
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Real-time events associated with human activities is catching rapid pace due to feature and function rich mobiles like the

smartphones. These devices not just facilitate users to seek access to information derived from large data sources, but also enable them

to add data as sources to equally large amount of data repository. One such interesting and widely used application is a location based

navigation service. This application derives its utility based on large amount of geo-spatial data repository overlaid with current events

happening in the neighborhood of user interest. However, because of amount of data that needs to be handled for processing, most of

the times these applications process either static data or use trends based on historical information. What really increases the utility of

these locations based services is modulation to real-time changing events. This paper identifies three key characteristics that need to be

addressed to fulfill this gap, namely timeliness in responding to user queries based on changing events, data repository to support such

functionality while preserving the desired user privacy. Here we present the three facets to a navigator application based on the above

three characteristics and demonstrate how its utility can be improved using compute clouds.

Index Terms—Internet of Things (IoT), Compute cloud, location based services, Real-time scheduling, dynamic priority, soft

deadline, distributed storage strategy, nine-cell-grid data distribution, load balance, user privacy and data obfuscation.

I. INTRODUCTION

Internet of Things (IoT) is the upcoming trend in usage of

internet to connect physical objects worldwide. Extension of

cyber physical capabilities to mobiles through smart phones is

one such extensively used example. The data dimension

associated in this active space is large since most mobile

applications thrive on real-time event information. One

popular example is the Google navigator application. The

Google-maps data associated with this application is estimated

to be around 21 Petabytes [1]. While an individual instance on

a user phone may use a limited subset of this data, the interest

is about live events occurring in and around this data. So

storing and using updates on this information adds an extra

dimension to this data.

GPS based location services on smartphones are handy tools

for many travelers and act as easy navigational aids. Here,

they are the clients for many utility based applications that the

user has come to depend on. These smartphones can also be

likened with sensor devices when they collect and provide

data that are used by location based service providers. What is

specific about these devices is that they are constrained

devices and can do limited computation or store limited

amount of data. What is interesting about these applications is

that they need the essence of observation over large data and

maybe large period of times. This is where the compute clouds

offer the versatile platforms required to host the huge data

generated by these devices and enable the build of interesting

applications over this data as demanded by varying user needs

[35].

GPS based applications have proven to be effective in

providing useful navigational and utility associated

information to the traveler. Applications that aid building of

smart cities like disaster warning for earthquake prone areas,

waste management and disposal monitoring by municipal

corporations under clean cities initiatives, EMF level warnings

for health hazards near nuclear or wireless equipment and

towers, etc. are now becoming ubiquitous. However, they tend

to become limited if these applications cannot modulate to

changing events and associated data change relating to the

associated events. The three key properties such applications

need are:

1. Location based services need to provide timeliness in

responding to user queries.

2. GPS applications often have to handle large amount

of data pertaining to location. Data distribution that is

suitable to meet real-timeliness to these services is

desirable.

3. User privacy is important in these applications since

most clients also act as sensors to feed data into the

system. It is desirable that application specific

information is passed on without disclosing other

data related to the participating user.

This paper details case studies associated with these three

aspects in the following sections. The explorations of these

ideas are carried out using road navigation application as the

example. While the examples chosen here relate to GPS based

applications, it is easily perceivable that for many IoT

scenarios the three properties highlighted here indeed a reality.

A. Real-time routing for GPS based navigation applications

Routing in road networks is an old problem with renewed

interest. The current focus is trending on how to extend real-

timeliness to this problem. Navigational queries are normally

in the form of seeking information on shortest path between

two points in the geographical space. While many algorithms

exist to speed up the traditional Dijkstra's algorithm for

computing shortest paths in static road networks [2][3][4],

only few have shown applicability in the dynamic case

adapting to traffic updates on the road network. Most

Cloud Framework for IoT associated GPS

location based applications

J. Lakshmi, S. K. Nandy, Aakriti Gupta, Pavan Kumar Akulakrishna, Vaibhav Ankush Kachore

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

algorithms either use history based modelling of road traffic to

compute the travelling time, neglecting the real time updates

or distributed algorithms are used which let the client decide

which way to go based on its local view of the graph and

updates relevant to it. There are limitations to both of these

approaches. Firstly, most of these applications depend on pre-

defined databases that have not been designed to manage real-

time updates associated with various events in locality.

Secondly, the route computation requires global viewpoint

which involves larger data with associated updates. This

mandates involvement of higher and mostly on-demand

computational capacity and this makes a case for a compute

cloud backend to support the real-time requirements for such

applications [33].

B. Efficient Storage of Big-Data for GPS based navigation

applications

Navigator and maps kind of applications can potentially use

large amount of data for a variety of applications that are

associated with route information. The nature and format of

the data collected depends on the sensing method used, of

which GPS is currently the most popular. Most of these

applications today are limited to using static data with current

location. However, location based GPS applications need real-

time responsiveness and are location-sensitive. GPS data is

time-variant, dynamic and large. Current methods of

centralized or distributed storage with static data impose

constraints on addressing the real-time requirement of such

applications. Here we evolve a methodology of storage

mechanism for the GPS application's data that can capture and

respond to real-time changes. In our approach, data is

partitioned into cells giving priority to Geo-spatial location.

The geography of an area like a district, state, country or for

that matter the whole world is divided into data cells. The size

of the data cells is decided based on the previously observed

location specific queries on the area. The cell size is so

selected that a majority of the queries are addressed within the

cell itself. This enables computation to happen closer to data

location and thus eliminate data communication overheads.

We also build some data redundancy, which is used not only

to enable failover mechanisms but also to target performance.

This is done by nine-cell approach wherein each cell stores

data of eight of its neighbours along with its own data. Cells

that have an overload of queries can easily off-load some of

their workload to their near neighbours and ensure timeliness

in response. Further, effective load balancing of data ensures

better utilization of resources. Experimental results show that

our approach improves query response times, yields better

throughput and reduces average query waiting time apart from

enabling real-time updates on data [34].

C. Data Obfuscation to ensure privacy for users in GPS

based applications

Incorporating real-time responsiveness to user queries and

choosing data storage mechanisms that enable such processing

are fundamental to most IoT based applications. The third

facet to this class of applications is the amount of personal

information that can be made visible while enabling specific

functionality to the user query. This is particularly true to

smartphone like appliances since these devices not just extend

features to applications but they also are sensors to gathering

real-time information. Crowd-sourcing in today’s context is

very common and many users provide extremely useful and

relevant information [18][19]. However, while event

associated information is what the user really wants to

disseminate, unfortunately, personal information associated

with the user like his identity and location are also transferred.

This information slowly finds ways into other usages like

advertisements, tracking etc. Users are increasingly expressing

concerns about such information being used by unknown

agencies for unknown purposes [19]. Traditionally data

encryption techniques have been in use to hide personal

information from public consumption. Any attempt to access

such data needed specific keys for decryption. While the

notion of associating access permissions to end-use based on

identification are useful, encryption and decryption of data are

compute intensive and can be constraining on IoT scenarios.

What is really needed is to be able to pass on useful

information without losing out on privacy related information.

