Compiling applications for the Cray XC

With focus on non-accelerator applications

Compiler Driver Wrappers Refresher .

e All applications that will run in parallel on the Cray XC
should be compiled with the standard language wrappers.

The compiler drivers for each language are:
e cC - wrapper around the C compiler

e CC - wrapper around the C++ compiler

e ftn - wrapper around the Fortran compiler

e These scripts will choose the required compiler version,
tar?et architecture options, scientific libraries and their
include files automatically from the current used module
environment. Use the -craype-verbose flag to see the

default options for any compiler.

e Use them exactly like you would the original compiler, e.g.
To compile progl.f90:
> ftn -c <any_other_ flags> progl.f90

Compiler Driver Wrappers (2) .o

e The scripts choose which compiler to use from the Prgénv
module loaded

Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc
PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++
PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

e Use module swap to change PrgEnv, e.g.
> module swap PrgEnv-cray PrgEnv-intel

e PrgEnv-cray is loaded by default at login
e use module 1list to check what is currently loaded

e Make sure you load the Cray MPI (cray-mpich).
e To support SHMEM load the cray-shmem module.

Compiler Versions .o

e There are usually multiple versions of each compiler J
available to users.

e The most recent version is usually the default and will be loaded when
swapping the PrgEnv.

e To change the version of the compiler in use, swap the Compiler
Module, e.g., module swap cce cce/8.3.10

Compiler Module

PrgEnv-cray cce
PrgEnv-intel intel
PrgEnv-gnu gcc
PrgEnv-pgi pgi

EXCEPTION: Cross Compiling Environment <~ «" "

e \
S \
\

e The wrapper scripts, ftn, cc, and CC, will create a highly |
optimized executable tuned for the Cray XC’s compute
nodes (cross-compilation).

e This executable may not run on the login nodes

e Login nodes do not support running distributed memory applications

e Some Cray architectures may have different processors in the login
and compute nodes (such as Haswell compute and Ivybridge login).
Typical error is “... illegal Instruction ...’

e If you are compiling for the login nodes

e You should use the original direct compiler commands, e.g. ifort,

Fgcc, crayftn, gcc, .. PATH will change with modules. All
ibraries will have to be linked in manually.

e Conversely, you can use the compiler wrappers {cc,CC,ftn} and
use the -target-cpu= option among {abudhabi, haswell, interlagos,
istanbul, |v¥1br|dge, mc12, mc8, sandybridge, shanghai, x86_64}. The
x86 64 is the most compatible but also less specific.

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

About the -I, -L and -1 flags .

e For libraries and include files being triggered by module
files, you should NOT add anything to your Makefile
e No additional MPI flags are needed (included by wrappers)

e You do not need to add any -I, -1 or -L flags for the Cray provided
libraries

e If your Makefile needs an input for -L to work correctly, try
using ‘.’

e If you really, really need a specific path, try checking
‘module show <X>’to see which environment variables
that the module Is setting

e Order in which you load modules should not matter... But
is good practice to load PrgEnv first, then any others

Dynamic vs Static linking . o

e Currently static linking is default for CPU nodes
e May change in the future
e When building for accelerators, modules force dynamic linking \

e To decide how to link,
1. you can either set CRAYPE_LINK TYPE to “static” or “dynamic”
2. Orpassthe ‘-static’ or ‘-dynamic’ option to the linking wrapper (cc, CC or ftn).

e Features of dynamic linking :
e smaller executable, automatic use of new libs
e Might need longer startup time to load and find the libs
e Environment (loaded modules) should be the same between your compiler setup and
your batch script (e.g., when switching to PrgEnv-intel)
e Features of static linking :
e Larger executable (usually not a problem)
e Faster startup
e Application will run the same code every time it runs (independent of environment)

e If you want to hardcode the rpath into the executable use
e Set CRAY_ADD RPATH=yes during compilation

e This will always load the same version of the lib when running, independent of the
version loaded by modules

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

The three styles of dynamic linking SR

S \
\

Shared libraries mean applications may use a different
versions of a library at runtime than was linked at compile \
time. On the Cray XC40 there are three ways to control

which version is used

1. Default — Follow the default Linux policy and at runtime
use the system default version of the shared libraries (so
may change as and when system is upgraded)

2. pseudo-static — Hardcodes the path of each library into
the binary at compile time. Runtime will attempt to use

this version when the application start (as long as lib is
still installed). Set CRAY_ADD_RPATH=yes at compile

3. Dynamic modules — Allow the currently loaded PE
modules to select library version at runtime. App must

not be linked with CRAY_ADD RPATH=yes and must add
“export LD _LIBRARY_PATH=$CRAY_ LD LIBRARY PATH:

$LD_LIBRARY_PATH” to run script

OpenMP .

e OpenMP is support by all of the PrgEnvs.
e CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by
default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with ~hnoomp.

Enable OpenMP | Disable OpenMP

PrgEnv-cray -homp -hnoomp
PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

PrgEnv-pgi -mp

e Intel OpenMP spawns an extra helper thread which may
cause oversubscription. Hints on that will follow.

Compiler man Pages

e For more information on individual compilers

PrgEnv-cray man craycc man crayCC man crayftn
PrgEnv-intel man icc man icpc man ifort
PrgEnv-gnu man gcc man g++ man gfortran
PrgEnv-pgi man pgcc man pgCC man pgfoo
Wrappers man cc man CC man ftn

e Cray docs on Fortran, C, etc., generally only talk about
Cray differences from standard

e To verify that you are using the correct version of a
compiler, use:
e -V option on a cc, CC, or ftn command with PGl, Intel and Cray
e --version option on a cc, CC, or ftn command with GNU

More Hints on Using Compilers

Quick Overview

Using Compiler Feedback SO08

e Compilers can generate annotated listing of your source |
code indicating important optimizations. Useful for
targeted use of compiler flags.

e CCE

o ftn -rm
e {cc,CC} -hlist=a

e Intel
e ftn/cc -opt-report3d -vec-reporté6
e If you want this written into a file: add -opt-report-file=filename
e See ifort --help reports

e GNU

e -ftree-vectorizer-verbose=9

o PGI

e -Minfo=<..>

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

Compiler feedback: Loopmark .

e For example, compiling with the Cray compiler using
“-rm” to generate myfile.Ist

%7676 Loopmark Legend %7676

Primary Loop Type Modifiers

A - Pattern matched a - vector atomic memory operation
b - blocked

C - Collapsed f - fused

D - Deleted i - interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r - unrolled

P - Parallel/Tasked s - shortloop

V - Vectorized t - array syntax temp used
W

- unwound ZC:;;7

Compiler feedback: Loopmark (cont.)

