
Efficient Storage of Big-Data for Real-Time GPS
Applications

Pavan Kumar Akulakrishna
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore, India

serc.pavan@ssl.serc.iisc.in

J.Lakshmi
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore, India

jlakshmi@serc.iisc.in

S.K.Nandy
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore, India

nandy@serc.iisc.in

Abstract—GPS applications need real-time responsiveness and
are location-sensitive. GPS data is time-variant, dynamic and
large. Current methods of centralized or distributed storage
with static data impose constraints on addressing the real-time
requirement of such applications. In this project we explore the
need for real-timeliness of location based applications and evolve
a methodology of storage mechanism for the GPS application’s
data. So far, the data is distributed based on zones and it also has
limited redundancy leading to non-availability in case of failures.

In our approach, data is partitioned into cells giving priority
to Geo-spatial location. The geography of an area like a district,
state, country or for that matter the whole world is divided into
data cells. The size of the data cells is decided based on the
previously observed location specific queries on the area. The cell
size is so selected that a majority of the queries are addressed
within the cell itself. This enables computation to happen closer
to data location. As a result, data communication overheads
are eliminated. We also build some data redundancy, which is
used not only to enable failover mechanisms but also to target
performance. This is done by nine-cell approach wherein each
cell stores data of eight of its neighbours along with its own
data. Cells that have an overload of queries, can easily pass-
off some of their workload to their near neighbours and ensure
timeliness in response. Further, effective load balancing of data
ensures better utilization of resources. Experimental results show
that our approach improves query response times, yields better
throughput and reduces average query waiting time apart from
enabling real-time updates on data.

I. INTRODUCTION

GPS applications like finding current location, finding a
route from current location to some destination, finding nearest
police station or hospital or restaurants etc., are becoming
trendy and useful to the society in day-to-day life [8]. Various
classes of people use GPS-applications for different reasons.
Scientists use GPS to track some endangered species either
in water or some other locations where human reach is
not possible. Farmers use them for dimension tracking of
their fields and drivers use it to get directions to various
locations. From Google Maps to consumer Global Positioning
System (GPS) devices, society has benefited immensely from
routing services and technology. Also, there is a need for
these applications to be more responsive i.e., the applications
should provide real-time information. However, the issue is
that these applications need to normally handle large amount of
data from many sources. Hence better computing and storage
mechanisms need to be explored to enable such applications.

The issues concerning the realtime GPS applications are, when
a driver uses the GPS to track the route to some destination, if
at all there is congestion in some road network at that moment,
then the application should provide information to driver well
before so that he can avoid getting into the congestion and
possibly take an alternative path.

One study estimates that personal location data could save
consumers worldwide more than $600 billion annually by 2020
[8]. Computers determine users’ whereabouts by tracking their
mobile devices, like cell-phones GPS etc., The study cites
smart-phone location services including Foursquare, loopt etc.,
for locating friends, and ones for finding nearby stores and
restaurants. The biggest single consumer benefit, the study
says, is going to come from time saving and fuel savings from
location-based services- via tapping into real-time traffic and
weather data - that help drivers avoid congestion and suggest
alternative routes. "New ways to Exploit Raw Data may bring
surge of innovation", a study says [8]. Such above insights
from various studies motivate Spatial Big Datas (SBDs) to
become an area of interest to many researchers contemporarily.

There is a specific big-data solution, for storage and
distribution of data for a given problem [2]. In this paper
we specifically look at the GPS based data and its usage to
integrate real-time data updates regarding Geo-spatial networks
from the perspective of data distribution and storage such that
applications can be built for real-time responsiveness.

