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Abstract—Real-time events associated with human activities is catching rapid pace due to feature and function rich mobiles like the 

smartphones. These devices not just facilitate users to seek access to information derived from large data sources, but also enable them 

to add data as sources to equally large amount of data repository. One such interesting and widely used application is a location based 

navigation service. This application derives its utility based on large amount of geo-spatial data repository overlaid with current events 

happening in the neighborhood of user interest. However, because of amount of data that needs to be handled for processing, most of 

the times these applications process either static data or use trends based on historical information. What really increases the utility of 

these locations based services is modulation to real-time changing events. This paper identifies three key characteristics that need to be 

addressed to fulfill this gap, namely timeliness in responding to user queries based on changing events, data repository to support such 

functionality while preserving the desired user privacy. Here we present the three facets to a navigator application based on the above 

three characteristics and demonstrate how its utility can be improved using compute clouds. 

 
Index Terms—Internet of Things (IoT), Compute cloud, location based services, Real-time scheduling, dynamic priority, soft 

deadline, distributed storage strategy, nine-cell-grid data distribution, load balance, user privacy and data obfuscation. 

 

 

I. INTRODUCTION 

Internet of Things (IoT) is the upcoming trend in usage of 

internet to connect physical objects worldwide. Extension of 

cyber physical capabilities to mobiles through smart phones is 

one such extensively used example. The data dimension 

associated in this active space is large since most mobile 

applications thrive on real-time event information. One 

popular example is the Google navigator application. The 

Google-maps data associated with this application is estimated 

to be around 21 Petabytes [1]. While an individual instance on 

a user phone may use a limited subset of this data, the interest 

is about live events occurring in and around this data. So 

storing and using updates on this information adds an extra 

dimension to this data.   

 

GPS based location services on smartphones are handy tools 

for many travelers and act as easy navigational aids. Here, 

they are the clients for many utility based applications that the 

user has come to depend on. These smartphones can also be 

likened with sensor devices when they collect and provide 

data that are used by location based service providers. What is 

specific about these devices is that they are constrained 

devices and can do limited computation or store limited 

amount of data. What is interesting about these applications is 

that they need the essence of observation over large data and 

maybe large period of times. This is where the compute clouds 

offer the versatile platforms required to host the huge data 

generated by these devices and enable the build of interesting 

applications over this data as demanded by varying user needs 

[35].  

 

GPS based applications have proven to be effective in 

providing useful navigational and utility associated 

information to the traveler. Applications that aid building of 

smart cities like disaster warning for earthquake prone areas, 

waste management and disposal monitoring by municipal 

corporations under clean cities initiatives, EMF level warnings 

for health hazards near nuclear or wireless equipment and 

towers, etc. are now becoming ubiquitous. However, they tend 

to become limited if these applications cannot modulate to 

changing events and associated data change relating to the 

associated events. The three key properties such applications 

need are: 

1. Location based services need to provide timeliness in 

responding to user queries. 

2. GPS applications often have to handle large amount 

of data pertaining to location. Data distribution that is 

suitable to meet real-timeliness to these services is 

desirable. 

3. User privacy is important in these applications since 

most clients also act as sensors to feed data into the 

system. It is desirable that application specific 

information is passed on without disclosing other 

data related to the participating user. 

This paper details case studies associated with these three 

aspects in the following sections. The explorations of these 

ideas are carried out using road navigation application as the 

example. While the examples chosen here relate to GPS based 

applications, it is easily perceivable that for many IoT 

scenarios the three properties highlighted here indeed a reality.  

A. Real-time routing for GPS based navigation applications 

Routing in road networks is an old problem with renewed 

interest. The current focus is trending on how to extend real-

timeliness to this problem. Navigational queries are normally 

in the form of seeking information on shortest path between 

two points in the geographical space. While many algorithms 

exist to speed up the traditional Dijkstra's algorithm for 

computing shortest paths in static road networks [2][3][4], 

only few have shown applicability in the dynamic case 

adapting to traffic updates on the road network. Most 

Cloud Framework for IoT associated GPS 

location based applications 

J. Lakshmi, S. K. Nandy, Aakriti Gupta, Pavan Kumar Akulakrishna, Vaibhav Ankush Kachore  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

algorithms either use history based modelling of road traffic to 

compute the travelling time, neglecting the real time updates 

or distributed algorithms are used which let the client decide 

which way to go based on its local view of the graph and 

updates relevant to it. There are limitations to both of these 

approaches. Firstly, most of these applications depend on pre-

defined databases that have not been designed to manage real-

time updates associated with various events in locality. 

Secondly, the route computation requires global viewpoint 

which involves larger data with associated updates. This 

mandates involvement of higher and mostly on-demand 

computational capacity and this makes a case for a compute 

cloud backend to support the real-time requirements for such 

applications [33].
 

B. Efficient Storage of Big-Data for GPS based navigation 

applications 

Navigator and maps kind of applications can potentially use 

large amount of data for a variety of applications that are 

associated with route information. The nature and format of 

the data collected depends on the sensing method used, of 

which GPS is currently the most popular. Most of these 

applications today are limited to using static data with current 

location. However, location based GPS applications need real-

time responsiveness and are location-sensitive. GPS data is 

time-variant, dynamic and large. Current methods of 

centralized or distributed storage with static data impose 

constraints on addressing the real-time requirement of such 

applications. Here we evolve a methodology of storage 

mechanism for the GPS application's data that can capture and 

respond to real-time changes. In our approach, data is 

partitioned into cells giving priority to Geo-spatial location. 

The geography of an area like a district, state, country or for 

that matter the whole world is divided into data cells. The size 

of the data cells is decided based on the previously observed 

location specific queries on the area. The cell size is so 

selected that a majority of the queries are addressed within the 

cell itself. This enables computation to happen closer to data 

location and thus eliminate data communication overheads. 

We also build some data redundancy, which is used not only 

to enable failover mechanisms but also to target performance. 

This is done by nine-cell approach wherein each cell stores 

data of eight of its neighbours along with its own data. Cells 

that have an overload of queries can easily off-load some of 

their workload to their near neighbours and ensure timeliness 

in response. Further, effective load balancing of data ensures 

better utilization of resources. Experimental results show that 

our approach improves query response times, yields better 

throughput and reduces average query waiting time apart from 

enabling real-time updates on data [34].
 