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

b
b
b
b
b
b Vr-->
b
b
b
b
b
b

COCOCO0OCCOCOO0CUOCO0OCOoCOO0OCOCOU0C o

do i3=

do

2,n3-1
i2=2,n2-1
do il=1,n1
ul(il) = u(il1,i2-1,i3) + u(il,i2+1,i3)
+ u(il,i2,i3-1) + u(il1l,i2,i3+1)
u2(il) = u(i1,i2-1,i3-1) + u(il,i2+1,i3-1)
+ u(il,i2-1,i3+1) + u(il,i2+1,i3+1)
enddo
do i1l=2,n1-1
r(i1,i2,i3) = v(i1,i2,i3)
- a(@) * u(i1,i2,i3)
- a(2) * (u2(i1l) + ul(il-1) + ul(i1l+1))
- a(3) * (u2(i1l-1) + u2(i1+1))
enddo

enddo

14

Compiler Feedback: Loopmark (cont.)

A loop

ftn-6049
A loop
ftn-6289
A loop

ftn-6049
A loop
ftn-6005
A loop
ftn-6204
A loop
ftn-6005
A loop
ftn-6204
A loop

ftn-6289 ftn:

starting at

recurrence was found

ftn: SCALAR
starting at
ftn: VECTOR
starting at

recurrence was found

ftn: SCALAR
starting at
ftn: SCALAR
starting at
ftn: VECTOR
starting at
ftn: SCALAR
starting at
ftn: VECTOR
starting at

VECTOR File = resid.f, Line = 29

line 29 was not vectorized because a
on "Ul" between lines 32 and 38.

File = resid.f, Line = 29

line 29 was blocked with block size 4.
File = resid.f, Line = 30

line 30 was not vectorized because a
on "Ul" between lines 32 and 38.

File = resid.f, Line = 30

line 30 was blocked with block size 4
File = resid.f, Line = 31

line 31 was unrolled 4 times.

File = resid.f, Line = 31

line 31 was vectorized.

File = resid.f, Line = 37

line 37 was unrolled 4 times

File = resid.f, Line = 37

line 37 was vectorized.

What did that loopmark note mean? Use =|=Av:’ |

“explain” for more information .

% explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized
because a recurrence was found on "var" between lines

num and num.

Scalar code was generated for the loop because it contains
a linear recurrence. The following loop would cause this
message to be issued:

DO I = 2,100
B(l) = A(l-1)
A(l) = B(l)

ENDDO

“ex’plain” utility works for any Cray PE messages, e.g., ftn-*
cc-*, Id-*

Some Cray, Intel, and GNU compiler flags S SN

Foature [Cray _ Jmel __Jonu |

Listing -ra (“report all’) or -list -vec-report3 -opt- -fdump-tree-all

-rmo (“loop Mark” report -opt-report-

and “Opts used”) file=name
Diagnostic (produced by -ra) -help diagnostic -Wall (and other opts)
Free format -f free -free -ffree-form
Preprocessing -eZ -P —fpp (Fortran) -cpp
Suggested -02 -O3 —xAVX -0O2 -mavx -ftree-vectorize
Optimization (default) -ffast-math -funroll-loops
Aggressive -03,fp3 -ffast-math -funroll-loops -Ofast -mavx
Optimization -ftree-vectorize —xAVX -funroll-loops
Variables size -s real64 -real-size 64 -fdefault-real-8

-s integer64 -integer-size 64 -fdefault-integer-8

Byte swap -h byteswapio -convert big_endian -fconvert=swap

Enab. OpenMP (default) -openmp -fopenmp

\
. _— . (e — PP\ i
Recommended compiler optimization levels o

. L)
e Cray compiler ‘

\
e The default optimization level (i.e., no flags) is equivalent to -03 of most other

compilers. CCE optimizes rather aggressively by default, but this is also most
thoroughly tested configuration !

e Try with -03 -hfp3 (also tested this thoroughly)
e -hfp3 gives you a lot more floating point optimization, esp. 32-bit

e |In case of precision errors, try a lower —hfp<number> (-hfpl first; only try-hfpe if
absolutely necessary)

e GNU compiler

e Almost all HPC applications compile correctly using -03, so try that instead of the
cautious default.

o -ffast-math may give some extra performance
e Add -march=haswell -mtune=haswell

e -funroll-loops or -funroll-all-loops benefit most apps

e Intel compiler

e The default optimization level (equal to -02) is safe.
e For haswell: -xCORE-AVX2

e Try with -03. If that works still (gives right answers), you may try with -Ofast or
-fp-model fast=2 for added performance

e Further relaxed precision with -fno-prec-div -fno-prec-sqrt

e Loop unrolling with -funroll-loops or -funroll-aggressive may also be
beneficial

COMPUTE | STORE | ANALYZE

Inlining & interprocedural optimization .o

e Cray compiler :

e Inlining within a file is enabled by default.

o Command line options -0ipaN (ftn) and -hipaN (cc/CC) where
N=0..4, provides a set of choices for inlining behaviour
e 0O disables inlining, 3 is the default, 4 is even more elaborate

e The -Oipafrom= (fin) or ~hipafrom= (cc/CC) option instructs the
compiler to look for inlining candidates from other source files, or a
directory of source files.

e The -hwp combined with -h pl=.. enables whole program automatic
inlining. [Be careful — this can slow things down.]

e GNU compiler

e Quite elaborate inlining enabled by -03

e Intel compiler
e Inlining within a file is enabled by default
e Multifile inlining enabled by the flag -ipo