In most of these applications, the data is either located
at a centralized place or is distributed over multiple nodes.
The application-level performance of fully distributed and
centralized data dissemination approaches in the context of
traffic advisory systems are challenging. Currently, there are
many distributed storage mechanisms that are specific to
applications. In the case of Geo-spatial applications most of
the data distribution strategies are based on the one time
computation or static nature of the query response. Extending
such algorithms to support time-sensitive decision making
is a challenge. Not only the limited time response but also
accurate response is what is intended. Hence, an efficient
mechanism that is not only intuitive but also effective should
be implemented to reach the Geo-spatial application deadlines.
Generally, a query in realtime is of the form route from
A to B with special parameters. Hence, distributed storage
gives chance to parallelism and so speedup is achieved. In
order to achieve the real-time update we also need to have
efficient mechanisms to store, manage and distribute data. In

this paper, we would address the problem of how to get a real-
time responsive solution for the users’ queries with context
to storage mechanism. The storage mechanism is critical in
the computation of route from one location to another.The
basic idea is to organize data in a distributed way and always
identify and associate the computation on the data to where it
is located. This allows for exploiting the concurrent nature of
the computation and thus contributes to reduction in time for
responding to the query.

The key contributions in this work include:

• Designing of a storage mechanism that exploits re-
dundancy, to reduce the communication overheads and
failure of nodes.

• The computation is brought closer to the data to reduce
the latencies and communication overheads.

• The data load is balanced over the nodes with some
relaxation to ensure better utilization of resources
and make sure that load balancing is not a frequent
operation.

The rest of the paper is detailed as follows: Section 2
describes the related work to highlight the efforts published
in literature in this area; Section 3 details the NineCellGrid
methodology proposed for storing the data and describes how
computations in routing query can be generated using this
mechanism; Section 4 explains the experimental setup and
observations achieved so far; Section 5 concludes the work
followed by Section 6 that elucidates the scope for future work.

II. RELATED WORK

Data storage and dissemination is done in either a fully dis-
tributed manner or in a centralized manner [2]. In centralized
approach, applications depend on the road-side infrastructure
to connect to centralized location. And the data that reaches
centralized location comes from the vehicles via the intermedi-
ate nodes called beacons [2]. Some organizations have offices
at multiple levels. For example, a company can have offices at
the national level, state level, and city level. Data distribution
allows each office to locally manage the data applicable to its
area and also share with the levels above and below [12].

A. Centralized Data Dissemination

In this type of data storage and dissemination, the data
resides on the centralized system. In centralized approach,
vehicles depend on the road-side infrastructure to connect
to centralized location. And the data that reaches centralized
location comes from the vehicles via the intermediate nodes
called beacons [2].The data is queried from this system and
computed on various nodes. With a centralized approach,
vehicles rely on road-side infrastructure, either in a planned
[9], [10] or in an opportunistic manner [11], to communicate
with a central location. ESRI geodatabases are a relatively new
format. Geodatabases are databases stored in Microsoft Access
(for the "personal" geodatabase), as a special collection of files
(for the "file-based" geodatabase), or higher-end applications
(e.g. SQL Server, Oracle, Informix). A geodatabase stores all
features and related tables, as well as other files, within a
single or distributed database format [12]. These databases deal

with information that is accumulated periodically and mostly
used for read-only purposes like searching for results on route
queries. The answer to a given query may not change with
time because the time dependent information is not collected
or stored.

B. Distributed Data Dissemination

Several different data distribution techniques are available.
Deciding which to use involves considering the requirements
of your system as well as the benefits and limitations of each
technique [12]. In some cases, more than one technique may be
used to meet the system requirements. The following describes
each technique:

• Geodatabase replication: Geodatabase replication al-
lows you to distribute data across two or more geo-
databases such that edits can be made independently
and synchronized periodically. It has built-in safe-
guards against data loss, data redundancy, and system
instability. Geodatabase replication requires at least
one versioned ArcSDE geodatabase [12].

• DBMS replication: ArcSDE geodatabases are built on
top of DBMSs that include technology for replicating
at the database level. Geodatabases, like other appli-
cations built on top of these DBMSs, can be used
with this technology. Using DBMS replication with
geodatabases requires knowledge of how geodatabase
data structures are implemented at the database level.
ArcGIS does not provide out-of-the-box tools for im-
plementing these systems like it does for geodatabase
replication [12].

