Parallel Programming Using MPI

Short Course on HPC
15th February 2019

Aditya Krishna Swamy
adityaks@iisc.ac.in
SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

When Parallel Computing Helps?

Want to speed up your calculation

Your problem size is too large for a single node

Current trend - multicore processors, accelerators (GPGPU).

Solution:
— Split the work between several processor cores so that they can work in parallel
— Exchange data between them when needed

How? Popular tools in Scientific Computing
— OpenMP directives on shared memory node

— Message Passing Interface (MPI) on distributed memory systems
— and others (CUDA/OpenCL, ...)

What is MPI?

MPI stands for Message Passing Interface
It is @ message-passing specification, a standard for the vendors to implement

In practice, MPI is a library consisting of C functions and Fortran
subroutines (Fortran) used for exchanging data between processes

An MPI library exists on ALL parallel computersso it is highly portable

The scalability of MPI is not limited by the number of processors/coreson
one computationnode, as opposed to shared memory parallel models

Also available for Python (mpi4py.scipy.org), R (Rmpi)

MPI

Context: Distributed memory parallel computers
— Each processor has its own memory and cannot access the memory of other

processors
— A copy of the same executable runs on each MPI process (processor core)

— Any data to be shared must be explicitly transmitted from one to another

Most message passing programs use the single program multiple
data (SPMD) model
— Each processor executes the same set of instructions
— Parallelization is achieved by letting each processor operate on a
different piece of data
— Not to be confused with SIMD: Single Instruction Multiple Data a.k.a
vector computing

A sample MPI program In Fortran 90

Program mpi code
! Load MPI definitions
use mpi (or include mpif.h)

! ITnitialize MPI

call MPI Init(ierr)
! Get the number of processes

call MPI Comm size (MPI_COMM WORLD,nproc,ierr)
! Get my process number (rank)

call MPI Comm rank (MPI_ COMM WORLD,myrank, ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi code

Header file

Pr?gizzdmﬁ;czz;nitions « Defines MPI-related parameters and functions
" use mpi — * Must be included in all routines calling MPI functions
 Can also use include file:
! Initialize MPI include mp|fh

call MPI Init(ierr)
! Get the number of processes

call MPI Comm size(MPI_ COMM WORLD,nproc,ierr)
! Get my process number (rank)

call MPI Comm rank(MPI COMM WORLD,myrank, ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi_ code

Initialization

Program mpi_code
! Load MPI definitions
use mpi

» Must be called at the beginning of the code
! Tnitialize MPI bef th lls to MPI f ti
call MPI Init(ierr) efore any other calls to unctions
! Get the number of processes « Sets up the communication channels between
call MPI Comm size (MPI_COMM W(the processes and gives each one a rank.

! Get my process number (rank)
call MPI Comm rank (MPI_COMM WORLD,myrank, ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi_ code

How many processes do we have?

Returns the number of processes available under
MPI_COMM_WORLD communicator
This is the number used on the mpiexec (or mpirun)
command:

mpiexec —n nproc a.out

call MPI Ini r)
! Get the numbe f processes

call MPI Comm size(MPI_COMM WORLD,nproc,ierr)
! Get my process number (rank)
call MPI Comm rank(MPI COMM WORLD,myrank, ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi_ code

What Is my rank?

Program mpi_ code
! Load MPI definitions

« Get my rank among all of the nproc processes under
MPI_COMM_ WORLD

« This is a unique number that can be used to distinguish
this process from the others

call — — [7 Jierr)
! Get my proces umber (rank)
call MPI Comm rank (MPI COMM WORLD,myrank, ierr)

Do work and make message passing calls..

! Finalize
call MPI Finalize (ierr)

end program mpi_code

Termination

Program mpi_ code

end

Load MPI definitions
use mpi (or include mpif.h)

Initialize MPI

call MPI Init(ierr)

Get the number of processes

call MPI Comm size(MPI COMM WORLD,nproc,ierr)
Get my process number (rank)

call MPI Comm rank (MPI COMM WORLD,myrank, ierr)

Do work and make message passing calls..

Finalize » Must be called at the end of the properly
call MPI_Finalize (ierr) <=———= close all communication channels
« No more MPI calls after finalize

program mpi_code

A sample MPI program in C

#include "mpi.h"
int main(int argc, char *argv[])
{
int nproc, myrank;
/* Initialize MPI */
MPI Init(&argc,é&argv);
/* Get the number of processes */
MPI Comm size (MPI_COMM WORLD, &nproc) ;
/* Get my process number (rank) */
MPI Comm rank (MPI_COMM WORLD, &myrank) ;

Do work and make message passing calls..

/* Finalize */
MPI Finalize();
return O;

}

How much do | need to know?

MPI-1 has over 125 functions/subroutines
Can actually do everything with about 6 of them

Collective functionsare EXTREMELY useful since they simplify the
coding and vendors optimize them for their interconnect hardware

One can access flexibility when it is required.
One need not master all parts of MPI to use it.

How to split the work between ranks?

