


CHANGES FROM VERSION 4.2

» Updated Texture Memory and Texture Functions with the new texture object API.

» Updated Surface Memory and Surface Functions with the new surface object APL

» Updated Concurrent Kernel Execution, Implicit Synchronization, and Overlapping
Behavior for devices of compute capability 3.5.

» Removed from Table 2 Throughput of Native Arithmetic Instructions the possible
code optimization of omitting syncthreads () when synchronizing threads
within a warp.

» Removed Synchronization Instruction for devices of compute capability 3.5.

» Updated __global__ to mention that global functions are callable from the
device for devices of compute capability 3.x (see the CUDA Dynamic Parallelism
programming guide for more details).

» Mentioned in Device Memory Qualifiers that device , shared ,and
__constant__ variables can be declared as external variables when compiling in the
separate compilation mode (see the nvcc user manual for a description of this mode).

» Mentioned memcpy and memset in Dynamic Global Memory Allocation and
Operations.

» Added new functions sincospi (), sincospif (), normcdf (), normcdfinv (),
normcdff (), and normcdfinvf () in Standard Functions.

» Updated the maximum ULP error for erfcinvf (), sin(), sinpi (), cos (),
cospi (), and sincos () in Standard Functions.

» Added new intrinsic _ frsqrt rn () in Intrinsic Functions.
» Added new Section Callbacks on stream callbacks.
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Chapter 1.
INTRODUCTION

1.1 From Graphics Processing to General Purpose
Parallel Computing

Driven by the insatiable market demand for realtime, high-definition 3D graphics,

the programmable Graphic Processor Unit or GPU has evolved into a highly parallel,
multithreaded, manycore processor with tremendous computational horsepower and
very high memory bandwidth, as illustrated by Figure 1 Floating-Point Operations per
Second for the CPU and GPU and Figure 2 Memory Bandwidth for the CPU and GPU.
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The reason behind the discrepancy in floating-point capability between the CPU and the
GPU is that the GPU is specialized for compute-intensive, highly parallel computation

- exactly what graphics rendering is about - and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control,

as schematically illustrated by Figure 3 The GPU Devotes More Transistors to Data
Processing.

Coori bl

ALU | ALU
ALU | ALU

CPU GPU

Figure 3 The GPU Devotes More Transistors to Data Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations - the same program is executed on many data
elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations
to memory operations. Because the same program is executed for each data element,
there is a lower requirement for sophisticated flow control, and because it is executed on
many data elements and has high arithmetic intensity, the memory access latency can be
hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model

to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such as
post-processing of rendered images, video encoding and decoding, image scaling, stereo
vision, and pattern recognition can map image blocks and pixels to parallel processing
threads. In fact, many algorithms outside the field of image rendering and processing
are accelerated by data-parallel processing, from general signal processing or physics
simulation to computational finance or computational biology.

1.2 CUDA™: A General-Purpose Parallel Computing
Platform and Programming Model

In November 2006, NVIDIA introduced CUDA", a general purpose parallel computing
platform and programming model that leverages the parallel compute engine in
NVIDIA GPUs to solve many complex computational problems in a more efficient way
than on a CPU.

CUDA comes with a software environment that allows developers to use C as a
high-level programming language. As illustrated by Figure 4 CUDA Is Designed to
Support Various Languages and Application Programming Interfaces, other languages,
application programming interfaces, or directives-based approaches are supported, such
as FORTRAN, DirectCompute, OpenACC.
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Figure 4 CUDA Is Designed to Support Various Languages and Application
Programming Interfaces

1.3 A Scalable Programming Model

The advent of multicore CPUs and manycore GPUs means that mainstream processor
chips are now parallel systems. Furthermore, their parallelism continues to scale

with Moore's law. The challenge is to develop application software that transparently
scales its parallelism to leverage the increasing number of processor cores, much as
3D graphics applications transparently scale their parallelism to manycore GPUs with
widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard programming
languages such as C.

At its core are three key abstractions — a hierarchy of thread groups, shared memories,
and barrier synchronization — that are simply exposed to the programmer as a minimal
set of language extensions.

These abstractions provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. They guide the
programmer to partition the problem into coarse sub-problems that can be solved
independently in parallel by blocks of threads, and each sub-problem into finer pieces
that can be solved cooperatively in parallel by all threads within the block.
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This decomposition preserves language expressivity by allowing threads to cooperate
when solving each sub-problem, and at the same time enables automatic scalability.
Indeed, each block of threads can be scheduled on any of the available multiprocessors
within a GPU, in any order, concurrently or sequentially, so that a compiled

CUDA program can execute on any number of multiprocessors as illustrated by

Figure 5 Automatic Scalability, and only the runtime system needs to know the physical
multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market
range by simply scaling the number of multiprocessors and memory partitions: from
the high-performance enthusiast GeForce GPUs and professional Quadro and Tesla
computing products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-
Enabled GPUs for a list of all CUDA-enabled GPUs).

Multithreaded QDA Program

25Ms GPU with 4 5Ms

5M1 SMOD SM1 5M 2

5M32

ERRE :;
EERE

w

A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks
of threads that execute independently from each other, so that a GPU with more
multiprocessors will automatically execute the program in less time than a GPU with
fewer multiprocessors.

Figure 5 Automatic Scalability

1.4 Document Structure

This document is organized into the following chapters:

» Introduction is a general introduction to CUDA.
» Programming Model outlines the CUDA programming model
» Programming Interface describes the programming interface

www.nvidia.com
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» Hardware Implementation describes the hardware implementation

v

Performance Guidelines gives some guidance on how to achieve maximum
performance

CUDA-Enabled GPU s lists all CUDA-enabled devices

C Language Extensions is a detailed description of all extensions to the C language
Mathematical Functions lists the mathematical functions supported in CUDA
C/C++ Language Support lists the C++ features supported in device code

Texture Fetching gives more details on texture fetching

Compute Capabilities gives the technical specifications of various devices, as well as
more architectural details

» Driver API introduces the low-level driver API

vV V. v v Vv v
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Chapter 2.
PROGRAMMING MODEL

This chapter introduces the main concepts behind the CUDA programming model by
outlining how they are exposed in C. An extensive description of CUDA C is given in
Programming Interface.

Full code for the vector addition example used in this chapter and the next can be found
in the vectorAdd SDK code sample.

2.1 Kernels

CUDA C extends C by allowing the programmer to define C functions, called kernels,
that, when called, are executed N times in parallel by N different CUDA threads, as
opposed to only once like regular C functions.

A kernel is defined using the global  declaration specifier and the number of
CUDA threads that execute that kernel for a given kernel call is specified using a new
<<<..>>> execution configuration syntax (see C Language Extensions). Each thread
that executes the kernel is given a unique thread ID that is accessible within the kernel
through the built-in threadIdx variable.

As an illustration, the following sample code adds two vectors A and B of size N and
stores the result into vector C:
// Kernel definition

__global  void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i]:;
}

int main ()

{

// Kernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);

}

Here, each of the N threads that execute VecAdd () performs one pair-wise addition.

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 7



Programming Model

2.2 Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identified
using a one-dimensional, two-dimensional, or three-dimensional thread index, forming
a one-dimensional, two-dimensional, or three-dimensional thread block. This provides
a natural way to invoke computation across the elements in a domain such as a vector,
matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way:
For a one-dimensional block, they are the same; for a two-dimensional block of size (D,,
D,),the thread ID of a thread of index (x, y) is (x + y D,); for a three-dimensional block of
size (Dy, Dy, D), the thread ID of a thread of index (x, y, z) is (x + y D, +z D, Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the
result into matrix C:

// Kernel definition

__global  void MatAdd(float A[N] [N], float B[N][N],
float C[N] [N])

{

int 1 = threadIdx.x;
int j = threadIdx.y;
Cl[il[3]1 = A[i][3] + BIi][31;

int main ()

// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;

dim3 threadsPerBlock (N, N);

MatAdd<<<numBlocks, threadsPerBlock>>> (A, B, C);

}

There is a limit to the number of threads per block, since all threads of a block are
expected to reside on the same processor core and must share the limited memory
resources of that core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the
total number of threads is equal to the number of threads per block times the number of
blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional
grid of thread blocks as illustrated by Figure 6 Grid of Thread Blocks. The number of
thread blocks in a grid is usually dictated by the size of the data being processed or the
number of processors in the system, which it can greatly exceed.
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Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>>syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

Extending the previous MatAdd () example to handle multiple blocks, the code becomes
as follows.

// Kernel definition

__global  void MatAdd(float A[N] [N], float B[N][N],
float C[N] [N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (1 < N && j < N)

Cl[i]1[31 = A[i1[3] + BIi1([31;

int main ()

// Kernel invocation

dim3 threadsPerBlock (16, 16);

dim3 numBlocks (N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>> (A, B, C);

www.nvidia.com
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A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common
choice. The grid is created with enough blocks to have one thread per matrix element

as before. For simplicity, this example assumes that the number of threads per grid in
each dimension is evenly divisible by the number of threads per block in that dimension,
although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute
them in any order, in parallel or in series. This independence requirement allows thread
blocks to be scheduled in any order across any number of cores as illustrated by Figure 1
4, enabling programmers to write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and
by synchronizing their execution to coordinate memory accesses. More precisely, one
can specify synchronization points in the kernel by calling the =~ syncthreads ()
intrinsic function;  syncthreads () acts as a barrier at which all threads in the block
must wait before any is allowed to proceed. Shared Memory gives an example of using
shared memory.

For efficient cooperation, the shared memory is expected to be a low-latency memory
near each processor core (much like an L1 cache) and  syncthreads () is expected to
be lightweight.

2.3 Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as
illustrated by Figure 7 Memory Hierarchy. Each thread has private local memory. Each
thread block has shared memory visible to all threads of the block and with the same
lifetime as the block. All threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the
constant and texture memory spaces. The global, constant, and texture memory spaces
are optimized for different memory usages (see Device Memory Accesses). Texture
memory also offers different addressing modes, as well as data filtering, for some
specific data formats (see Texture and Surface Memory).

The global, constant, and texture memory spaces are persistent across kernel launches
by the same application.
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Figure 7 Memory Hierarchy

2.4 Heterogeneous Programming

As illustrated by Figure 8 Heterogeneous Programming, the CUDA programming
model assumes that the CUDA threads execute on a physically separate device that
operates as a coprocessor to the host running the C program. This is the case, for
example, when the kernels execute on a GPU and the rest of the C program executes on
a CPU.

The CUDA programming model also assumes that both the host and the device maintain
their own separate memory spaces in DRAM, referred to as host memory and device
memory, respectively. Therefore, a program manages the global, constant, and texture
memory spaces visible to kernels through calls to the CUDA runtime (described in
Programming Interface). This includes device memory allocation and deallocation as
well as data transfer between host and device memory.
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Serial code executes on the host while parallel code executes on the device.

Figure 8 Heterogeneous Programming

2.5 Compute Capability

The compute capability of a device is defined by a major revision number and a minor
revision number.

Devices with the same major revision number are of the same core architecture. The
major revision number is 3 for devices based on the Kepler architecture, 2 for devices
based on the Fermi architecture, and 1 for devices based on the Tesla architecture.
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The minor revision number corresponds to an incremental improvement to the core
architecture, possibly including new features.

CUDA-Enabled GPU s lists of all CUDA-enabled devices along with their compute

capability. Compute Capabilities gives the technical specifications of each compute
capability.
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Chapter 3.
PROGRAMMING INTERFACE

CUDA C provides a simple path for users familiar with the C programming language to
easily write programs for execution by the device.

It consists of a minimal set of extensions to the C language and a runtime library.

The core language extensions have been introduced in Programming Model. They allow
programmers to define a kernel as a C function and use some new syntax to specify the
grid and block dimension each time the function is called. A complete description of all
extensions can be found in C Language Extensions. Any source file that contains some of
these extensions must be compiled with nvcc as outlined in Compilation with NVCC.

The runtime is introduced in Compilation Workflow. It provides C functions that
execute on the host to allocate and deallocate device memory, transfer data between host
memory and device memory, manage systems with multiple devices, etc. A complete
description of the runtime can be found in the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is

also accessible by the application. The driver API provides an additional level of
control by exposing lower-level concepts such as CUDA contexts — the analogue of host
processes for the device — and CUDA modules —the analogue of dynamically loaded
libraries for the device. Most applications do not use the driver API as they do not
need this additional level of control and when using the runtime, context and module
management are implicit, resulting in more concise code. The driver AP is introduced
in Driver API and fully described in the reference manual.

3.1 Compilation with NVCC

Kernels can be written using the CUDA instruction set architecture, called PTX, which
is described in the PTX reference manual. It is however usually more effective to use a
high-level programming language such as C. In both cases, kernels must be compiled
into binary code by nvcc to execute on the device.

nvcc is a compiler driver that simplifies the process of compiling C or PTX code: It
provides simple and familiar command line options and executes them by invoking the
collection of tools that implement the different compilation stages. This section gives
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an overview of nvcc workflow and command options. A complete description can be
found in the nvcc user manual.

3.1.1 Compilation Workflow

3.1.1.1 Offline Compilation

Source files compiled with nvcc can include a mix of host code (i.e., code that executes
on the host) and device code (i.e., code that executes on the device). nvcc’s basic
workflow consists in separating device code from host code and then:

» compiling the device code into an assembly form (PTX code) and/or binary form
(cubin object),

» and modifying the host code by replacing the <<<. . .>>> syntax introduced in
Kernels (and described in more details in Execution Configuration) by the necessary
CUDA C runtime function calls to load and launch each compiled kernel from the
PTX code and/or cubin object.

The modified host code is output either as C code that is left to be compiled using
another tool or as object code directly by letting nvcc invoke the host compiler during
the last compilation stage.

Applications can then:

» Either link to the compiled host code (this is the most common case),

» Or ignore the modifed host code (if any) and use the CUDA driver API (see Driver
API) to load and execute the PTX code or cubin object.

3.1.1.2 Just-in-Time Compilation

Any PTX code loaded by an application at runtime is compiled further to binary code
by the device driver. This is called just-in-time compilation. Just-in-time compilation
increases application load time, but allows the application to benefit from any new
compiler improvements coming with each new device driver. It is also the only way
for applications to run on devices that did not exist at the time the application was
compiled, as detailed in Application Compatibility.

When the device driver just-in-time compiles some PTX code for some application, it
automatically caches a copy of the generated binary code in order to avoid repeating
the compilation in subsequent invocations of the application. The cache — referred to as
compute cache — is automatically invalidated when the device driver is upgraded, so that
applications can benefit from the improvements in the new just-in-time compiler built
into the device driver.

Environment variables are available to control just-in-time compilation:

» Setting CUDA CACHE_DISABLE to 1 disables caching (i.e., no binary code is added to
or retrieved from the cache).

» CUDA CACHE MAXSIZE specifies the size of the compute cache in bytes; the default
size is 32 MB and the maximum size is 4 GB; binary codes whose size exceeds the
cache size are not cached; older binary codes are evicted from the cache to make room
for newer binary codes if needed.
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» CUDA CACHE PATH specifies the folder where the compute cache files are stored; the
default values are:

» on Windows, $APPDATA%\NVIDIA\ComputeCache,
» on MacOS, SHOME/Library/Application\ Support/NVIDIA/
ComputeCache,

» on Linux, ~/.nv/ComputeCache

» Setting CUDA FORCE_PTX JIT to 1 forces the device driver to ignore any binary
code embedded in an application (see Application Compatibility) and to just-in-time
compile embedded PTX code instead; if a kernel does not have embedded PTX code,
it will fail to load; this environment variable can be used to validate that PTX code is
embedded in an application and that its just-in-time compilation works as expected to
guarantee application forward compatibility with future architectures.

3.1.2 Binary Compatibility

Binary code is architecture-specific. A cubin object is generated using the compiler
option -code that specifies the targeted architecture: For example, compiling with
-code=sm_13 produces binary code for devices of compute capability 1.3 (see
Compute Capability for a description of the compute capability). Binary compatibility is
guaranteed from one minor revision to the next one, but not from one minor revision to
the previous one or across major revisions. In other words, a cubin object generated for
compute capability X.y is only guaranteed to execute on devices of compute capability
X.z where z2y.

3.1.3 PTX Compatibility

Some PTX instructions are only supported on devices of higher compute capabilities.
For example, atomic instructions on global memory are only supported on devices of
compute capability 1.1 and above; double-precision instructions are only supported

on devices of compute capability 1.3 and above. The ~arch compiler option specifies
the compute capability that is assumed when compiling C to PTX code. So, code

that contains double-precision arithmetic, for example, must be compiled with -
arch=sm_13 (or higher compute capability), otherwise double-precision arithmetic will
get demoted to single-precision arithmetic.

PTX code produced for some specific compute capability can always be compiled to
binary code of greater or equal compute capability.

3.1.4 Application Compatibility

To execute code on devices of specific compute capability, an application must load
binary or PTX code that is compatible with this compute capability as described in
Binary Compatibility and PTX Compatibility. In particular, to be able to execute code on
future architectures with higher compute capability — for which no binary code can be
generated yet —, an application must load PTX code that will be just-in-time compiled for
these devices (see Just-in-Time Compilation).
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Which PTX and binary code gets embedded in a CUDA C application is controlled by
the ~arch and -code compiler options or the ~gencode compiler option as detailed in
the nvcc user manual. For example,
nvcc x.cu

-gencode arch=compute 10,code=sm 10

-gencode arch=compute 11, code=\’'compute 11,sm 11\’
embeds binary code compatible with compute capability 1.0 (first ~gencode option)
and PTX and binary code compatible with compute capability 1.1 (second -gencode
option).

Host code is generated to automatically select at runtime the most appropriate code to
load and execute, which, in the above example, will be:

» 1.0 binary code for devices with compute capability 1.0,
» 1.1 binary code for devices with compute capability 1.1, 1.2, 1.3,

» binary code obtained by compiling 1.1 PTX code for devices with compute
capabilities 2.0 and higher.

x.cu can have an optimized code path that uses atomic operations, for example,
which are only supported in devices of compute capability 1.1 and higher. The
___CUDA ARCH__ macro can be used to differentiate various code paths based
on compute capability. It is only defined for device code. When compiling with -
arch=compute 11 for example, CUDA ARCH isequalto 110.

Applications using the driver API must compile code to separate files and explicitly load
and execute the most appropriate file at runtime.

The nvcc user manual lists various shorthands for the —arch, -code, and -
gencode compiler options. For example, ~arch=sm_13 is a shorthand for -
arch=compute 13 -code=compute 13,sm_ 13 (which is the same as ~gencode
arch=compute 13, code=\’compute 13,sm 13\’).

3.1.5 C/C++ Compatibility

The front end of the compiler processes CUDA source files according to C++ syntax
rules. Full C++ is supported for the host code. However, only a subset of C++ is fully
supported for the device code as described in C/C++ Language Support.

3.1.6 64-Bit Compatibility

The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit).
Device code compiled in 64-bit mode is only supported with host code compiled in 64-
bit mode.

Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device
code compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.

The 32-bit version of nvcc can compile device code in 64-bit mode also using the -m64
compiler option.

The 64-bit version of nvcc can compile device code in 32-bit mode also using the -m32
compiler option.
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3.2 CUDA C Runtime

The runtime is implemented in the cudart dynamic library which is typically included
in the application installation package. All its entry points are prefixed with cuda.

As mentioned in Heterogeneous Programming, the CUDA programming model
assumes a system composed of a host and a device, each with their own separate
memory. Device Memory gives an overview of the runtime functions used to manage
device memory.

Shared Memory illustrates the use of shared memory, introduced in Thread Hierarchy,
to maximize performance.

Page-Locked Host Memory introduces page-locked host memory that is required to
overlap kernel execution with data transfers between host and device memory.

Asynchronous Concurrent Execution describes the concepts and API used to enable
asynchronous concurrent execution at various levels in the system.

Multi-Device System shows how the programming model extends to a system with
multiple devices attached to the same host.

Error Checking describes how to properly check the errors generated by the runtime.
Call Stack mentions the runtime functions used to manage the CUDA C call stack.

Texture and Surface Memory presents the texture and surface memory spaces that
provide another way to access device memory; they also expose a subset of the GPU
texturing hardware.