• Data copying and loading tools: Another technique for
distributing data involves simply copying data from
one geodatabase to another. This technique is useful
for two systems with simple requirements. For exam-
ple, a fieldworker updates a feature class and needs
to copy that feature class to the ArcSDE geodatabase
in the office each night. This technique can also be
used where the data is nonversioned or where only
personal or file geodatabases are involved. However,
it has no built-in safeguards against data loss or data
redundancy [12].

These above techniques are used in data replication to
achieve data redundancy and fault-tolerance to some extent.
Above storage mechanisms work for a scenario wherein the
data is limited, structured, and not large. As the scenario of the
current GPS applications demand large data so as to answer the
queries in realtime. Hence, a scalable, highly concurrent, low
latent and fault tolerant solution is necessary to be addressed.

III. NINECELLGRID METHOD

In our approach we address the requirement of storing
time-based updates on the geo-spatial data. We choose the
distributed dissemination method and use the NineCellGrid
method for storing data. In this method, data is distributed
not based on the available storage nodes, but based on the
region of area on which the computation is intended.

Design Approach and Strategies

• Computation-closeness to the storage node is ensured,
using Geo-spatially localized distributed data storage
pattern (NineCellGrid Storage Methodology)

• Data-redundancy is used to reduce communications,
improve performance to respond for real-timeliness
and also build in fault tolerance.

Here, the GPS data that is concerned to a location is
decomposed in such a way that entire earth is mapped with
a mesh/grid of cell dimension L×L, where L is some fixed
value (explained in the following sub-section). Each cell is
representing a unique L×L area on earth as in Figure - 1.

Fig. 1. Grid on Geographic Map [1]

In this approach we propose that each cell can hold the
data of 8 other cells that are present around it. That is, here,
apart from its own cell’s data it stores an extra 8 cells’ data
that surrounds it as shown in Figure - 2. So, the query that
is to be answered by a cell can now be answered by all the
9-cells that contain that data.

NameTable

A table called NameTable (Table - I) that is indexed with
row key as the ’Latitude’ and column key as the ’Longitude’
which indexes the address of the node which is responsible for
that cell or region in reality of dimensions L×L. The actual
region that is covered by the node is a square (not necessarily)
of four vertices mentioned as [(Latitude, Longitude),(Latitude
+ L, Longitude),(Latitude, Longitude + L),(Latitude + L,
Longitude + L)].

Fig. 2. Cell N, with identity [Latitude, Longitude] in NameTable

Dimension of cell (L)

Each cell is of length L, where L is the standard units
of Longitude and Latitude. Then, L sized cell is mapped to
a node. Hence, each cell/region’s data is present in exactly 9
nodes and to locate those nodes in the NameTable is just the
(-L, 0, +L) combinations to the keys, hence 9 possibilities. The
reason for choosing nine cell’s data within one cell is to make
sure that any ’A-to-B route’ query of Euclidean distance ≤
’L’ can be addressed by a single cell. And this L is chosen
in probabilistic manner considering the previously observed
queries.

(a) Locus of B with A
inside a cell

(b) Best-Fit, NineCell-
Grid

Fig. 3. NineCellGrid

Consider, all the possible locations of source A, in query
"A-to-B", within a cell it would be filled square or cell. Then,
the locus of point B such that B is not more than L Euclidean
distance away from A is a rounded rectangle (rounded square)
with corners as a quarter circle of radius L as shown in Figure
- 3(a). In Figure - 3(a) the filled square represents the possible
locations of A in a cell. And the filled outer rounded rectangle
(rounded square) represents the locus of B such that A is in
that cell. To accommodate all the data within a single cell,
the best fit would be this Nine Cell Grid shown in Figure -
3(b). That is, all the surrounding 8 cells data to be located in
this central cell so that it has the complete coverage of B in
any case without having to communicate with neighbouring
cells/nodes.