Hence the need to identify mechanisms for data obfuscation

wherein the responses to user queries can still be real-time

without any compromise on the source information provider’s

privacy. In the associated study we dwell on some of the data

obfuscation techniques that can be useful in GPS based

location applications.

The following sections are organized as follows: Section II

describes a published study [33] on a proactive framework for

route updation based on real-time events in a GPS based

navigation application; Section III describes a storage strategy

[34] for the same application; Section IV highlights the

importance of preserving privacy in location based services

and observes some recent advances in this area; Section V

brings up the challenges and directions for future research in

view of the increasing interest in both IoT and compute

clouds; Section VI concludes the paper with some musings on

how this work can be furthered.

II. FRAMEWORK FOR REAL-TIME ROUTING IN GPS

APPLICATIONS

Navigational applications mostly deal with the routing

problem, wherein the shortest path between two given end-

points is found. The path computation was traditionally based

on reducing the physical distance of travel. With the

increasing availability of rich time dependent data in the form

of current traffic, weather conditions etc. and methods to

compute its impact on the travelling time in the given road

segment, location based services are increasingly becoming

more demanding and parametric [5]. This mandates

involvement of higher computational capacity and hence the

need for a compute cloud backend to support the real-time

requirements for these applications.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

In this study the routing problem is modelled as a real time

job scheduling problem where jobs are the shortest path

queries submitted by the users and deadlines are computed on

the fly depending on the user characteristics (current location,

speed group, updates on real-time events, etc.). A pro-active

framework is built which gets relevant data updates based on

real-time updates, that affect a specific user query and the

results are communicated back to the user without them

specifically asking for it. This is done by sending revised route

to the user before user takes the next turn on the pre-specified

path. Potentially any routing algorithm [8][9] that is capable of

dealing with real time network updates can be used to

compute shortest path jobs in our frame-work; we demonstrate

results with Dijkstra's algorithm.

A. Motivation

Many algorithms reported in recent literature, use history

based modelling of road traffic to compute the travelling time

[6][7][11][12]. They neglect the real time updates completely

or accumulate the updates over time and adapt the model of

road traffic accordingly [13]-[17]. But with the real time

updates being available along the network, routing systems

can now use it to provide better utility to its users. One

common limitation of all these approaches is that after route

computation, user has to specifically ask for route updation,

when a refreshed route query is registered and computed using

the current location. In this work, we instead propose a

proactive system, which continuously tries to track the user

and any updates on the path that the user is on. Consider the

scenario in Figure 1. Here, initially when the user asks for a

route from point A to point B, the system computes it as A-P-

Q-B (Figure 1 (a)). Upon getting this result, user takes the

road segment AP and starts moving. However, due to some

event (an accident for example) as shown in Figure 1(b),

traffic on edge QB has started slowing down, making A-P-R-

B a more favorable path (Figure 1 (c)). If however, the system

fails to communicate this to the user before she starts

travelling on the road segment PQ, then this user ends up

travelling on a less optimal path in spite of the system being

able to prevent it. A proactive system, which updates the route

for its users based on latest information along the network can

avoid such scenarios and make sure all the information that it

possesses is used to benefit maximum users.

Figure 1: Example depicting the requirement for proactive route

updates.

The other trend followed in related work is to use distributed

algorithms which let the client decide which way to go based

on their local view of the graph and updates relevant to it [15].

Such approaches offer limited utility particularly in view of

recent updates based on events that are visible on global view..

In the next section, we propose a proactive framework, which

deals with real time updates and tries to communicate the

results back to the user in time, followed by our approach for

query dependent route computation.

B. Proactive Framework for route updation

Routing in road networks is modelled as shortest path

problem on a graph with positive edge weights. Users pose

queries to find optimal paths between a source and a

destination, and navigation systems typically respond to them

in a best effort fashion. As discussed in the previous section,

route re-computation is of utility to it's users if network

condition changes and should reach them before they take the

wrong turn. To enable this, we model the problem as a real

time job scheduling problem, where such re-compute jobs

come with a deadline.

Overall system model is shown in Figure 2. Fresh jobs

enter in the job queue from one end, and are removed from the

job queue for computation from the opposite end. The

scheduler then adds a refresh job to the queue so that user can

be updated about the changing network conditions and the

path that has become more suitable as a consequence. These

refresh jobs come with a deadline, which decides their priority

and appropriate place in the job queue. The scheduler decides

to execute the refresh job if the deadline to compute this next

job has not expired otherwise it is dropped.

We make the following assumptions: Users can be polled

for their current location and some mechanism is in place

which analyses the graph updates in the form of current traffic,

weather conditions etc. and appropriately adjusts the edge

weights in the graph. For our purpose, we assume the edge

weights represent the time it would take to travel on the road

segment represented by the edge.

I. Defining a Job

Jobs are the shortest path queries submitted into the system

either by the users, or by the system itself in response to

updates along the network. Three categories of jobs are

defined: fresh, refresh and redo as follows:

While fresh jobs are added by the users, refresh jobs are

system generated as a proactive response to the changing

network. Redo jobs can either be generated by user or system

itself.

 fresh job: Represents a new user connecting to the

system, asking for a shortest path. Each fresh job is

given a unique ID which represents this user.

Subsequent refresh and redo jobs carry forward this

same ID.

 refresh job: Represents a case when user is following

the path and system pro-actively decides whether the

user should continue or switch to a different path.

 redo job: Represents scenario where system was late

in giving response to the user, who is now on a

different path. Or the user chooses to take a different

path and requests for re-computation based on current

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

location. Presently, in our implementation we treat

these jobs as fresh jobs in terms of scheduling

priority.

All jobs in the system are aperiodic and independent of each

other; they have no precedence relationship among them. All

jobs are designed to be non-preemptive to enable relevance of

computation with updates within their deadlines. Job

scheduling is dynamic priority-driven. Job priority can change

based on entering jobs or ageing factor, hence the priority

assigned to a job initially when it enters the queue can change

during its course of queue traversal till the time it is actually

executed.

Figure 2: System Model for proactive route updation

Fresh jobs are submitted without any deadlines, and are added

at the back of the job queue (Figure 2, block [i]). So their

computation depends upon the length of job queue at the time

of their addition. After any shortest path computation is

completed (in the form of any job), a refresh job with source

as the next hop and the same destination is added (Figure 2,

block [vii]). For example, in Figure 1 after job (A,B) is

computed, job(P,B) is added as a refresh job. Refresh jobs

come with a deadline since the result of these jobs must be

computed before the user reaches the next turn (vertex P in the

above example), otherwise the user will go on the previously

specified path. This ensures that for a given user ID, at-most

one job exists in the system at a given time. A refresh job’s

priority is fixed based on its deadline and the current queue

length. As a result when a refresh job is added into the queue,

the earlier fresh job’s priorities will change depending on

where the refresh job is inserted. At the time of insertion

priority re-calculation is done accounting for ageing also for

the existing jobs in the queue. Redo jobs get added into the

system when the system identifies that user has changed his

route or when a user specifically requests a different route.

These jobs normally get appended at the end of the queue.

II. Computing Job Deadlines

Refresh jobs come with a scheduling window, marked by

two timestamp values that are unique to each refresh job.

