
Parallel Programming Using MPI

Short Course on HPC

15th February 2019

Aditya Krishna Swamy

adityaks@iisc.ac.in

SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

When Parallel Computing Helps?

• Want to speed up your calculation

• Your problem size is too large for a single node

• Current trend - multicore processors, accelerators (GPGPU).

• Solution:

– Split the work between several processor cores so that they can work in parallel

– Exchange data between them when needed

• How? Popular tools in Scientific Computing

– OpenMP directives on shared memory node

– Message Passing Interface (MPI) on distributed memory systems

– and others (CUDA/OpenCL, ...)

What is MPI?

• MPI stands for Message Passing Interface

• It is a message-passing specification, a standard for the vendors to implement

• In practice, MPI is a library consisting of C functions and Fortran
subroutines (Fortran) used for exchanging data between processes

• An MPI library exists on ALL parallel computers so it is highly portable

• The scalability of MPI is not limited by the number of processors/cores on

one computation node, as opposed to shared memory parallel models

• Also available for Python (mpi4py.scipy.org), R (Rmpi)

MPI

Context: Distributed memory parallel computers

– Each processor has its own memory and cannot access the memory of other

processors

– A copy of the same executable runs on each MPI process (processor core)

– Any data to be shared must be explicitly transmitted from one to another

Most message passing programs use the single program multiple

data (SPMD) model

– Each processor executes the same set of instructions

– Parallelization is achieved by letting each processor operate on a

different piece of data

– Not to be confused with SIMD: Single Instruction Multiple Data a.k.a
vector computing

A sample MPI program in Fortran 90

Program mpi_code

! Load MPI definitions

use mpi (or include mpif.h)

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

Header file

Program mpi_code

! Load MPI definitions

use mpi

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

• Defines MPI-related parameters and functions

• Must be included in all routines calling MPI functions

• Can also use include file:

include mpif.h

Initialization

Program mpi_code

! Load MPI definitions

use mpi

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the beginning of the code

before any other calls to MPI functions

• Sets up the communication channels between

the processes and gives each one a rank.

How many processes do we have?

Program mpi_code

! Load MPI definitions

use mpi

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

• Returns the number of processes available under

MPI_COMM_WORLD communicator

• This is the number used on the mpiexec (or mpirun)

command:

mpiexec –n nproc a.out

What is my rank?

Program mpi_code

! Load MPI definitions

use mpi

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

• Get my rank among all of the nproc processes under

MPI_COMM_WORLD

• This is a unique number that can be used to distinguish

this process from the others

Termination

Program mpi_code

! Load MPI definitions

use mpi (or include mpif.h)

! Initialize MPI

call MPI_Init(ierr)

! Get the number of processes

call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)

call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize

call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the end of the properly

close all communication channels

• No more MPI calls after finalize

A sample MPI program in C

#include "mpi.h"

int main(int argc, char *argv[])

{

int nproc, myrank;

/* Initialize MPI */

MPI_Init(&argc,&argv);

/* Get the number of processes */

MPI_Comm_size(MPI_COMM_WORLD,&nproc);

/* Get my process number (rank) */

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

Do work and make message passing calls…

/* Finalize */

MPI_Finalize();

return 0;

}

How much do I need to know?

• MPI-1 has over 125 functions/subroutines

• Can actually do everything with about 6 of them

• Collective functions are EXTREMELY useful since they simplify the

coding and vendors optimize them for their interconnect hardware

• One can access flexibility when it is required.

• One need not master all parts of MPI to use it.

How to split the work between ranks?
Domain Decomposition

• Most widely used method for grid-based calculations

How to split the work between ranks?
“Coloring”

• Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

MPI Communicators

• A communicator is an identifier associated with a group of processes

– Each process has a unique rank within a specific communicator (the rank starts
from 0 and has a maximum value of (nprocesses-1)).

– Internal mapping of processes to processing units

– Always required when initiating a communication by calling an MPI function
or routine.

• Default communicator MPI_COMM_WORLD, which contains all
available processes.