The data of the cell is stored in distributed manner across
the 9 nodes using the HDFS (Hadoop Distributed FileSystem)
[15]. It is also noted that specific type of data which supports
reduce operations are stored in HDFS format only, else they
follow the mechanism of complete data copies i.e., entire file
is stored as copies in all the 9 cells. That is, unlike HDFS, the
data is stored completely in all the 9 nodes without breaking
into chunks. This is because not all the data can be processed
using the reduce operations.

A general query that is processed in these GPS-applications
is to route from location A to location B. Given a query to route
from location A to location B, our L value is chosen such that
any query made by the traveller using this application has the
A-B Euclidean distance not more than L. Or the probability of
a query that exceeds the L Euclidean distance is less say (for
instance), less than 0.2, which means queries with Euclidean
distance less than L occur with a probability of 0.8. In order
to achieve this criterion, L is chosen as

L = min { X : Euclidean distance of P% of queries are ≤
Euclidean distance of X } – (I)

Where, P can be any percentage that gives better perfor-
mance. Interestingly, if the percentage is considered high, that

Longitude
-74.499998 -74.499998 + f (L) -74.499998 + 2*f (L) ... -73.500016

L
at

itu
de

40.300009 <NodeAddress>
40.300009 + g(L) <NodeAddress>
40.300009 + 2*g(L) <NodeAddress>
... <NodeAddress>
41.299997 <NodeAddress>

TABLE I. NAMETABLE HERE f AND g ARE MAPPINGS FROM MILES TO LONGITUDE AND LATITUDE UNITS

is something close to 100% will not help. The reason being,
if percentage is high then it tends towards centralized storage
pattern. On the other hand, if the percentage considered is very
low then it tends to a scenario of high communication for most
of the queries. Hence, there exists an optimal percentage to be
considered to arrive at L. Hence, on checking the performance
of percentages from 70% (an initial guess) in steps of 3− 5%
it is found that around ∼80% suits better in this ("New York"
dataset from NHTS) dataset taken (shown in experiments
& results section). However, the value of P is different for
different datasets. These experiments are done taking 5% as
step size since very close percentages outperform each other.
Hence, a higher resolution step does not help much. Finally,
L is defined globally on substituting P% found in Equation I).

Arrive at L value based
on query statistics

Decompose entire
map into LxL cells

Distribute each cell data to
8 other surrounding cells

Generate ’NameTable’
of mapping of (Latitude,

Longitude) → Node Address

Load Balance across the
nodes assigning more nodes
to cells of high load factor

Reassign ’NameTable’
after load balance

Fig. 4. NineCellGrid Method

Limiting Vertices and Case study of a ’A-B Route Query’

The edges of the graph that are cutting the grid have
corresponding vertices, these are called the limiting vertices.
These limiting vertices store the additional information of
the edge information to another node, and node address.
Whenever, there is a need for it to go towards that edge
traversal the information on this vertex conveys so. And the
data from that node to this node is communicated to get the
increased coverage of map to compute the query. Different

scenarios of an A-B query are illustrated as follows:

Case 1: Both A and B lie in the same cell of L×L (occurs
with 0.8 probability assumed, hence L is chosen)

Fig. 5. Case 1: where A and B lie in same cell

Now that both A and B being in the same Cell, this query
can be answered by 9 Nodes. Also, if there is some congestion
on certain node that node is not given the task and rest nodes
are assigned this job of this query from A to B. This is the
task of the job-trackers to assign the job to the relevant node
with less task load. Hence, flexibility on assignment of jobs
is also a boon to this type of distributed storage. In this case,
the central node can be given this task/job. Since it covers
symmetrically much region. However, if the central node
already has high load then this task is assigned to a different
node among the nine nodes. The next preference is given to
that cell whose sum of Euclidean distances from center of the
cell to source A and destination B is least. Job-scheduling is
done this way to ensure better task load balance and to yield
better throughput.

