of next-generation 

small modular 
reactors

✓Climate Action Plan
✓SMR licensing support
✓GAIN

Climate 
(BER)

Accurate regional 
impact assessment 
of climate change

✓Climate Action Plan

Wind Energy 
(EERE)

Increase efficiency 
and reduce cost of 
turbine wind plants 

sited in complex 
terrains

✓Climate Action Plan

Combustion 
(BES)

Design high-
efficiency, low-

emission combustion 
engines and gas 

turbines

✓2020 greenhouse gas 
and 2030 carbon 
emission goals

Chemical Science 
(BES, BER)

Biofuel catalysts 
design; stress-
resistant crops

✓Climate Action Plan
✓MGI



Exascale Applications Will Address National Challenges
Summary of current DOE Science & Energy application development projects

Magnetic Fusion 
Energy (FES)

Predict and guide 
stable ITER 
operational 

performance with an 
integrated whole 

device model

✓ITER
✓Fusion experiments: 

NSTX, DIII-D, Alcator 
C-Mod

Advanced 
Manufacturing 

(EERE)

Additive 
manufacturing 

process design for 
qualifiable metal 

components

✓NNMIs
✓Clean Energy 

Manufacturing 
Initiative

Cosmology 
(HEP)

Cosmological probe 
of standard model of 

particle physics: 
Inflation, dark matter, 

dark energy

✓Particle Physics 
Project Prioritization 
Panel (P5)

Geoscience (BES, 
BER, EERE, FE, NE)

Safe and efficient 
use of subsurface for 
carbon capture and 
storage, petroleum 

extraction, 
geothermal energy, 

nuclear waste

✓EERE Forge
✓FE NRAP
✓Energy-Water Nexus
✓SubTER Crosscut

Precision Medicine 
for Cancer (NIH)

Accelerate and 
translate cancer 
research in RAS 
pathways, drug 

responses, treatment 
strategies

✓Precision Medicine in 
Oncology

✓Cancer Moonshot



Scientific computing requires broad expertise
in addition to the research domain
• Knowledge of parallel computer architectures, mathematical models 

and numerical algorithms

• Proficiency in programming methodologies and languages

• Software architecture, debugging and performance measurement 
tools, visualization

• Software engineering for working in teams

• Methods for building “community codes”

• Methodologies and tools relevant for data-intensive applications

• Frameworks for scientific workflows



Serial Computing vs Parallel Computing
• Traditionally, software has been written for serial computation

• A problem is broken into a discrete series of instructions

• Instructions are executed sequentially one after another

• Executed on a single processor

• Only one instruction may execute at any moment in time



Serial Computing vs Parallel Computing
• Simultaneous use of multiple 

compute resources to solve a 
computational problem.

• Run on multiple CPUs

• Problem is decomposed into 
multiple parts that can be solved 
concurrently.

• Each part is decomposed into a set 
of instructions.

• Instructions are executed 
simultaneously on different CPUs



Why parallelism?

Moore’s Law still holds

Number of transistors 

continues to increase

Dennard scaling does not:
Performance/Clock has 

flattened out because

at 9nm transistor gates became 

too thin to prevent current from 

leaking out into the substrate

ILP: Instruction-Level 

Parallelism

Clock speed (Mhz)

# of transistors (000)

Power (W)

Perf/clock (ILP)



From Giga to Exa, via Tera & Peta*
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Performance from parallelism
*S. Borkar, Intel



Evolution of node architecture



Parallel Computer Architecture

Compute Resources

• Single Computer with multiple processors.
• A number of Computers connected by a network.

Example: Networks connect multiple standalone computers 
(nodes) to make larger parallel computer clusters.



Parallel Computer Memory Architectures
Shared Memory – sharing the same address space
Symmetric Multiprocessor (SMP) machines

Shared Memory (UMA) Shared Memory (NUMA)



Parallel Computer Memory Architectures

• Advantages
• Global address space provides a user-friendly programming perspective to 

memory

• Data sharing between tasks is fast

• NUMA - One SMP can directly access memory of another SMP

• Disadvantages
• Lack of scalability between memory and CPUs.