• Several communicators can coexist

– A process can belong to different communicators at the same time, but has a
unique rank in each communicator

Basic MPI calls to exchange data

• Point-to-Point communications

– Only 2 processes exchange data

– It is the basic operation of all MPI calls

• Collective communications

– A single call handles the communication between all the processes in a

communicator

– There are 3 types of collective communications

• Data movement (e.g. MPI_Bcast)

• Reduction (e.g. MPI_Reduce)

• Synchronization: MPI_Barrier

Point-to-point communication

Point to point: 2 processes at a time

MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:
Broadcast

• One process (called “root”) sends data to all the other processes in the same
communicator

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:
Gather

• One root process collects data from all the other processes in the same communicator

• Must be called by all the processes in the communicator with the same arguments

• “sendcount” is the number of basic datatypes sent, not received (example above would
be sendcount = 1)

• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:
Gather to All

• All processes within a communicator collect data from each other and end up with the

same information

• Must be called by all the processes in the communicator with the same arguments

• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:
Reduction

• One root process collects data from all the other processes in the same communicator

and performs an operation on the received data

• Called by all the processes with the same arguments

• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more

• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:
Reduction to All

• All processes within a communicator collect data from all the other processes and

performs an operation on the received data

• Called by all the processes with the same arguments

• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)

P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls

One “root” process send a different piece of the data to each one of the other

Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,

recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all

the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,

recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can

be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

How to time your MPI code

• Several possibilities but MPI provides an easy to use function called
“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of
time in the past.

FORTRAN: double precision MPI_WTIME()

C: double MPI_Wtime()

starttime=MPI_WTIME()

… program body …

endtime=MPI_WTIME()

elapsetime=endtime-starttime

Debugging tips

Use “unbuffered” writes to do “printf-debugging” and always write out the

process id:
C: fprintf(stderr,”%d: …”,myid,…);

Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The

errorcode is returned to the calling environment so it can be any number.
C: MPI_Abort(MPI_Comm comm, int errorcode);

Fortran: call MPI_ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
C: if (isnan(var))

Fortran: if (var /= var)

Use a parallel debugger such as Totalview or DDT

References

• Keywords for google “mpi”, or “mpi standard”, or “mpi tutorial”…

• http://www.mpi-forum.org (location of the MPI standard)

• http://www.llnl.gov/computing/tutorials/mpi/

• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/

• MPI on Linux clusters:

– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)

– Open MPI (http://www.open-mpi.org/)

http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Example: calculating p using numerical
integration

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

FILE *ifp;

ifp = fopen("ex4.in","r");

fscanf(ifp,"%d",&n);

fclose(ifp);

printf("number of intervals = %d\n",n);

h = 1.0 / (double) n;

sum = 0.0;

for (i = 1; i <= n; i++) {

x = h * ((double)i - 0.5);

sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

pi = mypi;

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

return 0;

}

C version

#include "mpi.h"

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int n, myid, numprocs, i, j, tag, my_n;

double PI25DT = 3.141592653589793238462643;

double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;

FILE *ifp;

MPI_Status Stat;

MPI_Request request;

n = 1;

tag = 1;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

tt0 = MPI_Wtime();

if (myid == 0) {

ifp = fopen("ex4.in","r");

fscanf(ifp,"%d",&n);

fclose(ifp);

//printf("number of intervals = %d\n",n);

}

/* Global communication. Process 0 "broadcasts" n to all other processes */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads

input and

broadcast to all

Each process calculates its section of the integral

and adds up results with MPI_Reduce
…

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {

x = h * ((double)i - 0.5);

sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

pi = 0.; /* It is not necessary to set pi = 0 */

/* Global reduction. All processes send their value of mypi to process 0

and process 0 adds them up (MPI_SUM) */

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

ttf = MPI_Wtime();

printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",

myid, pi, fabs(pi - PI25DT), (ttf-tt0));

MPI_Finalize();

return 0;

}

Thank you...

Blocking communications

• The call waits until the data transfer

is done

– The sending process waits until all

data are transferred to the system

buffer (differences for eager vs

rendezvous protocols...)

– The receiving process waits until all

data are transferred from the system

buffer to the receive buffer

• All collective communications are

blocking

Non-blocking

• Returns immediately after the

data transferred is initiated

• Allows to overlap computation

with communication

• Need to be careful though

– When send and receive buffers

are updated before the transfer

is over, the result will be

wrong

Non-blocking send and receive

Point to point:

MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)

MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

MPI_Wait(request,status,ierr)

MPI_Test(request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-local
operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it
returns “flag = false”. This is a local operation.

MPI-3 standard introduces “non-blocking collective calls”