Case 2: A and B lie at 1 Cell distance apart

Fig. 6. Case 2: where A and B lie at 1 cell-distance apart

Here, the possible number of nodes that can compute
the query are 4-6 nodes. Figure - 6 shows the scenario of 4
nodes. Ofcourse, this has a relatively lower flexibility than the
previous case. But the query can be simultaneously processed
by any of the 4-6 nodes.In this case the priority is given to

the node with least sum of Euclidean distances from center
of this node to both source A and destination B. However,
based on the task load the node, which has next least sum of
Euclidean distances from center of the node to A and B, is
considered and so on.

Case 3: A and B lie at 2 Cell distance apart

Fig. 7. Case 3: where A and B lie at 2 cell-distance apart

In this case, the possible number of nodes that can
compute the query are 1-3 nodes. Figure - 7 shows the
scenario of 1 node. It has lesser flexibility than the previous
cases. But, this case happens with the probability of less than
0.2 since our L is chosen such a way. Similarly, in this case
the priority is given to the node with least sum of Euclidean
distances from center of this node to both source A and
destination B. However, based on the task load the node,
which has next least sum of Euclidean distances from center
of the node to A and B, is considered and so on.

Case 4: A and B lie at a distance of more than 2 cell
distance apart

In this case, the communication is done with neighbouring
nodes to get the updated data and then process the query.
Or this node may also send the job state to the neighbour
node whose data is needed and the process will run on that
neighbouring node. In order to get complete data of the region,
a node has to communicate with atmost 11.11% of the total
nodes only. Hence, reducing latency to a greater extent. That
is, for instance consider a 9×9 region with central node in
this grid wants the entire regions data. Then in order to get
the entire region it needs to communicate with 8 other nodes
only. Among them four are two cells apart in east, west, north
and south directions. Other four are two cell distances apart in
diagonal directions. That is, in north-east, north-west, south-
east and south-west directions. Among 81 cells (9×9 has 81
cells) only 9 cells communicate with each other to get entire
data of the region. Hence, 1/9th of the nodes communicate
which is 11.11% of total nodes involving in communication.

Load Balance

After arriving at the value of L, there is the problem of
load-imbalance across the nodes, due to the natural state of
earth. That is, due to water bodies there can be unnecessary
assignment of the part of region less intensive of links/roads,
updates, etc.,. Hence, that node is assigned relatively more
L×L cells. The load balancing is done to distribute the data
across different nodes to handle query density on the region.
While assigning another cell to it in order to load-balance, it
may so happen that it is assigned with the a cell that is going

Algorithm: Load Balancing
Inputs: [NameTable; Relaxation δ]
Outputs: [Load balanced distribution; Updated NameTable]
1. Initialize load based on number of edges, vertices, etc.,
2. for each node E do:
3. if(Load(E) < M − δ)
4. Find node P closest to E with load ≥M − δ.
5. Load(P) → Load(P) + Load(E);
6. Load(E) → 0;
7. NameTable[Latitude(E)][Longitude(E)] = Address(P).
8. endif
9. endfor
10.for each node E do:
11. if(Load(E) 6= 0)
12. Share the load among N nodes.
13. (Load(E)/N) ∈ [M − δ,M + δ] & N ∈ (1,2,3,...)
14. Update NameTable.
15. endif
16. endfor

TABLE II. Load Balancing

to overlap with the cells already present with this cell. Then,
only those cells’ data is stored which do not fall in common.

Whenever the load-factor is less, the node is expanded (i.e.,
larger region is covered by assigning more L×L cells) and
when it is high, it is contracted. However, this expansion and
contraction occurs very rarely. That is, whenever there is fast
growing city or rapid growth in road network then it may lead
to expansion and loss of road network due to some natural
calamity or some artificial destruction lead to contraction. But,
these are not that frequent hence, the shifting of data from one
node to another is rare.