C. Data Obfuscation to ensure privacy for users in GPS 

based applications  

Incorporating real-time responsiveness to user queries and 

choosing data storage mechanisms that enable such processing 

are fundamental to most IoT based applications. The third 

facet to this class of applications is the amount of personal 

information that can be made visible while enabling specific 

functionality to the user query. This is particularly true to 

smartphone like appliances since these devices not just extend 

features to applications but they also are sensors to gathering 

real-time information. Crowd-sourcing in today’s context is 

very common and many users provide extremely useful and 

relevant information [18][19]. However, while event 

associated information is what the user really wants to 

disseminate, unfortunately, personal information associated 

with the user like his identity and location are also transferred. 

This information slowly finds ways into other usages like 

advertisements, tracking etc. Users are increasingly expressing 

concerns about such information being used by unknown 

agencies for unknown purposes [19]. Traditionally data 

encryption techniques have been in use to hide personal 

information from public consumption. Any attempt to access 

such data needed specific keys for decryption. While the 

notion of associating access permissions to end-use based on 

identification are useful, encryption and decryption of data are 

compute intensive and can be constraining on IoT scenarios. 

What is really needed is to be able to pass on useful 

information without losing out on privacy related information. 

Hence the need to identify mechanisms for data obfuscation 

wherein the responses to user queries can still be real-time 

without any compromise on the source information provider’s 

privacy. In the associated study we dwell on some of the data 

obfuscation techniques that can be useful in GPS based 

location applications.
 

The following sections are organized as follows: Section II 

describes a published study [33] on a proactive framework for 

route updation based on real-time events in a GPS based 

navigation application; Section III describes a storage strategy 

[34] for the same application; Section IV highlights the 

importance of preserving privacy in location based services 

and observes some recent advances in this area; Section V 

brings up the challenges and directions for future research in 

view of the increasing interest in both IoT and compute 

clouds; Section VI concludes the paper with some musings on 

how this work can be furthered. 

II. FRAMEWORK FOR REAL-TIME ROUTING IN GPS 

APPLICATIONS 

Navigational applications mostly deal with the routing 

problem, wherein the shortest path between two given end-

points is found. The path computation was traditionally based 

on reducing the physical distance of travel. With the 

increasing availability of rich time dependent data in the form 

of current traffic, weather conditions etc. and methods to 

compute its impact on the travelling time in the given road 

segment, location based services are increasingly becoming 

more demanding and parametric [5]. This mandates 

involvement of higher computational capacity and hence the 

need for a compute cloud backend to support the real-time 

requirements for these applications. 
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In this study the routing problem is modelled as a real time 

job scheduling problem where jobs are the shortest path 

queries submitted by the users and deadlines are computed on 

the fly depending on the user characteristics (current location, 

speed group, updates on real-time events, etc.). A pro-active 

framework is built which gets relevant data updates based on 

real-time updates, that affect a specific user query and the 

results are communicated back to the user without them 

specifically asking for it. This is done by sending revised route 

to the user before user takes the next turn on the pre-specified 

path. Potentially any routing algorithm [8][9] that is capable of 

dealing with real time network updates can be used to 

compute shortest path jobs in our frame-work; we demonstrate 

results with Dijkstra's algorithm.  

A. Motivation 

Many algorithms reported in recent literature, use history 

based modelling of road traffic to compute the travelling time 

[6][7][11][12]. They neglect the real time updates completely 

or accumulate the updates over time and adapt the model of 

road traffic accordingly [13]-[17]. But with the real time 

updates being available along the network, routing systems 

can now use it to provide better utility to its users. One 

common limitation of all these approaches is that after route 

computation, user has to specifically ask for route updation, 

when a refreshed route query is registered and computed using 

the current location. In this work, we instead propose a 

proactive system, which continuously tries to track the user 

and any updates on the path that the user is on. Consider the 

scenario in Figure 1. Here, initially when the user asks for a 

route from point A to point B, the system computes it as A-P-

Q-B (Figure 1 (a)). Upon getting this result, user takes the 

road segment AP and starts moving. However, due to some 

event (an accident for example) as shown in Figure 1(b), 

traffic on edge QB has started slowing down, making A-P-R-

B a more favorable path (Figure 1 (c)). If however, the system 

fails to communicate this to the user before she starts 

travelling on the road segment PQ, then this user ends up 

travelling on a less optimal path in spite of the system being 

able to prevent it. A proactive system, which updates the route 

for its users based on latest information along the network can 

avoid such scenarios and make sure all the information that it 

possesses is used to benefit maximum users. 

 

 

Figure 1: Example depicting the requirement for proactive route 

updates. 

The other trend followed in related work is to use distributed 

algorithms which let the client decide which way to go based 

on their local view of the graph and updates relevant to it [15]. 

Such approaches offer limited utility particularly in view of 

recent updates based on events that are visible on global view.. 

In the next section, we propose a proactive framework, which 

deals with real time updates and tries to communicate the 

results back to the user in time, followed by our approach for 

query dependent route computation. 

B. Proactive Framework for route updation 

Routing in road networks is modelled as shortest path 

problem on a graph with positive edge weights. Users pose 

queries to find optimal paths between a source and a 

destination, and navigation systems typically respond to them 

in a best effort fashion. As discussed in the previous section, 

route re-computation is of utility to it's users if network 

condition changes and should reach them before they take the 

wrong turn. To enable this, we model the problem as a real 

time job scheduling problem, where such re-compute jobs 

come with a deadline. 

Overall system model is shown in Figure 2. Fresh jobs 

enter in the job queue from one end, and are removed from the 

job queue for computation from the opposite end. The 

scheduler then adds a refresh job to the queue so that user can 

be updated about the changing network conditions and the 

path that has become more suitable as a consequence. These 

refresh jobs come with a deadline, which decides their priority 

and appropriate place in the job queue. The scheduler decides 

to execute the refresh job if the deadline to compute this next 

job has not expired otherwise it is dropped. 

