
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Scientific Libraries

Overview

Please email detailed questions or speak to
me later!

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Scientific Libraries

FFT

FFTW

Dense
BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse
CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit
CASK – Cray Adaptive Sparse Kernels
CASE – Cray Adaptive Simplified Eigensolver

2

●  Large variety of standard libraries available via modules
●  Optimized for Cray Hardware and also for Haswell processor.

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What makes Cray libraries special

1.  Node performance
●  Highly tuned routines at the low-level (ex. BLAS)

2.  Network performance
●  Optimized for network performance
●  Overlap between communication and computation
●  Use the best available low-level mechanism
●  Use adaptive parallel algorithms

3.  Highly adaptive software
●  Use auto-tuning and adaptation to give the user the known best

(or very good) codes at runtime

4.  Productivity features
●  Simple interfaces into complex software

3
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Library Usage Overview.

●  LibSci
●  Includes BLAS, CBLAS, BLACS, LAPACK, ScaLAPACK
●  Module is loaded by default (man	 libsci)
●  Threading used within LibSci (OMP_NUM_THREADS). If you call
 within a parallel region, single thread used. More info later on.

●  FFTW
●  module	 load	 fftw	 and	 man	 fftw

● PETSc
●  module	 load	 cray-‐petsc{-‐complex}	 and man	 intro_petsc	

●  Trilinos
●  module	 load	 cray-‐trilinos	 and	 man	 intro_trilinos

●  Third Party Scientific Libraries
●  module	 load	 cray-‐tpsl	 (use	 online	 documentation)

●  Iterative Refiniment Toolkit (IRT) through LibSci.
●  man intro_irt

● Cray Adaptive Sparse Kernels (CASK) are used in cray-
petsc and cray-trilinos (transparent to the developer).

4
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Third party Scientific Libraries (cray-tpsl)

●  TPSL (Third Party Scientific Libraries) contains a collection of
outside mathematical libraries that can be used with PETSc
and Trilinos.

●  This module will increase the flexibility of PETSc and Trilinos
by providing users with multiple options for solving problems in
dense and sparse linear algebra.

●  The cray-tpsl module is automatically loaded when PETSc or
Trilinos is loaded. The libraries included are MUMPs,
SuperLU, SuperLU_dist, ParMetis, Hypre, Sundials, and
Scotch.

5
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Check you got the right library!

● Add options to the linker to make sure you have the
correct library loaded.

●  -‐Wl adds a command to the linker from the driver
● You can ask for the linker to tell you where an object was

resolved from using the –y option.
●  e.g. –Wl,-‐ydgemm_	 (notice	 the	 ‘_’	 at	 the	 end	 of	 the	 name)	 	

Note: do not explicitly link “-lsci”

.//main.o:	 reference	 to	 dgemm_	
/opt/xt-‐libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):	
definition	 	 of	 dgemm_	

6
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Threading for BLAS and LAPACK

●  LibSci is compatible with OpenMP
●  Control the number of threads to be used in your program using

OMP_NUM_THREADS
●  e.g., in job script export	 OMP_NUM_THREADS=16	
●  Then run with aprun	 with –d16	

● What behavior you get from the library depends on your
code
1.  No threading in code

●  The BLAS call will use OMP_NUM_THREADS threads
2.  Threaded code, outside parallel regions

●  The BLAS call will use OMP_NUM_THREADS threads
3.  Threaded code, inside parallel regions

●  The BLAS call will use a single thread
●  Threaded LAPACK works exactly the same as threaded BLAS
●  Anywhere LAPACK uses BLAS, those BLAS can be threaded.
●  Some LAPACK routines are threaded at the higher level

7
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Intel MKL

●  The Intel Math Kernel Libraries (MKL) is an alternative to LibSci
●  Features tuned performance for Intel CPUs as well

●  Using MKL together with the Intel compilers (PrgEnv-intel) is
usually straightforward. Simply add –mkl	 to your compile and
linker options