In this case load is not strictly balanced but given a
relaxation δ Algorithm: Load Balancing (Table - II). Initially
the load is estimated to each L×L cell considering number of
junctions/vertices, roadlinks/edges, landmarks, etc.,. Mean of
estimated load across cells, called as M, is calculated. The load
is balanced with relaxation δ i.e., a cell is said to be balanced if
its load lies in [M−δ,M+δ]. Relaxation depends on logistics
like resources availability, rate of data increase etc.,. Now, each
cell with load less than M-δ is set to zero after the load is
transferred to a node that is closest to it and also having load
value more than M-δ. After setting these cells to zero, the cells
with either load equal to zero or load value greater than M-δ.
Those cells with load value greater than M-δ are shared by
N nodes such that after dividing the load value with N the
resulting value lies in [M − δ,M + δ]. Hence, the utilization
of the resources is improved this way. The actual placement
of the physical nodes is done after load balancing. That is, all
the nodes handling the same region will be placed together so
as to reduce latency and overheads due to communication.

IV. EXPERIMENTS AND RESULTS

We use simulation to study the application-level perfor-
mance of centralized, fully distributed and our Geo-spatially
localized distributed storage (NineCellGrid approach) data
dissemination models. Here, simulations are done using MPI.
Dataset used for experiments is ’New York City’ with co-
ordinates [(40.3, 41.3),(73.5,74.5)] (Latitude,Longitude) [14].
In this dataset number of vertices/junctions are 264,346 and

number of links/edges are 733,846. Figure - 8 shows the actual
coordinates of the dataset used.

Fig. 8. New York City dataset actual coordinates [14]

The load estimation of a node is done considering
the number of junctions/vertices, links/edges in the region
assigned to it. The value of the node’s load is shown as the
sum of all these values. Figures - 9, 10 and 11 show the load
distribution of the nodes before replication, after replication
and finally after the load-balancing respectively. These figures
show the load in color based on the value of load a node or
cell has. In this dataset the region with waters have low value
of estimated load. Hence, are shown with low color value
in the scale. The cells with higher load have higher color
value in the scale i.e., towards red. After the load balancing (
Figure - 11) the regions with less than M − δ load values are
assigned to nearest cell with load value greater than M − δ,
hence, the regions with lower load values are vanished (i.e.,
are shown as zero, low scale value dark blue). And then the
load is shared among N nodes such that ’load per node’ is
balanced. Hence, there is relatively lower load range, i.e.,
there is no much varied color values. Here, the relaxation
used is δ = 75. So, the load values in the Figure - 11 would
be either between 150 to 300 as the M is around 225 or zero.

Figures - 12, 13 and 14 show the histograms of load
distribution of the nodes before replication, after replication
and finally after the load-balancing respectively. On comparing
Figures - 12 and Figure - 13 it is observed that the maximum
value of the load in Figure - 12 is one-ninth that of the Figure
- 13 this is due to the fact that replication is done almost nine
times. That is, each cell’s data is stored in 8 other surrounding
cells. Finally in Figure - 14 the scenario after load balancing
shown with a relaxation of 75 i.e., δ = 75. After balancing in
Figure - 14 the nodes get into either the region of [M−δ,M+δ]
or to the zero load value bin. That is, the load values are either
between 150 and 300, with mean M = 225, or zero. All those
zero load valued cells represent the cells with initial load value
< M − δ.