Domain Decomposition

10NS

..llllll Canw
b"l

VN Y
Q&""

based calculat

NSO GGG,
,q..M~o |RRnmnunmmunw
¢

o

Most widely used method for gr

How to split the work between ranks?
“Coloring”

« Useful for particle simulations

Proco| |FIOGH
O o

o° o 0® o O O CRPS
o O O O
@ o O
© o O 0o 0 2O °
® ¢ o0 ¢ O o
© © o e 0o o .." ®
O ® o —~ e e © o
e o © © O O
O @
O
° .‘. o ® O O @

MPI Communicators

« A communicatoris an identifier associated with a group of processes

— Each process has a unique rank within a specific communicator (the rank starts
from 0 and has a maximum value of (nprocesses-1)).

— Internal mapping of processes to processing units

— Always required when initiating a communication by calling an MP1 function
or routine.

« Default communicator MPI_ COMM_WORLD, which containsall
available processes.
« Several communicators can coexist

— A process can belong to different communicators at the same time, but has a
unique rank in each communicator

Basic MPI calls to exchange data

 Point-to-Point communications
— Only 2 processes exchange data
— It is the basic operation of all MPI calls

e Collective communications

— Assingle call handles the communication between all the processes in a
communicator
— There are 3 types of collective communications
« Data movement (e.g. MPI1_Bcast)
« Reduction (e.g. MPI_Reduce)
« Synchronization: MPI_Barrier

Point-to-point communication

Point to point: 2 processesat a time

MPI Send (buf, count,datatype,dest,tag,comm,ierr)
MPI Recv (buf, count,datatype, source, tag,comm,status,ierr)

MPI Sendrecv (sendbuf, sendcount,sendtype,dest, sendtag,
recvbuf ,h recvcount,recvtype,source, recvtag,comm, status,ierr)

where the datatypes are :
FORTRAN: MPI INTEGER, MPI REAL, MPI DOUBLE PRECISION,

MPI COMPLEX, MPI CHARACTER MPI LOGICAL etc..

C : MPI INT, MPI LONG, MPI_SHORT, MPI_FLOAT, MPI DOUBLE, etc..

Predefined Communicator: MPI_COMM WORLD

Collective communication:
Broadcast

MPI Bcast (buffer,count,datatype,root,comm,ierr)

POlA|B|C|D POl Al B|C]|D
P1 | Broadcast ~ PLIA|B|]C|D
P2 P2l Al B|C|D
P3 P3| A|B|C]|D

* One process (called “root”) sends data to all the other processes in the same
communicator

« Must be called by ALL processes with the same arguments

Collective communication:
Gather

MPI Gather (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype,root,comm, ierr)

PO| A PO|A[B|C|D
P1| B Gather P1
=
P2| C P2
P3| D P3

« One root process collects data from all the other processes in the same communicator
« Must be called by all the processes in the communicator with the same arguments

« “sendcount”is the number of basic datatypes sent, not received (example above would
be sendcount = 1)

« Make sure that you have enough space in your receiving buffer!

Collective communication:
Gather to All

MPI Allgather (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype,comm, info)

PO | A PO|A|B|C|D
PL| B Allgather p1| A| B| C| D
p2| C | >P2 A|B|C|D
P3| D P3|A|B|C|D

« All processes within a communicator collect data from each other and end up with the
same information

« Must be called by all the processes in the communicator with the same arguments
« Again, sendcount is the number of elements sent

Collective communication:
Reduction

MPI Reduce (sendbuf, recvbuf,count,datatype,op,root,comm, ierr)

PO | A PO [A+B+C+D
P1L| B Reduce (+) P1
| >
P2| C P2
P3| D P3

» One root process collects data from all the other processes in the same communicator
and performs an operation on the received data

» Called by all the processes with the same arguments

« Operations are: MP1_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,
XOR, and a few more

» User can define own operation with MP1_Op_create()

Collective communication:
Reduction to All

MPI Allreduce (sendbuf, recvbuf,count,datatype,op,comm,ierr)

PO A PO | A+B+C+D
PL| B Allreduce (+) p1 | A+B+C+D
P2 | C | = P2 | A+B+C+D
P3| D P3| A+B+C+D

« All processes within a communicator collect data from all the other processes and
performs an operation on the received data

« Called by all the processes with the same arguments
« Operations are the same as for MP1_Reduce

More MPI collective calls

One “root” process send a different piece of the data to each one of the other

Processes (inverse of gather)
MPI Scatter (sendbuf,sendcnt, sendtype, recvbuf, recvent,

recvtype, root,comm, ierr)

Each process performs a scatter operation, sending a distinct message to all

the processes in the group in order by index.
MPI Alltoall (sendbuf, sendcount, sendtype, recvbuf, recvent,

recvtype,comm, ierr)

Synchronization: When necessary, all the processes within a communicator can

be forced to wait for each other although this operation can be expensive
MPI Barrier (comm, ierr)

How to time your MPI code

« Several possibilities but MPI provides an easy to use function called
“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of
time in the past.