We make the following assumptions: Users can be polled 

for their current location and some mechanism is in place 

which analyses the graph updates in the form of current traffic, 

weather conditions etc. and appropriately adjusts the edge 

weights in the graph. For our purpose, we assume the edge 

weights represent the time it would take to travel on the road 

segment represented by the edge. 

 

I. Defining a Job 

Jobs are the shortest path queries submitted into the system 

either by the users, or by the system itself in response to 

updates along the network. Three categories of jobs are 

defined: fresh, refresh and redo as follows: 

While fresh jobs are added by the users, refresh jobs are 

system generated as a proactive response to the changing 

network. Redo jobs can either be generated by user or system 

itself.  

 fresh job: Represents a new user connecting to the 

system, asking for a shortest path. Each fresh job is 

given a unique ID which represents this user. 

Subsequent refresh and redo jobs carry forward this 

same ID. 

 refresh job: Represents a case when user is following 

the path and system pro-actively decides whether the 

user should continue or switch to a different path.  

 redo job: Represents scenario where system was late 

in giving response to the user, who is now on a 

different path. Or the user chooses to take a different 

path and requests for re-computation based on current 
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location. Presently, in our implementation we treat 

these jobs as fresh jobs in terms of scheduling 

priority. 

 

All jobs in the system are aperiodic and independent of each 

other; they have no precedence relationship among them. All 

jobs are designed to be non-preemptive to enable relevance of 

computation with updates within their deadlines. Job 

scheduling is dynamic priority-driven. Job priority can change 

based on entering jobs or ageing factor, hence the priority 

assigned to a job initially when it enters the queue can change 

during its course of queue traversal till the time it is actually 

executed. 

 
 
Figure 2: System Model for proactive route updation 

Fresh jobs are submitted without any deadlines, and are added 

at the back of the job queue (Figure 2, block [i]). So their 

computation depends upon the length of job queue at the time 

of their addition. After any shortest path computation is 

completed (in the form of any job), a refresh job with source 

as the next hop and the same destination is added (Figure 2, 

block [vii]). For example, in Figure 1 after job (A,B) is 

computed, job(P,B) is added as a refresh job. Refresh jobs 

come with a deadline since the result of these jobs must be 

computed before the user reaches the next turn (vertex P in the 

above example), otherwise the user will go on the previously 

specified path. This ensures that for a given user ID, at-most 

one job exists in the system at a given time. A refresh job’s 

priority is fixed based on its deadline and the current queue 

length. As a result when a refresh job is added into the queue, 

the earlier fresh job’s priorities will change depending on 

where the refresh job is inserted.  At the time of insertion 

priority re-calculation is done accounting for ageing also for 

the existing jobs in the queue. Redo jobs get added into the 

system when the system identifies that user has changed his 

route or when a user specifically requests a different route. 

These jobs normally get appended at the end of the queue. 

 

II. Computing Job Deadlines 

 

Refresh jobs come with a scheduling window, marked by 

two timestamp values that are unique to each refresh job. 

Refresh jobs should not be scheduled too soon because it is 

not very useful to re-compute a user's route as soon as they 

have started. Thus, the scheduling of a refresh job must be 

delayed as much as possible so we can get the most recent 

updates on the graph. We call Timestamp1 as the maturity 

time for a job, after which it is eligible for scheduling. A 

refresh job must not be scheduled before its Timestamp1 and 

must not be scheduled after its Timestamp2 value, which 

marks its deadline. These jobs have a deadline since the 

system must send the results back to the users before they take 

any turns forcing them to travel on a suboptimal path. These 

timestamp values are computed as follows and are illustrated 

in Figure 3. 

 
Figure 3: Illustration of Timestamp computation for refresh jobs 

  v)Time(s,*   timeCurrent =Timestamp1               (1) 

  v)(s,timeCurrent =Timestamp2 Time                     (2) 

Timestamp2  timeScheduling  Timestamp1             (3) 

 

Here α is any constant in the interval (0,1) which is used to 

delay the execution of the refresh job so that sufficient updates 

can be included. Function time(s,v) returns the time it would 

take for user to travel from point s to point v in the current 

network scenario. Δ is the upper limit on the estimated time 

taken to compute the shortest path and communicate the result 

back to user. Higher α value indicates that the route will be 

computed as late as possible and routing window will be 

narrow. α is used in the computation of the maturity time 

(Timestamp1) of a job and Δ is used in the computation of the 

deadline (Timestamp2) of a job. While scheduling of a job 

after Timestamp1 ensures that the latest updates in the 

network are included in the route computation, scheduling 

before Timestamp2 ensures that the results are sent to the user 

in time before she reaches the next junction and hence can 

take the appropriate turn. The job is dropped if the current 

time exceeds its Timestamp2 value since the computed result 

would reach the user after she passes the decision point in his 

path (Figure 2, block [iv]). 

 

III. Job Scheduling 

 

The job scheduling algorithm used in the framework is listed 

below. Relative priority between two refresh jobs is calculated 

using their deadlines or Timestamp2 values. Earliest deadline 

first algorithm with Timestamp2 as deadline is used to find the 

next job to be scheduled for all the jobs that have matured at a 

given time. Relative priorities between refresh jobs and the 

fresh jobs are dynamically assigned using aging for fresh jobs. 

A job queue is maintained, such that at any given time the first 

job in the queue is having the highest priority for scheduling. 

If, the job is a refresh job and has not matured at the time, then 
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next job is checked and so on. Insertion in the job queue 

(Figure 2, block [viii]) follows the rules as described below. 

Assume queue state as shown in Figure 4(a). Here Queue is 

maintained as a linked list, where cell with 'R' denotes a 

refresh job and 'F' denotes a fresh job. Queue head is on the 

left, from where next job to be computed is searched. 

Case I: If a fresh job is to be inserted in the job queue, it is 

added in the back as shown in Figure 4(b). 

Case II: If a refresh job is to be inserted, such that its 

Timestamp2 value falls between two consecutive refresh jobs, 

it is simply added in the middle as shown in Figure 4(c). 