The performances are analysed running a Dijkstra’s greedy
algorithm for shortest path computation [16]. Here, MPI is
used to simulate the scenario. L value for the dataset New York

Fig. 9. Load distribution before replication

Fig. 10. Load distribution after replication

Fig. 11. Load distribution after load-balancing

City is calculated to be 6.8 miles (after selecting P ∼ 80% for
this dataset) from NHTS (National Household Travel Survey)
[13]. This estimation of L is done by first calculating the value

Fig. 12. Histogram of loads before replication in NineCellGrid

Fig. 13. Histogram of loads before load-balancing

Fig. 14. Histogram of loads after load-balancing

of P (as P% in Equation I) and substituting in Equation I). The
selection of percentage (P), which determines the L value, is
done based on the analysis as shown in the Figure - 15. Initially
taking 70% as the initial guess and then increasing in steps of
5% so as to get to the optimal percentage (P% in Equation
I)). The graph shows 80% as optimal for this scenario. This
P value of 80 is substituted in Equation I) to get L (which
is 6.8 miles for this dataset). The percentage may not be the
same in a different region as it depends on the city, country,
etc.,. But there exists an optimal percentage P to evaluate L.
As mentioned in the earlier section the more the percentage
tends to centralized storage pattern and leads to less speed up.
And on the other hand if less percentage it leads to higher
communication and hence degrades performance.

Fig. 15. Execution times vs. Percentages of queries with Euclidean distance
of AB query less than L

Figure - 16, shows the comparison of throughputs for var-
ious storage methodologies. In figure - 16 the notations, Nine-
CellGrid represents NineCellGrid Method, ’Zonal’ represents
fully distributed pattern, ’Centralized’ represents centralised
storage pattern, ’CGWR’ represents ’NineCellGrid Without
Replication’ or Cell-Grid-Without-Replication [CGWR], and
finally ’DBMSAR’ represents the DBMS as replication (repli-
cation value of 5 taken). Each of the methods are com-
pared in context of the throughputs they yield. Number of
queries are 1000. Graph in Figure - 16 shows ’Percentage
of queries with Euclidean distance less than L’ vs. ’Through-
put in Queries/Sec’. The throughput of NineCellGrid starts
dominating other standard methods from 70% onwards. On
comparing the throughput of a general scenario of above
80% expectancy, it is seen that NineCellGrid shoots a better
throughput values than the others. The difference between the
Fully distributed(zonal distribution of data) and NineCellGrid
is about 470 (810-340). Hence, it can process about 300 more
queries in a second.

Fig. 16. Throughput Comparison of various storage methodologies

Figure - 17, shows the ’Percentage of queries with Eu-
clidean distance less than L’ versus ’Average time per query

taken in seconds’. It is observed that the NineCellGrid stor-
age method has least ’Average time per query’ after about
70% onwards. Fully distributed has better ’Average time per
query’ before 70% because of the fact that they communicate
relatively less at that stage. Whereas, the other storage method-
ologies have higher average times. The centralized has highest
since there is no data parallelism. ’CGWR’ (NineCellGrid
without replication) has relatively higher average times than
NineCellGrid and Fully-distributed since there is no replication
at all and so leading to heavy communication.

Fig. 17. Average Time Per Query Comparison of various storage method-
ologies

V. CONCLUSION

This paper presents NineCellGrid approach to distributed
data layout for GPS (Spatial Big Data) applications and quan-
titatively establishes that NineCellGrid data layout achieves
better throughput and average turnaround times compared to
fully distributed and centralized storage patterns. Hence, for a
real-time application where responsiveness matters, this type
of strategy is remarkable. In our method, we improve the
performance by exploiting redundancy in a particular pattern
of data in each cell being replicated among its eight neighbors.
Despite the high data redundancy, and the overheads of extra
space used, the benefits of higher computation to communica-
tion ratio manifests as higher overall speedup for queries. In
addition to that, there is a flexibility of lowering the replication
factor, which also leads to balance the load at the same time.
Hence, the tradeoff of redundancy to communication overheads
is done to overcome excess space utilization. In addition, we
gain not only redundancy in data but also fault-tolerance and
high data parallelism. The NineCellGrid data layout incurs
less communication and low latency compared to the standard
methods, since computation is brought to where the data is
located rather than having to move the data. NineCellGrid
is therefore well suited for a real-time applications where
soft deadlines are easily met by exploiting data redundancy
in a particular query among the nine neighboring cells. Data
redundancy in the NineCellGrid enables easy load balancing
among cells by migrating the computations, rather than redis-
tribution of data to balance the load. There is load balancing
done among the nodes so that, as the data increases there is
no frequent redistribution of data to balance the load. In our