Refresh jobs should not be scheduled too soon because it is

not very useful to re-compute a user's route as soon as they

have started. Thus, the scheduling of a refresh job must be

delayed as much as possible so we can get the most recent

updates on the graph. We call Timestamp1 as the maturity

time for a job, after which it is eligible for scheduling. A

refresh job must not be scheduled before its Timestamp1 and

must not be scheduled after its Timestamp2 value, which

marks its deadline. These jobs have a deadline since the

system must send the results back to the users before they take

any turns forcing them to travel on a suboptimal path. These

timestamp values are computed as follows and are illustrated

in Figure 3.

Figure 3: Illustration of Timestamp computation for refresh jobs

 v)Time(s,* timeCurrent =Timestamp1  (1)

 v)(s,timeCurrent =Timestamp2 Time (2)

Timestamp2 timeScheduling Timestamp1  (3)

Here α is any constant in the interval (0,1) which is used to

delay the execution of the refresh job so that sufficient updates

can be included. Function time(s,v) returns the time it would

take for user to travel from point s to point v in the current

network scenario. Δ is the upper limit on the estimated time

taken to compute the shortest path and communicate the result

back to user. Higher α value indicates that the route will be

computed as late as possible and routing window will be

narrow. α is used in the computation of the maturity time

(Timestamp1) of a job and Δ is used in the computation of the

deadline (Timestamp2) of a job. While scheduling of a job

after Timestamp1 ensures that the latest updates in the

network are included in the route computation, scheduling

before Timestamp2 ensures that the results are sent to the user

in time before she reaches the next junction and hence can

take the appropriate turn. The job is dropped if the current

time exceeds its Timestamp2 value since the computed result

would reach the user after she passes the decision point in his

path (Figure 2, block [iv]).

III. Job Scheduling

The job scheduling algorithm used in the framework is listed

below. Relative priority between two refresh jobs is calculated

using their deadlines or Timestamp2 values. Earliest deadline

first algorithm with Timestamp2 as deadline is used to find the

next job to be scheduled for all the jobs that have matured at a

given time. Relative priorities between refresh jobs and the

fresh jobs are dynamically assigned using aging for fresh jobs.

A job queue is maintained, such that at any given time the first

job in the queue is having the highest priority for scheduling.

If, the job is a refresh job and has not matured at the time, then

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

next job is checked and so on. Insertion in the job queue

(Figure 2, block [viii]) follows the rules as described below.

Assume queue state as shown in Figure 4(a). Here Queue is

maintained as a linked list, where cell with 'R' denotes a

refresh job and 'F' denotes a fresh job. Queue head is on the

left, from where next job to be computed is searched.

Case I: If a fresh job is to be inserted in the job queue, it is

added in the back as shown in Figure 4(b).

Case II: If a refresh job is to be inserted, such that its

Timestamp2 value falls between two consecutive refresh jobs,

it is simply added in the middle as shown in Figure 4(c).

In case there are fresh jobs in between, then depending upon

the priority, the position of the new job changes. If refresh job

is given higher priority over fresh jobs then case III is

followed as shown in Figure 4(d). If fresh job is given higher

priority than case IV is followed as shown in Figure 4(e). If

the relative priorities of fresh jobs and refresh jobs are

dynamically computed, then any of the case III, IV or V

[Figure 4(f)] can be followed. In this framework, dynamic

priority is assigned between fresh jobs and refresh jobs by

giving an aging factor to the fresh jobs. Initially Case III is

followed, giving higher weightage to a refresh job over fresh

job. But, each time a fresh job is pushed back in the queue to

make room for a refresh job, its aging factor increases. If the

age increases beyond a threshold, all other refresh jobs are

added behind it following case IV and case V. Addition of

refresh job is explained in algorithm2 below.

When a fresh job enters queue, its age is 0. After every

insertion of a refresh job before it, its age is incremented. If its

age value exceeds some predefined threshold, then it gets

higher priority than all the other refresh jobs that will enter the

system from then on. Consider two refresh jobs denoted as R

and fresh job as F.

Figure 4: Job Queue Insertion mechanism illustration

The following equations define the relative priorities.

If, Timestamp2(R1) < Timestamp2(R2), then:
)2(Pr)1(Pr RiorityRiority  (4)

If, AgingFactor(F) < Threshold, then:
)(Pr)(Pr FiorityRiority  (5)

If, AgingFactor(F) ≥ Threshold, then:

)(Pr)(Pr FiorityRiority  (6)

C. Case Study and Results

This section describes a case study and results based on the

road networks of various cities of USA as provided by the

Dimacs Implementation Challenge [10]. Specifically, the

Great Lakes, USA (LKS) graph instance, which has 2758119

vertices and 6885658 edges, was used for testing the proactive

real time framework. All experiments were performed on a

system with 8GB memory, Intel Core2 Quad CPU Q9550 @

2.83GHz processor and 300 GB disk. The framework

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

implementation is C based, using pthreads library. The graphs

are static in nature, and the edge costs represents the time it

takes to travel on the road segment represented by the edge.

Due to the lack of availability for dynamic datasets, we used

random updates along the graph to demonstrate our model.

Random shortest path queries are generated using internal

Unix bash function RANDOM.

 Main thread, called the scheduler, initializes a fixed number

of worker threads whose job is to compute shortest path and

add a refresh job if the destination hasn't been reached yet.

Scheduler manages the job queue, and selects the next job to

be computed by traversing the queue from the head. The first

fresh job or matured refresh job is picked and given to a free

worker thread. A separate thread focuses on updating the edge

weights along the network. New jobs are regularly fed to the

scheduler in a random order.

 In this study the basic comparison is with that of FIFO

queue setup wherein first-in-first-out priority order is

intrinsically maintained. This correlates to the current scenario

where requests are responded to in their order of arrival. For

our framework FIFO responds similar to the best effort case

since job deadlines are not maintained. The proposed

framework on the other hand prioritizes jobs based on their

deadlines and dynamically changes the priority using aging

principle. The aging factor for fresh jobs for our simulation is

fixed at 3. This value ensures that at most three refresh jobs

can push a fresh job back in the queue. Also, computations

whose results cannot complete within their deadlines are

dropped.

For the simulation, keeping everything else same, jobs are

added in the FIFO queue using their Timestamp1 values and

are computed in first come first serve basis without any regard

to their deadlines. If a job is computed after its Timestamp2

value expires, then it is considered as wasted computation and

termed as dead job. The number of dead jobs in FIFO is then

compared with the number of dropped jobs from the proposed

framework.