Graphics Interoperability introduces the various functions the runtime provides to
interoperate with the two main graphics APIs, OpenGL and Direct3D.

3.2.1 Initialization

There is no explicit initialization function for the runtime; it initializes the first time a
runtime function is called (more specifically any function other than functions from the
device and version management sections of the reference manual). One needs to keep
this in mind when timing runtime function calls and when interpreting the error code
from the first call into the runtime.

During initialization, the runtime creates a CUDA context for each device in the

system (see Context for more details on CUDA contexts). This context is the primary
context for this device and it is shared among all the host threads of the application. This
all happens under the hood and the runtime does not expose the primary context to the
application.

When a host thread calls cudaDeviceReset (), this destroys the primary context of the
device the host thread currently operates on (i.e., the current device as defined in Device
Selection). The next runtime function call made by any host thread that has this device
as current will create a new primary context for this device.
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3.2.2 Device Memory

As mentioned in Heterogeneous Programming, the CUDA programming model
assumes a system composed of a host and a device, each with their own separate
memory. Kernels operate out of device memory, so the runtime provides functions to
allocate, deallocate, and copy device memory, as well as transfer data between host
memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are
described in Texture and Surface Memory.

Linear memory exists on the device in a 32-bit address space for devices of compute
capability 1.x and 40-bit address space of devices of higher compute capability, so
separately allocated entities can reference one another via pointers, for example, in a
binary tree.

Linear memory is typically allocated using cudaMalloc () and freed using

cudaFree () and data transfer between host memory and device memory are typically
done using cudaMemcpy () . In the vector addition code sample of Kernels, the vectors
need to be copied from host memory to device memory:

// Device code
__global  void VecAdd(float* A, float* B, float* C, int N)
{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (1 < N)
C[i] = A[i] + B[i];
}

// Host code
int main ()

{
int N = ...;
size t size = N * sizeof (float);

// Allocate input vectors h A and h B in host memory
float* h A = (float*)malloc (size);
float* h B = (float*)malloc(size);

// Initialize input vectors

// Allocate vectors in device memory

float* d A;
cudaMalloc (&amp;d A, size);
float* d B;
cudaMalloc (&amp;d B, size);
float* d _C;

cudaMalloc (&amp;d C, size);

// Copy vectors from host memory to device memory
cudaMemcpy (d A, h A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d B, h B, size, cudaMemcpyHostToDevice) ;

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid =
(N + threadsPerBlock — 1) / threadsPerBlock;
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, N);
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// Copy result from device memory to host memory
// h _C contains the result in host memory
cudaMemcpy (h C, d C, size, cudaMemcpyDeviceToHost) ;

// Free device memory
cudaFree(d A);
cudaFree (d B);
cudaFree (d C);

// Free host memory

}

Linear memory can also be allocated through cudaMallocPitch () and
cudaMalloc3D (). These functions are recommended for allocations of 2D or

3D arrays as it makes sure that the allocation is appropriately padded to meet the
alignment requirements described in Device Memory Accesses, therefore ensuring
best performance when accessing the row addresses or performing copies between
2D arrays and other regions of device memory (using the cudaMemcpy2D () and
cudaMemcpy3D () functions). The returned pitch (or stride) must be used to access
array elements. The following code sample allocates a widthxheight 2D array of
floating-point values and shows how to loop over the array elements in device code:

// Host code
int width = 64, height = 64;
float* devPtr;
size t pitch;
cudaMallocPitch (&devPtr, &pitch,
width * sizeof (float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global void MyKernel (float* devPtr,
size t pitch, int width, int height)
{
for (int r = 0; r < height; ++r) {

float* row = (float*) ((char*)devPtr + r * pitch);
for (int ¢ = 0; ¢ > width; ++c) {
float element = row([c];

}
}

The following code sample allocates a widthxheightxdepth 3D array of floating-
point values and shows how to loop over the array elements in device code:

// Host code

int width = 64, height = 64, depth = 64;

cudaExtent extent = make cudaExtent (width * sizeof (float),
height, depth);

cudaPitchedPtr devPitchedPtr;

cudaMalloc3D (&devPitchedPtr, extent);

MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global  void MyKernel (cudaPitchedPtr devPitchedPtr,
int width, int height, int depth)

char* devPtr = devPitchedPtr.ptr;

size t pitch = devPitchedPtr.pitch;

size t slicePitch = pitch * height;

for (int z = 0; z < depth; ++z) {
char* slice = devPtr + z * slicePitch;
for (int y = 0; y < height; ++y) {
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float* row = (float*) (slice + y * pitch);
for (int x = 0; x < width; ++x) {
float element = row([x];

}

}

The reference manual lists all the various functions used to copy memory between
linear memory allocated with cudaMalloc (), linear memory allocated with
cudaMallocPitch () or cudaMalloc3D (), CUDA arrays, and memory allocated for
variables declared in global or constant memory space.

The following code sample illustrates various ways of accessing global variables via the
runtime APIL:

__constant  float constData[256];

float datal[256];

cudaMemcpyToSymbol (constData, data, sizeof (data));
cudaMemcpyFromSymbol (data, constData, sizeof (data)):;

__device  float devData;
float value = 3.14f;
cudaMemcpyToSymbol (devData, &value, sizeof (float));

_ _device  float* devPointer;

float* ptr;

cudaMalloc (&ptr, 256 * sizeof (float)):;
cudaMemcpyToSymbol (devPointer, &ptr, sizeof (ptr));

cudaGetSymbolAddress () is used to retrieve the address pointing to the memory
allocated for a variable declared in global memory space. The size of the allocated
memory is obtained through cudaGetSymbolSize ().

3.2.3 Shared Memory

As detailed in Variable Type Qualifiers shared memory is allocated using the
__shared__ qualifier.

Shared memory is expected to be much faster than global memory as mentioned in
Thread Hierarchy and detailed in Shared Memory. Any opportunity to replace global
memory accesses by shared memory accesses should therefore be exploited as illustrated
by the following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication
that does not take advantage of shared memory. Each thread reads one row of A

and one column of B and computes the corresponding element of C as illustrated in
Figure 9 Matrix Multiplication without Shared Memory. A is therefore read B.width
times from global memory and B is read A.height times.

// Matrices are stored in row-major order:

// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {

int width;

int height;

float* elements;
} Matrix;

// Thread block size
#define BLOCK_ SIZE 16
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// Forward declaration of the matrix multiplication kernel

__global  void MatMulKernel (const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul (const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d A;
d A.width = A.width; d A.height = A.height;
size t size = A.width * A.height * sizeof (float);
cudaMalloc (&d A.elements, size);
cudaMemcpy (d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;
Matrix d B;
d B.width = B.width; d B.height = B.height;
size = B.width * B.height * sizeof (float);
cudaMalloc (&d B.elements, size);
cudaMemcpy (d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

// Allocate C in device memory

Matrix d C;

d C.width = C.width; d C.height = C.height;
size = C.width * C.height * sizeof (float);
cudaMalloc (&d C.elements, size);

// Invoke kernel

dim3 dimBlock(BLOCK_SIZE, BLOCK SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d B, d C);

// Read C from device memory
cudaMemcpy (C.elements, Cd.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree (d_A.elements);
cudaFree (d B.elements) ;
cudaFree (d C.elements) ;

}

// Matrix multiplication kernel called by MatMul ()
__global  void MatMulKernel (Matrix A, Matrix B, Matrix C)
{

// Each thread computes one element of C

// by accumulating results into Cvalue

float Cvalue = 0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;
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Figure 9 Matrix Multiplication without Shared Memory

The following code sample is an implementation of matrix multiplication that does take
advantage of shared memory. In this implementation, each thread block is responsible
for computing one square sub-matrix Cs,; of C and each thread within the block is
responsible for computing one element of C,;,. As illustrated in Figure 10 Matrix
Multiplication with Shared Memory, C,p, is equal to the product of two rectangular
matrices: the sub-matrix of A of dimension (A.width, block_size) that has the same row
indices as Cg,p, and the sub-matrix of B of dimension (block_size, A.width )that has

the same column indices as Cs,;. In order to fit into the device’s resources, these two
rectangular matrices are divided into as many square matrices of dimension block_size
as necessary and Cg,; is computed as the sum of the products of these square matrices.
Each of these products is performed by first loading the two corresponding square
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matrices from global memory to shared memory with one thread loading one element of
each matrix, and then by having each thread compute one element of the product. Each
thread accumulates the result of each of these products into a register and once done
writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and
save a lot of global memory bandwidth since A is only read (B.width / block_size) times
from global memory and B is read (A.height / block_size) times.

The Matrix type from the previous code sample is augmented with a stride field, so that
sub-matrices can be efficiently represented with the same type. device functions
(see __device_) are used to get and set elements and build any sub-matrix from a
matrix.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
int width;
int height;
int stride;
float* elements;
} Matrix;

// Get a matrix element
__device  float GetElement (const Matrix A, int row, int col)
{

return A.elements[row * A.stride + col];

}

// Set a matrix element
__device  void SetElement (Matrix A, int row, int col,
float value)
{
A.elements[row * A.stride + col] = value;

}

// Get the BLOCK SIZEXBLOCK SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device  Matrix GetSubMatrix(Matrix A, int row, int col)
{

Matrix Asub;

Asub.width BLOCK SIZE;

Asub.height BLOCK SIZE;

Asub.stride = A.stride;

Asub.elements = &A.elements[A.stride * BLOCK SIZE * row

+ BLOCK SIZE * col];

return Asub;

}

// Thread block size
#define BLOCK_ SIZE 16

// Forward declaration of the matrix multiplication kernel
__global  void MatMulKernel (const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul (const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d A;
d A.width = d A.stride = A.width; d A.height = A.height;
size t size = A.width * A.height * sizeof (float);
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cudaMalloc (&d A.elements, size);

cudaMemcpy (d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d B;

d B.width = d B.stride = B.width; d B.height = B.height;

size = B.width * B.height * sizeof (float);

cudaMalloc (&d B.elements, size);

cudaMemcpy (d_B.elements, B.elements, size,

cudaMemcpyHostToDevice) ;

// Allocate C in device memory
Matrix d C;
d C.width = d C.stride = C.width; d C.height = C.height;

size = C.width * C.height * sizeof (float);
cudaMalloc (&d C.elements, size);

// Invoke kernel

dim3 dimBlOCk(BLOCK_SIZE, BLOCK SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

// Read C from device memory
cudaMemcpy (C.elements, d C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree (d A.elements);
cudaFree (d B.elements) ;
cudaFree (d C.elements);

}

// Matrix multiplication kernel called by MatMul ()
__global  void MatMulKernel (Matrix A, Matrix B, Matrix C)
{

// Block row and column

int blockRow = blockIdx.y;

int blockCol = blockIdx.x;

// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix (C, blockRow, blockCol) ;

// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;

// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;

// Loop over all the sub-matrices of A and B that are
// required to compute Csub

// Multiply each pair of sub-matrices together

// and accumulate the results

for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix (A, blockRow, m);

// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix (B, m, blockCol);

// Shared memory used to store Asub and Bsub respectively
~ _shared  float As[BLOCK SIZE] [BLOCK SIZE];
~_shared  float Bs[BLOCK SIZE] [BLOCK SIZE];

// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
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As[row] [col] GetElement (Asub, row, col);
Bs[row] [col] = GetElement (Bsub, row, col);

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads() ;

// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK SIZE; ++e)
Cvalue += As[row] [e] * Bs[e][col];

// Synchronize to make sure that the preceding
// computation is done before loading two new

// sub-matrices of A and B in the next iteration
__syncthreads () ;

}

// Write Csub to device memory
// Each thread writes one element
SetElement (Csub, row, col, Cvalue);
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Figure 10 Matrix Multiplication with Shared Memory

3.2.4 Page-Locked Host Memory

The runtime provides functions to allow the use of page-locked (also known as pinned)
host memory (as opposed to regular pageable host memory allocated by malloc () ):

» cudaHostAlloc () and cudaFreeHost () allocate and free page-locked host
memory;

» cudaHostRegister () page-locks a range of memory allocated by malloc () (see
reference manual for limitations).

Using page-locked host memory has several benefits:

» Copies between page-locked host memory and device memory can be performed
concurrently with kernel execution for some devices as mentioned in Asynchronous
Concurrent Execution.
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» On some devices, page-locked host memory can be mapped into the address space
of the device, eliminating the need to copy it to or from device memory as detailed in
Mapped Memory.

» On systems with a front-side bus, bandwidth between host memory and device
memory is higher if host memory is allocated as page-locked and even higher if in
addition it is allocated as write-combining as described in Write-Combining Memory.

Page-locked host memory is a scarce resource however, so allocations in page-locked
memory will start failing long before allocations in pageable memory. In addition, by
reducing the amount of physical memory available to the operating system for paging,
consuming too much page-locked memory reduces overall system performance.

The simple zero-copy SDK sample comes with a detailed document on the page-locked
memory APIs.

3.2.4.1 Portable Memory

A block of page-locked memory can be used in conjunction with any device in the
system (see Multi-Device System for more details on multi-device systems), but

by default, the benefits of using page-locked memory described above are only
available in conjunction with the device that was current when the block was allocated
(and with all devices sharing the same unified address space, if any, as described in
Unified Virtual Address Space). To make these advantages available to all devices,

the block needs to be allocated by passing the flag cudaHostAllocPortable to
cudaHostAlloc () or page-locked by passing the flag cudaHostRegisterPortable
to cudaHostRegister ().

3.2.4.2 Write-Combining Memory

By default page-locked host memory is allocated as cacheable. It can optionally be
allocated as write-combining instead by passing flag cudaHostAllocWriteCombined
to cudaHostAlloc (). Write-combining memory frees up the host’s L1 and L2 cache
resources, making more cache available to the rest of the application. In addition, write-
combining memory is not snooped during transfers across the PCI Express bus, which
can improve transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-
combining memory should in general be used for memory that the host only writes to.

3.2.4.3 Mapped Memory

On devices of compute capability greater than 1.0, a block of page-locked host

memory can also be mapped into the address space of the device by passing

flag cudaHostAllocMapped to cudaHostAlloc () or by passing flag
cudaHostRegisterMapped to cudaHostRegister (). Such a block has

therefore in general two addresses: one in host memory that is returned by
cudaHostAlloc () ormalloc (), and one in device memory that can be retrieved
using cudaHostGetDevicePointer () and then used to access the block from within
a kernel. The only exception is for pointers allocated with cudaHostAlloc () and when
a unified address space is used for the host and the device as mentioned in Unified
Virtual Address Space.
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Accessing host memory directly from within a kernel has several advantages:

» There is no need to allocate a block in device memory and copy data between this
block and the block in host memory; data transfers are implicitly performed as
needed by the kernel;

» There is no need to use streams (see Concurrent Data Transfers) to overlap data
transfers with kernel execution; the kernel-originated data transfers automatically
overlap with kernel execution.

Since mapped page-locked memory is shared between host and device however,
the application must synchronize memory accesses using streams or events (see
Asynchronous Concurrent Execution) to avoid any potential read-after-write, write-
after-read, or write-after-write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-
locked memory mapping must be enabled by calling cudaSetDeviceFlags () with
the cudaDeviceMapHost flag before any other CUDA call is performed. Otherwise,
cudaHostGetDevicePointer () will return an error.

cudaHostGetDevicePointer () also returns an error if the device does not support
mapped page-locked host memory. Applications may query this capability by checking
the canMapHostMemory device property (see Device Enumeration), which is equal to 1
for devices that support mapped page-locked host memory.

Note that atomic functions (see Atomic Functions) operating on mapped page-locked
memory are not atomic from the point of view of the host or other devices.

3.2.5 Asynchronous Concurrent Execution

3.2.5.1 Concurrent Execution between Host and Device

In order to facilitate concurrent execution between host and device, some function calls
are asynchronous: Control is returned to the host thread before the device has completed
the requested task. These are:

Kernel launches;

Memory copies between two addresses to the same device memory;
Memory copies from host to device of a memory block of 64 KB or less;
Memory copies performed by functions that are suffixed with Async;
Memory set function calls.

vV V. v v VY

Programmers can globally disable asynchronous kernel launches for all CUDA
applications running on a system by setting the CUDA LAUNCH BLOCKING environment
variable to 1. This feature is provided for debugging purposes only and should never be
used as a way to make production software run reliably.

Kernel launches are synchronous in the following cases:

» The application is run via a debugger or memory checker (cuda-gdb, cuda-
memcheck, Nsight) on a device of compute capability 1.x;

» Hardware counters are collected via a profiler (Nsight, Visual Profiler).
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3.2.5.2 Overlap of Data Transfer and Kernel Execution

Some devices of compute capability 1.1 and higher can perform copies between
page-locked host memory and device memory concurrently with kernel execution.
Applications may query this capability by checking the asyncEngineCount device
property (see Device Enumeration), which is greater than zero for devices that
support it. For devices of compute capability 1.x, this capability is only supported
for memory copies that do not involve CUDA arrays or 2D arrays allocated through
cudaMallocPitch () (see Device Memory).

3.2.5.3 Concurrent Kernel Execution

Some devices of compute capability 2.x and higher can execute multiple

kernels concurrently. Applications may query this capability by checking the
concurrentKernels device property (see Device Enumeration), which is equal to 1
for devices that support it.

The maximum number of kernel launches that a device can execute concurrently is 32 on
devices of compute capability 3.5 and 16 on devices of lower compute capabiliy.

A kernel from one CUDA context cannot execute concurrently with a kernel from
another CUDA context.

Kernels that use many textures or a large amount of local memory are less likely to
execute concurrently with other kernels.

3.2.5.4 Concurrent Data Transfers

Some devices of compute capability 2.x and higher can perform a copy from page-locked
host memory to device memory concurrently with a copy from device memory to page-
locked host memory.

Applications may query this capability by checking theasyncEngineCount device
property (see Device Enumeration), which is equal to 2 for devices that support it.

3.2.5.5 Streams

Applications manage concurrency through streams. A stream is a sequence of commands
(possibly issued by different host threads) that execute in order. Different streams, on
the other hand, may execute their commands out of order with respect to one another or
concurrently; this behavior is not guaranteed and should therefore not be relied upon for
correctness (e.g., inter-kernel communication is undefined).

3.2.5.5.1 Creation and Destruction

A stream is defined by creating a stream object and specifying it as the stream parameter
to a sequence of kernel launches and host <-> device memory copies. The following
code sample creates two streams and allocates an array hostPtr of float in page-
locked memory.

cudaStream t stream[2];
for (int 1 = 0; 1 < 2; ++1i)
cudaStreamCreate (&stream[i]) ;
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float* hostPtr;
cudaMallocHost (&hostPtr, 2 * size);

Each of these streams is defined by the following code sample as a sequence of one
memory copy from host to device, one kernel launch, and one memory copy from device
to host:

for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel <<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
cudaMemcpyAsync (hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device
memory, processes inputDevPtr on the device by calling MyKernel (), and copies
the result outputDevPtr back to the same portion of hostPtr. Overlapping Behavior
describes how the streams overlap in this example depending on the capability of the
device. Note that hostPtr must point to page-locked host memory for any overlap to
occur.

Streams are released by calling cudaStreamDestroy ().
for (int i = 0; i < 2; ++1i)
cudaStreamDestroy (stream[i]) ;
cudaStreamDestroy () waits for all preceding commands in the given stream to
complete before destroying the stream and returning control to the host thread.

3.2.5.5.2 Default Stream

Kernel launches and host <-> device memory copies that do not specify any stream
parameter, or equivalently that set the stream parameter to zero, are issued to the default
stream. They are therefore executed in order.

3.2.5.5.3 Explicit Synchronization
There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize () waits until all preceding commands in all streams of all
host threads have completed.

cudaStreamSynchronize () takes a stream as a parameter and waits until all
preceding commands in the given stream have completed. It can be used to synchronize
the host with a specific stream, allowing other streams to continue executing on the
device.

cudaStreamWaitEvent ()takes a stream and an event as parameters (see Events for
a description of events)and makes all the commands added to the given stream after
the call to cudaStreamiWaitEvent () delay their execution until the given event has
completed. The stream can be 0, in which case all the commands added to any stream
after the call to cudaStreamWaitEvent () wait on the event.

cudaStreamQuery () provides applications with a way to know if all preceding
commands in a stream have completed.
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To avoid unnecessary slowdowns, all these synchronization functions are usually best
used for timing purposes or to isolate a launch or memory copy that is failing.