approach, we adopt the relaxation to certain extent in order to
overcome frequent load balancing. Hence, this load balancing
is a boon not only to gain resource utilization but also to gain
better throughput, which is observed from the results. When
the percentage of incoming queries with Euclidean distance of
source to destination is low, the throughput of NineCellGrid
method is comparable with fully distributed and centralized
methods. Whereas, when the percentage of incoming queries
with Euclidean distance of source to destination is high, the
throughput of NineCellGrid method is far better than fully
distributed and centralized methods. This is due to the fact
that communication is lowered remarkably. Hence, the overall
performance of our method is higher than or comparable with
fully distributed and centralized methods.

VI. FUTURE WORK

Our future work will focus on balancing the load at each
node by manipulating the replication factors and shifting the
load more frequently in dynamic manner instead of doing it
at relatively higher time intervals. Job-scheduling algorithms
that learn from previously observed queries can be devised to
improve performance even more.

REFERENCES

[1] Google Maps http://maps.google.com
[2] Distributed or Centralized Traffic Advisory Systems - The Applications

Take. Otto, J.S. ; Dept. of Electr. Eng. and Comput. Sci., Northwestern
Univ., Evanston, IL, USA; Bustamante, F.E.

[3] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.C. Herrera, A.
Bayen, M. Annavaram, and Q. Jacobson, "Virtual trip lines for distributed
privacy-preserving trafïňĄc monitoring," in Proc. of ACM/USENIX
MobiSys, Breckenridge, CO, June 2008.

[4] Research on the Data Storage and Access Model in Distributed Comput-
ing Environment. Haiyan Wu Coll. of Comput. and Inf. Eng., Zhejiang
GongShang Univ., Hangzhou

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Dehorah
A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robet E.
Gruber. Google, Inc. Bigtable: A Distributed Storage System for Struc-
tured Data. OSDI, 2006.

[6] H. Zhu, Y. Zhu, M. Li, and L. M. Ni, "HERO online real-time vehicle
tracking in Shangai," in Proc. of IEEE INFOCOM, 2008.

[7] T. Logenthiran, Dipti Srinivasan Department of Electrical and Computer
Engineering National University of Singapore, Intelligent Management
of Distributed Storage Elements in a Smart Grid, 2011.

[8] Shashi Shekhar, Viswanath Gunturi, Michael R. Evans,KwangSoo Yang
University of Minnesota, Spatial Big-Data Challenges Intersecting Mo-
bility and Cloud Computing, 2012.

[9] V. Taliwal, D. Jiang, H. Mangold, C. Chen, and R. Sengupta, "Empirical
determination of channel characteristics for DSRC vehicle-to-vehicle
communication," in Proc. of ACM VANET, 2004.

[10] Z. Wang and M. Hassan, "How much of dsrc is available for non-safety
use?" in Proc. of ACM VANET, September 2008.

[11] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, "CarTel a distributed mobile
sensor computing system", in Proc. of ACM SenSys, 2006.

[12] An ESRI Technical Paper June 2007.
[13] NHTS: National Household Travel Survey, 2009.
[14] DIMACS: http://www.dis.uniroma1.it/challenge9/download.shtml
[15] The Hadoop Distributed File System, Shvachko, K., Yahoo!, Sunnyvale,

CA, USA, Hairong Kuang ; Radia, S. ; Chansler, R.
[16] Dijkstra Shortest Path Computation Algorithm, by Dijkstra.

	Introduction
	Related Work
	Centralized Data Dissemination
	Distributed Data Dissemination

	NineCellGrid Method
	Experiments and Results
	Conclusion
	Future Work
	References