FORTRAN: double precision MPI WTIME ()
C: double MPI Wtime ()

starttime=MPI WTIME ()

... program body ...
endtime=MPI WTIME ()
elapsetime=endtime-starttime

Debugging tips

Use “unbuffered” writes to do “printf-debugging” and always write out the

process id:
C: fprintf (stderr,”%d: ..”,myid,..) ;
Fortran: write(0,*)myid,’: ..’

If the code detects an error and needs to terminate, use MP1_ABORT. The

errorcode is returned to the calling environment so it can be any number.
C: MPI Abort (MPI_Comm comm, int errorcode) ;
Fortran: call MPI ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
C: if (isnan(var))
Fortran: if (var /= var)

Use a parallel debugger such as Totalview or DDT

References

Keywords for google “mpi”, or “mpi standard”, or “mpi tutorial”...
http://www.mpi-forum.org (location of the MPI standard)
http://www.lInl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/

MPI on Linux clusters:
— MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
— Open MPI (http://www.open-mpi.org/)

http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Example: calculating = using numerical
Integration

#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
int n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
FILE *ifp;

ifp = fopen("ex4.in","r");
fscanf (ifp, "%d", &n) ;

.
C version
printf ("number of intervals = %d\n",n);

h = 1.0 / (double) n;

sum = 0.0;

for (1 = 1; i <= n; 1++) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

pi = mypi;

printf ("pi is approximately %$.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));
return 0;

#include "mpi.h"

#include <stdio.h>

#include <math.h>

int main(int argc, char *argvl[])

{

/*

int n, myid, numprocs, i, J, tag, my n;
double PI25DT = 3.141592653589793238462643;
double mypi,pi,h,sum,x,pi frac,ttO,ttl,ttf;
FILE *ifp;

MPI Status Stat;

MPI Request request;

n=1;

tag = 1;

MPI Init (&argc, &argv);

MPI Comm size (MPI COMM WORLD, &numprocs) ;
MPI Comm rank(MPI COMM WORLD, &myid) ;

tt0 = MPI Wtime();

if (myid == 0) {
ifp = fopen("ex4.in","r");
fscanf (ifp, "%d", &n);
fclose (ifp);

//printf ("number of intervals = %d\n",n);

}

Root reads
Input and
broadcast to all

Global communication. Process 0 "broadcasts" n to all other processes */

MPI Bcast(&n, 1, MPI_INT, O, MPI_COMM WORLD) ;

Each process calculates its section of the integral

/*

and adds up results with MPI_Reduce

h 1.0
sum 0.0;
for (i = myid*n/numprocs+l; i <= (myid+1l) *n/numprocs; i++) {
X = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

/ (double) n;

}

mypi = h * sum;
pi = 0.; /* It is not necessary to set pi = 0 */

Global reduction. All processes send their value of mypi to process 0
and process 0 adds them up (MPI SUM) */
MPI Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM WORLD) ;

ttf = MPI Wtime () ;
printf ("myid=%d pi is approximately %.16f, Error is %$.16f time = $10f\n",
myid, pi, fabs(pi - PI25DT), (ttf-tt0));

MPI Finalize();
return O;

Thank you...

Blocking communications

User mode Kernel mode
J—, e The call waits until the data transfer
% ﬁ\ 753‘Shl.rf -
. Is done
o | TR T o gmaton — The sending process waits until all
U sendenta o e data are transferred to the system
e fom send .&< 5?2‘;“* a the receiving buffer (differences for eager vs
rendezvous protocols...)
— The receiving process waits until all
sestimode o e etk data are transferred from the system
gjgrfj»;r:\: ‘." sysbuf at the sending bUffer tO the reCelve bUffer
end | . - -
109955 | Betun from receive ,&< Comdnrom syt » All collective communicationsare
1 Subroutine _ W j blocking
W ‘_,/ sysbuf

Process
0

Process
1

Non-blocking

User mode Kernel mode
%////7"//; ooy sysbuf
Ny

Call send Subroutine /

™

Returnfrom send <7

N

L —
A
Copy data from
g sendbuf to sysbuf
Subroutine |
v

Send/data to the
syshiuf at the receiving
d

\

User mode

Kernel mode

Call receive Subroutine.4

A 4

P i

Return from receive
Subroutine

racvbuf

P

Receive data from the

sysbyf at the sending
end
Copy/data from sysbuf
¥ to recvbuf
mm,

sysbuf

/

Returns immediately after the
data transferred is initiated

Allows to overlap computation
with communication

Need to be careful though

— When send and receive buffers
are updated before the transfer
Is over, the result will be
wrong

Non-blocking send and receive

Point to point:

MPI Isend (buf,count,datatype,dest, tag,comm,request,ierr)

MPI Irecv(buf,count,datatype, source, tag,comm, request,ierr)
The functions MP1_Wait and MPI_Test are used to complete a nonblocking communication

MPI Wait (request,status,ierr)

MPI Test (request,flag,status,ierr)

MPI1_Wait returns when the operation identified by “request” is complete. This is a non-local
operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it
returns “flag = false”. This is a local operation.

MP1-3 standard introduces “non-blocking collective calls”