3.2.5.5.4 Implicit Synchronization

Two commands from different streams cannot run concurrently if any one of the
following operations is issued in-between them by the host thread:

apage-locked host memory allocation,

a device memory allocation,

a device memory set,

a memory copy between two addresses to the same device memory,
any CUDA command to the default stream,

a switch between the L1/shared memory configurations described in Compute
Capability 2.x.

vV V. v v v VY

For devices that support concurrent kernel execution and are of compute capability 3.0
or lower, any operation that requires a dependency check to see if a streamed kernel
launch is complete:

» Can start executing only when all thread blocks of all prior kernel launches from any
stream in the CUDA context have started executing;

» Blocks all later kernel launches from any stream in the CUDA context until the kernel
launch being checked is complete.

Operations that require a dependency check include any other commands within the
same stream as the launch being checked and any call to cudaStreamQuery () on that
stream. Therefore, applications should follow these guidelines to improve their potential
for concurrent kernel execution:

» All independent operations should be issued before dependent operations,
» Synchronization of any kind should be delayed as long as possible.

3.2.5.5.5 Overlapping Behavior

The amount of execution overlap between two streams depends on the order in which
the commands are issued to each stream and whether or not the device supports
overlap of data transfer and kernel execution (see Overlap of Data Transfer and Kernel
Execution), concurrent kernel execution (see Concurrent Kernel Execution), and/or
concurrent data transfers (see Concurrent Data Transfers).

For example, on devices that do not support concurrent data transfers, the two streams
of the code sample of Creation and Destruction do not overlap at all because the
memory copy from host to device is issued to stream 1 after the memory copy from
device to host is issued to stream 0, so it can only start once the memory copy from
device to host issued to stream 0 has completed. If the code is rewritten the following
way (and assuming the device supports overlap of data transfer and kernel execution)
for (int i = 0; 1 < 2; ++1i)

cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size,

size, cudaMemcpyHostToDevice, stream[i]);

for (int 1 = 0; 1 < 2; ++1i)

MyKernel<<<100, 512, 0, stream[i]>>>

(outputDevPtr + i * size, inputDevPtr + i * size, size);
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for (int i = 0; i < 2; ++1i)
cudaMemcpyAsync (hostPtr + 1 * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream([i]);

then the memory copy from host to device issued to stream 1 overlaps with the kernel
launch issued to stream 0.

On devices that do support concurrent data transfers, the two streams of the code
sample of Creation and Destruction do overlap: The memory copy from host to device
issued to stream 1 overlaps with the memory copy from device to host issued to stream
0 and even with the kernel launch issued to stream 0 (assuming the device supports
overlap of data transfer and kernel execution). However, for devices of compute
capability 3.0 or lower, the kernel executions cannot possibly overlap because the second
kernel launch is issued to stream 1 after the memory copy from device to host is issued
to stream 0, so it is blocked until the first kernel launch issued to stream 0 is complete

as per Implicit Synchronization. If the code is rewritten as above, the kernel executions
overlap (assuming the device supports concurrent kernel execution) since the second
kernel launch is issued to stream 1 before the memory copy from device to host is issued
to stream 0. In that case however, the memory copy from device to host issued to stream
0 only overlaps with the last thread blocks of the kernel launch issued to stream 1 as per
Implicit Synchronization, which can represent only a small portion of the total execution
time of the kernel.

3.2.5.5.6 Callbacks

The runtime provides a way to insert a callback at any point into a stream via
cudaStreamAddCallback (). A callback is a function that is executed on the host
once all commands issued to the stream before the callback have completed. Callbacks
in stream 0 are executed once all preceding tasks and commands issued in all streams
before the callback have completed.

The following code sample adds the callback function MyCallback to each of two
streams after issuing a host-to-device memory copy, a kernel launch and a device-to-host
memory copy into each stream. The callback will begin execution on the host after each
of the device-to-host memory copies completes.

void CUDART CB MyCallback(void *data) {
printf ("Inside callback %d\n", (int)data);
}

for (int i = 0; i < 2; ++i) {

cudaMemcpyAsync (devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice,
stream[i]) ;

MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);

cudaMemcpyAsync (hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
stream[i]) ;

cudaStreamAddCallback (stream[i], MyCallback, (void*)i, O0);

A callback can be specified as blocking by using the cudaStreamCallbackBlocking
flag when adding it to a stream. The commands that are issued in a stream (or all
commands issued to any stream if the callback is issued to stream 0) after a blocking
callback do not start executing before the callback has completed.
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Blocking callback must not make CUDA API calls (directly or indirectly), as it might end
up waiting on itself if it makes such a call leading to a deadlock.

3.2.5.6 Events

The runtime also provides a way to closely monitor the device’s progress, as well as
perform accurate timing, by letting the application asynchronously record events at

any point in the program and query when these events are completed. An event has
completed when all tasks — or optionally, all commands in a given stream — preceding
the event have completed. Events in stream zero are completed after all preceding tasks
and commands in all streams are completed.

3.2.5.6.1 Creation and Destruction

The following code sample creates two events:

cudaEvent t start, stop;
cudaEventCreate (&start) ;
cudaEventCreate (&stop) ;

They are destroyed this way:

cudaEventDestroy (start) ;
cudaEventDestroy (stop) ;

3.2.5.6.2 Elapsed Time

The events created in Creation and Destruction can be used to time the code sample of
Creation and Destruction the following way:

cudaEventRecord (start, 0);
for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync (inputDev + i * size, inputHost + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDev + i1 * size, inputDev + i * size, size);
cudaMemcpyAsync (outputHost + i1 * size, outputDev + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaEventRecord (stop, 0);
cudaEventSynchronize (stop) ;
float elapsedTime;
cudaEventElapsedTime (&elapsedTime, start, stop);

3.2.5.7 Synchronous Calls

When a synchronous function is called, control is not returned to the host thread before
the device has completed the requested task. Whether the host thread will then yield,
block, or spin can be specified by calling cudaSetDeviceFlags () with some specific
flags (see reference manual for details) before any other CUDA call is performed by the
host thread.

3.2.6 Multi-Device System
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3.2.6.1 Device Enumeration

A host system can have multiple devices. The following code sample shows how to
enumerate these devices, query their properties, and determine the number of CUDA-
enabled devices.

int deviceCount;

cudaGetDeviceCount (&deviceCount) ;

int device;

for (device = 0; device < deviceCount; ++device) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, device);
printf ("Device %d has compute capability %d.%d.\n",

device, deviceProp.major, deviceProp.minor);

3.2.6.2 Device Selection

A host thread can set the device it operates on at any time by calling

cudaSetDevice (). Device memory allocations and kernel launches are made on the
currently set device; streams and events are created in association with the currently set
device. If no call to cudaSetDevice () is made, the current device is device 0.

The following code sample illustrates how setting the current device affects memory
allocation and kernel execution.

size t size = 1024 * sizeof (float);

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

cudaMalloc (&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current
float* pl;

cudaMalloc (&pl, size); // Allocate memory on device 1

MyKernel<<<1000, 128>>>(pl); // Launch kernel on device 1

3.2.6.3 Stream and Event Behavior

A kernel launch or memory copy will fail if it is issued to a stream that is not associated
to the current device as illustrated in the following code sample.

cudaSetDevice (0) ; // Set device 0 as current
cudaStream t s0;

cudaStreamCreate (&s0) ; // Create stream sO0 on device 0
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 0 in s0
cudaSetDevice (1) ; // Set device 1 as current
cudaStream t sl;

cudaStreamCreate (&sl) ; // Create stream sl on device 1
MyKernel<<<100, 64, 0, sl>>>(); // Launch kernel on device 1 in sl

// This kernel launch will fail:
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 1 in s0

cudaEventRecord () will fail if the input event and input stream are associated to
different devices.

cudaEventElapsedTime () will fail if the two input events are associated to different
devices.

cudaEventSynchronize () and cudaEventQuery () will succeed even if the input
event is associated to a device that is different from the current device.
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cudaStreamWaitEvent () will succeed even if the input stream and input event are
associated to different devices. cudaStreamWaitEvent () can therefore be used to
synchronize multiple devices with each other.

Each device has its own default stream (see Default Stream), so commands issued to
the default stream of a device may execute out of order or concurrently with respect to
commands issued to the default stream of any other device.

3.2.6.4 Peer-to-Peer Memory Access

When the application is run as a 64-bit process on Windows Vista/7 in TCC mode (see
Tesla Compute Cluster Mode for Windows), on Windows XD, or on Linux, devices

of compute capability 2.0 and higher from the Tesla series may address each other’s
memory (i.e., a kernel executing on one device can dereference a pointer to the memory
of the other device). This peer-to-peer memory access feature is supported between two
devices if cudaDeviceCanAccessPeer () returns true for these two devices.

Peer-to-peer memory access must be enabled between two devices by calling
cudaDeviceEnablePeerAccess () asillustrated in the following code sample.

A unified address space is used for both devices (see Unified Virtual Address Space),
so the same pointer can be used to address memory from both devices as shown in the
code sample below.

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

size t size = 1024 * sizeof (float);

cudaMalloc (&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(pO0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current
cudaDeviceEnablePeerAccess (0, 0); // Enable peer-to-peer access

// with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);

3.2.6.5 Peer-to-Peer Memory Copy
Memory copies can be performed between the memories of two different devices.

When a unified address space is used for both devices (see Unified Virtual Address
Space), this is done using the regular memory copy functions mentioned in Device
Memory.

Otherwise, this is done using cudaMemcpyPeer (), cudaMemcpyPeerAsync (),
cudaMemcpy3DPeer (), or cudaMemcpy3DPeerAsync () as illustrated in the
following code sample.

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

size t size = 1024 * sizeof (float);

cudaMalloc (&p0, size); // Allocate memory on device 0
cudaSetDevice (1) ; // Set device 1 as current
float* pl;

cudaMalloc (&pl, size); // Allocate memory on device 1
cudaSetDevice (0) ; // Set device 0 as current
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current

cudaMemcpyPeer (pl, 1, p0, 0, size); // Copy pO to pl
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MyKernel<<<1000, 128>>>(pl); // Launch kernel on device 1
A copy between the memories of two different devices

» does not start until all commands previously issued to either device have completed
and

» runs to completion before any asynchronous commands (see Asynchronous
Concurrent Execution) issued after the copy to either device can start.

Note that if peer-to-peer access is enabled between two devices via
cudaDeviceEnablePeerAccess () as described in Peer-to-Peer Memory Access,
peer-to-peer memory copy between these two devices no longer needs to be staged
through the host and is therefore faster.

3.2.7 Unified Virtual Address Space

For 64-bit applications on Windows Vista/7 in TCC mode (see Tesla Compute Cluster
Mode for Windows), on Windows XP, or on Linux, a single address space is used for
the host and all the devices of compute capability 2.0 and higher. This address space
is used for all allocations made in host memory via cudaHostAlloc ()and in any

of the device memories via cudaMalloc* (). Which memory a pointer points to —
host memory or any of the device memories — can be determined from the value of the
pointer using cudaPointerGetAttributes (). As a consequence:

» When copying from or to the memory of one of the devices for which the unified
address space is used, the cudaMemcpyKind parameter of cudaMemcpy* ()
becomes useless and can be set to cudaMemcpyDefault;

» Allocations via cudaHostAlloc () are automatically portable (see Portable
Memory) across all the devices for which the unified address space is used, and
pointers returned by cudaHostAlloc () can be used directly from within kernels
running on these devices (i.e., there is no need to obtain a device pointer via
cudaHostGetDevicePointer () as described in Mapped Memory.

Applications may query if the unified address space is used for a particular device by
checking that the unifiedAddressing device property (see Device Enumeration) is
equal to 1.

3.2.8 Error Checking

All runtime functions return an error code, but for an asynchronous function (see
Asynchronous Concurrent Execution), this error code cannot possibly report any of the
asynchronous errors that could occur on the device since the function returns before the
device has completed the task; the error code only reports errors that occur on the host
prior to executing the task, typically related to parameter validation; if an asynchronous
error occurs, it will be reported by some subsequent unrelated runtime function call.

The only way to check for asynchronous errors just after some asynchronous

function call is therefore to synchronize just after the call by calling
cudaDeviceSynchronize () (or by using any other synchronization mechanisms
described in Asynchronous Concurrent Execution) and checking the error code returned
by cudaDeviceSynchronize ().

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 37



Programming Interface

The runtime maintains an error variable for each host thread that is initialized to
cudaSuccess and is overwritten by the error code every time an error occurs (be it
a parameter validation error or an asynchronous error). cudaPeekAtLastError ()
returns this variable. cudaGetLastError () returns this variable and resets it to
cudaSuccess.

Kernel launches do not return any error code, so cudaPeekAtLastError () or
cudaGetLastError () must be called just after the kernel launch to retrieve any
pre-launch errors. To ensure that any error returned by cudaPeekAtLastError ()
or cudaGetLastError () does not originate from calls prior to the kernel launch,
one has to make sure that the runtime error variable is set to cudaSuccess just before
the kernel launch, for example, by calling cudaGetLastError () just before the
kernel launch. Kernel launches are asynchronous, so to check for asynchronous
errors, the application must synchronize in-between the kernel launch and the call to
cudaPeekAtLastError () or cudaGetLastError ().

Note that cudaErrorNotReady that may be returned by cudastreamQuery ()
and cudaEventQuery () is not considered an error and is therefore not reported by
cudaPeekAtLastError () or cudaGetLastError ().

3.2.9 Call Stack

On devices of compute capability 2.x and higher, the size of the call stack can be queried
using cudaDeviceGetLimit () and setusing cudaDeviceSetLimit ().

When the call stack overflows, the kernel call fails with a stack overflow error if the
application is run via a CUDA debugger (cuda-gdb, Nsight) or an unspecified launch
error, otherwise.

3.2.10 Texture and Surface Memory

CUDA supports a subset of the texturing hardware that the GPU uses for graphics

to access texture and surface memory. Reading data from texture or surface memory
instead of global memory can have several performance benefits as described in Device
Memory Accesses.

There are two different APIs to access texture and surface memory:

» The texture reference API that is supported on all devices,
» The texture object API that is only supported on devices of compute capability 3.x.

The texture reference API has limitations that the texture object API does not have. They
are mentioned in Texture Reference API.

3.2.10.1 Texture Memory

Texture memory is read from kernels using the device functions described in Texture
Functions. The process of reading a texture calling one of these functions is called a
texture fetch. Each texture fetch specifies a parameter called a texture object for the texture
object API or a texture reference for the texture reference APL

The texture object or the texture reference specifies:
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» The texture, which is the piece of texture memory that is fetched. Texture objects are
created at runtime and the texture is specified when creating the texture object as
described in Texture Object API. Texture references are created at compile time and
the texture is specified at runtime by bounding the texture reference to the texture
through runtime functions as described in Texture Reference API; several distinct
texture references might be bound to the same texture or to textures that overlap in
memory. A texture can be any region of linear memory or a CUDA array (described
in CUDA Arrays).

» Its dimensionality that specifies whether the texture is addressed as a one dimensional
array using one texture coordinate, a two-dimensional array using two texture
coordinates, or a three-dimensional array using three texture coordinates. Elements
of the array are called texels, short for texture elements. The texture width, height, and
depthrefer to the size of the array in each dimension. Table F 2 lists the maximum
texture width, height, and depth depending on the compute capability of the device.

» The type of a texel, which is restricted to the basic integer and single-precision
floating-point types and any of the 1-, 2-, and 4-component vector types defined in
char, short, int, long, longlong, float, double.

» The read mode, which is equal to cudaReadModeNormalizedFloat or
cudaReadModeElementType. If it is cudaReadModeNormalizedFloat and the
type of the texel is a 16-bit or 8-bit integer type, the value returned by the texture
fetch is actually returned as floating-point type and the full range of the integer type
is mapped to [0.0, 1.0] for unsigned integer type and [-1.0, 1.0] for signed integer type;
for example, an unsigned 8-bit texture element with the value Oxff reads as 1. If it is
cudaReadModeElementType, no conversion is performed.

» Whether texture coordinates are normalized or not. By default, textures are
referenced (by the functions of Texture Functions) using floating-point coordinates in
the range [0, N-1] where N is the size of the texture in the dimension corresponding
to the coordinate. For example, a texture that is 64x32 in size will be referenced with
coordinates in the range [0, 63] and [0, 31] for the x and y dimensions, respectively.
Normalized texture coordinates cause the coordinates to be specified in the range
[0.0, 1.0-1/N] instead of [0, N-1], so the same 64x32 texture would be addressed
by normalized coordinates in the range [0, 1-1/N] in both the x and y dimensions.
Normalized texture coordinates are a natural fit to some applications' requirements, if
it is preferable for the texture coordinates to be independent of the texture size.

> The addressing mode. It is valid to call the device functions of Section B.8 with
coordinates that are out of range. The addressing mode defines what happens in that
case. The default addressing mode is to clamp the coordinates to the valid range:

[0, N) for non-normalized coordinates and [0.0, 1.0) for normalized coordinates.

If the border mode is specified instead, texture fetches with out-of-range texture
coordinates return zero. For normalized coordinates, the warp mode and the mirror
mode are also available. When using the wrap mode, each coordinate x is converted
to frac(x)=x floor(x) where floor(x) is the largest integer not greater than x. When
using the mirror mode, each coordinate x is converted to frac(x) if floor(x) is even
and 1-frac(x) if floor(x) is odd. The addressing mode is specified as an array of size
three whose first, second, and third elements specify the addressing mode for the
tirst, second, and third texture coordinates, respectively; the addressing mode are
cudaAddressModeBorder, cudaAddressModeClamp, cudaAddressModeWrap,
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and cudaAddressModeMirror; cudaAddressModeWrap and
cudaAddressModeMirror are only supported for normalized texture coordinates

» The filtering mode which specifies how the value returned when fetching the texture
is computed based on the input texture coordinates. Linear texture filtering may be
done only for textures that are configured to return floating-point data. It performs
low-precision interpolation between neighboring texels. When enabled, the texels
surrounding a texture fetch location are read and the return value of the texture fetch
is interpolated based on where the texture coordinates fell between the texels. Simple
linear interpolation is performed for one-dimensional textures, bilinear interpolation
for two-dimensional textures, and trilinear interpolation for three-dimensional
textures. Texture Fetching gives more details on texture fetching. The filtering
mode is equal to cudaFilterModePoint or cudaFilterModeLinear. Ifitis
cudaFilterModePoint, the returned value is the texel whose texture coordinates
are the closest to the input texture coordinates. If it is cudaFilterModeLinear, the
returned value is the linear interpolation of the two (for a one-dimensional texture),
four (for a two dimensional texture), or eight (for a three dimensional texture)
texels whose texture coordinates are the closest to the input texture coordinates.
cudaFilterModeLinear is only valid for returned values of floating-point type.

Texture Object API introduces the texture object APL

Texture Reference API introduces the texture reference APL

16-Bit Floating-Point Textures explains how to deal with 16-bit floating-point textures.
Textures can also be layered as described in Layered Textures.

Cubemap Textures and Cubemap Layered Textures describe a special type of texture,
the cubemap texture.

Texture Gather describes a special texture fetch, texture gather.

3.2.10.1.1 Texture Object API

A texture object is created using cudaCreateTextureObject () from a resource
description of type struct cudaResourceDesc, which specifies the texture, and from a
texture description defined as such:

struct cudaTextureDesc

{
enum cudaTextureAddressMode addressMode[3];
enum cudaTextureFilterMode filterMode;

enum cudaTextureReadMode readMode;

int sRGB;

int normalizedCoords;
unsigned int maxAnisotropy;

enum cudaTextureFilterMode mipmapFilterMode;
float mipmapLevelBias;
float minMipmapLevelClamp;
float maxMipmapLevelClamp;

addressMode specifies the addressing mode;

filterMode specifies the filter mode;

readMode specifies the read mode;

normalizedCoords specifies whether texture coordinates are normalized or not;

v v v v
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» See reference manual for sRGB, maxAnisotropy, mipmapFilterMode,
mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.