• Programmer responsibility for synchronization constructs that ensure 
"correct" access of global memory.

• NUMA - inequal access time to all memories, Memory access across link is 
slower

Shared Memory 



Parallel Computer Memory Architectures
Distributed Memory
• A communication network to connect inter-

processor memory. 

• Processors have their own local memory. No 
concept of global address space across all 
processors.

• Changes it makes to its local memory have no 
effect on the memory of other processors. 

• Task of the programmer to explicitly define 
how and when data is communicated. 
Synchronization between tasks is likewise the 
programmer's responsibility. 

• The network "fabric" used for data transfer 
varies widely



Parallel Computer Memory Architectures
Hybrid Distributed -Shared Memory

• The shared memory component can be a shared memory 
machine and/or graphics processing units (GPU).

• network communications are required to move data from one 
machine to another.

• Increased programmer complexity/effort



Limits and Costs of Parallel Programming

Parallel programs contain

• Serial Section

• Parallel Section

• Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution

wall-clock time of parallel execution



Designing Parallel Programs

• Can the problem be parallelized?
• Calculation of the Fibonacci series (0,1,1,2,3,5,8,13,21,...) by use of the formula: F(n) 

= F(n-1) + F(n-2)

• Identify the program's hotspots (real work)

• Identify bottlenecks in the program

• Identify Data Dependencies and Task Dependencies (inhibitors to 
parallelism )

• Investigate other algorithms if possible & take advantage of optimized third 
party parallel software.

• third party parallel software and highly optimized math libraries available



Designing Parallel Programs
Partitioning

• domain decomposition and functional decomposition

1. Data Decomposition

Data associated with the problem is decomposed

1. Domain Decomposition

Data associated with the problem is decomposed



Data Dependencies

• The order of statement execution affects the results of the program.

• Multiple use of the same location(s) in storage by different tasks.

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Loop carried dependence

Task 1
---------
X = 2
….
….
Y = X**2

Task 2​
---------
X = 4
….​
….​
Y = X**3

Loop independent data dependency



Data Dependencies

If Task 2 has A(J) and task 1 has A(J-1)

• Distributed memory architecture -
task 2 must obtain the value of A(J-
1) from task 1 after task 1 finishes 
its computation

• Shared memory architecture - task 2 
must read A(J-1) after task 1 
updates it

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Task 1
---------
X = 2
….
Y = X**2

Task 2​
---------
X = 4
….​
Y = X**3

(Race Condition) The value of Y is dependent on: 

Distributed memory architecture - if or when the value of X is 
communicated between the tasks.

Shared memory architecture - which task last stores the value 
of X



Handling Dependencies

• Distributed memory architectures - communicate required data at 
synchronization points

• Shared memory architectures -synchronize read/write operations 
between tasks.

• Data Dependencies:- Mutual Exclusion, Locks & Critical Sections

• Task Dependencies:- Explicit or Implicit Synchronization points called 
Barriers
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Designing Parallel Programs
• Functional/ Task Decomposition

• The problem is decomposed according to the work that must be done. Each 
task then performs a portion of the overall work



Data Decomposition
For problems that operate on large amounts of data Data is divided up 
between CPUs : Each CPU has its own chunk of dataset to operate upon 
and then the results are collated.

Which data should we partition? 
Input Data
Output Data
Intermediate Data

Ensure Load Balancing : Equal sized tasks not necessarily equal size data sets.
• Static Load Balancing
• Dynamic Load Balancing



Load Distribution

GOAL : Assigning the tasks/ processes to Processors while Minimizing 
Parallel Processing Overheads

• Maximize data locality

• Minimize volume of data-exchange

• Minimize frequency of interactions

• Minimize contention and hot spots

• Overlap computation with interactions

• Selective data and computation replication