 
In case there are fresh jobs in between, then depending upon 

the priority, the position of the new job changes. If refresh job 

is given higher priority over fresh jobs then case III is 

followed as shown in Figure 4(d). If fresh job is given higher 

priority than case IV is followed as shown in Figure 4(e). If 

the relative priorities of fresh jobs and refresh jobs are 

dynamically computed, then any of the case III, IV or V 

[Figure 4(f)] can be followed. In this framework, dynamic 

priority is assigned between fresh jobs and refresh jobs by 

giving an aging factor to the fresh jobs. Initially Case III is 

followed, giving higher weightage to a refresh job over fresh 

job. But, each time a fresh job is pushed back in the queue to 

make room for a refresh job, its aging factor increases. If the 

age increases beyond a threshold, all other refresh jobs are 

added behind it following case IV and case V. Addition of 

refresh job is explained in algorithm2 below. 

 

When a fresh job enters queue, its age is 0. After every 

insertion of a refresh job before it, its age is incremented. If its 

age value exceeds some predefined threshold, then it gets 

higher priority than all the other refresh jobs that will enter the 

system from then on. Consider two refresh jobs denoted as R 

and fresh job as F. 

 
Figure 4: Job Queue Insertion mechanism illustration 

The following equations define the relative priorities. 

If, Timestamp2(R1) < Timestamp2(R2), then: 
)2(Pr)1(Pr RiorityRiority                                                  (4) 

If, AgingFactor(F) < Threshold, then: 
)(Pr)(Pr FiorityRiority                                                     (5) 

If, AgingFactor(F)  ≥ Threshold, then: 

)(Pr)(Pr FiorityRiority                                                     (6) 

 

C. Case Study and Results 

This section describes a case study and results based on the 

road networks of various cities of USA as provided by the 

Dimacs Implementation Challenge [10]. Specifically, the 

Great Lakes, USA (LKS) graph instance, which has 2758119 

vertices and 6885658 edges, was used for testing the proactive 

real time framework. All experiments were performed on a 

system with 8GB memory, Intel Core2 Quad CPU Q9550 @ 

2.83GHz processor and 300 GB disk. The framework 
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implementation is C based, using pthreads library. The graphs 

are static in nature, and the edge costs represents the time it 

takes to travel on the road segment represented by the edge. 

Due to the lack of availability for dynamic datasets, we used 

random updates along the graph to demonstrate our model. 

Random shortest path queries are generated using internal 

Unix bash function RANDOM.  

 Main thread, called the scheduler, initializes a fixed number 

of worker threads whose job is to compute shortest path and 

add a refresh job if the destination hasn't been reached yet. 

Scheduler manages the job queue, and selects the next job to 

be computed by traversing the queue from the head. The first 

fresh job or matured refresh job is picked and given to a free 

worker thread. A separate thread focuses on updating the edge 

weights along the network. New jobs are regularly fed to the 

scheduler in a random order. 

 In this study the basic comparison is with that of FIFO 

queue setup wherein first-in-first-out priority order is 

intrinsically maintained. This correlates to the current scenario 

where requests are responded to in their order of arrival. For 

our framework FIFO responds similar to the best effort case 

since job deadlines are not maintained. The proposed 

framework on the other hand prioritizes jobs based on their 

deadlines and dynamically changes the priority using aging 

principle. The aging factor for fresh jobs for our simulation is 

fixed at 3. This value ensures that at most three refresh jobs 

can push a fresh job back in the queue. Also, computations 

whose results cannot complete within their deadlines are 

dropped.  

For the simulation, keeping everything else same, jobs are 

added in the FIFO queue using their Timestamp1 values and 

are computed in first come first serve basis without any regard 

to their deadlines. If a job is computed after its Timestamp2 

value expires, then it is considered as wasted computation and 

termed as dead job. The number of dead jobs in FIFO is then 

compared with the number of dropped jobs from the proposed 

framework.  

 
Figure 5: Simulation with α = 0.5 and two worker threads 

Figure 5 shows the simulation results with α = 0.5. Here, 

total queries (fresh and refresh) submitted are shown in blue, 

red bar shows the number of dead computations being made in 

case of FIFO. Yellow bar shows the number of dropped jobs 

in the proposed framework. The graph clearly demonstrates 

two key results. First the number of dropped jobs in the 

proposed framework is lower than the dead jobs in the FIFO 

queue. This is because of the dynamic priority mechanism 

which schedules jobs based on their deadline. By correctly 

ordering jobs based on their deadline, we are able to attend to 

more jobs. Secondly, in our framework total number of jobs 

Also increased since a lot of wasteful query computation is 

avoided. The yellow bar indicates jobs that were not executed 

since it was not possible to meet their deadlines, while the red 

bar indicates jobs that were executed but found to be of little 

use since they completed execution after the deadline. This 

indicates that by assigning deadlines and ordering job 

execution based on dynamic priorities that are derived from 

the deadline constraint and by avoiding computations that are 

bound to miss deadlines, the proposed framework offers better 

utilization of compute resources and also increased job 

throughput.  Further, it can also be seen that for an increasing 

number of total queries, number of dead jobs by FIFO also 

increases, and stays higher than the number of dropped jobs in 

our framework.  

Another parameter that affects the way computations are 

scheduled is α metric. As explained earlier, this metric decides 

how soon the refresh jobs can be launched once a user chooses 

a traversal path. Higher α means that the refresh jobs are 

delayed longer enough to include most recent updates in the 

results. However, this potentially can result in increased 

number of dead and dropped jobs because there is not enough 

time to complete the refresh jobs because of delayed 

launching. In this case it is better to use our framework as 

FIFO will spend a significant percentage of time in wasteful 

computations. Decreasing the value of α means that it is not 

required to include very recent updates along the network in 

the path computation, in which case our framework works 

similar to FIFO. Figure 6 shows simulation results for α = 0.6 

for the same number of total queries. 