Figure 5: Simulation with α = 0.5 and two worker threads

Figure 5 shows the simulation results with α = 0.5. Here,

total queries (fresh and refresh) submitted are shown in blue,

red bar shows the number of dead computations being made in

case of FIFO. Yellow bar shows the number of dropped jobs

in the proposed framework. The graph clearly demonstrates

two key results. First the number of dropped jobs in the

proposed framework is lower than the dead jobs in the FIFO

queue. This is because of the dynamic priority mechanism

which schedules jobs based on their deadline. By correctly

ordering jobs based on their deadline, we are able to attend to

more jobs. Secondly, in our framework total number of jobs

Also increased since a lot of wasteful query computation is

avoided. The yellow bar indicates jobs that were not executed

since it was not possible to meet their deadlines, while the red

bar indicates jobs that were executed but found to be of little

use since they completed execution after the deadline. This

indicates that by assigning deadlines and ordering job

execution based on dynamic priorities that are derived from

the deadline constraint and by avoiding computations that are

bound to miss deadlines, the proposed framework offers better

utilization of compute resources and also increased job

throughput. Further, it can also be seen that for an increasing

number of total queries, number of dead jobs by FIFO also

increases, and stays higher than the number of dropped jobs in

our framework.

Another parameter that affects the way computations are

scheduled is α metric. As explained earlier, this metric decides

how soon the refresh jobs can be launched once a user chooses

a traversal path. Higher α means that the refresh jobs are

delayed longer enough to include most recent updates in the

results. However, this potentially can result in increased

number of dead and dropped jobs because there is not enough

time to complete the refresh jobs because of delayed

launching. In this case it is better to use our framework as

FIFO will spend a significant percentage of time in wasteful

computations. Decreasing the value of α means that it is not

required to include very recent updates along the network in

the path computation, in which case our framework works

similar to FIFO. Figure 6 shows simulation results for α = 0.6

for the same number of total queries.

Figure 6: Simulation with α = 0.6 and two worker threads

III. EFFICIENT STORAGE STRATEGY FOR BIG-DATA IN GPS

APPLICATIONS

From Google Maps to consumer Global Positioning System

(GPS) devices, society has benefited immensely from routing

services and technology. The issue with these applications is

that they derive their utility by analysing large amount of data

from many sources and hence most applications today use

only static information. Higher utility for these applications is

possible if they can adapt to changing events in real-time. In

order to achieve this, better computing and storage

mechanisms need to be explored to store and process

information based on real-time events surrounding the areas of

interest. Interesting aspect about this is that, the areas of

interest and events associated with it are highly specific to an

application and also the user queries associated with the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

application even though all these might be using the same

basic source of geo-spatial information.

Here we specifically look at the GPS based data and its

usage to integrate real-time data updates regarding Geo-spatial

networks from the perspective of data distribution and storage

such that applications can be built for real-time

responsiveness. Methods to store Geo-spatial data are either

centrally located or distributed [21] [27][28][29][30]. Most of

the data distribution strategies are based on one time

computation of the query response. Extending such algorithms

to support time-sensitive decision making is a challenge. Not

only the limited time response but also accurate response is

what is intended. Hence, an efficient mechanism that is

effective to meet application response deadlines is what is

desired.

Generally, in navigation kind of applications a query in

real-time is of the form compute route from A to B with

special parameters. Distributed storage gives chance to

parallelism when many different route queries have to be

answered to achieve speedup. Further, in order to address the

need of real-time updates we need to have efficient

mechanisms to store, manage and distribute data. The storage

mechanism is critical in the computation of route from one

location to another. The basic idea is to organize data in a

distributed way and always identify and associate the

computation on the data to where it is located. This allows for

reduction in time for responding to the query since

communication overheads are reduced.

The key contributions of this work are:

1. Designing of a storage mechanism that exploits

redundancy, to reduce the communication

overheads and failure of nodes.

2. Schedule computation closer to the data location

and thus reduce latencies associated with data

communication overheads.

3. The data load is balanced over the nodes with

some relaxation to ensure better utilization of

resources and make sure that load balancing is not

a frequent operation.

The following sections detail the NineCellGrid

methodology proposed for storing the data and describes how

computations in routing query can be generated using this

mechanism. Experimental results demonstrate observations of

being an effective storage strategy.

A. NineCellGrid Method

The focus of the design approach here is to address the

requirement of storing time-based updates on the geo-spatial

data. We choose the distributed dissemination method and use

the NineCellGrid method for storing data. In this method, data

is distributed not based on the available storage nodes, but

based on the region of area on which the computation is

intended.

I. Design Approach and Storage Strategy

The GPS data that is concerned to a location is first

decomposed in such a way that entire earth is mapped with

a mesh/grid of cell dimension L X L, where L is some fixed

value (explained in the following sub-section), as shown in

Figure 7.

Figure 7: Grid on the Geo-spatial map of earth

Further, in this approach each cell can hold the data of 8 other

cells that are present adjacent to it as shown in Figure 8.

Hence, the query that can be inherently answered by a cell can

now be answered by all the 9-adjacent-cells that contain that

data. Each cell is representing a unique L X L area on earth as

in Figure 7.

Figure 8: Cell N, with identity [Latitude, Longitude] in

NameTable

II. Name Table

A table called NameTable (Table 1) that is indexed with

row key as the 'Latitude' and column key as the 'Longitude'

which indexes the address of the node which is responsible for

that cell or region in reality of dimensions L X L. The actual

region that is covered by the node is a square of four vertices

mentioned as [(Latitude, Longitude),(Latitude + L,

Longitude),(Latitude, Longitude + L),(Latitude + L,

Longitude + L)].

Table 1: NameTable - Here f and g are mappings from miles to

Longitude and Latitude units

III. Calculating Dimension L of the cell

Each cell is of length L, where L is in the standard units of

Longitude and Latitude. The reason for replicating nine cell's

data within one cell is to make sure that any 'A-to-B route'

query of Euclidean distance ≤ 'L' can be addressed by a single

cell. L is chosen in probabilistic manner based on historical

data considering the previously observed queries.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Consider all the possible locations of source A, in query "A-

to-B" within a cell. This would be a filled square of the cell as

shown in Figure 9(A). The locus of point B, such that B is no

more than L Euclidean distance away from A is a rounded

square with corners as a quarter circle of radius L as shown in

Figure 9(A). To accommodate all the data within a single cell,

the best fit would be this Nine Cell Grid shown in Figure 9(B).

That is, all the surrounding 8 cells data to be located in this

central cell so that it has the complete coverage of B in any

case without having to communicate with neighboring

cells/nodes.

A general query that is processed in these GPS-applications is

to calculate the route from location A to location B. Given

such a query, the L value is so chosen that any query made by

the traveller using this application has the A-B Euclidean

distance not more than L for 80% of the total queries. In order

to achieve this criterion, L is chosen as follows:

𝐿 = 𝑚𝑖𝑛 (𝑋 ∶ 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑃% 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 ≤
 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑋) (7)

Here, P is the percentage that gives better performance.

Figure 9: NineCellGrid – (A) Locus of B with A inside the cell

(left side picture); (B) Best-Fit for all B with data in the same cell

(right side picture)

Choosing the correct value of P is critical to achieving the

design goals and indeed dictates the storage strategy. For the

dataset used in the experiments considering P = 80% of the

previously observed queries on the dataset, we get the optimal

performance (described in results section). Interestingly, if the

percentage is considered high, that is something close to 100%

it tends towards centralized storage pattern. On the other hand,

if a low percentage is considered then it tends to a scenario

wherein most queries will require distributed computation or

high data communication. A judicious selection of L will

decide the maximum utility that can be derived out such

applications.