The following code sample applies some simple transformation kernel to a texture.

// Simple transformation kernel

__global  void transformKernel (float* output,
cudaTextureObject t texObj,
int width, int height,
float theta)

// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

float u x / (float)width;
float v = y / (float)height;

// Transform coordinates

u -= 0.5f;
v -= 0.5f;
float tu = u * cosf(theta) - v * sinf (theta) + 0.5f;

float tv = v * cosf(theta) + u * sinf (theta) + 0.5f;

// Read from texture and write to global memory
output[y * width + x] = tex2D<float>(texObj, tu, tv);
}

// Host code
int main ()
{
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32, 0, 0, 0,
cudaChannelFormatKindFloat) ;
cudaArray* cuArray;
cudaMallocArray (&cuBArray, &channelDesc, width, height);

// Copy to device memory some data located at address h data

// in host memory

cudaMemcpyToArray (cuArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Specify texture

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof (resDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = CuArray;

// Specify texture object parameters

struct cudaTextureDesc texDesc;

memset (&texDesc, 0, sizeof (texDesc)):;
texDesc.addressMode [0] = cudaAddressModeWrap;
texDesc.addressMode[1] = cudaAddressModeWrap;
texDesc.filterMode cudaFilterModeLinear;
texDesc.readMode cudaReadModeElementType;
texDesc.normalizedCoords = 1;

// Create texture object
cudaTextureObject t texObj = 0;
cudaCreateTextureObject (&texObj, &resDesc, &texDesc, NULL);

// Allocate result of transformation in device memory
float* output;
cudaMalloc (&output, width * height * sizeof (float));

// Invoke kernel
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dim3 dimBlock (16, 16);
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);
transformKernel<<<dimGrid, dimBlock>>> (output,
texObj, width, height,
angle) ;

// Destroy texture object
cudaDestroyTextureObject (texObject) ;

// Free device memory
cudaFreeArray (cuArray) ;
cudaFree (output) ;

return 0;

3.2.10.1.2 Texture Reference API

Some of the attributes of a texture reference are immutable and must be known at
compile time; they are specified when declaring the texture reference. A texture
reference is declared at file scope as a variable of type texture:
texture<DataType, Type, ReadMode> texRef;

where:

» DataType specifies the type of the texel;

» Type specifies the type of the texture reference and is equal to
cudaTextureTypelD, cudaTextureType2D, or cudaTextureType3D, for a
one-dimensional, two-dimensional, or three-dimensional texture, respectively, or
cudaTextureTypelDLayered or cudaTextureType2DLayered for a one-
dimensional or two-dimensional layered texture respectively; Type is an optional
argument which defaults to cudaTextureTypelD;

» ReadMode specifies the read mode; it is an optional argument which defaults to
cudaReadModeElementType.

A texture reference can only be declared as a static global variable and cannot be passed
as an argument to a function.

The other attributes of a texture reference are mutable and can be changed at runtime
through the host runtime. As explained in the reference manual, the runtime API

has a low-level C-style interface and a high-level C++-style interface. The texture
type is defined in the high-level API as a structure publicly derived from the
textureReference type defined in the low-level API as such:

struct textureReference ({
int normalized;
enum cudaTextureFilterMode filterMode;
enum cudaTextureAddressMode addressMode[3];
struct cudaChannelFormatDesc channelDesc;

int sRGB;

unsigned int maxAnisotropy;

enum cudaTextureFilterMode mipmapFilterMode;
float mipmapLevelBias;
float minMipmapLevelClamp;
float maxMipmapLevelClamp;

}

» normalized specifies whether texture coordinates are normalized or not;
» filterMode specifies the filtering mode;
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» addressMode specifies the addressing mode;

» channelDesc describes the format of the texel; it must match the DataType
argument of the texture reference declaration; channelDesc is of the following type:

struct cudaChannelFormatDesc {
int x, y, z, w;
enum cudaChannelFormatKind f;
i
where X, y, z, and w are equal to the number of bits of each component of the
returned value and f is:

» cudaChannelFormatKindSigned if these components are of signed integer
type,

» cudaChannelFormatKindUnsigned if they are of unsigned integer type,

» cudaChannelFormatKindFloat if they are of floating point type.

» See reference manual for sRGB, maxAnisotropy, mipmapFilterMode,
mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.

normalized, addressMode, and filterMode may be directly modified in host code.

Before a kernel can use a texture reference to read from texture memory, the

texture reference must be bound to a texture using cudaBindTexture () or
cudaBindTexture2D () for linear memory, or cudaBindTextureToArray ()

for CUDA arrays. cudaUnbindTexture () is used to unbind a texture reference.

It is recommended to allocate two-dimensional textures in linear memory using
cudaMallocPitch () and use the pitch returned by cudaMallocPitch () as input
parameter to cudaBindTexture2D ().

The following code samples bind a texture reference to linear memory pointed to by
devPtr:

» Using the low-level API:

texture<float, cudaTextureType2D,

cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference (&texRefPtr, texRef);
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc<float>();
size t offset;
cudaBindTexture2D (&offset, texRefPtr, devPtr, &channelDesc,
width, height, pitch);

» Using the high-level API:

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc<float> () ;
size t offset;
cudaBindTexture2D (&offset, texRef, devPtr, channelDesc,
width, height, pitch);

The following code samples bind a texture reference to a CUDA array cuArray:

» Using the low-level APL

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference (&texRefPtr, texRef);
cudaChannelFormatDesc channelDesc;

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 43



Programming Interface

cudaGetChannelDesc (&channelDesc, cuArray);

cudaBindTextureToArray (texRef, cuArray, &channelDesc);

? Using the high-level API:

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;

cudaBindTextureToArray (texRef, cuArray);

The format specified when binding a texture to a texture reference must match the
parameters specified when declaring the texture reference; otherwise, the results of
texture fetches are undefined.

There is a limit to the number of textures that can be bound to a kernel as specified in
Table 10 Technical Specifications per Compute Capability.

The following code sample applies some simple transformation kernel to a texture.

// 2D float texture
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

// Simple transformation kernel

__global void transformKernel (float* output,
int width, int height,
float theta)

// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

float u =
float v

x / (float)width;
y / (float)height;

// Transform coordinates

u -= 0.5f;
v -= 0.5f;
float tu = u * cosf(theta) - v * sinf (theta) + 0.5f;

float tv = v * cosf(theta) + u * sinf (theta) + 0.5f;

// Read from texture and write to global memory
output [y * width + x] = tex2D(texRef, tu, tv);
}

// Host code
int main ()
{
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32, 0, 0, O,
cudaChannelFormatKindFloat) ;
cudaArray* cuArray;
cudaMallocArray (&culArray, &channelDesc, width, height);

// Copy to device memory some data located at address h data

// in host memory

cudaMemcpyToArray (cuArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Set texture reference parameters

texRef.addressMode [0] = cudaAddressModeWrap;
texRef.addressMode[l] = cudaAddressModeWrap;
texRef.filterMode = cudaFilterModeLinear;
texRef.normalized = true;

// Bind the array to the texture reference
cudaBindTextureToArray (texRef, cuArray, channelDesc);

// Allocate result of transformation in device memory
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float* output;
cudaMalloc (&output, width * height * sizeof (float));

// Invoke kernel
dim3 dimBlock (16, 16);
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);
transformKernel<<<dimGrid, dimBlock>>> (output, width, height,
angle) ;

// Free device memory
cudaFreeArray (cuArray) ;
cudaFree (output) ;

return 0;

}

3.2.10.1.3 16-Bit Floating-Point Textures

The 16-bit floating-point or half format supported by CUDA arrays is the same as the
IEEE 754-2008 binary?2 format.

CUDA C does not support a matching data type, but provides intrinsic functions

to convert to and from the 32-bit floating-point format via the unsigned short

type: float2half rn(float) and half2float (unsigned short). These
functions are only supported in device code. Equivalent functions for the host code can
be found in the OpenEXR library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching
before any filtering is performed.

A channel description for the 16-bit floating-point format can be created by calling one
of the cudaCreateChannelDescHalf* () functions.

3.2.10.1.4 Layered Textures

A one-dimensional or two-dimensional layered texture (also know as texture array in
Direct3D and array texture in OpenGL) is a texture made up of a sequence of layers, all of
which are regular textures of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-
point texture coordinate; the index denotes a layer within the sequence and the
coordinate addresses a texel within that layer. A two-dimensional layered texture is
addressed using an integer index and two floating-point texture coordinates; the index
denotes a layer within the sequence and the coordinates address a texel within that layer.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray () with
the cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in tex1Dlayered() and
tex2Dlayered(). Texture filtering (see Texture Fetching) is done only within a layer, not
across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.
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3.2.10.1.5 Cubemap Textures

A cubemap texture is a special type of two-dimensional layered texture that has six layers
representing the faces of a cube:

» The width of a layer is equal to its height.

» The cubemap is addressed using three texture coordinates x, y, and z that are
interpreted as a direction vector emanating from the center of the cube and pointing
to one face of the cube and a texel within the layer corresponding to that face. More
specifically, the face is selected by the coordinate with largest magnitude m and the
corresponding layer is addressed using coordinates (s/m+1)/2 and (t/m+1)/2 where s
and t are defined in Table 1 Cubemap Fetch.

Table 1 Cubemap Fetch

face m s t
x>0 0 X -z -y

Ix] > |yl and |x| > |z|
x<0 1 -X z -y
y>0 2 y X z

lyl > Ix| and |y| > |z|
y<0 3 -y X z
z>0 4 z X y

lz| > Ix| and |z] > |y|
z<0 5 -z -X -y

A layered texture can only be a CUDA array by calling cudaMalloc3DArray () with
the cudaArrayCubemap flag.

Cubemap textures are fetched using the device function described in texCubemap).

Cubemap textures are only supported on devices of compute capability 2.0 and higher.

3.2.10.1.6 Cubemap Layered Textures

A cubemap layered texture is a layered texture whose layers are cubemaps of same
dimension.

A cubemap layered texture is addressed using an integer index and three floating-
point texture coordinates; the index denotes a cubemap within the sequence and the
coordinates address a texel within that cubemap.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray () with
the cudaArrayLayered and cudaArrayCubemap flags.

Cubemap layered textures are fetched using the device function described in
texCubemapLayered(). Texture filtering (see Texture Fetching) is done only within a
layer, not across layers.

Cubemap layered textures are only supported on devices of compute capability 2.0 and
higher.
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3.2.10.1.7 Texture Gather

Texture gather is a special texture fetch that is available for two-dimensional textures
only. It is performed by the tex2Dgather () function, which has the same parameters
as tex2D (), plus an additional comp parameter equal to 0, 1, 2, or 3 (see tex2Dgather()).
It returns four 32-bit numbers that correspond to the value of the component comp of
each of the four texels that would have been used for bilinear filtering during a regular
texture fetch. For example, if these texels are of values (253, 20, 31, 255), (250, 25, 29, 254),
(249, 16, 37, 253), (251, 22, 30, 250), and comp is 2, tex2Dgather () returns (31, 29, 37,
30).

Texture gather is only supported for CUDA arrays created with the
cudaArrayTextureGather flag and of width and height less than the maximum
specified in Table 10 Technical Specifications per Compute Capability for texture gather,
which is smaller than for regular texture fetch.

Texture gather is only supported on devices of compute capability 2.0 and higher.

3.2.10.2 Surface Memory

For devices of compute capability 2.0 and higher, a CUDA array (described in Cubemap
Surfaces), created with the cudaArraySurfaceLoadStore flag, can be read and
written via a surface object or surface reference using the functions described in Surface
Functions.

Table 10 Technical Specifications per Compute Capability lists the maximum surface
width, height, and depth depending on the compute capability of the device.

3.2.10.2.1 Surface Object API

A surface object is created using cudaCreateSurfaceObject () from a resource
description of type struct cudaResourceDesc.

The following code sample applies some simple transformation kernel to a texture.

// Simple copy kernel

__global  void copyKernel (cudaSurfaceObject inputSurfObj,
cudaSurfaceObject outputSurfObj,
int width, int height)

// Calculate surface coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {

uchar4 data;

// Read from input surface

surf2Dread (&data, inputSurfObj, x * 4, vy);

// Write to output surface

surf2Dwrite (data, outputSurfObj, x * 4, vy);

}

// Host code
int main ()
{
// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (8, 8, 8, 8,
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cudaChannelFormatKindUnsigned) ;
cudaArray* culnputArray;
cudaMallocArray (&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;
cudaArray* cuOutputArray;
cudaMallocArray (&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

// Copy to device memory some data located at address h data

// in host memory

cudaMemcpyToArray (culnputArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Specify surface

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof (resDesc));
resDesc.resType = cudaResourceTypeArray;

// Create the surface objects
resDesc.res.array.array = culnputArray;
cudaSurfaceObject inputSurfObj = 0;
cudaCreateSurfaceObject (&inputSurfObj, &resDesc) ;
resDesc.res.array.array = cuOutputArray;
cudaSurfaceObject outputSurfObj = 0;
cudaCreateSurfaceObject (&outputSurfObj, &resDesc) ;

// Invoke kernel
dim3 dimBlock (16, 16);
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);
copyKernel<<<dimGrid, dimBlock>>> (inputSurfObj,
outputSurfObj,
width, height);

// Destroy surface objects
cudaDestroySurfaceObject (inputSurfObj) ;
cudaDestroySurfaceObject (outputSurfObj) ;

// Free device memory
cudaFreeArray (culnputArray) ;
cudaFreeArray (cuOutputArray) ;

return 0;

3.2.10.2.2 Surface Reference API

A surface reference is declared at file scope as a variable of type surface:

surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal to
cudaSurfaceTypelD, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceTypelDLayered,
cudaSurfaceType2DLayered, or cudaSurfaceTypeCubemapLayered; Type is an
optional argument which defaults to cudaSurfaceTypelD. A surface reference can only
be declared as a static global variable and cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray ().

The following code samples bind a surface reference to a CUDA array cuArray:
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» Using the low-level APL

surface<void, cudaSurfaceType2D> surfRef;
surfaceReference* surfRefPtr;

cudaGetSurfaceReference (&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;

cudaGetChannelDesc (&channelDesc, cuArray);
cudaBindSurfaceToArray (surfRef, cuArray, &channelDesc);

» Using the high-level API:

surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray (surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching
dimensionality and type and via a surface reference of matching dimensionality;
otherwise, the results of reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that the x-
coordinate used to access a texture element via texture functions needs to be multiplied
by the byte size of the element to access the same element via a surface function. For
example, the element at texture coordinate x of a one-dimensional floating-point
CUDA array bound to a texture reference texRef and a surface reference surfRef
isread using texld(texRef, x) viatexRef, butsurflDread (surfRef,

4*x) via surfRef. Similarly, the element at texture coordinate x and y of a two-
dimensional floating-point CUDA array bound to a texture reference texRef and a
surface reference surfRef is accessed using tex2d (texRef, x, y) viatexRef, but
surf2Dread (surfRef, 4*x, y) viasurfRef (the byte offset of the y-coordinate is
internally calculated from the underlying line pitch of the CUDA array).

The following code sample applies some simple transformation kernel to a texture.

// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;

// Simple copy kernel
__global  void copyKernel (int width, int height)
{
// Calculate surface coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {
uchar4 data;
// Read from input surface
surf2Dread (&data, inputSurfRef, x * 4, vy);
// Write to output surface
surf2Dwrite (data, outputSurfRef, x * 4, vy);

}

// Host code
int main ()
{
// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (8, 8, 8, 8,
cudaChannelFormatKindUnsigned) ;
cudaArray* culnputArray;
cudaMallocArray (&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;
cudaArray* cuOutputArray;
cudaMallocArray (&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;
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// Copy to device memory some data located at address h data

// in host memory

cudaMemcpyToArray (culnputArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Bind the arrays to the surface references
cudaBindSurfaceToArray (inputSurfRef, culnputArray);
cudaBindSurfaceToArray (outputSurfRef, cuOutputArray);

// Invoke kernel

dim3 dimBlock (16, 16);

dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);

copyKernel<<<dimGrid, dimBlock>>>(width, height);

// Free device memory
cudaFreeArray (culnputArray) ;
cudaFreeArray (cuOutputArray) ;

return 0O;

}

3.2.10.2.3 Cubemap Surfaces

Cubemap surfaces are accessed usingsurfCubemapread () and
surfCubemapwrite () (surfCubemapread() and surfCubemapwrite()) as a two-
dimensional layered surface, i.e., using an integer index denoting a face and two
floating-point texture coordinates addressing a texel within the layer corresponding to
this face. Faces are ordered as indicated in Table 1 Cubemap Fetch.

3.2.10.2.4 Cubemap Layered Surfaces

Cubemap layered surfaces are accessed using surfCubemapLayeredread ()

and surfCubemapLayeredwrite () (surfCubemapLayeredread() and
surfCubemapLayeredwrite()) as a two-dimensional layered surface, i.e., using an integer
index denoting a face of one of the cubemaps and two floating-point texture coordinates
addressing a texel within the layer corresponding to this face. Faces are ordered as
indicated in Table 1 Cubemap Fetch, so index ((2 * 6) + 3), for example, accesses the
fourth face of the third cubemap.

3.2.10.3 CUDA Arrays

CUDA arrays are opaque memory layouts optimized for texture fetching. They are one
dimensional, two dimensional, or three-dimensional and composed of elements, each of
which has 1, 2 or 4 components that may be signed or unsigned 8, 16 or 32 bit integers,
16 bit floats, or 32 bit floats. CUDA arrays are only accessible by kernels through texture
fetching as described in Texture Memory or surface reading and writing as described in
Surface Memory .

3.2.10.4 Read/Write Coherency

The texture and surface memory is cached (see Device Memory Accesses) and within
the same kernel call, the cache is not kept coherent with respect to global memory
writes and surface memory writes, so any texture fetch or surface read to an address
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that has been written to via a global write or a surface write in the same kernel call
returns undefined data. In other words, a thread can safely read some texture or surface
memory location only if this memory location has been updated by a previous kernel
call or memory copy, but not if it has been previously updated by the same thread or
another thread from the same kernel call.

3.2.11 Graphics Interoperability

Some resources from OpenGL and Direct3D may be mapped into the address space of

CUDA, either to enable CUDA to read data written by OpenGL or Direct3D, or to enable
CUDA to write data for consumption by OpenGL or Direct3D.

A resource must be registered to CUDA before it can be mapped using the
functions mentioned in OpenGL Interoperability and Direct3D Interoperability.
These functions return a pointer to a CUDA graphics resource of type struct
cudaGraphicsResource. Registering a resource is potentially high-overhead
and therefore typically called only once per resource. A CUDA graphics resource is
unregistered using cudaGraphicsUnregisterResource ().

Once a resource is registered to CUDA, it can be mapped and unmapped

as many times as necessary using cudaGraphicsMapResources () and
cudaGraphicsUnmapResources (). cudaGraphicsResourceSetMapFlags () can
be called to specify usage hints (write-only, read-only) that the CUDA driver can use to
optimize resource management.

A mapped resource can be read from or written to by kernels using the device memory
address returned by cudaGraphicsResourceGetMappedPointer () for buffers and
cudaGraphicsSubResourceGetMappedArray () for CUDA arrays.

Accessing a resource through OpenGL or Direct3D while it is mapped to CUDA
produces undefined results. OpenGL Interoperability and Direct3D Interoperability
give specifics for each graphics API and some code samples. SLI Interoperability gives
specifics for when the system is in SLI mode.

3.2.11.1 OpenGL Interoperability

Interoperability with OpenGL requires that the CUDA device be specified by
cudaGLSetGLDevice () before any other runtime calls. Note that cudaSetDevice ()
and cudaGLSetGLDevice () are mutually exclusive.

The OpenGL resources that may be mapped into the address space of CUDA are
OpenGL buffer, texture, and renderbuffer objects.

A buffer object is registered using cudaGraphicsGLRegisterBuffer ().In CUDA,
it appears as a device pointer and can therefore be read and written by kernels or via
cudaMemcpy () calls.