COMPUTE | STORE | ANALYZE

Loop transformations . o

e Cray compiler |
e Most useful techniques in their aggressive state already by default

e One may try to improve loop restructuration for better vectorization
with -h vector3

e GNU compiler
e Loop blocking (aka tiling) with-floop-block
e Loop unrolling -funroll-loops or -funroll-all-loops

e Intel compiler
e Loop unrolling with -=funroll-loops or -unroll-aggressive

Compilers and NERSC recommended m
= = = = Ei \

compiler optimization flags it A

Relative Performance of Compilers on Edison
1.50 B Intel 14.0.1

B Cray 8.2.2

1.25 [GNU 482
1.00
0.75
0.50
0.25
0.00

GTC2048 MILC8192 BTE1024 EPE1024 LUE1024 SPE1024

IMP1024 PAR1024 CGE1024 FTE1024 MGE1024 Mean
Benchmark

Compiler flags used:

Cray: default

Intel: -fast —no-ipo

GNU: -Ofast Courtesy of Mike Stewart at NERSC
U.S. DEPARTMENT OF ' (Yffine of S ,\H
:“ :Dﬂv St DERKELEY LAD

October 26-27 2015

COMPUTE | STORE | ANALYZE

SERC Tools Workshop

Directives for the Cray Compiler . o

e If you see from the compiler feedback that a loop has not
been blocked, unrolled, or vectorized but you are

convinced that it should be, you can use compiler
directives instead of rising the optimization level -O...

e Cray compiler supports a full and growing set of directives

and pragmas, e.g.,
Idir$ concurrent

Idir$ ivdep

Idir$ interchange

Idir$ unroll

Idir$ loop_info
[max_trips] [cache na]
o !dir$ blockable

e More information given in
e man directives
e man loop_info

Idir$ blockable(j,k)
Idir$ blockingsize(16)
do k = 6, nz-5
do j = 6, ny-5
do i = 6, nx-5
I stencil
end do
end do
end do

Why are CCE’s results sometimes different to =l=AY |
other compilers? ;

\
\

e Cray expect applications to be conformant to language
requirements)

e This include not over-indexing arrays, no overlap between Fortran
subroutine arguments, and so on

e Applications that violate these rules may lead to incorrect results or
segmentation faults

e Note that languages do not require left-to-right evaluation of arithmetic
operations, unless fully parenthesized

e This can often lead to numeric differences between different compilers
e Some applications expect left-to-right evaluation

e Use -hadd_paren to add automatically parenthesis to select associative
operations (+,—,*). Default is -hnoadd_paren

e We are also fairly aggressive at floating point
optimizations that violate IEEE requirements
e Use -hfp[0-4] flag to control that

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

About reproducibility S Sl

e CCE compilers guarantee that repeated runs with same number *
of ranks and threads will give identical results. This is not the
case for all other compilers. However: \

e Results can vary with the number of ranks or threads

e Use -hflex_mp=option to control the aggressiveness of optimizations
which may affect floating point and complex repeatability when application
requirements require identical results when varying the number of ranks
or threads.

e option in order from least aggressive to most is:

e intolerant: has the highest probability of repeatable results, but also has the
highest performance penalty

e strict: uses some safe optimizations, with high probability of repeatable results.

e conservative: uses more aggressive optimization and yields higher performance
than intolerant, but results may not be sufficiently repeatable for some
applications

default: uses more aggressive optimization and yields higher performance than
conservative, but results may not be sufficiently repeatable for some

applications

tolerant: uses most aggressive optimization and yields highest performance, but
results may not be sufficiently repeatable for some applications

\

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

Recommended for bit reproducibility .o

e Start from this set i

-hflex_mp=conservative —hfp1 —hadd_paren

e Please note:

e We only strive to maintain bit reproducibility for applications that are
designed correctly to be bit reproducible. The compiler cannot make a
non bitrep code reproducible.

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

=
)
cCcRAayY ||

WARNING - Intel Helper Threads .o

S \

e The Intel OpenMP runtime creates more threads than you
might expect. You think you asked for n threads, but.... :
e |t creates an extra “helper-thread” (n+1 threads in total)

e When running with OpenMP, a helper-thread is spawned after the
master thread (thread 0). That helper-thread can shift the mapping of
threads to cores and so cause over-subscription, because worker-
threads of the last MPI-rank per node get placed on the same cores as
worker-threads of the first MPI-rank per node;

e It also has its own method of binding to CPUs (KMP_AFFINITY)

e Unfortunately both of these options can cause
complications with CLE binding of PEs to cores

e Cray advice...
e Don’t use KMP_AFFINITY to bind threads. “-cc depth” is simple:
o export KMP_AFFINITY=disabled
e aprun —cc depth <exe>

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

Quick aside: “-cc flag” for aprun .o

e Defines a CPU list for binding, or can also use keywords: |

o cpu (default) binds a PE to a single CPU in the NUMA node (socket)

e numa_node binds a PE to the CPUs within a NUMA node (socket)

o depth creates a mask —d PEs wide

e none specifies no binding

e Thus, the default binds each MPI rank and/or OpenMP thread
to a partlcular CPU

e Can also specify binding explicitly:
o aprun-n8-N4-S 2 —d 6 —cc 0-5:6-11:12-17:18-23 ./a.out

e The exa I‘Ele above contains four cpu lists. The first (0-5) is applied to
the first PE (MPI rank) created and any threads or child processes that
result. The second (6- 11) Is applied to the second PE created and any
threads or child processes that result, etc.

e SO0 the first rank and its 6 children are bound to cores 0 to 5, etc.

o
i
CRAY |

About that Intel helper thread . o

e When running a MPI-OpenMP-hybrid binary built with the Intel
compiler suite, one “helper-thread” is spawned per MPIl-rank
after the master-thread 0 of each MPI-rank, which can shift the \
binding of threads to cores, causing over-subscription with up
to O(50)% performance impact!