 

 
Figure 6: Simulation with α = 0.6 and two worker threads 

III. EFFICIENT STORAGE STRATEGY FOR BIG-DATA IN GPS 

APPLICATIONS 

From Google Maps to consumer Global Positioning System 

(GPS) devices, society has benefited immensely from routing 

services and technology. The issue with these applications is 

that they derive their utility by analysing large amount of data 

from many sources and hence most applications today use 

only static information. Higher utility for these applications is 

possible if they can adapt to changing events in real-time. In 

order to achieve this, better computing and storage 

mechanisms need to be explored to store and process 

information based on real-time events surrounding the areas of 

interest. Interesting aspect about this is that, the areas of 

interest and events associated with it are highly specific to an 

application and also the user queries associated with the 
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application even though all these might be using the same 

basic source of geo-spatial information. 

Here we specifically look at the GPS based data and its 

usage to integrate real-time data updates regarding Geo-spatial 

networks from the perspective of data distribution and storage 

such that applications can be built for real-time 

responsiveness. Methods to store Geo-spatial data are either 

centrally located or distributed [21] [27][28][29][30]. Most of 

the data distribution strategies are based on one time 

computation of the query response. Extending such algorithms 

to support time-sensitive decision making is a challenge. Not 

only the limited time response but also accurate response is 

what is intended. Hence, an efficient mechanism that is 

effective to meet application response deadlines is what is 

desired.  

Generally, in navigation kind of applications a query in 

real-time is of the form compute route from A to B with 

special parameters. Distributed storage gives chance to 

parallelism when many different route queries have to be 

answered to achieve speedup. Further, in order to address the 

need of real-time updates we need to have efficient 

mechanisms to store, manage and distribute data. The storage 

mechanism is critical in the computation of route from one 

location to another. The basic idea is to organize data in a 

distributed way and always identify and associate the 

computation on the data to where it is located. This allows for 

reduction in time for responding to the query since 

communication overheads are reduced. 

 

The key contributions of this work are: 

1. Designing of a storage mechanism that exploits 

redundancy, to reduce the communication 

overheads and failure of nodes. 

2. Schedule computation closer to the data location 

and thus reduce latencies associated with data 

communication overheads. 

3. The data load is balanced over the nodes with 

some relaxation to ensure better utilization of 

resources and make sure that load balancing is not 

a frequent operation. 

The following sections detail the NineCellGrid 

methodology proposed for storing the data and describes how 

computations in routing query can be generated using this 

mechanism. Experimental results demonstrate observations of 

being an effective storage strategy.  

A. NineCellGrid Method  

The focus of the design approach here is to address the 

requirement of storing time-based updates on the geo-spatial 

data. We choose the distributed dissemination method and use 

the NineCellGrid method for storing data. In this method, data 

is distributed not based on the available storage nodes, but 

based on the region of area on which the computation is 

intended. 

 

I. Design Approach and Storage Strategy 

The GPS data that is concerned to a location is first 

decomposed in such a way that entire earth is mapped with 

a mesh/grid of cell dimension L X L, where L is some fixed 

value (explained in the following sub-section), as shown in 

Figure 7.  

 
Figure 7: Grid on the Geo-spatial map of earth 

Further, in this approach each cell can hold the data of 8 other 

cells that are present adjacent to it as shown in Figure 8. 

Hence, the query that can be inherently answered by a cell can 

now be answered by all the 9-adjacent-cells that contain that 

data. Each cell is representing a unique L X L area on earth as 

in Figure 7. 

 
Figure 8: Cell N, with identity [Latitude, Longitude] in 

NameTable 

II. Name Table 

A table called NameTable (Table 1) that is indexed with 

row key as the 'Latitude' and column key as the 'Longitude' 

which indexes the address of the node which is responsible for 

that cell or region in reality of dimensions L X L. The actual 

region that is covered by the node is a square of four vertices 

mentioned as [(Latitude, Longitude),( Latitude + L, 

Longitude),( Latitude, Longitude + L ),( Latitude + L, 

Longitude + L)]. 

 
Table 1: NameTable - Here f and g are mappings from miles to 

Longitude and Latitude units 

 
III. Calculating Dimension L of the cell 

Each cell is of length L, where L is in the standard units of 

Longitude and Latitude. The reason for replicating nine cell's 

data within one cell is to make sure that any 'A-to-B route' 

query of Euclidean distance ≤ 'L' can be addressed by a single 

cell. L is chosen in probabilistic manner based on historical 

data considering the previously observed queries.  
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Consider all the possible locations of source A, in query "A-

to-B" within a cell. This would be a filled square of the cell as 

shown in Figure 9(A). The locus of point B, such that B is no 

more than L Euclidean distance away from A is a rounded 

square with corners as a quarter circle of radius L as shown in 

Figure 9(A). To accommodate all the data within a single cell, 

the best fit would be this Nine Cell Grid shown in Figure 9(B). 

That is, all the surrounding 8 cells data to be located in this 

central cell so that it has the complete coverage of B in any 

case without having to communicate with neighboring 

cells/nodes. 

A general query that is processed in these GPS-applications is 

to calculate the route from location A to location B. Given 

such a query, the L value is so chosen that any query made by 

the traveller using this application has the A-B Euclidean 

distance not more than L for 80% of the total queries.  In order 

to achieve this criterion, L is chosen as follows: 

 
𝐿 =  𝑚𝑖𝑛 ( 𝑋 ∶  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑃% 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 ≤
 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑋 )                                                (7) 
 

Here, P is the percentage that gives better performance. 

 
Figure 9: NineCellGrid – (A) Locus of B with A inside the cell 

(left side picture); (B) Best-Fit for all B with data in the same cell 

(right side picture) 

Choosing the correct value of P is critical to achieving the 

design goals and indeed dictates the storage strategy. For the 

dataset used in the experiments considering P = 80% of the 

previously observed queries on the dataset, we get the optimal 

performance (described in results section). Interestingly, if the 

percentage is considered high, that is something close to 100% 

it tends towards centralized storage pattern. On the other hand, 

if a low percentage is considered then it tends to a scenario 

wherein most queries will require distributed computation or 

high data communication. A judicious selection of L will 

decide the maximum utility that can be derived out such 

applications. 

