
Introduction to Parallel Computing

Short Course on HPC

15th February 2019

Aditya Krishna Swamy

adityaks@iisc.ac.in

SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

What is scientific computing?
• "Computational Science" - 3rd paradigm after Theoretical &

Experimental Science

• “Scientific Computing” - encompass computations for science and
engineering research and applications

• “computing” <- numerical computation aspects PLUS associated
systems of networks, visualization, and data storage and retrieval

• Technological advance <-> limitations of analytic tractability,
expensive experimentation

HPC for Scientific Computing
• HPC is Computing at the bleeding edge of performance

• In scientific computing there is always demand for more
speed, capacity

• Computational scientists have an insatiable need for more powerful
computers (faster, able to handle more data)

• Resolution (finer grid, more atoms)

• Dimensionality (1-D, 2-D, 3-D, etc.)

• Complexity (multi-physics, multiple time and spatial scales)

• Fidelity (equations, geometry, realistic conditions and dimensions)

• Time to solution (ex. ~1ns/day)

• Algorithmic complexity, e.g., O(N^7)

Exascale Applications Will Address National Challenges
Summary of current DOE Science & Energy application development projects

Nuclear Energy
(NE)

Accelerate
design and

commercialization
of next-generation

small modular
reactors

✓Climate Action Plan
✓SMR licensing support
✓GAIN

Climate
(BER)

Accurate regional
impact assessment
of climate change

✓Climate Action Plan

Wind Energy
(EERE)

Increase efficiency
and reduce cost of
turbine wind plants

sited in complex
terrains

✓Climate Action Plan

Combustion
(BES)

Design high-
efficiency, low-

emission combustion
engines and gas

turbines

✓2020 greenhouse gas
and 2030 carbon
emission goals

Chemical Science
(BES, BER)

Biofuel catalysts
design; stress-
resistant crops

✓Climate Action Plan
✓MGI

Exascale Applications Will Address National Challenges
Summary of current DOE Science & Energy application development projects

Magnetic Fusion
Energy (FES)

Predict and guide
stable ITER
operational

performance with an
integrated whole

device model

✓ITER
✓Fusion experiments:

NSTX, DIII-D, Alcator
C-Mod

Advanced
Manufacturing

(EERE)

Additive
manufacturing

process design for
qualifiable metal

components

✓NNMIs
✓Clean Energy

Manufacturing
Initiative

Cosmology
(HEP)

Cosmological probe
of standard model of

particle physics:
Inflation, dark matter,

dark energy

✓Particle Physics
Project Prioritization
Panel (P5)

Geoscience (BES,
BER, EERE, FE, NE)

Safe and efficient
use of subsurface for
carbon capture and
storage, petroleum

extraction,
geothermal energy,

nuclear waste

✓EERE Forge
✓FE NRAP
✓Energy-Water Nexus
✓SubTER Crosscut

Precision Medicine
for Cancer (NIH)

Accelerate and
translate cancer
research in RAS
pathways, drug

responses, treatment
strategies

✓Precision Medicine in
Oncology

✓Cancer Moonshot

Scientific computing requires broad expertise
in addition to the research domain
• Knowledge of parallel computer architectures, mathematical models

and numerical algorithms

• Proficiency in programming methodologies and languages

• Software architecture, debugging and performance measurement
tools, visualization

• Software engineering for working in teams

• Methods for building “community codes”

• Methodologies and tools relevant for data-intensive applications

• Frameworks for scientific workflows

Serial Computing vs Parallel Computing
• Traditionally, software has been written for serial computation

• A problem is broken into a discrete series of instructions

• Instructions are executed sequentially one after another

• Executed on a single processor

• Only one instruction may execute at any moment in time

Serial Computing vs Parallel Computing
• Simultaneous use of multiple

compute resources to solve a
computational problem.

• Run on multiple CPUs

• Problem is decomposed into
multiple parts that can be solved
concurrently.

• Each part is decomposed into a set
of instructions.

• Instructions are executed
simultaneously on different CPUs

Why parallelism?

Moore’s Law still holds

Number of transistors

continues to increase

Dennard scaling does not:
Performance/Clock has

flattened out because

at 9nm transistor gates became

too thin to prevent current from

leaking out into the substrate

ILP: Instruction-Level

Parallelism

Clock speed (Mhz)

of transistors (000)

Power (W)

Perf/clock (ILP)

From Giga to Exa, via Tera & Peta*

10

1

10

100

1000

1986 1991 1996 2001 2006 2011 2016 2021

R
el

at
iv

e
Tr

a
n

si
st

o
r P

er
fo

rm
a

n
ce

Giga

Tera

Peta
Exa

32x from transistor
32x from parallelism

8x from transistor
128x from parallelism

1.5x from transistor
670x from parallelism

Performance from parallelism
*S. Borkar, Intel

Evolution of node architecture

Parallel Computer Architecture

Compute Resources

• Single Computer with multiple processors.
• A number of Computers connected by a network.