e Using default binding (-cc cpu): wrapping around causes
double-occupancy, e.g.,
e Helper-thread of each MPI-rank shifts threads 1-5 to the right:
cpu-0----1----2----3----4----5--—---—-7----8----9---10---11
rOtO|rOtH|r0tl | r0t2|r0t3|xr0td|xr0t5|rl1t0|xltH|rl1tl|xrlt2|rl1t3|
r3t2|r3t3|r3t4|r3t5| | | | | | | | |
cpul2---13---14---14---16---17---18---19---20---21---22---23
rltd | rlt5|r2t0|x2tH|r2tl | r2t2|r2t3|r2t4 | r2t5|r3t0|x3tH|xr3tl|
e Workaround: prevent that shift.
o export KMP_AFFINITY=disabled

\

\

e export OMP_NUM_THREADS=6

e aprun-n38-N4 -S 2 —-d 6 —cc numa_node a.out # “stay on numa”

e aprun—-n8-N 4 -S 2 —d 6 —cc depth a.out # “stay within -d ...’
e aprun-n8-N4-52-d6\ # “don’t bind helper”
o

—cc 0,x,1-5:6,x,7-11:12,x,13-17:18,x,19-23 a.out

Summary

e Four compiler environments available on the XC40:
e Cray (PrgEnv-cray, default)
e Intel (PrgEnv-intel)
e GNU (PrgEnv-gnu)
e PGl (PrgEnv-pgi)
e All of them accessed through the wrappers ftn, cc and CC — just do
module swap to change a compiler or a version.

e There is no universally fastest compiler
e Performance strongly depends on the application (even input)
e We try, however, to excel with the Cray Compiler Environment
e |f you see a case where some other compiler yields better

performance, let us know! Compiler group often treat that as a bug.

e Compiler flags do matter

e Be ready to spend some effort for finding the best ones for your
application.

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

i
CRAY |

e \

Running applications on the Cray XC

\
PR e P
How applications are run on a Cray XC - recap. .o

S \
\

e The Cray XC is a batch system. \

e Users submit batch job scripts to the PBS scheduler from a login node
for execution at some point in the future. Each job requires resources
and a prediction of how long it will run.

e The scheduler (running on an external server) chooses which jobs to
run and allocates appropriate resources

e The batch system will then execute the user’s job script on an a
different node than the login node (MOM node).

e The scheduler monitors the job and kills any that overrun their runtime
prediction.
e User job scripts typically contain two types of statements.
1. Serial commands that are executed by the MOM node, e.g.,
e quick setup and post processing commands, e.g., rm, cd, mkdir ,etc.
2. Parallel executables that run on compute nodes.
1. Launched using the aprun command.

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

PBS on the XC40 KON

e Main PBS commands:
e gsub - Submit a batch script to SLURM.
e aprun - Run parallel jobs.
e gdel- Signal jobs under the control of SLURM
e gstat - information about running jobs

e The entire information about your simulation execution is
contained in a batch script which is submitted via qsub.

e The batch script contains one or more parallel job runs
executed via aprun (job step). Nodes are used exclusively.
e The simulations have to be executed on /mnt/lustre/..

e Useful environment variables:

e PBS NODEFILE: “cat $PBS NODEFILE | unig -c | sort” is a
file that shows you which nodes you are running on

e PBS_ O WORKDIR: directory from which qsub was run

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

. - =AY ||
Running a batch job .o
- \
Example Batch Job Script — run.sh |
@ N #!/bin/bash |
#PBS -1

select=10:ncpus=24:mpiprocs=24

#PBS -1 place=scatter
Seﬂm<§;zgcd $WORKDIR

- 4 Parallel aprun -n 240 -N 24 simulation.exe
rm -r $WORKDIR/tmp
> Cray XC Compute Nodes
S

The script will start by default in the directory where
gqsub has been executed. This directory is available in
the environment variable $PBS “OVWORKDIR

Running an application on the Cray XC =|=Avf |
ALPS + aprun Soo

e ALPS : Application Level Placement Scheduler

e aprun is the ALPS application launcher
e It must be used to run application on the XC compute nodes:
interactively or in a batch job
e If aprun is not used, the application is launched on the MOM node
(and will most likely fail).

e aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

e aprun man page contains several useful examples
e The 3 most important parameters to set are:

__ Descripton | Opton

Total Number of PEs used by the application -n
Number of PEs per compute node -N
Number of threads per PE -d

(More precise, the “stride” between 2 PEs on a node)

i
CRAY |

Script example (large queue on SERC system) .

#!/bin/sh

#PBS -N jobname

#PBS -l select=343:ncpus=24
#PBS -l walltime=24:00:00

#PBS -l place=scatter

#PBS -l accelerator_type="None”
#PBS -j oe

! Date stamps at top and bottom of script for reference
date

! Useful to take note of where job is launched
cd $PBS_O_WORKDIR; pwd

! Don’t necessarily need to load modules at runtime, but
!'In case you do (e.g., for dynamic linking):

. lopt/modules/default/init/sh

! (or “source /opt/modules/default/init/csh” for csh)

! Then can do “module load X”, “module list” etc.

! Set up to run in the lustre directory /mnt/lustre for any

! parallel application (use diff directory for each run here)
RUNDIR=/mnt/lustre/USERNAME/myapp/run.$$

mkdir —p $SRUNDIR

cd $RUNDIR

! Useful info when wondering later where run output might
! have gone
pwd

L)

| Executable can be in lustre or in home directory
! Here, let’s copy it to our run directory

EXECDIR=/ufs/home/USERNAME/mybuilddir
cp $SEXECDIR/a.out SRUNDIR

! Copy any input data you need or symlink it. Large input
! (and output) data files should be on lustre
cp /mnt/lustre/USERNAME/INPUTDATA/input_file .

! Useful info when looking back at run output
export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1

! Run the executable. Use timers around aprun as a habit.