 

IV. ‘A-B’ Route query Case Studies 

In the ninecellgrid method, some extra information is stored 

for the edges of the graph that are cutting the grid. This 

information is kept with the vertices of those edges, also called 

the limiting vertices. For queries that need to cross a cell these 

limiting vertices provide the necessary information about the 

traversal edges and the associated data location node. Based 

on the computation strategy, either the data is fetched from 

that node or computation is forwarded to that node. Different 

scenarios of an A-B query that can arise and how they are 

addressed based on this storage method are illustrated below. 

 

Case 1: Both A and B lie in the same cell of L X L  

 
Figure 10: Route query where A and B lie in same cell 

With both A and B being in the same Cell (Figure 10), the 

query can be answered by 9 Nodes. Based on the current load 

on the node an appropriate idle or less loaded node can be 

selected to process the query. In our setup, the initial 

assignment is to the central node which A and B. If that node 

is busy, then the next preference is given to that cell whose 

sum of Euclidean distances from center of the cell to source A 

and destination B is least. Job-scheduling is done this way to 

ensure better task load balance and yield better throughput. 

 

Case 2: A and B lie at 1-Cell distance apart 

 
Figure 11: Route query where A and B lie at 1-cell distance apart 

In this case number of nodes that can compute the query are 4-

6 nodes. Figure 11 shows the scenario of 4 nodes. In this case 

the priority is given to the node with least sum of Euclidean 

distances from center of this node to both source A and 

destination B. However, based on the task load the node, 

which has next least sum of Euclidean distances from center 

of the node to A and B, is considered and so on. 

 

Case 3: A and B lie at 2-Cell distance apart 

 
Figure 12: Route query where A and B lie 2-cell distance apart 

In this case number of nodes that can compute the query are 1-

3 nodes. Figure 12 shows the scenario of 1 node. It has lesser 

flexibility than the previous two cases in terms of nodes for 

scheduling query processing. But, this case happens with the 

probability of less than 0.2 because of L. Similarly, in this 

case the priority is given to the node with least sum of 

Euclidean distances from center of this node to both source A 

and destination B. 
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Case 4: A and B lie at a distance of more than 2-cell distance 

apart 

If the query is such that the end point of the query A and B are 

more than 2-cell distance apart, data from the nearest 

neighbours, based on the information from the limiting 

vertices, is gotten to the cell that initiated the computation.  

The other way to handle such a query is to send the job state to 

the neighbour node whose data is needed and resume the 

process on that neighbouring node. In order to get complete 

data of the region, a node has to communicate with at-most 

11.11% of the total nodes only thus reducing query processing 

latency to a large extent. Thus choosing the correct L is 

critical to this storage method. 

 

V. Load Balancing 

Considering the geographical map of the earth and knowing 

that road networks are restricted to land masses, uniform 

distribution of data based on just the NineCellGrid will lead to 

many nodes having data that is of little use. Hence, after 

arriving at the value of L, data re-distribution across nodes is 

necessary to equalize computational load across the nodes. It 

is important to note that the storage strategy here assumes that 

each node is both a data store and an execution node too. The 

load balancing is done to distribute the data across different 

nodes to handle query density on the region. The algorithm 

used to load-balance is listed in the algorithm below. 

The load is distributed and load balance is attempted with a 

chosen relaxation parameter δ. Initially the data is distributed 

to each L X L cell considering number of junctions/vertices, 

roadlinks/edges, landmarks, etc. Mean of estimated load 

across cells, called as M, is calculated. The load is balanced 

with relaxation δ i.e., a cell is said to be balanced if its load 

lies in [M-δ, M+δ]. Relaxation depends on logistics like 

resources available, rate of data increase etc. To begin with 

each cell with load less than M-δ is set to zero and its data is 

transferred to one of its nearest neighbour that is having load 

value more than M-δ. After this iteration, each will have zero 

load value or load value greater than M-δ. Those cells with 

load value greater than M-δ are shared by N nodes such that 

after dividing the load value with N the resulting value lies in 

[M-δ, M+δ]. This load balancing exercise improves resource 

utilization. 

 

 

B. Experimental setup and Results 

Simulation studies on the application-level performance of 

centralized, fully distributed and the proposed NineCellGrid 

approach based data distribution models is presented in this 

section. Simulations are achieved using MPI for task 

distribution and Hadoop Distributed Filesystem [32] for data 

distribution and storage. The same New York city dataset [10] 

that was used for the routing experiments is also used here 

(Figure 13).  

 
Figure 13: New York City dataset actual coordinates 

The load estimation of a node is done considering the 

number of junctions/vertices, links/edges in the region 

assigned to it. The value of the node's load is shown as the 

sum of all these values. Figure 14 and Figure 15 show the load 

distribution of the nodes before replication, after replication 

and finally after the load-balancing respectively. These figures 

show the load in color based on the value of load a node has. 

Regions with water have low value of estimated load and are 

shown with low color value in the scale. The cells with higher 

load have higher color value in the scale i.e., towards red. 

After the load balancing (Figure 15) the regions with less than 

M-δ load values are assigned to nearest cell with load value 

greater than M-δ. Hence, the regions associated with lower 

load values move to lower color values. 

 

 
Figure 14: Initial Load distribution before (left) and after (right) 

replication 

Here, the relaxation used is δ = 75. So, the load values in the 

Figure 15 would be between 150 and 300 as the M is around 

225 or zero.  

 
Figure 15: NineCellGrid Load distribution after load-balancing 
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To get a better perspective of the effect of load balancing, 

Figure 16 Error! Reference source not found.and Figure 17 

show the histograms of load distribution of the nodes before 

replication, after replication and finally after the load-

balancing respectively. Comparing the load distribution before 

and after replication it is observed that the maximum value of 

the load before replication is one-ninth that of the load after 

replication. This is due to the fact that replication is done 

almost nine times. Figure 17 captures the scenario after load 

balancing with δ=75. We notice that by load balancing the 

nodes required for data distribution reduces significantly and 

well below the naïve distribution before replication.  

 

 

Figure 16: Histogram of initial load distribution before (left) and 

after (right) replication 

The selection of P, which denotes the query density for a 

specific region based on historical observation data, which 

determines the L value, is done based on the analysis shown in 

the  

 

Figure 18 (A).  To begin with, taking 70% as the initial guess 

it is increased in steps of 5% so as to get to the optimal 

percentage. The graph shows 80% as optimal for this dataset. 