A texture or renderbuffer object is registered using
cudaGraphicsGLRegisterImage ().In CUDA, it appears as a CUDA array. Kernels
can read from the array by binding it to a texture or surface reference. They can also
write to it via the surface write functions if the resource has been registered with the
cudaGraphicsRegisterFlagsSurfaceLoadStore flag. The array can also be
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read and written via cudaMemcpy2D () calls. cudaGraphicsGLRegisterImage ()
supports all texture formats with 1, 2, or 4 components and an internal type of float (e.g.,
GL RGBA_ FLOAT32), normalized integer (e.g., GL_RGBA8, GL_ INTENSITY16), and
unnormalized integer (e.g., GL__RGBA8UI) (please note that since unnormalized integer
formats require OpenGL 3.0, they can only be written by shaders, not the fixed function

pipeline).

The OpenGL context whose resources are being shared has to be current to the host

thread making any OpenGL interoperability API calls.

The following code sample uses a kernel to dynamically modify a 2D width x height

grid of vertices stored in a vertex buffer object:

GLuint positionsVBO;
struct cudaGraphicsResource* positionsVBO CUDA;

int main ()

{
// Initialize OpenGL and GLUT for device 0
// and make the OpenGL context current

glutDisplayFunc (display) ;

// Explicitly set device 0
cudaGLSetGLDevice (0) ;

// Create buffer object and register it with CUDA

glGenBuffers(l, positionsVBO) ;

glBindBuffer (GL_ARRAY BUFFER, &positionsVBO) ;

unsigned int size = width * height * 4 * sizeof (float);

glBufferData (GL_ARRAY BUFFER, size, 0, GL DYNAMIC DRAW) ;

glBindBuffer (GL ARRAY BUFFER, O0);

cudaGraphicsGLRegisterBuffer (¢positionsVBO CUDA,
positionsVRBO,

cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
glutMainLoop () ;

}

void display ()

{
// Map buffer object for writing from CUDA
floatd4* positions;
cudaGraphicsMapResources (1, &positionsVBO CUDA, 0);
size t num bytes;
cudaGraphicsResourceGetMappedPointer ( (void**) &positions,

&num bytes,

positionsVBO CUDA)) ;

// Execute kernel
dim3 dimBlock (16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap buffer object
cudaGraphicsUnmapResources (1, &positionsVBO CUDA, O0);

// Render from buffer object

glClear (GL_COLOR BUFFER BIT | GI,_ DEPTH BUFFER BIT);
glBindBuffer (GL ARRAY BUFFER, positionsVBO) ;
glVertexPointer (4, GL FLOAT, 0, 0);
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glEnableClientState(GL_VERTEX_ARRAY);
glDrawArrays (GL_POINTS, 0, width * height);
glDisableClientState (GL_VERTEX_Z—\RRAY) g

// Swap buffers

glutSwapBuffers () ;

glutPostRedisplay () ;
}

volid deleteVBO ()

{
cudaGraphicsUnregisterResource (positionsVBO CUDA) ;
glDeleteBuffers(l, &positionsVBO) ;

}

__global void createVertices(float4* positions, float time,
unsigned int width, unsigned int height)
{
blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int x
unsigned int y

// Calculate uv coordinates
float u = x / (float)width;

float v = y / (float)height;
u=u* 2.0 - 1.0f;
v=v * 2.0f - 1.0f;

// calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freqg + time)

* cosf(v * freqg + time) * 0.5f;

// Write positions

positions[y * width + x] = make floatd4(u, w, v, 1.0f);
1
On Windows and for Quadro GPUs, cudaWGLGetDevice () can be used to retrieve the
CUDA device associated to the handle returned by wglEnumGpusNV (). Quadro GPUs
offer higher performance OpenGL interoperability than GeForce and Tesla GPUs in a
multi-GPU configuration where OpenGL rendering is performed on the Quadro GPU
and CUDA computations are performed on other GPUs in the system.

3.2.11.2 Direct3D Interoperability
Direct3D interoperability is supported for Direct3D 9, Direct3D 10, and Direct3D 11.

A CUDA context may interoperate with only one Direct3D device at a time and the
CUDA context and Direct3D device must be created on the same GPU. In addition the
following considerations must be taken when creating the device: Direct3D 9 devices
must be created with DeviceType set to D3DDEVTYPE HAL and BehaviorFlags with
the D3DCREATE HARDWARE VERTEXPROCESSING flag. Direct3D 10 and Direct3D 11
devices must be created with DriverType set to D3D_DRIVER TYPE HARDWARE.

Interoperability with Direct3D requires that the Direct3D device be specified

by cudaD3D9SetDirect3DDevice (), cudaD3D10SetDirect3DDevice ()

and cudaD3D11SetDirect3DDevice (), before any other runtime calls.
cudaD3D9GetDevice (), cudaD3D10GetDevice (), and cudaD3D11GetDevice ()
can be used to retrieve the CUDA device associated to some adapter.

A set of calls is also available to allow the creation of CUDA contexts with
interoperability with Direct3D devices that use NVIDIA SLI in AFR (Alternate
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Frame Rendering) mode: cudabD3D[9[10|11]GetDevices (). A call to
cudaD3D[9]10|11]GetDevices ()can be used to obtain a list of CUDA device
handles that can be passed as the (optional) last parameter to cudaD3D[9 |10 |
11]SetDirect3DDevice ().

The application has the choice to either create multiple CPU threads, each using

a different CUDA context, or a single CPU thread using multiple CUDA context.

If using separate CPU threads for each GPU each of the CUDA contexts would be
created by the CUDA runtime by calling in a separate CPU thread cudabD3D[9]10 |
11]SetDirect3DDevice () using one of the CUDA device handles returned by
cudaD3D[9]10]|11]GetDevices ().

If using a single CPU thread the CUDA contexts would have to be created using the
CUDA driver API context creation functions for interoperability with Direct3D devices
that use NVIDIA SLI (cuD3D[9]10|11]CtxCreateOnDevice ()). The application
relies on the interoperability between CUDA driver and runtime APIs (Interoperablility
between Runtime and Driver APIs), which allows it to call cuCtxPushCurrent () and
cuCtxPopCurrent () to change the CUDA context active at a given time.

The Direct3D resources that may be mapped into the address space of
CUDA are Direct3D buffers, textures, and surfaces. These resources
are registered using cudaGraphicsD3D9RegisterResource (),
cudaGraphicsD3D10RegisterResource (), and
cudaGraphicsD3D11RegisterResource ().

The following code sample uses a kernel to dynamically modify a 2D width x height
grid of vertices stored in a vertex buffer object.

3.2.11.2.1 Direct3D 9 Version

IDirect3D9* D3D;
IDirect3DDevice9* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
b
IDirect3DVertexBuffer9* positionsVB;
struct cudaGraphicsResource* positionsVB_ CUDA;

int main ()
{
// Initialize Direct3D
D3D = Direct3DCreate9(D3D_SDK_VERSION);

// Get a CUDA-enabled adapter

unsigned int adapter = 0;

for (; adapter < g pD3D->GetAdapterCount (); adapter++) {
D3DADAPTER IDENTIFIERY adapterId;
g pD3D->GetAdapterIdentifier (adapter, 0, &adapterId);

int dev;

if (cudaD3D9GetDevice (&dev, adapterId.DeviceName)
== cudaSuccess)
break;

// Create device

D3D->CreateDevice (adapter, D3DDEVTYPE HAL, hWnd,
D3DCREATE_HARDWARE_VERTEXPROCESSING,
&params, &device);
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// Register device with CUDA
cudaD3D9SetDirect3DDevice (device) ;

// Create vertex buffer and register it with CUDA

unsigned int size =

width * height * sizeof (CUSTOMVERTEX) ;

device->CreateVertexBuffer(size, 0, D3DFVF CUSTOMVERTEX,

D3DPOOL DEFAULT, &positionsVB,

cudaGraphicsD3D9RegisterResource (&positionsVB CUDA,

// Launch rendering
while (...) {

Render () ;

void Render ()

{

}

positionsVB,

0);

cudaGraphicsRegisterFlagsNone) ;
cudaGraphicsResourceSetMapFlags (positionsVB CUDA,
cudaGraphicsMapFlagsWriteDiscard) ;

loop

// Map vertex buffer for writing from CUDA

float4* positions;

cudaGraphicsMapResources (1, &positionsVB CUDA, 0);

size t num bytes;

cudaGraphicsResourceGetMappedPointer ( (void**) &positions,

// Execute kernel

&num_bytes,
positionsVB CUDA)) ;

dim3 dimBlock(l6, 16, 1);
dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
createVertices<<<dimGrid, dimBlock>>>(positions, time,

width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, 0);

// Draw and present

voild releaseVB()

{

}

cudaGraphicsUnregisterResource (positionsVB_ CUDA) ;
positionsVB->Release() ;

__global  void createVertices (float4* positions, float time,
unsigned int width, unsigned int height)

{

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;

unsigned int y

blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
float u = x / (float)width;
float v. = y / (float)height;

u=u=* 2.0 - 1.0f;
v=v>*2.0f - 1.0£f;

// Calculate simple
float freq = 4.0f;

sine wave pattern

float w = sinf(u * freq + time)
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* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make float4(u, w, v,  int as float (0xff00££00));

3.2.11.2.2 Direct3D 10 Version

ID3D10Device* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
}i
ID3D10Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_ CUDA;

int main ()

{
// Get a CUDA-enabled adapter
IDXGIFactory* factory;
CreateDXGIFactory( uuidof (IDXGIFactory), (void**)é&factory);
IDXGIAdapter* adapter = 0;

for (unsigned int i = 0; !adapter; ++1i) {
if (FAILED (factory->EnumAdapters (i, &adapter))
break;
int dev;
if (cudaD3D10GetDevice (&dev, adapter) == cudaSuccess)
break;

adapter->Release () ;

}

factory->Release () ;
// Create swap chain and device

D3D10CreateDeviceAndSwapChain (adapter,
D3D10 DRIVER TYPE HARDWARE, O,
D3D10 CREATE DEVICE DEBUG,
D3D10_SDK_VERSION,
&swapChainDesc, &swapChain,
s&device) ;

adapter->Release () ;

// Register device with CUDA
cudaD3D10SetDirect3DDevice (device) ;

// Create vertex buffer and register it with CUDA

unsigned int size = width * height * sizeof (CUSTOMVERTEX) ;

D3D10 BUFFER DESC bufferDesc;

bufferDesc.Usage = D3D10 USAGE DEFAULT;

bufferDesc.ByteWidth = size;

bufferDesc.BindFlags D3D10 BIND VERTEX BUFFER;

bufferDesc.CPUAccessFlags = 0;

bufferDesc.MiscFlags = 0;

device->CreateBuffer (&bufferDesc, 0, &positionsVB);

cudaGraphicsD3D10RegisterResource (&positionsVB CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone) ;

cudaGraphicsResourceSetMapFlags (positionsVB CUDA,
cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
while (...) {

Render () ;
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}

void Render ()
{
// Map vertex buffer for writing from CUDA
floatd4* positions;
cudaGraphicsMapResources (1, &positionsVB CUDA, O0);
size t num bytes;
cudaGraphicsResourceGetMappedPointer ( (void**) §positions,
&num_bytes,
positionsVB CUDA)) ;

// Execute kernel

dim3 dimBlock(l6, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, O0);

// Draw and present

}

void releaseVB ()

{

cudaGraphicsUnregisterResource (positionsVB CUDA) ;
positionsVB->Release () ;

}

__global void createVertices (float4* positions, float time,
unsigned int width, unsigned int height)
{

unsigned int x blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates

float u x / (float)width;

float v = y / (float)height;
u=u* 2.0 - 1.0f;

v=v * 2.0 - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make float4(u, w, v,  int as float (0xff00££00));

3.2.11.2.3 Direct3D 11 Version

ID3D11Device* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
}i
ID3D11Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB CUDA;

int main ()

{
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// Get a CUDA-enabled adapter

IDXGIFactory* factory;
CreateDXGIFactory( uuidof (IDXGIFactory), (void**)é&factory);
IDXGIAdapter* adapter = 0;

for (unsigned int i = 0; !adapter; ++i) {
if (FAILED (factory->EnumAdapters (i, &adapter))
break;
int dev;
if (cudaD3DllGetDevice (&dev, adapter) == cudaSuccess)
break;

adapter->Release () ;

}

factory->Release () ;
// Create swap chain and device

sFnPtr D3Dl1lCreateDeviceAndSwapChain (adapter,
D3D11 DRIVER TYPE HARDWARE,
0,
D3D11 CREATE DEVICE DEBUG,
featurelevels, 3,
D3D11 SDK_VERSION,
&swapChainDesc, &swapChain,
&device,
&featurelevel,
s&deviceContext) ;
adapter->Release () ;

// Register device with CUDA
cudaD3Dl1SetDirect3DDevice (device) ;

// Create vertex buffer and register it with CUDA
unsigned int size = width * height * sizeof (CUSTOMVERTEX) ;
D3D11 BUFFER DESC bufferDesc;
bufferDesc.Usage = D3D11 USAGE DEFAULT;
bufferDesc.ByteWidth = size;
bufferDesc.BindFlags D3D11 BIND VERTEX BUFFER;
bufferDesc.CPUAccessFlags 0;
bufferDesc.MiscFlags = 0;
device->CreateBuffer (&bufferDesc, 0, &positionsVB);
cudaGraphicsD3Dl11RegisterResource (&positionsVB CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone) ;
cudaGraphicsResourceSetMapFlags (positionsVB CUDA,
cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
while (...) {

Render () ;

}

void Render ()
{
// Map vertex buffer for writing from CUDA
float4* positions;
cudaGraphicsMapResources (1, &positionsVB CUDA, O0);
size t num bytes;
cudaGraphicsResourceGetMappedPointer ( (void**) &positions,
&num_bytes,
positionsVB CUDA)) ;

// Execute kernel
dim3 dimBlock(l6, 16, 1);
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dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, O0);

// Draw and present

}

void releaseVB()

{
cudaGraphicsUnregisterResource (positionsVB CUDA) ;
positionsVB->Release() ;

__global void createVertices (float4* positions, float time,
unsigned int width, unsigned int height)

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int x
unsigned int y

// Calculate uv coordinates

float u = x / (float)width;
float v = y / (float)height;
u=u* 2.06 - 1.0f;

v=v * 2.0 - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make float4(u, w, v,  int as float (0xff00££00));
}

3.2.11.3 SLI Interoperability

In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA
driver and runtime as separate devices. There are however special considerations as
described below when the system is in SLI mode.

First, an allocation in one CUDA device on one GPU will consume memory on other
GPUs that are part of the SLI configuration of the Direct3D or OpenGL device. Because
of this, allocations may fail earlier than otherwise expected.

Second, applications have to create multiple CUDA contexts, one for each

GPU in the SLI configuration and deal with the fact that a different GPU is

used for rendering by the Direct3D or OpenGL device at every frame. The
application can use the cudaD3D[9]10|11]GetDevices () for Direct3D and
cudaGLGetDevices () for OpenGL set of calls to identify the CUDA device
handle(s) for the device(s) that are performing the rendering in the current and
next frame. Given this information the application will typically map Direct3D or
OpenGL resources to the CUDA context corresponding to the CUDA device returned
by cudaD3D[9]10|11]GetDevices () or cudaGLGetDevices () when the
deviceList parameter is set to CU D3D10 DEVICE LIST CURRENT FRAME or
cudaGLDeviceListCurrentFrame.
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See Direct3D Interoperability and OpenGL Interoperability for details on how the
CUDA runtime interoperate with Direct3D and OpenGL, respectively.

3.3 Versioning and Compatibility

There are two version numbers that developers should care about when developing a
CUDA application: The compute capability that describes the general specifications and
features of the compute device (see Compute Capability) and the version of the CUDA
driver API that describes the features supported by the driver API and runtime.

The version of the driver APl is defined in the driver header file as CUDA_ VERSION.

It allows developers to check whether their application requires a newer device

driver than the one currently installed. This is important, because the driver APl is
backward compatible, meaning that applications, plug-ins, and libraries (including the

C runtime) compiled against a particular version of the driver API will continue to
work on subsequent device driver releases as illustrated in Figure 11 The Driver APIIs
Backward, but Not Forward Compatible. The driver API is not forward compatible, which
means that applications, plug-ins, and libraries (including the C runtime) compiled
against a particular version of the driver API will not work on previous versions of the
device driver.

It is important to note that mixing and matching versions is not supported; specifically:

» All applications, plug-ins, and libraries on a system must use the same version of the
CUDA driver AP], since only one version of the CUDA device driver can be installed
on a system.

» All plug-ins and libraries used by an application must use the same version of the
runtime.

» All plug-ins and libraries used by an application must use the same version of any
libraries that use the runtime (such as CUFFT, CUBLAS, ...).
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Apps, Apps, Apps,
Libs & Libs & Libs &
Flug-ins Flug-ins Flug-ins
1.0 1.10river 20
Driver Driver
Compatible Incompatible

_....
Figure 11 The Driver API Is Backward, but Not Forward Compatible

3.4 Compute Modes

On Tesla solutions running Windows Server 2008 and later or Linux, one can set
any device in a system in one of the three following modes using NVIDIA’s System
Management Interface (nvidia-smi), which is a tool distributed as part of the driver:

» Default compute mode: Multiple host threads can use the device (by calling
cudaSetDevice () on this device, when using the runtime API, or by making
current a context associated to the device, when using the driver API) at the same
time.

» Exclusive-process compute mode: Only one CUDA context may be created on the
device across all processes in the system and that context may be current to as many
threads as desired within the process that created that context.

» Exclusive-process-and-thread compute mode: Only one CUDA context may be created
on the device across all processes in the system and that context may only be current
to one thread at a time.

> Prohibited compute mode: No CUDA context can be created on the device.

This means, in particular, that a host thread using the runtime API without explicitly
calling cudaSetDevice () might be associated with a device other than device 0 if
device 0 turns out to be in the exclusive-process mode and used by another process, or
in the exclusive-process-and-thread mode and used by another thread, or in prohibited
mode. cudaSetValidDevices () can be used to set a device from a prioritized list of
devices.

Applications may query the compute mode of a device by checking the computeMode
device property (see Device Enumeration).
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3.5 Mode Switches

GPUs that have a display output dedicate some DRAM memory to the so-called primary
surface, which is used to refresh the display device whose output is viewed by the user.
When users initiate a mode switch of the display by changing the resolution or bit depth
of the display (using NVIDIA control panel or the Display control panel on Windows),
the amount of memory needed for the primary surface changes. For example, if the
user changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the
system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-screen
graphics applications running with anti-aliasing enabled may require much more
display memory for the primary surface.) On Windows, other events that may initiate
display mode switches include launching a full-screen DirectX application, hitting Alt
+Tab to task switch away from a full-screen DirectX application, or hitting Ctrl+Alt+Del
to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface, the
system may have to cannibalize memory allocations dedicated to CUDA applications.
Therefore, a mode switch results in any call to the CUDA runtime to fail and return an
invalid context error.

3.6 Tesla Compute Cluster Mode for Windows

Using NVIDIA’s System Management Interface (nvidia-smi), the Windows device driver
can be put in TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro
Series of compute capability 2.0 and higher.

This mode has the following primary benefits:

» It makes it possible to use these GPUs in cluster nodes with non-NVIDIA integrated
graphics;

» It makes these GPUs available via Remote Desktop, both directly and via cluster
management systems that rely on Remote Desktop;

» It makes these GPUs available to applications running as a Windows service (i.e., in
Session 0).

However, the TCC mode removes support for any graphics functionality.
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The NVIDIA GPU architecture is built around a scalable array of multithreaded
Streaming Multiprocessors (SMs). When a CUDA program on the host CPU invokes a
kernel grid, the blocks of the grid are enumerated and distributed to multiprocessors
with available execution capacity. The threads of a thread block execute concurrently
on one multiprocessor, and multiple thread blocks can execute concurrently on one
multiprocessor. As thread blocks terminate, new blocks are launched on the vacated
multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage
such a large amount of threads, it employs a unique architecture called SIMT (Single-
Instruction, Multiple-Thread) that is described in SIMT Architecture. The instructions
are pipelined to leverage instruction-level parallelism within a single thread, as well as
thread-level parallelism extensively through simultaneous hardware multithreading
as detailed in Hardware Multithreading. Unlike CPU cores they are issued in order
however and there is no branch prediction and no speculative execution.