! This example uses linux “time” and also calculates walltime in
! a different way.

export beg_secs="date +"%s""

time aprun -j 1 -n 8209 -N 24 ./a.out < input_file > output_file

export end_secs="date +"%s""
let wallsecs=end_secs-beg_secs
echo "Time taken in seconds is " $wallsecs

date
! Date stamps at top and bottom of script for reference

! Maybe write output_file to stdout if useful and not too huge
cat output_file

\

How long did my job take? .o

e Use internal timers written by application itself \
e Can be useful to record time between mpi_init and mpi_finalize (print
out from rank O only!)

e Date stamp or “time” (or /usr/bin/time) command

e This times the aprun command itself
e Generally aprun takes a few seconds to shutdown at end of run

e After run similar to that on previous slide (1152 cores):

Application 9545044 resources: utime ~1479438s, stime ~970s, Rss ~81740,
inblocks ~19277790, outblocks ~453745893 o ot
\S\°
Might be useful: Inblocks/outblocks "“fm fnisneS
in units of 512-byte blocks. Restnot | \ 2°

too useful.
5.932u 0.540s 21:50.60 0.4% 0+0k 0+0io Opf+Ow

00‘9‘£§“d
Time taken in seconds is 1311 G

O,

What resources did it use? 08

e Can be good to record contents of $PBS_NODEFILE i
during batch session to note what nodes were used
(though list will be long if use lots of nodes!)
o cat $PBS NODEFILE | sort | uniq -c
e Orlook at “apstat —avv apid” when job is running to see placement

e See upcoming information on Cray Performance Tools
e perftools-lite is good place to start

e For accelerators, environment variables are available to
produce job statistics

\
More info about my running job.... S G

>apstat -avv 614502

Total (filtered) placed applications: 1
Apid Resld User PEs Nodes Age State Command
614502 355534 casnan 2400 100 8h36m run cesm.exe

Application detail
Ap[101]: apid 614502, pagg 0xc6000012c5, resld 355534, user casnan,
gid 208, account 0, time 0, normal
Batch System ID = 70460.sdb
Reservation flags = 0x100000
Application flags = 0x142001
Created at Mon Oct 5 00:47:19 2015
Originator: aprun on NID 198, pid 5168
Number of commands 1, control network fanout 32
Network: cookies 0x2a80000/0x2a90000, NT Tgran/entries 0/0
Cmd[0]: cesm.exe -n 2400 -N 24 -j 1, 2730MB, XT, nodes 100, exclusive
Placement list entries: 2400
Placement list: 168-172,187-189,212-219,221-227,249,292-319,324-353,374-382,414-422

Runtime Variability: What can | do, when AN
should | worry? S

e In a heavily-used batch environment such as at SERC, a certain
degree of runtime variability must be expected

e The level of variability can depend on many things
e The communication patterns in my code
e The I/O patterns in my code

e The I/O and communication patterns in the jobs of others on the system at
the same time

e Placement of a particular job on particular nodes on the Cray
XC system is generally not the solution — see next slides
e Hugepages might help, particularly if code does a lot of alltoall
communications, but worth trying in all cases
e Use knowledge of code or CrayPAT profiling to consider:
e Maximising on-node communications (rank reordering) — see later

e Eliminating bad I/O patterns (e.g., all ranks reading one file), maybe
moving to parallel I/O — again, see later

e If variation seems particularly bad, consider recording nodes
used during each run to try to detect a possible bad node (?)

xtnodestat .

crayadm@clogin72:~> xtnodestat
Current Allocation Status at Tue Oct 20 06:53:26 2015

Co0-0 C1-0 C4-0 C5-0
n3 acacaFaGaGaHalalaHaHaHaJaKaKaJ aKaKaHaHaMaMaMaMaMaKaUaMaaaMaM n3 babaa8a4aMaMagbdajaDaDbeajaDaDbd aEaEaEaEaEaEaEaEaEaNaNaOaOaOagbf
n2 SSaEacaFaFaGaEalalaHaJaHaJaKaKaa SSaKaKaKaHaMaMaMaMaMaMaUaVaaaMaM n2 babaaMaMaMaMagagaDaDajbeajajaDbd aEaEaEaEaEaEaEaEaEaNaNaNaOaOagbf
n1 SSaEacaFaFaGaEalalalaJaHaKaKaJaK SSaKaKaKaHaTaMaMaMaMaMaUaVaMaMaM n1 babaaMa8aMaMbdagaDajajbebeajaDbe aEaEaEaEaEaEaEaEaEaEaNaNaOaOagbf
c2n0 aDacaFaFaGaGalalalaGaHaKaKaJaK aKaKaKaHaTaMaMaMaMaMaHaUaMaaaM c2n0 babaaMa8a4aMbdagagajaDbebeajaDbe aEaEaEaEaEaEaEaEaEaEaNaNaOaOagbf

n3 aoapXXananajajat----aC----ajah

n2 SSanananananajajasav--aB----ajaj
n1 SSanananananajajarauaxazan--ajaj
c¢1n0 amananananajajaq--awayan--ajaj
n3 aaacadaeaeadagaiaiahakakaaaj
n2 SSSSaaacacaeaeadafaiaiaiakakakaj

aKaKaQaTaaaHaHaHaKaKaHaKaHaHaK
aLaMaaaaaaaaaaaQaPaaaKaaaKaK
SSSSaJal.aaaaaOaaaaaPaQaaaKaFaaaK
n1 SSSS—aaacaeaeaeadahaiaiaiakakaj SSSSaJalLaaaaaNaaaaaPaQaPaKaKaaaK
cOn0 --abacaeaeSSadahaiaiajakakaj aJalaaaaaaSSaaaPaQaPaKaKaaaK
s00112233445566778899aabbccddeeff 00112233445566778899aabbccddeeff