IV. ‘A-B’ Route query Case Studies

In the ninecellgrid method, some extra information is stored

for the edges of the graph that are cutting the grid. This

information is kept with the vertices of those edges, also called

the limiting vertices. For queries that need to cross a cell these

limiting vertices provide the necessary information about the

traversal edges and the associated data location node. Based

on the computation strategy, either the data is fetched from

that node or computation is forwarded to that node. Different

scenarios of an A-B query that can arise and how they are

addressed based on this storage method are illustrated below.

Case 1: Both A and B lie in the same cell of L X L

Figure 10: Route query where A and B lie in same cell

With both A and B being in the same Cell (Figure 10), the

query can be answered by 9 Nodes. Based on the current load

on the node an appropriate idle or less loaded node can be

selected to process the query. In our setup, the initial

assignment is to the central node which A and B. If that node

is busy, then the next preference is given to that cell whose

sum of Euclidean distances from center of the cell to source A

and destination B is least. Job-scheduling is done this way to

ensure better task load balance and yield better throughput.

Case 2: A and B lie at 1-Cell distance apart

Figure 11: Route query where A and B lie at 1-cell distance apart

In this case number of nodes that can compute the query are 4-

6 nodes. Figure 11 shows the scenario of 4 nodes. In this case

the priority is given to the node with least sum of Euclidean

distances from center of this node to both source A and

destination B. However, based on the task load the node,

which has next least sum of Euclidean distances from center

of the node to A and B, is considered and so on.

Case 3: A and B lie at 2-Cell distance apart

Figure 12: Route query where A and B lie 2-cell distance apart

In this case number of nodes that can compute the query are 1-

3 nodes. Figure 12 shows the scenario of 1 node. It has lesser

flexibility than the previous two cases in terms of nodes for

scheduling query processing. But, this case happens with the

probability of less than 0.2 because of L. Similarly, in this

case the priority is given to the node with least sum of

Euclidean distances from center of this node to both source A

and destination B.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Case 4: A and B lie at a distance of more than 2-cell distance

apart

If the query is such that the end point of the query A and B are

more than 2-cell distance apart, data from the nearest

neighbours, based on the information from the limiting

vertices, is gotten to the cell that initiated the computation.

The other way to handle such a query is to send the job state to

the neighbour node whose data is needed and resume the

process on that neighbouring node. In order to get complete

data of the region, a node has to communicate with at-most

11.11% of the total nodes only thus reducing query processing

latency to a large extent. Thus choosing the correct L is

critical to this storage method.

V. Load Balancing

Considering the geographical map of the earth and knowing

that road networks are restricted to land masses, uniform

distribution of data based on just the NineCellGrid will lead to

many nodes having data that is of little use. Hence, after

arriving at the value of L, data re-distribution across nodes is

necessary to equalize computational load across the nodes. It

is important to note that the storage strategy here assumes that

each node is both a data store and an execution node too. The

load balancing is done to distribute the data across different

nodes to handle query density on the region. The algorithm

used to load-balance is listed in the algorithm below.

The load is distributed and load balance is attempted with a

chosen relaxation parameter δ. Initially the data is distributed

to each L X L cell considering number of junctions/vertices,

roadlinks/edges, landmarks, etc. Mean of estimated load

across cells, called as M, is calculated. The load is balanced

with relaxation δ i.e., a cell is said to be balanced if its load

lies in [M-δ, M+δ]. Relaxation depends on logistics like

resources available, rate of data increase etc. To begin with

each cell with load less than M-δ is set to zero and its data is

transferred to one of its nearest neighbour that is having load

value more than M-δ. After this iteration, each will have zero

load value or load value greater than M-δ. Those cells with

load value greater than M-δ are shared by N nodes such that

after dividing the load value with N the resulting value lies in

[M-δ, M+δ]. This load balancing exercise improves resource

utilization.

B. Experimental setup and Results

Simulation studies on the application-level performance of

centralized, fully distributed and the proposed NineCellGrid

approach based data distribution models is presented in this

section. Simulations are achieved using MPI for task

distribution and Hadoop Distributed Filesystem [32] for data

distribution and storage. The same New York city dataset [10]

that was used for the routing experiments is also used here

(Figure 13).

Figure 13: New York City dataset actual coordinates

The load estimation of a node is done considering the

number of junctions/vertices, links/edges in the region

assigned to it. The value of the node's load is shown as the

sum of all these values. Figure 14 and Figure 15 show the load

distribution of the nodes before replication, after replication

and finally after the load-balancing respectively. These figures

show the load in color based on the value of load a node has.

Regions with water have low value of estimated load and are

shown with low color value in the scale. The cells with higher

load have higher color value in the scale i.e., towards red.

After the load balancing (Figure 15) the regions with less than

M-δ load values are assigned to nearest cell with load value

greater than M-δ. Hence, the regions associated with lower

load values move to lower color values.

Figure 14: Initial Load distribution before (left) and after (right)

replication

Here, the relaxation used is δ = 75. So, the load values in the

Figure 15 would be between 150 and 300 as the M is around

225 or zero.

Figure 15: NineCellGrid Load distribution after load-balancing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

To get a better perspective of the effect of load balancing,

Figure 16 Error! Reference source not found.and Figure 17

show the histograms of load distribution of the nodes before

replication, after replication and finally after the load-

balancing respectively. Comparing the load distribution before

and after replication it is observed that the maximum value of

the load before replication is one-ninth that of the load after

replication. This is due to the fact that replication is done

almost nine times. Figure 17 captures the scenario after load

balancing with δ=75. We notice that by load balancing the

nodes required for data distribution reduces significantly and

well below the naïve distribution before replication.

Figure 16: Histogram of initial load distribution before (left) and

after (right) replication

The selection of P, which denotes the query density for a

specific region based on historical observation data, which

determines the L value, is done based on the analysis shown in

the

Figure 18 (A). To begin with, taking 70% as the initial guess

it is increased in steps of 5% so as to get to the optimal

percentage. The graph shows 80% as optimal for this dataset.

Same value of P may not be applicable to different

geographical regions as the query density depends on the city,

country, etc. It is perceivable that different L values will

benefit different locations. Such derivation of L will hold

when this algorithm is extended to cover larger areas like a

district, state, country or the whole world. The study presented

here is limited to a single city and hence choosing one value of

L is justified.

The impact of different schemes of data distribution on

application performance is analysed by running a Dijkstra's

greedy algorithm for shortest path computation. MPI library is

used to simulate the algorithm. L value for the dataset New

York City is taken as 6.8 miles (considering P = 80%) from

NHTS (National Household Travel Survey) [31]. The

performance is measured as throughput representing the

number of user queries that can be answered in a given time

unit.

Figure 17: Histogram of NineCellGrid load distribution after

load balancing

Figure 18: (A) Execution times vs. Percentages of queries

with Euclidean distance of query AB less than L

(B) Throughput Comparison of various storage methods

Error! Reference source not found., shows the comparison

of throughputs for various storage methodologies. In Error!

Reference source not found. the notations, NineCellGrid

represents the proposed NineCellGrid Method, Zonal

represents fully distributed pattern, 'Centralized' represents

centralized storage pattern, 'CGWR' represents 'NineCellGrid

Without Replication', and finally 'DBMSAR' represents the

DBMS as replication (replication value of 5 taken). Each of

the methods is compared based on the throughput they yield.