SIMT Architecture and Hardware Multithreading describe the architecture features of
the streaming multiprocessor that are common to all devices. Compute Capability 1.x,
Compute Capability 2.x, and Compute Capability 3.x provide the specifics for devices of
compute capabilities 1.x, 2.x, and 3.x, respectively.

4.1 SIMT Architecture

The multiprocessor creates, manages, schedules, and executes threads in groups of 32
parallel threads called warps. Individual threads composing a warp start together at

the same program address, but they have their own instruction address counter and
register state and are therefore free to branch and execute independently. The term warp
originates from weaving, the first parallel thread technology. A half-warp is either the
tirst or second half of a warp. A quarter-warp is either the first, second, third, or fourth
quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions
them into warps and each warp gets scheduled by a warp scheduler for execution. The
way a block is partitioned into warps is always the same; each warp contains threads
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of consecutive, increasing thread IDs with the first warp containing thread 0. Thread
Hierarchy describes how thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized when
all 32 threads of a warp agree on their execution path. If threads of a warp diverge via a
data-dependent conditional branch, the warp serially executes each branch path taken,
disabling threads that are not on that path, and when all paths complete, the threads
converge back to the same execution path. Branch divergence occurs only within a
warp; different warps execute independently regardless of whether they are executing
common or disjoint code paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector
organizations in that a single instruction controls multiple processing elements. A key
difference is that SIMD vector organizations expose the SIMD width to the software,
whereas SIMT instructions specify the execution and branching behavior of a single
thread. In contrast with SIMD vector machines, SIMT enables programmers to write
thread-level parallel code for independent, scalar threads, as well as data-parallel code
for coordinated threads. For the purposes of correctness, the programmer can essentially
ignore the SIMT behavior; however, substantial performance improvements can be
realized by taking care that the code seldom requires threads in a warp to diverge. In
practice, this is analogous to the role of cache lines in traditional code: Cache line size
can be safely ignored when designing for correctness but must be considered in the code
structure when designing for peak performance. Vector architectures, on the other hand,
require the software to coalesce loads into vectors and manage divergence manually.

If a non-atomic instruction executed by a warp writes to the same location in global or
shared memory for more than one of the threads of the warp, the number of serialized
writes that occur to that location varies depending on the compute capability of the
device (see Compute Capability 1.x, Compute Capability 2.x, and Compute Capability
3.x) and which thread performs the final write is undefined.

If an atomic instruction (see Time Function) executed by a warp reads, modifies, and
writes to the same location in global memory for more than one of the threads of the
warp, each read, modify, write to that location occurs and they are all serialized, but the
order in which they occur is undefined.

4.2 Hardware Multithreading

The execution context (program counters, registers, etc) for each warp processed by a
multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore,
switching from one execution context to another has no cost, and at every instruction
issue time, a warp scheduler selects a warp that has threads ready to execute its next
instruction (the active threads of the warp) and issues the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned among
the warps, and a parallel data cache or shared memory that is partitioned among the thread
blocks.

The number of blocks and warps that can reside and be processed together on the
multiprocessor for a given kernel depends on the amount of registers and shared
memory used by the kernel and the amount of registers and shared memory available
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on the multiprocessor. There are also a maximum number of resident blocks and a
maximum number of resident warps per multiprocessor. These limits as well the amount
of registers and shared memory available on the multiprocessor are a function of the
compute capability of the device and are given in Appendix F. If there are not enough
registers or shared memory available per multiprocessor to process at least one block,
the kernel will fail to launch.

The total number of warps in a block is as follows:

S T
Cell( , 1)
Wsize
» Tis the number of threads per block,

> Wiizis the warp size, which is equal to 32,
» ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers and total amount of shared memory allocated for a block
are documented in the CUDA Occupancy Calculator provided in CUDA Software
Development Kit.
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PERFORMANCE GUIDELINES

5.1 Overall Performance Optimization Strategies

Performance optimization revolves around three basic strategies:

» Maximize parallel execution to achieve maximum utilization;
» Optimize memory usage to achieve maximum memory throughput;
» Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an
application depends on the performance limiters for that portion; optimizing instruction
usage of a kernel that is mostly limited by memory accesses will not yield any significant
performance gain, for example. Optimization efforts should therefore be constantly
directed by measuring and monitoring the performance limiters, for example using the
CUDA profiler. Also, comparing the floating-point operation throughput or memory
throughput — whichever makes more sense — of a particular kernel to the corresponding
peak theoretical throughput of the device indicates how much room for improvement
there is for the kernel.

5.2 Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes
as much parallelism as possible and efficiently maps this parallelism to the various
components of the system to keep them busy most of the time.

5.2.1 Application Level

At a high level, the application should maximize parallel execution between the host, the
devices, and the bus connecting the host to the devices, by using asynchronous functions
calls and streams as described in Asynchronous Concurrent Execution. It should assign
to each processor the type of work it does best: serial workloads to the host; parallel
workloads to the devices.
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For the parallel workloads, at points in the algorithm where parallelism is broken
because some threads need to synchronize in order to share data with each other, there
are two cases: Either these threads belong to the same block, in which case they should
use syncthreads () and share data through shared memory within the same
kernel invocation, or they belong to different blocks, in which case they must share
data through global memory using two separate kernel invocations, one for writing to
and one for reading from global memory. The second case is much less optimal since it
adds the overhead of extra kernel invocations and global memory traffic. Its occurrence
should therefore be minimized by mapping the algorithm to the CUDA programming
model in such a way that the computations that require inter-thread communication are
performed within a single thread block as much as possible.

5.2.2 Device Level

At alower level, the application should maximize parallel execution between the
multiprocessors of a device.

For devices of compute capability 1.x, only one kernel can execute on a device at one
time, so the kernel should be launched with at least as many thread blocks as there are
multiprocessors in the device.

For devices of compute capability 2.x and higher, multiple kernels can execute
concurrently on a device, so maximum utilization can also be achieved by using
streams to enable enough kernels to execute concurrently as described in Asynchronous
Concurrent Execution.

5.2.3 Multiprocessor Level

At an even lower level, the application should maximize parallel execution between the
various functional units within a multiprocessor.

As described in Hardware Multithreading, a GPU multiprocessor relies on thread-

level parallelism to maximize utilization of its functional units. Utilization is therefore
directly linked to the number of resident warps. At every instruction issue time, a warp
scheduler selects a warp that is ready to execute its next instruction, if any, and issues
the instruction to the active threads of the warp. The number of clock cycles it takes for
a warp to be ready to execute its next instruction is called the latency, and full utilization
is achieved when all warp schedulers always have some instruction to issue for some
warp at every clock cycle during that latency period, or in other words, when latency is
completely “hidden”. The number of instructions required to hide a latency of L clock
cycles depends on the respective throughputs of these instructions (see Arithmetic
Instructions for the throughputs of various arithmetic instructions); assuming maximum
throughput for all instructions, it is:

» L/4 (rounded up to nearest integer) for devices of compute capability 1.x since a
multiprocessor issues one instruction per warp over four clock cycles, as mentioned
in Compute Capability 1.x,

» L for devices of compute capability 2.0 since a multiprocessor issues one instruction
per warp over two clock cycles for two warps at a time, as mentioned in Compute
Capability 2.x,
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» 2L for devices of compute capability 2.1 since a multiprocessor issues a pair of
instructions per warp over two clock cycles for two warps at a time, as mentioned in
Compute Capability 2.x,

» 8L for devices of compute capability 3.x since a multiprocessor issues a pair of
instructions per warp over one clock cycle for four warps at a time, as mentioned in
Compute Capability 3.x.

For devices of compute capability 2.0, the two instructions issued every other cycle are
for two different warps. For devices of compute capability 2.1, the four instructions
issued every other cycle are two pairs for two different warps, each pair being for the
same warp.

For devices of compute capability 3.x, the eight instructions issued every cycle are four
pairs for four different warps, each pair being for the same warp.

The most common reason a warp is not ready to execute its next instruction is that the
instruction’s input operands are not available yet.

If all input operands are registers, latency is caused by register dependencies, i.e., some
of the input operands are written by some previous instruction(s) whose execution has
not completed yet. In the case of a back-to-back register dependency (i.e., some input
operand is written by the previous instruction), the latency is equal to the execution
time of the previous instruction and the warp schedulers must schedule instructions for
different warps during that time. Execution time varies depending on the instruction,
but it is typically about 22 clock cycles for devices of compute capability 1.x and 2.x
and about 11 clock cycles for devices of compute capability 3.x, which translates to 6
warps for devices of compute capability 1.x, 22 warps for devices of compute capability
2.x, and 44 warps for devices of compute capability 3.x and higher (still assuming

that warps execute instructions with maximum throughput, otherwise fewer warps

are needed). For devices of compute capability 2.1 and higher, this is also assuming
enough instruction-level parallelism so that schedulers are always able to issue pairs of
instructions for each warp.

If some input operand resides in off-chip memory, the latency is much higher: 400 to
800 clock cycles for devices of compute capability 1.x and 2.x and about 200 to 400 clock
cycles for devices of compute capability 3.x. The number of warps required to keep the
warp schedulers busy during such high latency periods depends on the kernel code and
its degree of instruction-level parallelism. In general, more warps are required if the
ratio of the number of instructions with no off-chip memory operands (i.e., arithmetic
instructions most of the time) to the number of instructions with off-chip memory
operands is low (this ratio is commonly called the arithmetic intensity of the program).
For example, assume this ratio is 30, also assume the latencies are 600 cycles on devices
of compute capability 1.x and 2.x and 300 cycles on devices of compute capability 3.x.
Then about 5 warps are required for devices of compute capability 1.x, about 20 for
devices of compute capability 2.x and about 40 for devices of compute capability 3.x
(with the same assumptions as in the previous paragraph).

Another reason a warp is not ready to execute its next instruction is that it is waiting
at some memory fence (Memory Fence Functions) or synchronization point (Memory
Fence Functions). A synchronization point can force the multiprocessor to idle as
more and more warps wait for other warps in the same block to complete execution of
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instructions prior to the synchronization point. Having multiple resident blocks per
multiprocessor can help reduce idling in this case, as warps from different blocks do not
need to wait for each other at synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel
call depends on the execution configuration of the call (Execution Configuration),

the memory resources of the multiprocessor, and the resource requirements of the
kernel as described in Hardware Multithreading. To assist programmers in choosing
thread block size based on register and shared memory requirements, the CUDA
Software Development Kit provides a spreadsheet, called the CUDA Occupancy
Calculator, where occupancy is defined as the ratio of the number of resident warps to
the maximum number of resident warps (given in Compute Capabilities for various
compute capabilities).

Register, local, shared, and constant memory usages are reported by the compiler when
compiling with the -ptxas-options=-v option.

The total amount of shared memory required for a block is equal to the sum of the
amount of statically allocated shared memory, the amount of dynamically allocated
shared memory, and for devices of compute capability 1.x, the amount of shared
memory used to pass the kernel’s arguments (see __noinline__and __forceinline_ ).

The number of registers used by a kernel can have a significant impact on the number

of resident warps. For example, for devices of compute capability 1.2, if a kernel uses

16 registers and each block has 512 threads and requires very little shared memory,

then two blocks (i.e., 32 warps) can reside on the multiprocessor since they require
2x512x16 registers, which exactly matches the number of registers available on the
multiprocessor. But as soon as the kernel uses one more register, only one block (i.e.,

16 warps) can be resident since two blocks would require 2x512x17 registers, which are
more registers than are available on the multiprocessor. Therefore, the compiler attempts
to minimize register usage while keeping register spilling (see Device Memory Accesses)
and the number of instructions to a minimum. Register usage can be controlled using
the maxrregcount compiler option or launch bounds as described in Launch Bounds.

Each double variable (on devices that supports native double precision, i.e., devices
of compute capability 1.2 and higher) and each long long variable uses two registers.
However, devices of compute capability 1.2 and higher have at least twice as many
registers per multiprocessor as devices with lower compute capability.

The effect of execution configuration on performance for a given kernel call generally
depends on the kernel code. Experimentation is therefore recommended. Applications
can also parameterize execution configurations based on register file size and shared
memory size, which depends on the compute capability of the device, as well as on the
number of multiprocessors and memory bandwidth of the device, all of which can be
queried using the runtime (see reference manual).

The number of threads per block should be chosen as a multiple of the warp size to
avoid wasting computing resources with under-populated warps as much as possible.
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5.3 Maximize Memory Throughput

The first step in maximizing overall memory throughput for the application is to
minimize data transfers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed in
Data Transfer between Host and Device, since these have much lower bandwidth than
data transfers between global memory and the device.

That also means minimizing data transfers between global memory and the device
by maximizing use of on-chip memory: shared memory and caches (i.e., L1/L2 caches
available on devices of compute capability 2.x and higher, texture cache and constant
cache available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly
allocates and accesses it. As illustrated in CUDA C Runtime, a typical programming
pattern is to stage data coming from device memory into shared memory; in other
words, to have each thread of a block:

» Load data from device memory to shared memory,

» Synchronize with all the other threads of the block so that each thread can safely read
shared memory locations that were populated by different threads,

» Process the data in shared memory,

» Synchronize again if necessary to make sure that shared memory has been updated
with the results,

» Write the results back to device memory.

For some applications (e.g., for which global memory access patterns are data-
dependent), a traditional hardware-managed cache is more appropriate to exploit data
locality. As mentioned in Compute Capability 2.x, for devices of compute capability 2.x
and higher, the same on-chip memory is used for both L1 and shared memory, and how
much of it is dedicated to L1 versus shared memory is configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude
depending on access pattern for each type of memory. The next step in maximizing
memory throughput is therefore to organize memory accesses as optimally as possible
based on the optimal memory access patterns described in Device Memory Accesses.
This optimization is especially important for global memory accesses as global memory
bandwidth is low, so non-optimal global memory accesses have a higher impact on
performance.

5.3.1 Data Transfer between Host and Device

Applications should strive to minimize data transfer between the host and the device.
One way to accomplish this is to move more code from the host to the device, even

if that means running kernels with low parallelism computations. Intermediate data
structures may be created in device memory, operated on by the device, and destroyed
without ever being mapped by the host or copied to host memory.
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Also, because of the overhead associated with each transfer, batching many small
transfers into a single large transfer always performs better than making each transfer
separately.

On systems with a front-side bus, higher performance for data transfers between host
and device is achieved by using page-locked host memory as described in Page-Locked
Host Memory.

In addition, when using mapped page-locked memory (Mapped Memory), there is

no need to allocate any device memory and explicitly copy data between device and
host memory. Data transfers are implicitly performed each time the kernel accesses the
mapped memory. For maximum performance, these memory accesses must be coalesced
as with accesses to global memory (see Device Memory Accesses). Assuming that they
are and that the mapped memory is read or written only once, using mapped page-
locked memory instead of explicit copies between device and host memory can be a win
for performance.

On integrated systems where device memory and host memory are physically the same,
any copy between host and device memory is superfluous and mapped page-locked
memory should be used instead. Applications may query a device is integrated by
checking that the integrated device property (see Device Enumeration) is equal to 1.

5.3.2 Device Memory Accesses

An instruction that accesses addressable memory (i.e., global, local, shared, constant,
or texture memory) might need to be re-issued multiple times depending on the
distribution of the memory addresses across the threads within the warp. How the
distribution affects the instruction throughput this way is specific to each type of
memory and described in the following sections. For example, for global memory, as a
general rule, the more scattered the addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-,
or 128-byte memory transactions. These memory transactions must be naturally aligned:
Only the 32-, 64-, or 128-byte segments of device memory that are aligned to their size
(i.e., whose first address is a multiple of their size) can be read or written by memory
transactions.

When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions depending on the size of the word accessed by each thread and the
distribution of the memory addresses across the threads. In general, the more
transactions are necessary, the more unused words are transferred in addition to the
words accessed by the threads, reducing the instruction throughput accordingly. For
example, if a 32-byte memory transaction is generated for each thread's 4-byte access,
throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected
varies with the compute capability of the device. For devices of compute capability 1.0
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and 1.1, the requirements on the distribution of the addresses across the threads to get
any coalescing at all are very strict. They are much more relaxed for devices of higher
compute capabilities. For devices of compute capability 2.x and higher, the memory
transactions are cached, so data locality is exploited to reduce impact on throughput.
Compute Capability 1.x, Compute Capability 2.x, and Compute Capability 3.x give more
details on how global memory accesses are handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize
coalescing by:

» Following the most optimal access patterns based on Compute Capability 1.x,
Compute Capability 2.x and Compute Capability 3.x,

» Using data types that meet the size and alignment requirement detailed in Device
Memory Accesses,

» Padding data in some cases, for example, when accessing a two-dimensional array as
described in Device Memory Accesses.

Size and Alignment Requirement

Global memory instructions support reading or writing words of size equal to 1, 2, 4, 8,
or 16 bytes. Any access (via a variable or a pointer) to data residing in global memory
compiles to a single global memory instruction if and only if the size of the data type

is 1, 2, 4, 8, or 16 bytes and the data is naturally aligned (i.e., its address is a multiple of
that size).

If this size and alignment requirement is not fulfilled, the access compiles to multiple
instructions with interleaved access patterns that prevent these instructions from fully
coalescing. It is therefore recommended to use types that meet this requirement for data
that resides in global memory.

The alignment requirement is automatically fulfilled for the built-in types of char, short,
int, long, longlong, float, double like f1oat2 or float4.

For structures, the size and alignment requirements can be enforced by the compiler
using the alignment specifiers ~ align (8) or _ align_ (16),suchas
struct  align_ (8) {

float x;
float y;
}i

or
struct  align_  (16) {

float x;
float y;

float z;
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b

Any address of a variable residing in global memory or returned by one of the memory
allocation routines from the driver or runtime API is always aligned to at least 256 bytes.

Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by
a few words), so special care must be taken to maintain alignment of the starting address
of any value or array of values of these types. A typical case where this might be easily
overlooked is when using some custom global memory allocation scheme, whereby the
allocations of multiple arrays (with multiple calls to cudaMalloc () or cuMemAlloc ())
is replaced by the allocation of a single large block of memory partitioned into multiple
arrays, in which case the starting address of each array is offset from the block's starting
address.

Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx,ty) uses the
following address to access one element of a 2D array of width width, located at address
BaseAddress of type type* (where type meets the requirement described in Maximize
Utilization):

BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the width
of the array must be a multiple of the warp size (or only half the warp size for devices of
compute capability 1.x).

In particular, this means that an array whose width is not a multiple of this size will be
accessed much more efficiently if it is actually allocated with a width rounded up to the
closest multiple of this size and its rows padded accordingly. The cudaMallocPitch()
and cuMemAllocPitch() functions and associated memory copy functions described in
the reference manual enable programmers to write non-hardware-dependent code to
allocate arrays that conform to these constraints.

Local Memory

Local memory accesses only occur for some automatic variables as mentioned in
Variable Type Qualifiers. Automatic variables that the compiler is likely to place in local
memory are:

> Arrays for which it cannot determine that they are indexed with constant quantities,
» Large structures or arrays that would consume too much register space,

» Any variable if the kernel uses more registers than available (this is also known as
register spilling).

Inspection of the PTX assembly code (obtained by compiling with the -ptx or-
keep option) will tell if a variable has been placed in local memory during the first
compilation phases as it will be declared using the . 1ocal mnemonic and accessed
using the 1d.local and st.local mnemonics. Even if it has not, subsequent
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compilation phases might still decide otherwise though if they find it consumes too
much register space for the targeted architecture: Inspection of the cubin object using
cuobjdump will tell if this is the case. Also, the compiler reports total local memory
usage per kernel (1mem) when compiling with the --ptxas-options=-v option. Note
that some mathematical functions have implementation paths that might access local
memory.

The local memory space resides in device memory, so local memory accesses have
same high latency and low bandwidth as global memory accesses and are subject to the
same requirements for memory coalescing as described in Device Memory Accesses.
Local memory is however organized such that consecutive 32-bit words are accessed
by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads
in a warp access the same relative address (e.g., same index in an array variable, same
member in a structure variable).