C2-0 C3-0
n3 abada4aTaMaUaFa6a6aUa6a6a6ab6a7 a6a6a6a8a9a6aGaaaaaaa6a6aMa7aM
n2 SSa5ad4a4ad4aMaUaFa2a6aUaUa6a6aba2 SSa6a6a6aga9a6aGbaaaaabba6aMaPaM
n1 SSa5ad4adad4aTaUaFaFa6a6aUab6a6a6a5 SSa6a6abaEa9a6a8baaaaaababab6aPaa
c2n0 a5a5ad4a4aTaUaUaFa6ab6aUabab6ab6ab ab6abab6ab6a9a8aQaGaaaaaaababaga7
n3 a3aUadadadadadadadaMaMaS5a5a5a5 aUaba6ab6abababababa6ab6abababab
n2 SSa3aUadad4adadadadadaMaMaMa5a5a5 SSaUaba6ab6ababababababababababab
n1 SSa3aUadadadadadadadaMaMaMa5a5a5 SSaUaba6ab6abababababa6ababababab
c1n0 a3aUaUadad4adadadadadaMaMaS5a5a5 aUAAab6ababababababa6ab6aba6ab6ab
n3 aDa2a3a3a3a3a3a3a3a3a3a3a3a3 a6a7abaUaaaaaFa6a6aUaUaUaUa6aU
n2 SSSSaDaDa3a3a3a3a3a3a3a3a3a3a3a3 SSab6aUabaUaaaaaFaFa6a6aUaUaUa6aU
n1 SSSSaDaDa2a3a3a3a3a3a3a3a3a3a3a3 SSaba6abaUabaaaaaFa6a6aUaUaUa6aU
cOn0 aDaDa2a3a3SSa3a3a3a3a3a3a3a3 a7aba7aba6aaSSaFa6a6aUaUaUa6a6
s00112233445566778899aabbccddeeff 00112233445566778899aabbccddeeff

You have a VERY busy machine...!

aKaQaTaaaHaHaHaHaHaHaKaHaKaKaK
SSaQaQaTaaaHaHaHaHaHaHaHaHaHaKaK n2 aMa7a8aMaMaMaMbcaQaQaQa9a9a9a9a9 a7a7ababa7ababZZababaDabaDbfaD--

SSaQaKaTaTaHaHaHaHaKaHaHaKaHaHaK n1 aMa7a7a8aMaMaMbcaQaQaQa9a9a9ada9 a7a7aeaba7aDababaDabaDabaDbfbfaD
c1n0 aMaMa7a8aMaMaMbcbcaQaQ--a9a9ada9 a7a7bfababaDababaDabababbfaDbfaD

n3 aMa7a8aMaMaMaMbcaQaQ--a9a9a9ala9 a7bfababaDabababababaDbfaDbfaD--

n3 ag aa aP--aaaaalLaaaM
n2 P--aaaaaFa7aM
n1 aa--aaa aa a--aaaaaFa7aM

c0On0 aaagaaaaaaaaaaSSaaaa--aaaa--aLaa

bdaHaHajaHaHaHaHajaHaHaabea7a7a7
bdaHaHajajaHaHaHajaDaDaabebfa7a7

bdaHaHajajaHaHaHaHaDaDaaaaaDa7a7
bdbdaHajajaHaHSSaHajaDaHaaaDa7a7

s00112233445566778899aabbccddeeff 00112233445566778899aabbccddeeff

MaMa5a5a5a5aaaaa5a5a5a5--

aaaaa7aMaMbha5a5aaaaaaa5a5a5a5bk

bhaMaMa5a5aaaaa5a5aMa5a5aH

aabibibibibjbjaaaabjbjbj------
aabibibibibjbjaaaabjbjbj------
aaaabibibibibibja7aabjbjbj------

C6-0 C7-0
n3 bgbga3a3a3aHbfbfbfaabh a7
n2 bgbga3a3a3aHbfbfbfbfaabhaaaaaaa7
n1 bgbgbga3a3aHbfbfbfbfaabh a7
c2n0 bgbgbga3a3a3aHbfbfbfaabhaaaaaaaa aaaaaabhaMaMa5aaa5aaaaaaaaa5a5aa
N3 ==mmmmmmes bgbgbfbgbgbgbgbgbgbgbg XX
n2 -- ----bgbfa7bgbgbgbgbgbgbg XX
n1 -- --bga7bfbgbgbgbgbgbgbg
¢1n0 ------------| bgbgbfbgbgbgbgbgbgbg

n3 bfbfagagaHbcbcbcbcaa-----==-----

n2 bfbfbfagaHaHbcbcbcbcaa----------

n1 bfbfbfagaHaHbcbcbcbcaa----------
cOn0 bfbfbfagaHaHbcSSbcbcaa----------

aaaabibibibibibjaaaabjbjbj------
aaaaaaa7a7aHaHaaaabhaaaaaaaaaHaa
aaaaaaaaa7aHaHaaaabhbhaaaaaaaHaa
aaaaaaaaa7aaaHaaaaaabhaaaaaHaaaa
a7aaaaaaa7a7aHSSaaaabhaaa7aHaaaa

s00112233445566778899aabbccddeeff 00112233445566778899aabbccddeeff

Legend:
nonexistent node
; free interactive compute node

S service node
- free batch compute node

A allocated (idle) compute or ccm node ? suspect compute node

W waiting or non-running job
Y down or admindown service node

Available compute nodes:

0 interactive,

X down compute node
Z admindown compute node

79 batch

AAAAAAAAAAAAAN
Hardly any free nodes!

\
=AY
e \

Aries and the Dragonfly topology

Cray XC Network SO0

e The Cray XC system is built around the idea of optimizing
interconnect bandwidth and associated cost at every level

— 1

E - . | :‘ . , “ |
Rank-1 Rank-2 Rank-3
PC Board: ¢¢¢ Passive CU: $ Active Optics: $$$$

14 GBps 12.5 GBps

Cray XC Packaging Review

Chassis 2 Cabinet Group Between Groups

4 nodes = 1 blade; 16 blades = 1 chassis; 3 chassis = 1 cabinet; 2 cabinets = 1 group

®

. \
Aries o — PGl

Aries is the Cray custom \
interconnect ASIC used in the Cray p
XC product family |
e 40nm process

e Die size: 16.6 x 18.9mm
e Gate count: 217M

e 184 lanes of high speed SerDes

e SerDes=Serializer/Deserializer
(SerDes pronounced sir-deez)

e 30 optical network lanes
e 90 electrical network lanes
e 64 PCI Express lanes

e 4 NICs

e Each Aries connects 4 nodes (1 blade)
to the interconnect

Cray XC Rank1 Network

Aries
Slot 4
Aries
Slot 5
Aries
Slot 6
Aries
'. Slot 7
|
'.
\(Aries
Slot 8
\
Aries
Slot 9
Aries
Slot 10
Aries
Slot 11