This performance is measured against the workload of user

queries wherein the number of queries falling within the L

distance is varied from 55% to 95%, as represented by the x-

axis in Figure 18 (B). The total number of queries answered

by each setup is constant at 1000 queries. Graph in Figure 18

(B) shows 'Percentage of queries with Euclidean distance less

than L' vs. 'Throughput in Queries/Sec'.

Figure 19: Average Time Per Query Comparison of various

storage methods

The throughput of NineCellGrid starts dominating other

methods from 70% onwards. On comparing the throughput of

a general scenario of above 80% expectancy, it is seen that

NineCellGrid shows better throughput values than the others.

For the same set of compute resources, the difference between

the Fully distributed (zonal distribution of data) and

NineCellGrid is about 470 (810-340). Hence, it can process

about 300 more queries in a second.

Figure 19 shows the 'Percentage of queries with Euclidean

distance less than L' versus 'Average time per query taken in

seconds'. It is observed that the NineCellGrid storage method

has least 'Average time per query' after about 70% onwards.

Fully distributed has better 'Average time per query' before

70% because of the fact that they communicate relatively less

(A) (A) (B)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

at that stage. The other storage methods exhibit higher average

times. The centralized has highest since there is no data

parallelism. 'CGWR' (NineCellGrid without replication) has

relatively higher average times than NineCellGrid and Fully-

distributed since there is no replication at all, leading to high

data communication.

IV. DATA OBFUSCATION TO ENSURE USER PRIVACY IN GPS

APPLICATIONS

Incorporating real-time responsiveness to user queries and

choosing data storage mechanisms that enable such processing

are fundamental to most IoT based applications. The third

facet to this class of applications is the amount of personal

information that can be made visible while enabling specific

functionality to the user query. Traditionally data encryption

techniques have been in use to hide personal information from

public consumption. Based on the trust agreement between the

user and the service provider, information to decrypt is

distributed. Any attempt to access such data needs specific

keys for decryption. While the notion of associating access

permissions to end-use based on identification are useful,

encryption and decryption of data requires associated

software, is compute intensive and can be constraining on IoT

scenarios. What is really needed is to be able to pass on useful

information without losing out on privacy related information.

Hence the need to identify mechanisms for data obfuscation

wherein the responses to user queries can still be real-time

without any compromise on the source information provider’s

privacy or the end user data.

Based on this requirement, in this section we propose an

architecture that essentially obfuscates the user’s location

information when he is querying for a route from a source to

destination. The basic idea behind this is to change the

location of the desired source and destination to obfuscated

locations which are in the close neighbourhood of the

respective source and destination. The key idea is that, given

the route from the obfuscated source to the obfuscated

destination, it is possible to derive the path from the actual

desired source and destination. Following sections describe

how this achieved.

A. Architecture:

The intuition behind the novel architecture which is

describer here is to get trusted service by making use of

different independent untrusted services. The proposed

architecture provides user privacy in navigation applications

by using neighborhood finding location based services (LBS)

and an anonymizer. This protocol used by the architecture to

provide protection against various attacks is depicted in Figure

20.

Figure 20: Location Obfuscation System Architecture

In addition to the navigation server, which actually

computes the route from a given source-destination pair, we

have introduced two more services, namely, the Anonymizer

and Query Handler Service (AQHS) and the Neighborhood

Query Service (NQS). In this system following protocol is

used:

 Step 1: User queries for path between A to B to the

Anonymizer and Query Handler Server (AQHS).

 Step 2: AQHS removes the identification information from

this request and queries for neighbourhood locations of point

A and B to Neighbourhood Query Server (NQS).

 Step 3: NQS gives a list containing neighbourhood points of

point A along with distance of those points from point A.

Similar list is also sent for point B by NQS to AQHS.

 Step 4: AQHS takes a random point from neighbourhood

list of A, called A'. Similarly, AQHS takes a random point

from neighbourhood list of B and selects the point B'. The

AQHS then queries for path between A' and B' to Navigation

Server (NS).

 Step 5: NS sends an optimal path between A' and B' to

AQHS.

 Step 6: AQHS checks if point A and B are present on this

path. If point A and B are present on this path, then AQHS

filters out the path between A and B from optimal path

between A' and B' (Figure 21a) and sends that path to the user.

Let us assume that filtered path is not optimal. In that case,

just by replacing this path with optimal path between A and B,

it will be possible to get another optimal path between A' and

B' with lesser cost than the optimal path which is sent by NS.

This is a contradiction. Hence, this filtered path is optimal

path between A and B.

If in case, point A and/or B are not present on this path then

following 3 cases can occur:

Figure 21: Different cases for query processing

 Point A is not on the path between A' and B' (Figure

21b): In this case, AQHS filters out the optimal path

between A' and B from optimal path between A' and B'.

Now as point A is in neighborhood of point A', AQHS

makes an approximation of concatenating point A in

path A'B to get path AB and sends that path to user.

Note that path AB may not be an optimal path but

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

experiments show that for real world graph this

approximation works really well.

 Point B is not on the path between A' and B' (Figure

21c): In this case, AQHS filters out the optimal path

between A and B' from optimal path between A' and B'.

Now as point B is in neighborhood of point B', AQHS

makes an approximation of concatenating point B in

path AB' to get path AB and sends that path to user.

 Both points A and B are not on the path between A' and

B' (Figure 21d): In this case, as point A and B is in

neighborhood of point A' and B', AQHS makes an

approximation of concatenating point A and B in path

A'B' to get path AB and sends that path to user.

In this protocol, as queries are sent through the AQHS,

user's identity is hidden from NS. Moreover, actual location of

source and destination is also obfuscated from NS. Hence, this

architecture provides two layers protection to preserve user

privacy.

B. Experimental setup and Results:

 Simulation studies and results of proposed architecture are

presented in this section. All experiments were performed on a

system with 4 GB memory, Intel(R) Core(TM) i5-2430 CPU

@ 2.40GHz processor. Servers are made using flask which is a

micro framework for Python based on Werkzeug, Jinja 2 [36].

For evaluation of the services, clients are generated using

python based scripts. The architecture is evaluated on the basis

of 2 evaluation matrics i.e. delay and error caused due to the

proposed protocol.

 Table I lists the 4 USA road networks that are used for

experimentation [10]. The nodes in the graph represent the

intersection of roads. The edges of graph represent the roads in

that particular region.

 Actual query time is the time taken when a user queries

path from source to destination directly to navigation server.

Protocol query time is the time taken to serve query by using

protocol proposed in this paper. Figure 22 shows the

histogram of difference in actual query time and protocol

query time. In this figure, the X - axis shows difference in

actual query time and protocol query time in seconds, and the

Y - axis shows number of samples (queries). Figure 23 shows

histogram of percentage error in distance. Here, the X - axis

shows percentage error and the Y - axis shows number of

samples (queries).