Example: Networks connect multiple standalone computers
(nodes) to make larger parallel computer clusters.

Parallel Computer Memory Architectures
Shared Memory – sharing the same address space
Symmetric Multiprocessor (SMP) machines

Shared Memory (UMA) Shared Memory (NUMA)

Parallel Computer Memory Architectures

• Advantages
• Global address space provides a user-friendly programming perspective to

memory

• Data sharing between tasks is fast

• NUMA - One SMP can directly access memory of another SMP

• Disadvantages
• Lack of scalability between memory and CPUs.

• Programmer responsibility for synchronization constructs that ensure
"correct" access of global memory.

• NUMA - inequal access time to all memories, Memory access across link is
slower

Shared Memory

Parallel Computer Memory Architectures
Distributed Memory
• A communication network to connect inter-

processor memory.

• Processors have their own local memory. No
concept of global address space across all
processors.

• Changes it makes to its local memory have no
effect on the memory of other processors.

• Task of the programmer to explicitly define
how and when data is communicated.
Synchronization between tasks is likewise the
programmer's responsibility.

• The network "fabric" used for data transfer
varies widely

Parallel Computer Memory Architectures
Hybrid Distributed -Shared Memory

• The shared memory component can be a shared memory
machine and/or graphics processing units (GPU).

• network communications are required to move data from one
machine to another.

• Increased programmer complexity/effort

Limits and Costs of Parallel Programming

Parallel programs contain

• Serial Section

• Parallel Section

• Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution

wall-clock time of parallel execution

Designing Parallel Programs

• Can the problem be parallelized?
• Calculation of the Fibonacci series (0,1,1,2,3,5,8,13,21,...) by use of the formula: F(n)

= F(n-1) + F(n-2)

• Identify the program's hotspots (real work)

• Identify bottlenecks in the program

• Identify Data Dependencies and Task Dependencies (inhibitors to
parallelism)

• Investigate other algorithms if possible & take advantage of optimized third
party parallel software.

• third party parallel software and highly optimized math libraries available

Designing Parallel Programs
Partitioning

• domain decomposition and functional decomposition

1. Data Decomposition

Data associated with the problem is decomposed

1. Domain Decomposition

Data associated with the problem is decomposed

Data Dependencies

• The order of statement execution affects the results of the program.

• Multiple use of the same location(s) in storage by different tasks.

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Loop carried dependence

Task 1

X = 2
….
….
Y = X**2

Task 2​

X = 4
….​
….​
Y = X**3

Loop independent data dependency

Data Dependencies

If Task 2 has A(J) and task 1 has A(J-1)

• Distributed memory architecture -
task 2 must obtain the value of A(J-
1) from task 1 after task 1 finishes
its computation

• Shared memory architecture - task 2
must read A(J-1) after task 1
updates it

DO J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
END DO

Task 1

X = 2
….
Y = X**2

Task 2​

X = 4
….​
Y = X**3

(Race Condition) The value of Y is dependent on:

Distributed memory architecture - if or when the value of X is
communicated between the tasks.

Shared memory architecture - which task last stores the value
of X

Handling Dependencies

• Distributed memory architectures - communicate required data at
synchronization points

• Shared memory architectures -synchronize read/write operations
between tasks.

• Data Dependencies:- Mutual Exclusion, Locks & Critical Sections

• Task Dependencies:- Explicit or Implicit Synchronization points called
Barriers

Acknowledgments

• Akhila, SERC

• S. Ethier, PPPL

• P. Messina, ECP, ANL

• LLNL HPC tutorials

THANK YOU

Designing Parallel Programs
• Functional/ Task Decomposition

• The problem is decomposed according to the work that must be done. Each
task then performs a portion of the overall work

Data Decomposition
For problems that operate on large amounts of data Data is divided up
between CPUs : Each CPU has its own chunk of dataset to operate upon
and then the results are collated.

Which data should we partition?
Input Data
Output Data
Intermediate Data

Ensure Load Balancing : Equal sized tasks not necessarily equal size data sets.
• Static Load Balancing
• Dynamic Load Balancing

Load Distribution

GOAL : Assigning the tasks/ processes to Processors while Minimizing
Parallel Processing Overheads

• Maximize data locality

• Minimize volume of data-exchange

• Minimize frequency of interactions

• Minimize contention and hot spots

• Overlap computation with interactions

• Selective data and computation replication