Aries

)

Aries
Slot 12

Aries
Slot 2
Aries
Slot 1
Aries
Slot 0
Aries
Slot 15
Aries
\ Slot 14
Aries
Slot 13

(@)

(@)

Chassis with 16 compute blades
128 Sockets

Inter-Aries communication over
backplane

Per-Packet adaptive Routing

Cray XC Rank-2 Copper Network f:':‘\"\ ‘

Group \
\

B

6 backplanes
- connected with
/ copper cables in a 2-

_

A 7N N / Active optical
| 1/ / \ N cables interconnect
16 Aries connected 2 B B B 4 nodes
S 5% connecttoa
@ Y E

by backplane
- single Aries

Cray XC Routing — Rank 2 Network

4h

HHHHHH*HHHHHH S
SEEEEEEEEEEEEEE
SEEEEEEEEEEEESEE
T T

Minimal routes
between any two
nodes in a group
are just two hops

Non-minimal route
requires four hops.

With adaptive routing
we select between
minimal and non-

Cray XC Network Overview — Rank 3 Network —ERAaN |

e An all-to-all pattern is wired between the
groups using optical cables (blue
network)

e Up to 240 ports are available per 2-
cabinet group

e The global bandwidth can be tuned by
varying the number of optical cables in
the group-to-group connections

J

Example: An 4-group system is interconnected with 6 optical “bundles’.
The “bundles” can be configured between 20 and 80 cables wide

Adaptive Routing over the Blue Network

e An all-to-all pattern is
wired between the groups

Assume Minimal path
from Group O to 3
becomes congested

/=

Traffic can “bounce
off” any other
intermediate group

Doubles load on network but
more effectively utilizes full
system bandwidth

Why is the Dragonfly topology a good idea?

e Scalability

e Topology scales to very large systems,
providing scalable global bandwidth

e Performance

e More than just a case of clever wiring, this
topology leverages state-of-the-art adaptive

routing that Cray developed with Stanford
University

e Smoothly mixes small and large messages

e Cray invested in bringing it to market — IBM
and Mellanox have not

o Simplicity
e Implemented without expensive external
switches.
e Configurable
e Cost

e Dragonfly maximizes the use of backplanes
and passive copper components

e Dragonfly minimizes the use of active optical
components

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

L J
)
Dragonfly is placement insensitive CQAY\ '
)
. . . . \
e Example: Sandia miniGhost N
e Finite difference mini-app, difference stencil across 3D .
domain (includes stencil computation, halo exchange, 5%;&.‘”” |
global summation of grid values) o Gh \
. - IniGhost: A Minjg, or Explorin
¢ Running on 2256 node (12 Cabinets) CSCS Sty Echng St
. arallel Com u,'°_ns in Scientific
system (" global bandwidth) ot Corptn Vi
e Runtime in seconds for 100 cycles Sl

Contiguous Random blocks Random layout
Blocks of 512 of 64 nodes of nodes

Perfect Placement M Worst-Case
< 3% variance from best-case Placement
to worst-case placement

| ANALYZE

| STORE

COMPUTE
SERC Tools Workshop

October 26-27 2015

\
Mix of application and streaming /O traffic SRS
e Analysis of the impact of big I/O traffic on performance of other codes MY,

e Compared two runs

1. Four miniGhost jobs spread out across the whole machine |
VS.

2. Three miniGhost plus one performing big many-to-few 1/O

Runtime for 4 simultaneous jobs, 3 miniGhost + checkpoint 1/0
70 500

/\ /O Job sustaining 400GB/

68 / 0 sec (95% clients to 5%
66 - 400 servers)

<
~

/TL ;é
_. 64 — : 350 & . ,
S e 5 Impact to compute jobs is
S 62 = VR tiny (64.5 sec to 65 sec)
S <
2 5
2 0 250 3
£ 2
€ %8 = 1/0 bandwidth 200
>
o

_
g
/

(O]
(e)]

—=—miniGhost(4)

——miniGhost(3) + 1/0
54 100
52 I 50
ol = m N \

256 512 1024 2048 4096 8192
Job size (ranks) with 8 processes per node

More Placement Data from NERSC system

NERSC-6 application benchmark production s
and dedicated time comparison m

Application | CAM | GAMESS | _GTC_IMPACT-T|MAESTRO|_MILC | PARATEC

LYE,
! t

y a
§UFoRE

Concurrency 240 1024 2048 1024 2048 8192 1024
Streams/Core 2 2 2 2 1 1 1
Dedicated

Time (s) 273.08 1,125.80 863.88 579.78 935.45 446.36 173.51
Production

Time(s) 277.07 1,218.17 871.06 597.25 996.70 482.87 198.45
Slowdown?) 1.5% 8.2% 0.8% 3.0% 6.5% 8.2% 14.4%

1) Slowdown=Time(Production)/Time(Dedicated)

(;~"‘-"*'1?<1& US. DEPARTMENT OF (ffica of 4. ’\||'ﬂ

4 e 1 :u:npv BERKELEY LAB
v ‘l = R SR .

Node placements and run time m@

October 26-27 2015

MAESTRO Run time

& Dedicated run with same 86 nodes in one cabinet group & Dedicated, one job in each cabinet group, 14 jobs simultaneously
~ Production runn but one job in each cabine, 7 jobs simultaneously

1060

1050

1040

1030

1020

1010

Time (s)