 Complexity of single source - single destination Dijkstra

algorithm depends on topology of graph. It is observed that in

some cases, time required to get path AB is more than the time

required to get path A'B' where A' and B' are neighbours of

point A and B. NQS gives the list of all nodes which are

adjacent to node for which query has come. Time required to

get neighbourhood points and communication delays are of

the order of milliseconds. Hence, complexity of protocol is

actually complexity of Dijkstra algorithm. Due to these facts,

inFigure 22, difference in actual query time & protocol query

time follows a Gaussian distribution with center at 0.

(a) California and Nevada (b) Colorado

(c) Northeast USA (d) Florida

Figure 22: Histogram of difference in actual query time and

protocol query time

 It can be concluded from table II that on an average this

system works as good as the system in which user queries path

from source to destination directly to navigation server.

Moreover, this system provides user privacy. It is also

observed that percentage error in distance due to

approximation made in this protocol, is less than 0.2% in most

of the queries (more than 90% of queries). The number of

queries with percentage error more than 0.2% decreases

exponentially with very high decay rate. Thus, experiments

show that user privacy can be maintained without affecting

navigation results and without incurring significant overheads.

(a) California and Nevada (b) Colorado

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

 (c) Northeast USA (d) Florida

Figure 23: Histogram of percentage error in distance

V. CLOUD IOT FRAMEWORKS FUTURE DIRECTIONS

 To quote Doug Fisher, Intel corporate vice president and

general manager of the Software and Services Group “The rise

and ultimate success of the Internet of Things depends on the

ability for devices and systems to securely and reliably

interconnect and share information,” [20]. While it is

important to address the issue of IoT based interactions, it is

time to look at the emerging application in this scenario and

identify useful characteristics and traits of these applications

to build systems framework that can seamlessly support them.

This paper essentially does that. Here we have identified the

key characteristics that most location based services have to

adopt to, namely, adapting to changing real-time events, build

storage constructs to capture the data associated with the

changing events and modulate processing to the changes at the

same time maintaining the desired privacy of the user. In the

paper we choose the navigator as an example application and

demonstrate the methods that can be used to build such cloud

frameworks. We detail a real-time scheduling algorithm to

advise proactively navigator users on changing situation along

their traversal path. We also demonstrate a storage mechanism

that can aid such scheduling and computation. We are

currently working on the user privacy associated aspects of

this application and believe that interesting data obfuscation

solutions exist.

 Thinking futuristically we believe cloud platforms can

offer the rich and diverse applications hosted on IoT feature

enhancements desired for better utility. Many initiatives using

GPS based applications have proven to be effective and

useful. Emerging applications that aid building of smart cities

like disaster warning for earthquake prone areas, waste

management and disposal monitoring by municipal

corporations under clean cities initiatives, EMF level warnings

for health hazards near nuclear or wireless equipment and

towers, etc. are now becoming ubiquitous. However, all these

have limitations because at present they cannot modulate to

changing events and associated data change relating to the

impacting events. However, how a change effects an

application is highly localized to the application and it

necessitates all the three dimensions identified here. It would

be interesting to study and explore how different strategies

work for different applications and this can bring in innovation

in using the cloud as the versatile platform to experiment and

potentially even deploy future applications.
References

[1] Matt Petronzio, “11 Fascinating facts about Google Maps”, Aug, 2012,
Available: http://mashable.com/2012/08/22/google-maps-facts/

[2] E. W. Dijkstra, “A note on two problems in connexion with

graphs,”Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[3] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction

hierarchies: Faster and simpler hierarchical routing in road networks,” in

Experimental Algorithms. Springer, 2008, pp. 319–333.
[4] H. Bast, S. Funke, P. Sanders, & D. Schultes,”Fast routing in road

networks with transit nodes”,Science,vol.316,no.5824,pp.566–566, 2007

[5] P. Sanders and D. Schultes, “Engineering highway hierarchies,” in
Algorithms–ESA 2006. Springer, 2006, pp. 804–816.

[6] D. Delling and D. Wagner, “Time-dependent route planning,” Robust

and Online Large-Scale Optimization. Springer, 2009, pp. 207–230.

[7] G. V. Batz, D. Delling, P. Sanders, and C. Vetter, “Time-dependent

contraction hierarchies.” ALENEX, vol. 9, 2009.
[8] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a*: Efficient

point-to-point shortest path algorithms.”ALENEX, vol. 6, no. 2, 2006,

pp. 129–143
[9] Abraham Ittai, et Al, "Highway Dimension, Shortest Paths, and

Provably Efficient Algorithms", ACM-SIAM Symposium on Discrete

Algorithms, pages 782-793, 2010.
[10] 9th DIMACS Implementation Challenge: Shortest Paths, Available

online at :http://www.dis.uniroma1.it/challenge9, 2006.

[11] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.

[Online]. Available: http://igraph.sf.net

[12] J. Sankaranarayanan and H. Samet, “Query processing using distance
oracles for spatial networks,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 22, no. 8, pp. 1158–1175, 2010.

[13] Yuan J., Zheng Y., Xie X, and Sun G. T-drive: Enhancing driving di-
rections with taxi drivers intelligence. In Transactions on Knowledge

and Data Engineering (TKDE ’12).

[14] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John

Paul Sondag. 2007. Adaptive fastest path computation on a road

network: a traffic mining approach. In Proceedings of the 33rd

international conference on Very large data bases (VLDB '07).
[15] Vasilis Verroios, Konstantinos Kollias, Panos K. Chrysanthis, and Alex

Delis. 2008. Adaptive navigation of vehicles in congested road

networks. In Proceedings of the 5th international conference on
Pervasive services (ICPS '08). ACM, New York, NY, USA, 47-56.

[16] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. 2009.
Monitoring path nearest neighbor in road networks. In Proceedings of

the 2009 ACM SIGMOD International Conference on Management of

data (SIGMOD '09)
[17] Boriboonsomsin, K.; Barth, M.J.; Weihua Zhu; Vu, A., "Eco-Routing

Navigation System Based on Multisource Historical and Real-Time

Traffic Information," Intelligent Transportation Systems, IEEE
Transactions on , vol.13, no.4, pp.1694,1704, Dec. 2012

[18] Juan C. Herrera, Daniel B. Work, Ryan Herring, Xuegang (Jeff) Ban,

Quinn Jacobson, Alexandre M. Bayen, Evaluation of traffic data

obtained via GPS-enabled mobile phones: The Mobile Century field

experiment, Transportation Research Part C: Emerging Technologies,

Volume 18, Issue 4, August 2010, Pages 568-583, ISSN 0968-090X,
http://dx.doi.org/10.1016/j.trc.2009.10.006.

[19] Krumm, John, A survey of computational location privacy, Journal of

Personal and Ubiquitous Computing, V 13, N 6, 10.1007/s00779-008-
0212-5, http://dx.doi.org/10.1007/s00779-008-0212-5, Springer-Verlag,

2009-08-01, P391-399

[20] James Middleton, Vendors Develop Opensource Framework for
Internet of Things, in Business Cloud News, July, 2014, available

online: http://www.businesscloudnews.com/2014/07/08/vendors-

develop-open-source-framework-for-internet-of-things/
[21] John S. Otto and Fabián E. Bustamante. 2009. Distributed or centralized

traffic advisory systems: the application's take. In Proceedings of the 6th

Annual IEEE communications society conference on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON'09). IEEE Press,

Piscataway, NJ, USA, 709-718.