On devices of compute capability 2.x and higher, local memory accesses are always
cached in L1 and L2 in the same way as global memory accesses (see Compute
Capability 2.x).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower
latency than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory
modules, called banks, which can be accessed simultaneously. Any memory read or
write request made of  addresses that fall in 7 distinct memory banks can therefore be
serviced simultaneously, yielding an overall bandwidth that is n times as high as the
bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a
bank conflict and the access has to be serialized. The hardware splits a memory request
with bank conflicts into as many separate conflict-free requests as necessary, decreasing
throughput by a factor equal to the number of separate memory requests. If the number
of separate memory requests is 7, the initial memory request is said to cause n-way bank
conflicts.

To get maximum performance, it is therefore important to understand how memory
addresses map to memory banks in order to schedule the memory requests so as

to minimize bank conflicts. This is described in Compute Capability 1.x,Compute
Capability 2.x, Compute Capability 3.x for devices of compute capability 1.x, 2.x, and
3.x, respectively.

Constant Memory

The constant memory space resides in device memory and is cached in the constant
cache mentioned in Compute Capability 1.x and Compute Capability 2.x.
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For devices of compute capability 1.x, a constant memory request for a warp is first split
into two requests, one for each half-warp, that are issued independently.

A request is then split into as many separate requests as there are different memory
addresses in the initial request, decreasing throughput by a factor equal to the number
of separate requests.

The resulting requests are then serviced at the throughput of the constant cache in case
of a cache hit, or at the throughput of device memory otherwise.

Texture and Surface Memory

The texture and surface memory spaces reside in device memory and are cached in
texture cache, so a texture fetch or surface read costs one memory read from device
memory only on a cache miss, otherwise it just costs one read from texture cache. The
texture cache is optimized for 2D spatial locality, so threads of the same warp that read
texture or surface addresses that are close together in 2D will achieve best performance.
Also, it is designed for streaming fetches with a constant latency; a cache hit reduces
DRAM bandwidth demand but not fetch latency.

Reading device memory through texture or surface fetching present some benefits
that can make it an advantageous alternative to reading device memory from global or
constant memory:

> If the memory reads do not follow the access patterns that global or constant memory
reads must follow to get good performance, higher bandwidth can be achieved
providing that there is locality in the texture fetches or surface reads;

» Addressing calculations are performed outside the kernel by dedicated units;
» Packed data may be broadcast to separate variables in a single operation;

> 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point
values in the range [0.0, 1.0] or [-1.0, 1.0] (see Texture Memory).

5.4 Maximize Instruction Throughput

To maximize instruction throughput the application should:

» Minimize the use of arithmetic instructions with low throughput; this includes
trading precision for speed when it does not affect the end result, such as using
intrinsic instead of regular functions (intrinsic functions are listed in Intrinsic
Functions), single-precision instead of double-precision, or flushing denormalized
numbers to zero;

» Minimize divergent warps caused by control flow instructions as detailed in Control
Flow Instructions

» Reduce the number of instructions, for example, by optimizing out synchronization
points whenever possible as described in Synchronization Instruction or by using
restricted pointers as described in __restrict__.
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In this section, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, one instruction corresponds to 32 operations.
Therefore, if T is the number of operations per clock cycle, the instruction throughput is
one instruction every 32/T clock cycles.

All throughputs are for one multiprocessor. They must be multiplied by the number of
multiprocessors in the device to get throughput for the whole device.

5.4.1 Arithmetic Instructions

Table 2 Throughput of Native Arithmetic Instructions gives the throughputs of the
arithmetic instructions that are natively supported in hardware for devices of various

compute capabilities.

Table 2 Throughput of Native Arithmetic Instructions

(Operations per Clock Cycle per Multiprocessor)

Compute Capability

base 2 exponential
(exp2f), sine
(__sinf), cosine
(__cosf)

1.0
1.1 1.3 2.0 2.1 3.0 3.5
1.2
32-bit floating-point
add, multiply, multiply- 8 8 32 48 192 192
add
64-bit floating-point
add, multiply, multiply- 1 1 16(*) 4 8 64
add
32-bit integer add 10 10 32 48 160 160
32-bit integer compare 10 10 32 48 160 160
32-bit integer shift 8 8 16 16 32 64
Logical operations 8 8 32 48 160 160
32-bit integer multiply, . .
multiply-add, sum of . Mult1p.le . Mult1p.le 16 16 32 32
: instructions | instructions
absolute difference
24-bit integer multiply 8 8 Multiple Multiple Multiple [ Multiple
( [ulmulzd4) instructions | instructions | instructions | instructions
32-bit floating-point
reciprocal, reciprocal
square root, base-2
logarithm (_ 1og2f), 2 2 4 8 3 3
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Compute Capability

1.0
1.1 1.3 2.0 2.1 3.0 3.5

1.2

Type conversions from
8-bit and 16-bit integer 8 8 16 16 128 128
to 32-bit types

Type conversions from Multiple .
and to 64-bit types instructions L 16() 4 8 32
All other type 8 8 16 16 32 32

conversions

(*) Throughput is lower for GeForce GPUs.

Other instructions and functions are implemented on top of the native instructions.

The implementation may be different for devices of different compute capabilities, and
the number of native instructions after compilation may fluctuate with every compiler
version. For complicated functions, there can be multiple code paths depending on
input. cuobjdump can be used to inspect a particular implementation in a cubin object.

The implementation of some functions are readily available on the CUDA header files
(math functions.h,device functions.h,...).

In general, code compiled with -ftz=true (denormalized numbers are flushed to zero)
tends to have higher performance than code compiled with -ftz=false. Similarly,
code compiled with -prec div=false (less precise division) tends to have higher
performance code than code compiled with -prec div=true, and code compiled
with -prec-sqgrt=false (less precise square root) tends to have higher performance
than code compiled with ~-prec-sqgrt=true. The nvcc user manual describes these
compilation flags in more details.

Single-Precision Floating-Point Addition and Multiplication Intrinsics

fadd r(d,ul, fmul r([d,ul],and fmaf r[n,z,d,u] (see Intrinsic Functions)
compile to tens of instructions for devices of compute capability 1.x, but map to a single
native instruction for devices of compute capability 2.x and higher.

Single-Precision Floating-Point Division

__fdividef (x, y) (see Intrinsic Functions) provides faster single-precision floating-
point division than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler can optimize 1.0/sqrtf () into
rsqrtf () only when both reciprocal and square root are approximate, (i.e., with -
prec-div=false and -prec-sqgrt=false). It is therefore recommended to invoke
rsqrtf () directly where desired.
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Single-Precision Floating-Point Square Root

Single-precision floating-point square root is implemented as a reciprocal square root
followed by a reciprocal instead of a reciprocal square root followed by a multiplication
so that it gives correct results for 0 and infinity.

Sine and Cosine

sinf (x), cosf (x), tanf (x), sincosf (x), and corresponding double-precision
instructions are much more expensive and even more so if the argument x is large in
magnitude.

More precisely, the argument reduction code (see Mathematical Functions for
implementation) comprises two code paths referred to as the fast path and the slow
path, respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially
consists of a few multiply-add operations. The slow path is used for arguments large in
magnitude and consists of lengthy computations required to achieve correct results over
the entire argument range.

At present, the argument reduction code for the trigonometric functions selects the fast
path for arguments whose magnitude is less than 48039. 0 £ for the single-precision
functions, and less than 2147483648 . 0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been made
to reduce register pressure in the slow path by storing some intermediate variables in
local memory, which may affect performance because of local memory high latency and
bandwidth (see Device Memory Accesses). At present, 28 bytes of local memory are
used by single-precision functions, and 44 bytes are used by double-precision functions.
However, the exact amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the
throughput of these trigonometric functions is lower by one order of magnitude when
the slow path reduction is required as opposed to the fast path reduction.

Integer Arithmetic

On devices of compute capability 1.x, 32-bit integer multiplication is implemented using
multiple instructions as it is not natively supported. 24-bit integer multiplication is
natively supported however via the  [u]mul24 intrinsic. Using  [u]lmul24 instead
of the 32-bit multiplication operator whenever possible usually improves performance
for instruction bound kernels. It can have the opposite effect however in cases where the
use of  [u]mul24 inhibits compiler optimizations.

On devices of compute capability 2.x and beyond, 32-bit integer multiplication is
natively supported, but 24-bit integer multiplication isnot.  [u]mul24 is therefore
implemented using multiple instructions and should not be used.
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Integer division and modulo operation are costly: tens of instructions on devices of
compute capability 1.x, below 20 instructions on devices of compute capability 2.x and
higher. They can be replaced with bitwise operations in some cases: If n is a power of
2, (1/n)is equivalent to (1>>10g2 (n)) and (i%n) is equivalent to (i& (n-1)); the
compiler will perform these conversions if n is literal.

__brev, brevll, popc,and _popcll compile to tens of instructions for devices
of compute capability 1.x, but brevand popc map to a single instruction for
devices of compute capability 2.x and higher and brevll and popcll tojusta
few.

_clz, clzll, ffs,and ffsll compile to fewer instructions for devices of
compute capability 2.x and higher than for devices of compute capability 1.x.

Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional
execution cycles. This is the case for:

» Functions operating on variables of type char or short whose operands generally
need to be converted to int,

» Double-precision floating-point constants (i.e., those constants defined without
any type suffix) used as input to single-precision floating-point computations (as
mandated by C/C++ standards).

This last case can be avoided by using single-precision floating-point constants, defined
with an f suffix suchas 3.141592653589793f,1.0f, 0.5¢f.

5.4.2 Control Flow Instructions

Any flow control instruction (i f, switch, do, for, while) can significantly impact the
effective instruction throughput by causing threads of the same warp to diverge (i.e., to
follow different execution paths). If this happens, the different executions paths have to
be serialized, increasing the total number of instructions executed for this warp. When
all the different execution paths have completed, the threads converge back to the same
execution path.

To obtain best performance in cases where the control flow depends on the thread

ID, the controlling condition should be written so as to minimize the number of
divergent warps. This is possible because the distribution of the warps across the block
is deterministic as mentioned in SIMT Architecture. A trivial example is when the
controlling condition only depends on (threadIdx / warpSize)where warpSizeis
the warp size. In this case, no warp diverges since the controlling condition is perfectly
aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out i f or switch
statements by using branch predication instead, as detailed below. In these cases, no
warp can ever diverge. The programmer can also control loop unrolling using the
#pragma unroll directive (see #pragma unroll).
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When using branch predication none of the instructions whose execution depends on
the controlling condition gets skipped. Instead, each of them is associated with a per-
thread condition code or predicate that is set to true or false based on the controlling
condition and although each of these instructions gets scheduled for execution, only
the instructions with a true predicate are actually executed. Instructions with a false
predicate do not write results, and also do not evaluate addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch condition is less or equal to a certain
threshold: If the compiler determines that the condition is likely to produce many
divergent warps, this threshold is 7, otherwise it is 4.

5.4.3 Synchronization Instruction

Throughput for syncthreads () is 8 operations per clock cycle for devices of
compute capability 1.x, 16 operations per clock cycle for devices of compute capability
2.x, and 128 operations per clock cycle for devices of compute capability 3.x.

Note that syncthreads () can impact performance by forcing the multiprocessor to
idle as detailed in Device Memory Accesses.
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CUDA-ENABLED GPUS

http://developer.nvidia.com/cuda-gpus lists all CUDA-enabled devices with their
compute capability.

The compute capability, number of multiprocessors, clock frequency, total amount of
device memory, and other properties can be queried using the runtime (see reference
manual).
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Appendix B.
C LANGUAGE EXTENSIONS

B.1 Function Type Qualifiers

Function type qualifiers specify whether a function executes on the host or on the device
and whether it is callable from the host or from the device.

B.1.1 __ device _

The device qualifier declares a function that is:

» Executed on the device,
» Callable from the device only.

B.1.2 _ global__

The global  qualifier declares a function as being a kernel. Such a function is:

» Executed on the device,
» Callable from the host,

» Callable from the device for devices of compute capability 3.x (see the CUDA
Dynamic Parallelism programming guide for more details).

__global functions must have void return type.

Any calltoa global function must specify its execution configuration as
described in Execution Configuration.

Acalltoa global function is asynchronous, meaning it returns before the device
has completed its execution.

B.1.3 _ host__

The host  qualifier declares a function that is:
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» Executed on the host,
» Callable from the host only.

It is equivalent to declare a function with only the host  qualifier or to declare it
without any of the host , device ,or global qualifier; in either case
the function is compiled for the host only.

The global and host  qualifiers cannot be used together.

The device and host  qualifiers can be used together however, in which case
the function is compiled for both the host and the device. The CUDA ARCH  macro
introduced in Application Compatibility can be used to differentiate code paths between
host and device:

__host ~ device  func()
{
#if  CUDA ARCH == 100

// Device code path for compute capability 1.0
#elif  CUDA ARCH _ == 200

// Device code path for compute capability 2.0
#elif  CUDA ARCH == 300

// Device code path for compute capability 3.0
#elif !defined( CUDA ARCH )

// Host code path
fendif
}

B.1.4 _ noinline__ and _ forceinline__

When compiling code for devices of compute capability 1.x,a device functionis
always inlined by default. When compiling code for devices of compute capability 2.x
and higher,a device function is only inlined when deemed appropriate by the
compiler.

The noinline function qualifier can be used as a hint for the compiler not to
inline the function if possible. The function body must still be in the same file where

it is called. For devices of compute capability 1.x, the compiler will not honor the
__noinline  qualifier for functions with pointer parameters and for functions with
large parameter lists. For devices of compute capability 2.x and higher, the compiler will
always honor the noinline qualifier.

The forceinline function qualifier can be used to force the compiler to inline the
function.

B.2 Variable Type Qualifiers

Variable type qualifiers specify the memory location on the device of a variable.

An automatic variable declared in device code without any of the device
__shared and constant _ qualifiers described in this section generally resides
in a register. However in some cases the compiler might choose to place it in local
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memory, which can have adverse performance consequences as detailed in Device
Memory Accesses.

B.2.1 _ device_ _

The device  qualifier declares a variable that resides on the device.

At most one of the other type qualifiers defined in the next three sections may be used
together with device to further specify which memory space the variable belongs
to. If none of them is present, the variable:

» Resides in global memory space,

» Has the lifetime of an application,

» Is accessible from all the threads within the grid and from the host through the
runtime library (cudaGetSymbolAddress () / cudaGetSymbolSize () /
cudaMemcpyToSymbol () / cudaMemcpyFromSymbol ()).

B.2.2 __ constant__

The constant  qualifier, optionally used together with device _, declares a
variable that:

» Resides in constant memory space,

» Has the lifetime of an application,

» Is accessible from all the threads within the grid and from the host through the
runtime library (cudaGetSymbolAddress () / cudaGetSymbolSize () /
cudaMemcpyToSymbol () / cudaMemcpyFromSymbol ()).

B.2.3 _ shared _

The __shared__ qualifier, optionally used together with __device__, declares a variable
that:

> Resides in the shared memory space of a thread block,
» Has the lifetime of the block,
» Is only accessible from all the threads within the block.

When declaring a variable in shared memory as an external array such as

extern  shared  float shared[];

the size of the array is determined at launch time (see Execution Configuration). All
variables declared in this fashion, start at the same address in memory, so that the layout
of the variables in the array must be explicitly managed through offsets. For example, if
one wants the equivalent of

short array0([128];
float arrayl[64];
int array2[256];
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in dynamically allocated shared memory, one could declare and initialize the arrays the
following way:

extern  shared  float arrayl[];
__device  void func() // __device or global  function
{
(short*)array;
(float*) &array0[128];
(int*) &arrayl[64];

short* array0
float* arrayl
int* array?2

}

Note that pointers need to be aligned to the type they point to, so the following code, for
example, does not work since array1 is not aligned to 4 bytes.

extern  shared  float arrayl[];

__device  wvoid func() // __device or global  function
{

(short*)array;

(float*) &array0[127];

short* array0
float* arrayl

}

Alignment requirements for the built-in vector types are listed in Table 3 Alignment
Requirements in Device Code.

B.2.4 _ restrict__

nvcc supports restricted pointers viathe restrict  keyword.

Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in
C-type languages, and which inhibits all kind of optimization from code re-ordering to
common sub-expression elimination.

Here is an example subject to the aliasing issue, where use of restricted pointer can help
the compiler to reduce the number of instructions:

void foo(const float* a,
const float* Db,
float* ¢)

o ok ok o

w
fa
L T T [ T A |
j3))
—
o

}

In C-type languages, the pointers a, b, and c may be aliased, so any write through c
could modify elements of a or b. This means that to guarantee functional correctness,
the compiler cannot load a [0] and b [0] into registers, multiply them, and store

the result toboth c[0] and c[1], because the results would differ from the abstract
execution model if, say, a [0] is really the same location as c [0]. So the compiler cannot
take advantage of the common sub-expression. Likewise, the compiler cannot just
reorder the computation of ¢ [4] into the proximity of the computation of c[0] and
c[1] because the preceding write to ¢ [3] could change the inputs to the computation
of c[4].
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By making a, b, and c restricted pointers, the programmer asserts to the compiler that
the pointers are in fact not aliased, which in this case means writes through ¢ would
never overwrite elements of a or b. This changes the function prototype as follows:

void foo(const float*  restrict a,
const float*  restrict Db,
float*  restrict c¢);

Note that all pointer arguments need to be made restricted for the compiler optimizer

to derive any benefit. With the restrict keywords added, the compiler can now
reorder and do common sub-expression elimination at will, while retaining functionality
identical with the abstract execution model:

void foo(const float*  restrict a,
const float*  restrict Db,
float*  restrict «c¢)

{

float t0 = al[0];
float tl1l = b[0];
float t2 = t0 * t2;
float t3 = all];
cl0] = t2;

c[l] = t2;

cl[4] = t2;

c[2] = t2 * t3;
c[3] = t0 * £3;

cl = tl;

}

The effects here are a reduced number of memory accesses and reduced number of
computations. This is balanced by an increase in register pressure due to "cached" loads
and common sub-expressions.

Since register pressure is a critical issue in many CUDA codes, use of restricted pointers
can have negative performance impact on CUDA code, due to reduced occupancy.

B.3 Built-in Vector Types
B.3.1 char, short, int, long, longlong, float, double

These are vector types derived from the basic integer and floating-point types. They
are structures and the 1st, 2nd, 3rd, and 4th components are accessible through the
fields %, y, z, and w, respectively. They all come with a constructor function of the form
make <type name>;for example,

int2 make int2(int x, int y);
which creates a vector of type int2 with value (x, ).

In host code, the alignment requirement of a vector type is equal to the alignment
requirement of its base type. This is not always the case in device code as detailed in
Table 3 Alignment Requirements in Device Code.
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Type Alignment
char1, uchar1 1
char2, uchar2 2
char3, uchar3 1
char4, uchar4 4
short1, ushort1 2
short2, ushort2 4
short3, ushort3 2
short4, ushort4 8
int1, uint1 4
int2, uint2 8
int3, uint3 4
int4, uint4 16

long1, ulong1

4 if sizeof(long) is equal to sizeof(int) 8, otherwise

long2, ulong2

8 if sizeof(long) is equal to sizeof(int), 16, otherwise

long3, ulong3

4 if sizeof(long) is equal to sizeof(int), 8, otherwise

long4, ulong4 16
longlong1, ulonglong1 8
longlong2, ulonglong2 16
float1 4
float2 8
float3 4
float4 16
double1 8
double2 16
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B.3.2 dim3

This type is an integer vector type based on uint3 that is used to specify dimensions.
When defining a variable of type dim3, any component left unspecified is initialized to
1.

B.4 Built-in Variables

Built-in variables specify the grid and block dimensions and the block and thread
indices. They are only valid within functions that are executed on the device.

B.4.1 gridDim

This variable is of type dim3 (see dim3) and contains the dimensions of the grid.

B.4.2 blockldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double) and
contains the block index within the grid.

B.4.3 blockDim

This variable is of type dim3 (see dim3) and contains the dimensions of the block.

B.4.4 threadldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double ) and
contains the thread index within the block.

B.4.5 warpSize

This variable is of type int and contains the warp size in threads (see SIMT Architecture
for the definition of a warp).