= 1000

990

980

970

960

950 2 8 85 8 B lel

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

U.S. DEPARTMENT OF Ofﬂce of -26- ‘ .m “'|

‘ -_1 [o P

SERC Tools Workshop

Node placements and run time

at
ORE

m_gm

Maestro Run Time

& One job in one cabinet --p-state 2.4GHz

U.S. DEPARTMENT OF

ENEDRY T

[o P _SECTPPR

& one job in each cabinet group with --p-state=2.4GHz
“ One job in one cabinet & one job in each cabinet group
1120
1100
1080
1060
= 1040
[
£
F 1020
I s e s s EEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RSN E R EEEE
980
960
940 |||llllllllllllllllIll|IIlllIIIllIllllLllllllllllllllllllllllIlllllllIIIIIII|IIIII
1 3 5 7 9 11131517 19 21 23 2527 29 31 33 3537 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83
Runs

o)y
COMPUTE
October 26-27 2015

B.E,;?}E\‘Y%i
| STORE | ANALYZE

SERC Tools Workshop

\
. (e — PP\ i
Hugepages may improve code performance R

S \
\

e Hugepages may improve memory performance for common {
access patterns on large data sets and for apps doing heavy I/O

e The Aries may perform better with HUGE pages than with the
default 4K pages.
e HUGE pages use less Aries resources than 4k pages
e More important when remotely access large percentage of nodes memory
In an irregular manner
e May get “cannot run errors” if there are not enough Hugepages
memory available (memory page fragmentation)

e HUGE="“more than 4K”. Use modules to change default page
sizes (man intro_hugepages)

e craype-hugepages2M, craype-hugepages4M, craype-hugepages8M,
cragl/Be- huggeppagges16M, c%/ellgype-hgugpepgageSBZM, %Paype- upgegpages64M,
craype-hugepages128M,craype-hugepages256M,craype-
hugepages512M

e Users are recommended to experiment with hugepages

e This feature is implemented at link and run time. To use:
module load craype-hugepages2M
CC —O0 my_app my_app.c
Then run with the same huge pages module loaded

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop @

\
- (® |
Hugepages may improve your code \
\
\

performance mﬂﬂ

Maestro run time comparison with/without using ‘
hugepages

1200

W Without using Hugepabes

1150 “ Uisng Huagepages

1100

1050

= e = - ;
1000 | —
950 - ;
900] I I
850 - : : : : ; . : : . :
1 2 3 4 5 6 7 8 9 10 11

Runs

Time (s)

Mastro run time improves by 11% by average when using hugepage memory
compared to not using the hugepages.

U.S. DEPARTMENT OF Ofﬁce of 222

ENEDRYV ..

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

Finally...I/O Changes can help Performance .

e Users are encouraged to experiment with Lustre stripe
count, size to obtain a good I/ O performance for their
workloads, with a general guidance that a larger stripe
count may increase bandwidth but subject more
contention, and vice versa.

e Many factors may affect the 1/O performance of your jobs
e Contentions for the resources with other users
e Hardware failure or downgraded performance
e File system fragmentation
e Bad user practices

e For example:
e A user used fixed offset and stripecount 1 and filled up one of the
OSTs a couple of times.
e Using too large stripe counts for small file 1/0 inviting contention with
other users unnecessarily and get widely varying 1/O time
e Writing tens of thousands of small files from all ranks simultaneously,
placing pressure on the file system for all other users

e More on I/O later!

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

Basics about communication

Costs of communication .

e All parallel applications communicate data between \
individual processes
e unless they're embarrassingly parallel

e The cost of any communication is usually defined by two
properties of the underlying network (or memory system)

1. Latency
2. Bandwidth

Costs of communication

1. Latency
e The time from a message being sent to it reaching its destination
e Dominates the performance of small messages
e Combination of factors from:

e constant software and/or hardware overheads.
e the physical and topological distance between the nodes (hops)

2. Bandwidth

e The maximum rate at which data can flow over the network.
e Dominates the performance of larger messages.

e Bandwidth between nodes generally depends upon the number of
possible paths between nodes on the network (topology)

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

= u = \
How message size affects communication cRAaNyY |

performance .

e (As with all things) the decisions made by application developer
can affect the overall performance of the application.

e The size of messages sent between processes affects how
important latency and bandwidth costs become.

e When a message is small the network latency is dominant.

e Therefore it is advisable to try and bundie multiple small
messages into fewer larger message to reduce the number of
latency penalties.

e Try to post MPI_IRecv call before the MPI_ISend call
e can avoid unnecessary buffer copies

\
\

Understanding Inter- and Intra- node —_— Y

performance .

e The rise of multi-core has led to fat nodes being common
e Five years ago there may have one or two CPUs per node...
e Now we routinely see 16-32 CPUs per node.
e This will only increase in the future (e.g., Intel Phi)

e Codes usually have multiple MPI ranks per node

e Many (even most) codes are flat MPI
e rather than hybrid with, for instance, OpenMP threads
e Even hybrid codes usually have more than one rank per node
e as threading does not usually scale well across NUMA regions (sockets)

e Latency, bandwidth is different for on- and off-node messages
e messages between PEs on the same node (intra-node) will be faster
e messages between PEs on different nodes (inter-node) will be slower

e We can optimise application performance by maximising
communication between processes on the same node — more

later on

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

Miscellaneously Useful Flags for MPI .o

e Performance enhancements
e export MPICH COLL_SYNC=1

e Adds a barrier before collectives,
e use this if CrayPAT makes your code run faster.

e Reporting
e export MPICH CPUMASK DISPLAY=1
e Shows the binding of each MPI rank by core and hostname
e export MPICH ENV_DISPLAY=1
e Print the value of all MPI environment variables at runtime (STDERR)
e export MPICH MPIIO STATS=1
e Prints some MPI-IO stats useful for optimisation (STDERR)
e export MPICH RANK REORDER DISPLAY=1

e Prints the node that each rank is residing on, useful for checking
MPICH RANK_REORDER_METHOD results.

e export MPICH VERSION DISPLAY=1
e Display library version and build information.

e For more information: man intro_mpi

How can | make my MPI faster? Some hints .

e Runtime options
e Try to maximise on-node transfers (rank reordering — see later)

e Try using optimised collectives; or DMAPP collectives (relink needed)
e See intro_mpi man page for more on collectives

e Help the MPI library get better overlap

e use non-blocking MPI calls
e MPI _Isend, MPI _lIrecv, MPI_lallgather...

e Try to reorder code to give more potential for overlap
e local computation (or I/0O) that can be done while messages transfer

COMPUTE | STORE | ANALYZE

October 26-27 2015 SERC Tools Workshop