[22] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.C. Herrera, A.
Bayen, M. Annavaram, and Q. Jacobson, "Virtual trip lines for

distributed privacy-preserving traffic monitoring," in Proc. of

ACM/USENIX MobiSys, Breckenridge, CO, June 2008.
[23] Wu, Haiyan. "Research on the Data Storage and Access Model in

Distributed Computing Environment." In Convergence and Hybrid

Information Technology, 2008. ICCIT'08. Third International
Conference on, vol. 2, pp. 621-624. IEEE, 2008.

[24] Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah

A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert
E. Gruber. "Bigtable: A distributed storage system for structured

data." ACM Transactions on Computer Systems (TOCS) 26, no. 2

(2008): 4.
[25] Zhu, Hongzi, Yanmin Zhu, Minglu Li, and Lionel M. Ni. "HERO:

online real-time vehicle tracking in Shanghai.", INFOCOM 2008. The

27th Conference on Computer Communications. IEEE. IEEE, 2008.
[26] Logenthiran, T., and Dipti Srinivasan. "Intelligent management of

distributed storage elements in a smart grid.”, Power Electronics and

Drive Systems (PEDS), 2011 IEEE Ninth International Conference on,
pp. 855-860. IEEE, 2011.

http://dx.doi.org/10.1007/s00779-008-0212-5
http://www.businesscloudnews.com/2014/07/08/vendors-develop-open-source-framework-for-internet-of-things/
http://www.businesscloudnews.com/2014/07/08/vendors-develop-open-source-framework-for-internet-of-things/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[27] Taliwal, Vikas, Daniel Jiang, Heiko Mangold, Chi Chen, and Raja

Sengupta. "Empirical determination of channel characteristics for DSRC
vehicle-to-vehicle communication.", Proceedings of the 1st ACM intl

workshop on Vehicular ad hoc networks, pp. 88-88. ACM, 2004.

[28] Wang, Zhe, and Mahbub Hassan. "How much of dsrc is available for
non-safety use?." In Proceedings of the fifth ACM international

workshop on VehiculAr Inter-NETworking, pp. 23-29. ACM, 2008.

[29] Hull Bret, et. Al,"CarTel: a distributed mobile sensor computing
system." In Proceedings of the 4th international conference on

Embedded networked sensor systems, pp. 125-138. ACM, 2006.

[30] An Overview of Distributing Data with Geodatabases, An ESRI
Technical Paper, June 2007, available online

http://downloads2.esri.com/support/whitepapers/other_/ArcGISServer_

DistributingData_nov2007.pdf
[31] A. Santos, N. McGuckin, H.Y. Nakamoto, D. Gray, and S. Liss,

Summary of Travel Trends: 2009 National Household Travel Survey,

U.S. Department of Transportation Trends in travel behavior, 1969-2009
Federal Highway Administration, Washington, 2009.

[32] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In Proceedings of

the 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST) (MSST '10). IEEE Computer Society,

Washington, 2010.
[33] Aakriti Gupta, J. Lakshmi, S.K.Nandy, “Real Time Routing in Road

Networks”, 4th IEEE International Conference on Big Data and Cloud

Computing, Dec. Sydney, Australia, 2014.
[34] Pavan Kumar Akulakrishna, J. Lakshmi, S.K.Nandy,“Efficient Storage

of Big-Data for Real-Time GPS Applications”, 4th IEEE International
Conference on Big Data and Cloud Computing, Dec. Sydney, Australia,

2014

[35] De Zhou, Z., R. Valerdi, S. Zhou, and L. Wang. "Guest Editorial
Special Section on IoT." Industrial Informatics, IEEE Transactions

on 10, no. 2 (2014): 1413-1416.

[36] Flask. [Online]. Available: http://flask.pocoo.org/

J. Lakshmi received her doctoral degree in

computer science from Indian Institute of

Science in 2012. She is working as a

Principal Research Scientist in the

Department of Supercomputer Education and

Research Centre (SERC) at the Indian

Institute of Science (IISc) for more than 17

years. She is the convenor for the Cloud

Systems Lab in SERC. Her areas of interest include systems

software and architectures for virtualized and distributed

systems. She has published research papers in the areas of

QoS on virtualized servers, I/O virtualization architectures,

fault tolerance in operating systems, etc. She is currently the

convener for the Cloud Systems lab in SERC. She also

manages and supports the HPC data center at SERC. She is a

member of the IEEE.

S. K. Nandy is a Professor at the

Supercomputer Education and Research

Centre, and the Department of Electronic

Systems Engineering of the Indian

Institute of Science, Bangalore, India.

Prof. Nandy obtained his B.Sc.(Hons.)

 degree in Physics from the Indian Institute

of Technology, Kharagpur in 1977. He

obtained his B.E.(Hons.) degree in Electrical Communications

Engineering in 1980, M.Sc.(Engg.) degree in Computer Science

and Engineering in 1987, and Ph.D degree in Computer Science

and Engineering in 1989 from the Indian Institute of Science,
Bangalore. He joined the faculty of Indian Institute of Science in

1982. He has to his credit several research publications in

International Journals and proceedings of conferences and

workshops. His research interests include SoC design methods,

multicore and any-core SoC platforms, architectures and

compilation techniques for high performance runtime

reconfigurable massively parallel computing systems on silicon.

Aakriti Gupta completed her Masters in

Computational Science from the department

of Supercomputer Education and Research

Centre at the Indian Institute of Science,

Bangalore, India in June 2014. She is

currently working as a system software

engineer at Nvidia in Bangalore, India.

Pavan Kumar Akulakrishna, was born in Hyderabad, India in

1989. He received the B.Tech degree in

Computer Science and Engineering from the

Indian Institute of Technology, Patna in

2012 and M.Tech degree in Computational

Science from the Indian Institute of Science,

Bangalore, India in 2014. Prior to his

master’s degree he has also done his

internship at CDAC, Bangalore, on Network

Monitoring and Security in the year 2011.

He is currently working for Nvidia Graphics Pvt. Ltd., at Pune,

Maharashtra, India as Systems Software Engineer, in the area of

GPU architecture. His research interests include Big Data Storage

and Applied Mathematics.

Vaibhav Ankush Kachore completed his

B.Tech. (2011) in Electronics and

Communication Engineering from National

Institute of Technology, Nagpur, India. He

has worked on research project of Indoor

Positioning System (IPS) which was his

B.Tech. thesis project. His research interests

includes security, cloud systems, algorithms

and machine learning. He completed his Masters in

Computational Science from the department of Supercomputer

Education and Research Centre at the Indian Institute of Science,

Bangalore, India in June 2015. He is currently working for Nvidia

Graphics Pvt. Ltd. as Systems Software Engineer, at Bangalore,

India.

http://downloads2.esri.com/support/whitepapers/other_/ArcGISServer_DistributingData_nov2007.pdf
http://downloads2.esri.com/support/whitepapers/other_/ArcGISServer_DistributingData_nov2007.pdf
http://flask.pocoo.org/