Same value of P may not be applicable to different 

geographical regions as the query density depends on the city, 

country, etc. It is perceivable that different L values will 

benefit different locations. Such derivation of L will hold 

when this algorithm is extended to cover larger areas like a 

district, state, country or the whole world. The study presented 

here is limited to a single city and hence choosing one value of 

L is justified. 

The impact of different schemes of data distribution on 

application performance is analysed by running a Dijkstra's 

greedy algorithm for shortest path computation. MPI library is 

used to simulate the algorithm. L value for the dataset New 

York City is taken as 6.8 miles (considering P = 80%) from 

NHTS (National Household Travel Survey) [31]. The 

performance is measured as throughput representing the 

number of user queries that can be answered in a given time 

unit.  

 

Figure 17: Histogram of NineCellGrid load distribution after 

load balancing 

 
 

 

Figure 18: (A) Execution times vs. Percentages of queries 

with Euclidean distance of query AB less than L  

(B) Throughput Comparison of various storage methods 
 

Error! Reference source not found., shows the comparison 

of throughputs for various storage methodologies. In Error! 

Reference source not found. the notations, NineCellGrid 

represents the proposed NineCellGrid Method, Zonal 

represents fully distributed pattern, 'Centralized' represents 

centralized storage pattern, 'CGWR' represents 'NineCellGrid 

Without Replication', and finally 'DBMSAR' represents the 

DBMS as replication (replication value of 5 taken). Each of 

the methods is compared based on the throughput they yield. 

This performance is measured against the workload of user 

queries wherein the number of queries falling within the L 

distance is varied from 55% to 95%, as represented by the x-

axis in Figure 18 (B). The total number of queries answered 

by each setup is constant at 1000 queries. Graph in Figure 18 

(B) shows 'Percentage of queries with Euclidean distance less 

than L' vs. 'Throughput in Queries/Sec'.  

  
Figure 19: Average Time Per Query Comparison of various 

storage methods 

The throughput of NineCellGrid starts dominating other 

methods from 70% onwards. On comparing the throughput of 

a general scenario of above 80% expectancy, it is seen that 

NineCellGrid shows better throughput values than the others. 

For the same set of compute resources, the difference between 

the Fully distributed (zonal distribution of data) and 

NineCellGrid is about 470 (810-340). Hence, it can process 

about 300 more queries in a second. 

 

Figure 19 shows the 'Percentage of queries with Euclidean 

distance less than L' versus 'Average time per query taken in 

seconds'. It is observed that the NineCellGrid storage method 

has least 'Average time per query' after about 70% onwards. 

Fully distributed has better 'Average time per query' before 

70% because of the fact that they communicate relatively less 

(A) (A) (B) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

at that stage. The other storage methods exhibit higher average 

times. The centralized has highest since there is no data 

parallelism. 'CGWR' (NineCellGrid without replication) has 

relatively higher average times than NineCellGrid and Fully-

distributed since there is no replication at all, leading to high 

data communication. 

IV. DATA OBFUSCATION TO ENSURE USER PRIVACY IN GPS 

APPLICATIONS 

Incorporating real-time responsiveness to user queries and 

choosing data storage mechanisms that enable such processing 

are fundamental to most IoT based applications. The third 

facet to this class of applications is the amount of personal 

information that can be made visible while enabling specific 

functionality to the user query. Traditionally data encryption 

techniques have been in use to hide personal information from 

public consumption. Based on the trust agreement between the 

user and the service provider, information to decrypt is 

distributed. Any attempt to access such data needs specific 

keys for decryption. While the notion of associating access 

permissions to end-use based on identification are useful, 

encryption and decryption of data requires associated 

software, is compute intensive and can be constraining on IoT 

scenarios. What is really needed is to be able to pass on useful 

information without losing out on privacy related information. 

Hence the need to identify mechanisms for data obfuscation 

wherein the responses to user queries can still be real-time 

without any compromise on the source information provider’s 

privacy or the end user data. 

Based on this requirement, in this section we propose an 

architecture that essentially obfuscates the user’s location 

information when he is querying for a route from a source to 

destination. The basic idea behind this is to change the 

location of the desired source and destination to obfuscated 

locations which are in the close neighbourhood of the 

respective source and destination. The key idea is that, given 

the route from the obfuscated source to the obfuscated 

destination, it is possible to derive the path from the actual 

desired source and destination. Following sections describe 

how this achieved. 

A.  Architecture: 

The intuition behind the novel architecture which is 

describer here is to get trusted service by making use of 

different independent untrusted services. The proposed 

architecture provides user privacy in navigation applications 

by using neighborhood finding location based services (LBS) 

and an anonymizer. This protocol used by the architecture to 

provide protection against various attacks is depicted in Figure 

20. 

 
 

Figure 20: Location Obfuscation System Architecture 

In addition to the navigation server, which actually 

computes the route from a given source-destination pair, we 

have introduced two more services, namely, the Anonymizer 

and Query Handler Service (AQHS) and the Neighborhood 

Query Service (NQS). In this system following protocol is 

used:  

   Step 1: User queries for path between A to B to the 

Anonymizer and Query Handler Server (AQHS). 

   Step 2: AQHS removes the identification information from 

this request and queries for neighbourhood locations of point 

A and B to Neighbourhood Query Server (NQS).  

   Step 3: NQS gives a list containing neighbourhood points of 

point A along with distance of those points from point A. 

Similar list is also sent for point B by NQS to AQHS. 

   Step 4: AQHS takes a random point from neighbourhood 

list of A, called A'. Similarly, AQHS takes a random point 

from neighbourhood list of B and selects the point B'. The 

AQHS then queries for path between A' and B' to Navigation 

Server (NS). 

   Step 5: NS sends an optimal path between A' and B' to 

AQHS.  

   Step 6: AQHS checks if point A and B are present on this 

path. If point A and B are present on this path, then AQHS 

filters out the path between A and B from optimal path 

between A' and B' (Figure 21a) and sends that path to the user.  