●  Linking can be quite complicated otherwise, but the Intel MKL
Link Line Advisor can tell you what to add to your link line (once
you have recovered from your faint on seeing what it tells you)
●  http://software.intel.com/sites/products/mkl/

●  If using the CCE compiler, first do “module unload cray-libsci”

●  Also compile with –hnopattern to avoid the compiler pattern-matching
parts of the code with libsci blas/lapack calls

●  “module load intel” to set $MKLROOT

8
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

FFTW

● Cray’s main FFT library is FFTW from MIT
●  Some additional optimizations for Cray hardware

● Usage is simple
●  Load the module
●  In the code, call an FFTW plan

● Cray’s FFTW provides wisdom files for these systems
●  You can use the wisdom files to skip the plan stage
●  This can be a significant performance boost

●  FFTW 3.3.4.1 includes Cray optimizations for SB, IVB,
HSW processors

●  There are some Cray specific optimizations you can
enable by setting FFTW_CRAY_FASTPLAN=1
●  Currently this help only on Haswell and power of 2 sizes

9
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Adaptive Sparse Kernel (CASK)

● Sparse matrix operations in PETSc and Trilinos on Cray
systems are optimized via CASK

● Offline
●  ATF program builds many thousands of sparse kernels

●  Testing program defines matrix categories based on density,
dimension etc

●  Each kernel variant is tested against each matrix class

●  Performance table is built and adaptive library constructed

● Runtime

●  Scan matrix at very low cost

●  Map user’s calling sequence to nearest table match

●  Assign best kernel to the calling sequence

●  Optimized kernel used in iterative solver execution

10
October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Performance Focus and Autotuning

● Some components of the library are performance critical
●  For example BLAS and specifically GEMM

●  It is a significant challenge to get best performance across
a range of architectures and problem sizes and
thread counts

● Cray has an autotuning framework to address this:

●  It uses a general GEMM framework
●  Offline tuning runs are done for a wide range of problem sizes
●  CPU and GPU targets
●  Knowledge gained from offline runs incorporated into the runtime

library.

A
B

C

October 26-27, 2015 SERC Tools Workshop
11

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Tuning requests – you can help!

● CrayBLAS is an auto-tuned library
●  Generally, excellent performance is possible for all shapes and sizes

● However, the adaptive CrayBLAS can be improved by
tuning for exact sizes and shapes

● Optimizations for your particular calling parameters can
be added to incremental enhancements of the CrayBLAS
performance model

● Send your specific tuning requirements to
crayblas@cray.com
●  Old advice: Send the routine name and the list of calling sequences
●  Newer advice: Also run your code with:

●  CRAYBLAS_PROFILING=1 ./your_code

October 26-27, 2015 SERC Tools Workshop
12

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

ScaLAPACK and IRT

● ScaLAPACK in LibSci is optimized for Aries interconnect
●  New collective communication procedures are added
●  Default topologies are changed to use the new optimizations
●  Much better strong scaling

●  It also benefits from the optimizations in CrayBLAS
●  Iterative Refinement Toolkit (IRT) can provide further

improvements
●  Uses mixed precision
●  Linear solvers that use 32-bit factorization but mixed precision iterative

refinement to give solution accurate to double precision
●  For some targets (CPU vector instructions and GPUs) single-precision

can be much faster
●  Used for serial and parallel LU, Cholesky and QR
●  Either set IRT_USE_SOLVERS to 1 (good for first-time users, don’t

need source code changes) or use the advanced API (for experts!).

October 26-27, 2015 SERC Tools Workshop

13

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

libsci for accelerators

Introduction

See the directory at $LIBSCI_ACC_EXAMPLES_DIR for
numerous libsci_acc examples

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

15

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

16

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

17

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

18

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

19

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

20

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

21

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

22

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

23

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

24

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

25

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

26

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
October 26-27, 2015 SERC Tools Workshop

27