Let us assume that filtered path is not optimal. In that case, 

just by replacing this path with optimal path between A and B, 

it will be possible to get another optimal path between A' and 

B' with lesser cost than the optimal path which is sent by NS. 

This is a contradiction. Hence, this filtered path is optimal 

path between A and B. 

If in case, point A and/or B are not present on this path then 

following 3 cases can occur: 

 
Figure 21: Different cases for query processing 

 Point A is not on the path between A' and B' (Figure 

21b): In this case, AQHS filters out the optimal path 

between A' and B from optimal path between A' and B'. 

Now as point A is in neighborhood of point A', AQHS 

makes an approximation of concatenating point A in 

path A'B to get path AB and sends that path to user. 

Note that path AB may not be an optimal path but 
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experiments show that for real world graph this 

approximation works really well. 

 Point B is not on the path between A' and B' (Figure 

21c): In this case, AQHS filters out the optimal path 

between A and B' from optimal path between A' and B'. 

Now as point B is in neighborhood of point B', AQHS 

makes an approximation of concatenating point B in 

path AB' to get path AB and sends that path to user. 

 Both points A and B are not on the path between A' and 

B' (Figure 21d): In this case, as point A and B is in 

neighborhood of point A' and B', AQHS makes an 

approximation of concatenating point A and B in path 

A'B' to get path AB and sends that path to user. 

In this protocol, as queries are sent through the AQHS, 

user's identity is hidden from NS. Moreover, actual location of 

source and destination is also obfuscated from NS. Hence, this 

architecture provides two layers protection to preserve user 

privacy. 

B. Experimental setup and Results: 

   Simulation studies and results of proposed architecture are 

presented in this section. All experiments were performed on a 

system with 4 GB memory, Intel(R) Core(TM) i5-2430 CPU 

@ 2.40GHz processor. Servers are made using flask which is a 

micro framework for Python based on Werkzeug, Jinja 2 [36]. 

For evaluation of the services, clients are generated using 

python based scripts. The architecture is evaluated on the basis 

of 2 evaluation matrics i.e. delay and error caused due to the 

proposed protocol. 

       Table I lists the 4 USA road networks that are used for 

experimentation [10]. The nodes in the graph represent the 

intersection of roads. The edges of graph represent the roads in 

that particular region. 

 

 
 

 
       Actual query time is the time taken when a user queries 

path from source to destination directly to navigation server. 

Protocol query time is the time taken to serve query by using 

protocol proposed in this paper. Figure 22 shows the 

histogram of difference in actual query time and protocol 

query time. In this figure, the X - axis shows difference in 

actual query time and protocol query time in seconds, and the 

Y - axis shows number of samples (queries). Figure 23 shows 

histogram of percentage error in distance. Here, the X - axis 

shows percentage error and the Y - axis shows number of 

samples (queries). 

        Complexity of single source - single destination Dijkstra 

algorithm depends on topology of graph. It is observed that in 

some cases, time required to get path AB is more than the time 

required to get path A'B' where A' and B' are neighbours of 

point A and B. NQS gives the list of all nodes which are 

adjacent to node for which query has come. Time required to 

get neighbourhood points and communication delays are of 

the order of milliseconds. Hence, complexity of protocol is 

actually complexity of Dijkstra algorithm. Due to these facts, 

inFigure 22, difference in actual query time & protocol query 

time follows a Gaussian distribution with center at 0.  

 
(a) California and Nevada         (b) Colorado 

 
(c) Northeast USA                        (d) Florida 

 

Figure 22: Histogram of difference in actual query time and 

protocol query time 

   It can be concluded from table II that on an average this 

system works as good as the system in which user queries path 

from source to destination directly to navigation server. 

Moreover, this system provides user privacy. It is also 

observed that percentage error in distance due to 

approximation made in this protocol, is less than 0.2% in most 

of the queries (more than 90% of queries). The number of 

queries with percentage error more than 0.2% decreases 

exponentially with very high decay rate.  Thus, experiments 

show that user privacy can be maintained without affecting 

navigation results and without incurring significant overheads. 

 

 
(a) California and Nevada        (b) Colorado 
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    (c) Northeast USA                    (d) Florida 

Figure 23: Histogram of percentage error in distance 

V. CLOUD IOT FRAMEWORKS FUTURE DIRECTIONS 

     To quote Doug Fisher, Intel corporate vice president and 

general manager of the Software and Services Group “The rise 

and ultimate success of the Internet of Things depends on the 

ability for devices and systems to securely and reliably 

interconnect and share information,” [20]. While it is 

important to address the issue of IoT based interactions, it is 

time to look at the emerging application in this scenario and 

identify useful characteristics and traits of these applications 

to build systems framework that can seamlessly support them. 

This paper essentially does that. Here we have identified the 

key characteristics that most location based services have to 

adopt to, namely, adapting to changing real-time events, build 

storage constructs to capture the data associated with the 

changing events and modulate processing to the changes at the 

same time maintaining the desired privacy of the user. In the 

paper we choose the navigator as an example application and 

demonstrate the methods that can be used to build such cloud 

frameworks. We detail a real-time scheduling algorithm to 

advise proactively navigator users on changing situation along 

their traversal path. We also demonstrate a storage mechanism 

that can aid such scheduling and computation. We are 

currently working on the user privacy associated aspects of 

this application and believe that interesting data obfuscation 

solutions exist. 

      Thinking futuristically we believe cloud platforms can 

offer the rich and diverse applications hosted on IoT feature 

enhancements desired for better utility. Many initiatives using 

GPS based applications have proven to be effective and 

useful. Emerging applications that aid building of smart cities 

like disaster warning for earthquake prone areas, waste 

management and disposal monitoring by municipal 

corporations under clean cities initiatives, EMF level warnings 

for health hazards near nuclear or wireless equipment and 

towers, etc. are now becoming ubiquitous. However, all these 

have limitations because at present they cannot modulate to 

changing events and associated data change relating to the 

impacting events. However, how a change effects an 

application is highly localized to the application and it 

necessitates all the three dimensions identified here. It would 

be interesting to study and explore how different strategies 

work for different applications and this can bring in innovation 

in using the cloud as the versatile platform to experiment and 

potentially even deploy future applications. 
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