B.5 Memory Fence Functions

void _ threadfence block();

waits until all global and shared memory accesses made by the calling thread prior to
__threadfence block () are visible to all threads in the thread block.

void _ threadfence() ;

waits until all global and shared memory accesses made by the calling thread prior to
__threadfence () are visible to:
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» All threads in the thread block for shared memory accesses,
» All threads in the device for global memory accesses.

void _ threadfence system();

waits until all global and shared memory accesses made by the calling thread prior to
__threadfence system() are visible to:

> All threads in the thread block for shared memory accesses,
» All threads in the device for global memory accesses,
» Host threads for page-locked host memory accesses (see CUDA C Runtime.4.3).

__threadfence system() is only supported by devices of compute capability 2.x
and higher.

In general, when a thread issues a series of writes to memory in a particular order,
other threads may see the effects of these memory writes in a different order.
___threadfence block(), threadfence(), and __threadfence system()
can be used to enforce some ordering.

One use case is when threads consume some data produced by other threads as
illustrated by the following code sample of a kernel that computes the sum of an array
of N numbers in one call. Each block first sums a subset of the array and stores the result
in global memory. When all blocks are done, the last block done reads each of these
partial sums from global memory and sums them to obtain the final result. In order to
determine which block is finished last, each block atomically increments a counter to
signal that it is done with computing and storing its partial sum (see Atomic Functions
about atomic functions). The last block is the one that receives the counter value equal to
gridDim.x-1.If no fence is placed between storing the partial sum and incrementing
the counter, the counter might increment before the partial sum is stored and therefore,
might reach gridDim.x~1 and let the last block start reading partial sums before they
have been actually updated in memory.

__device  unsigned int count = 0;
__shared  bool isLastBlockDone;
__global  void sum(const float* array, unsigned int N,

float* result)
{

// Each block sums a subset of the input array
float partialSum = calculatePartialSum(array, N);

if (threadIdx.x == 0) {

// Thread 0 of each block stores the partial sum
// to global memory
result[blockIdx.x] = partialSum;

// Thread 0 makes sure its result is visible to
// all other threads
~_threadfence();

// Thread 0 of each block signals that it is done
unsigned int value = atomicInc (&count, gridDim.x);

// Thread 0 of each block determines if its block is
// the last block to be done
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isLastBlockDone = (value == (gridDim.x - 1));

}

// Synchronize to make sure that each thread reads
// the correct value of isLastBlockDone
__syncthreads () ;

if (isLastBlockDone) {

// The last block sums the partial sums
// stored in result[0 .. gridDim.x-1]
float totalSum = calculateTotalSum(result);

if (threadIdx.x == 0) {

// Thread 0 of last block stores total sum
// to global memory and resets count so that
// next kernel call works properly

result[0] = totalSum;

count = 0;

B.6 Synchronization Functions

void _ syncthreads() ;

waits until all threads in the thread block have reached this point and all global and
shared memory accesses made by these threads priorto  syncthreads () are visible
to all threads in the block.

___syncthreads () is used to coordinate communication between the threads of the
same block. When some threads within a block access the same addresses in shared

or global memory, there are potential read-after-write, write-after-read, or write-after-
write hazards for some of these memory accesses. These data hazards can be avoided by
synchronizing threads in-between these accesses.

___syncthreads () is allowed in conditional code but only if the conditional evaluates
identically across the entire thread block, otherwise the code execution is likely to hang
or produce unintended side effects.

Devices of compute capability 2.x and higher support three variations of
__syncthreads () described below.

int  syncthreads count (int predicate);

isidentical to  syncthreads () with the additional feature that it evaluates predicate
for all threads of the block and returns the number of threads for which predicate
evaluates to non-zero.

int  syncthreads and(int predicate);

isidentical to _ syncthreads () with the additional feature that it evaluates predicate
for all threads of the block and returns non-zero if and only if predicate evaluates to non-
zero for all of them.

int  syncthreads or(int predicate);
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isidentical to  syncthreads () with the additional feature that it evaluates predicate
for all threads of the block and returns non-zero if and only if predicate evaluates to non-
zero for any of them.

B.7 Mathematical Functions

The reference manual lists all C/C++ standard library mathematical functions that are
supported in device code and all intrinsic functions that are only supported in device
code.

Mathematical Functions provides accuracy information for some of these functions
when relevant.

B.8 Texture Functions

Texture objects are described in Texture Object API
Texture references are described in Texture Reference API

Texture fetching is described in Texture Fetching.

B.8.1 Texture Object API
B.8.1.1 tex1Dfetch()

template<class T>

T texlDfetch(cudaTextureObject t texObj, int x);

fetches the region of linear memory specified by the one-dimensional texture object
texObj using integer texture coordinate x. tex1Dfetch () only works with non-
normalized coordinates, so only the border and clamp addressing modes are supported.
It does not perform any texture filtering. For integer types, it may optionally promote
the integer to single-precision floating point.

B.8.1.2 tex1D()

template<class DataType, enum cudaTextureReadMode readMode>
Type texl1D(texture<DataType, cudaTextureTypelD, readMode> texRef,
float x);
fetches the CUDA array bound to the one-dimensional texture reference texRef using

texture coordinate x.

B.8.1.3 tex2D()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2D(texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y);
fetches the CUDA array or the region of linear memory bound to the two-dimensional

texture reference texRef using texture coordinates x and y.
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B.8.1.4 tex3D()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef,
float x, float y, float z);
fetches the CUDA array bound to the three-dimensional texture reference texRef using

texture coordinates x, y, and z.

B.8.1.5 tex1Dlayered()

template<class DataType, enum cudaTextureReadMode readMode>
Type texlDLayered (
texture<DataType, cudaTextureTypelDLayered, readMode> texRef,
float x, int layer);
fetches the CUDA array bound to the one-dimensional layered texture reference texRef

using texture coordinate x and index layer, as described in Layered Textures.

B.8.1.6 tex2Dlayered()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayered (
texture<DataType, cudaTextureType2DLayered, readMode> texRef,
float x, float y, int layer);
fetches the CUDA array bound to the two-dimensional layered texture reference
texRef using texture coordinates x and y, and index layer, as described in Texture

Memory

B.8.1.7 texCubemap()

template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemap (
texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
float x, float y, float z);
fetches the CUDA array bound to the cubemap texture reference texRef using texture

coordinates x, y, and z, as described in Cubemap Textures.

B.8.1.8 texCubemapLayered()

template<class DataType, enum cudaTextureReadMode readMode>

Type texCubemapLayered (

texture<DataType, cudaTextureTypeCubemaplayered, readMode> texRef,

float x, float y, float z, int layer);

tetches the CUDA array bound to the cubemap layered texture reference texRef using
texture coordinates %, y, and z, and index layer, as described in Cubemap Layered

Textures.

B.8.1.9 tex2Dgather()

template<class T>
T tex2Dgather (cudaTextureObject t texObj,
float x, float y, int comp = 0);
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fetches the CUDA array specified by the cubemap texture object texObj using texture
coordinates x and y, as described in CUDA C Runtime.

B.8.2 Texture Reference API
B.8.2.1 tex1Dfetch()

template<class DataType>
Type texlDfetch (
texture<DataType, cudaTextureTypelD,
cudaReadModeElementType> texRef,
int x);

float texlDfetch (
texture<unsigned char, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

float texlDfetch (
texture<signed char, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

float texl1lDfetch (
texture<unsigned short, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

float texlDfetch (

texture<signed short, cudaTextureTypelD,

cudaReadModeNormalizedFloat> texRef,

int x);
fetches the region of linear memory bound to the one-dimensional texture reference
texRef using integer texture coordinate x. tex1Dfetch () only works with non-
normalized coordinates, so only the border and clamp addressing modes are supported.
It does not perform any texture filtering. For integer types, it may optionally promote

the integer to single-precision floating point.

Besides the functions shown above, 2-, and 4-tuples are supported; for example:

float4 texlDfetch (
texture<uchar4, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

fetches the region of linear memory bound to texture reference texRef using texture
coordinate x.

B.8.2.2 tex1D()

template<class DataType, enum cudaTextureReadMode readMode>
Type texlD(texture<DataType, cudaTextureTypelD, readMode> texRef,
float x);
fetches the CUDA array bound to the one-dimensional texture reference texRef using

texture coordinate x.
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B.8.2.3 tex2D()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2D(texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y);
fetches the CUDA array or the region of linear memory bound to the two-dimensional

texture reference texRef using texture coordinates x and y.

B.8.2.4 tex3D()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef,
float x, float y, float z);
fetches the CUDA array bound to the three-dimensional texture reference texRef using

texture coordinates x, y, and z.

B.8.2.5 tex1Dlayered()

template<class DataType, enum cudaTextureReadMode readMode>
Type texlDLayered (
texture<DataType, cudaTextureTypelDLayered, readMode> texRef,
float x, int layer);
fetches the CUDA array bound to the one-dimensional layered texture reference texRef

using texture coordinate x and index layer, as described in Layered Textures.

B.8.2.6 tex2Dlayered()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayered (
texture<DataType, cudaTextureType2DLayered, readMode> texRef,
float x, float y, int layer);
fetches the CUDA array bound to the two-dimensional layered texture reference
texRef using texture coordinates x and y, and index layer, as described in Texture

Memory

B.8.2.7 texCubemap()

template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemap (
texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
float x, float y, float z);

fetches the CUDA array bound to the cubemap texture reference texRef using texture
coordinates x, y, and z, as described in Cubemap Textures.

B.8.2.8 texCubemapLayered()

template<class DataType, enum cudaTextureReadMode readMode>

Type texCubemaplayered (

texture<DataType, cudaTextureTypeCubemaplayered, readMode> texRef,
float x, float y, float z, int layer);
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tetches the CUDA array bound to the cubemap layered texture reference texRef using
texture coordinates %, y, and z, and index layer, as described in Cubemap Layered
Textures.

B.8.2.9 tex2Dgather()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2Dgather (
texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, int comp = 0);
tetches the CUDA array bound to the cubemap texture reference texRef using texture

coordinates x and v, as described in CUDA C Runtime.

B.9 Surface Functions

Surface functions are only supported by devices of compute capability 2.0 and higher.
Surface objects are described in described in Surface Object API
Surface references are described in Surface Reference APL

In the sections below, boundaryMode specifies the boundary mode, that is how out-of-
range surface coordinates are handled; it is equal to either cudaBoundaryModeClamp,
in which case out-of-range coordinates are clamped to the valid range, or
cudaBoundaryModeZero, in which case out-of-range reads return zero and out-of-
range writes are ignored, or cudaBoundaryModeTrap, in which case out-of-range
accesses cause the kernel execution to fail.

B.9.1 Surface Object API
B.9.1.1 surf1Dread()

template<class T>
T surflDread(cudaSurfaceObject surfObj, int x,
boundaryMode = cudaBoundaryModeTrap) ;
reads the CUDA array specified by the one-dimensional surface object surfObj using
coordinate x.

B.9.1.2 surf1Dwrite

template<class T>
void surflDwrite (T data,
cudaSurfaceObject surfObj,
int x,
boundaryMode = cudaBoundaryModeTrap) ;
writes value data to the CUDA array specified by the one-dimensional surface object

surfOb7j at coordinate x.

B.9.1.3 surf2Dread()

template<class T>
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T surf2Dread(cudaSurfaceObject surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf2Dread(T* data,
cudaSurfaceObject surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the two-dimensional surface object surfObj using
coordinates x and .

B.9.1.4 surf2Dwrite()

template<class T>
void surf2Dwrite (T data,
cudaSurfaceObject surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the two-dimensional surface object
surfObj at coordinate x and y.

B.9.1.5 surf3Dread()

template<class T>
T surf3Dread(cudaSurfaceObject surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf3Dread(T* data,
cudaSurfaceObject surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the three-dimensional surface object sur£Obj using
coordinates x, y, and z.

B.9.1.6 surf3Dwrite()

template<class T>
void surf3Dwrite (T data,
cudaSurfaceObject surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the three-dimensional object surfObj
at coordinate x, y, and z.

B.9.1.7 surf1DLayeredread()

template<class T>
T surflDLayeredread (
cudaSurfaceObject surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surflDLayeredread (T data,
cudaSurfaceObject surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
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reads the CUDA array specified by the one-dimensional layered surface object surfObj
using coordinate x and index layer.

B.9.1.8 surf1DLayeredwrite()

template<class Type>
void surflDLayeredwrite (T data,
cudaSurfaceObject surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the two-dimensional layered surface
object surfObj at coordinate x and index layer.

B.9.1.9 surf2DLayeredread()

template<class T>
T surf2DLayeredread (
cudaSurfaceObject surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf2DLayeredread (T data,
cudaSurfaceObject surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the two-dimensional layered surface object surfObj
using coordinate x and y, and index layer.

B.9.1.10 surf2DLayeredwrite()

template<class T>
void surf2DLayeredwrite (T data,
cudaSurfaceObject surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the one-dimensional layered surface
object surfObj at coordinate x and y, and index layer.

B.9.1.11 surfCubemapread()

template<class T>
T surfCubemapread (
cudaSurfaceObject surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surfCubemapread (T data,
cudaSurfaceObject surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the cubemap surface object surfObj using
coordinate x and y, and face index face.
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B.9.1.12 surfCubemapwrite()

template<class T>
void surfCubemapwrite (T data,
cudaSurfaceObject surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the cubemap object surfObj at
coordinate x and y, and face index face.

B.9.1.13 surfCubemaplLayeredread()

template<class T>
T surfCubemapLayeredread (
cudaSurfaceObject surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surfCubemaplayeredread (T data,
cudaSurfaceObject surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the cubemap layered surface object sur£fObj using
coordinate x and y, and index layerFace.

B.9.1.14 surfCubemaplLayeredwrite()

template<class T>
void surfCubemaplayeredwrite (T data,
cudaSurfaceObject surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;
writes value data to the CUDA array specified by the cubemap layered object surfObj at

coordinate x and y, and index layerFace.

B.9.2 Surface Reference API

A surface reference is declared at file scope as a variable of type surface:

surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal to
cudaSurfaceTypelD, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceTypelDLayered,
cudaSurfaceType2DLayered, or cudaSurfaceTypeCubemapLayered; Type is an
optional argument which defaults to cudaSurfaceTypelD. A surface reference can only
be declared as a static global variable and cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray ().

The following code samples bind a surface reference to a CUDA array cuArray:

» Using the low-level API:

surface<void, cudaSurfaceType2D> surfRef;
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surfaceReference* surfRefPtr;

cudaGetSurfaceReference (&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;

cudaGetChannelDesc (&channelDesc, culArray);
cudaBindSurfaceToArray (surfRef, cuArray, &channelDesc);

» Using the high-level API:

surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray (surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching
dimensionality and type and via a surface reference of matching dimensionality;
otherwise, the results of reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that the x-
coordinate used to access a texture element via texture functions needs to be multiplied
by the byte size of the element to access the same element via a surface function. For
example, the element at texture coordinate x of a one-dimensional floating-point
CUDA array bound to a texture reference texRef and a surface reference surfRef
isread using texld(texRef, x) viatexRef, butsurflDread (surfRef,

4*x) via surfRef. Similarly, the element at texture coordinate x and y of a two-
dimensional floating-point CUDA array bound to a texture reference texRef and a
surface reference surfRef is accessed using tex2d (texRef, x, y) viatexRef, but
surf2Dread (surfRef, 4*x, y) viasurfRef (the byte offset of the y-coordinate is
internally calculated from the underlying line pitch of the CUDA array).

The following code sample applies some simple transformation kernel to a texture.

// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;

// Simple copy kernel
__global  void copyKernel (int width, int height)
{
// Calculate surface coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {
uchar4 data;
// Read from input surface
surf2Dread (&data, inputSurfRef, x * 4, vy);
// Write to output surface
surf2Dwrite (data, outputSurfRef, x * 4, vy);

}

// Host code
int main ()
{
// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (8, 8, 8, 8,
cudaChannelFormatKindUnsigned) ;
cudaArray* culnputArray;
cudaMallocArray (&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;
cudaArray* cuOutputArray;
cudaMallocArray (&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

// Copy to device memory some data located at address h data
// in host memory

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 99



C Language Extensions

cudaMemcpyToArray (culnputArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Bind the arrays to the surface references
cudaBindSurfaceToArray (inputSurfRef, culnputArray);
cudaBindSurfaceToArray (outputSurfRef, cuOutputArray);

// Invoke kernel

dim3 dimBlock (16, 16);

dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);

copyKernel<<<dimGrid, dimBlock>>>(width, height) ;

// Free device memory
cudaFreeArray (culnputArray) ;
cudaFreeArray (cuOutputArray) ;

return 0;

B.9.2.1 surf1Dread()

template<class Type>
Type surflDread(surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surflDread (Type data,
surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the one-dimensional surface reference surfRef using
coordinate x.

B.9.2.2 surf1Dwrite

template<class Type>

void surflDwrite (Type data,
surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the one-dimensional surface reference
surfRef at coordinate x.

B.9.2.3 surf2Dread()

template<class Type>
Type surf2Dread(surface<void, cudaSurfaceType2D> surfRef,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf2Dread (Type* data,
surface<void, cudaSurfaceType2D> surfRef,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the two-dimensional surface reference surfRef using
coordinates x and y.
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B.9.2.4 surf2Dwrite()

template<class Type>

void surf3Dwrite (Type data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the two-dimensional surface reference
surfRef at coordinate x and v.

B.9.2.5 surf3Dread()

template<class Type>
Type surf3Dread(surface<void, cudaSurfaceType3D> surfRef,
int %, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf3Dread (Type* data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the three-dimensional surface reference surfRef using
coordinates x, y, and z.

B.9.2.6 surf3Dwrite()

template<class Type>

void surf3Dwrite (Type data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the three-dimensional surface reference
surfRef at coordinate x, y, and z.

B.9.2.7 surf1DLayeredread()

template<class Type>
Type surflDLayeredread (
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surflDLayeredread (Type data,
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the one-dimensional layered surface reference surfRef
using coordinate x and index layer.

B.9.2.8 surf1DLayeredwrite()

template<class Type>

void surflDlLayeredwrite (Type data,
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
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boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the two-dimensional layered surface
reference surfRef at coordinate x and index layer.

B.9.2.9 surf2DLayeredread()

template<class Type>
Type surf2DLayeredread (
surface<void, cudaSurfaceType2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf2DlLayeredread (Type data,
surface<void, cudaSurfaceType2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the two-dimensional layered surface reference
surfRef using coordinate x and y, and index layer.

B.9.2.10 surf2DLayeredwrite()

template<class Type>

void surf2DLayeredwrite (Type data,
surface<void, cudaSurfaceType2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the one-dimensional layered surface
reference surfRef at coordinate x and y, and index layer.

B.9.2.11 surfCubemapread()

template<class Type>
Type surfCubemapread (
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surfCubemapread (Type data,
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the cubemap surface reference surfRef using
coordinate x and y, and face index face.

B.9.2.12 surfCubemapwrite()

template<class Type>

void surfCubemapwrite (Type data,
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the cubemap reference surfRef at
coordinate x and y, and face index face.
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B.9.2.13 surfCubemaplLayeredread|()

template<class Type>

Type surfCubemaplayeredread (
surface<void, cudaSurfaceTypeCubemaplayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

template<class Type>

void surfCubemaplayeredread (Type data,
surface<void, cudaSurfaceTypeCubemaplLayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the cubemap layered surface reference surfRef using

coordinate x and y, and index layerFace.

B.9.2.14 surfCubemaplLayeredwrite()

template<class Type>
void surfCubemaplayeredwrite (Type data,
surface<void, cudaSurfaceTypeCubemaplayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;
writes value data to the CUDA array bound to the cubemap layered reference surfRef

at coordinate x and vy, and index layerFace.

B.10 Time Function

clock t clock();
long long int clock64();

when executed in device code, returns the value of a per-multiprocessor counter that is
incremented every clock cycle. Sampling this counter at the beginning and at the end of
a kernel, taking the difference of the two samples, and recording the result per thread
provides a measure for each thread of the number of clock cycles taken by the device to
completely execute the thread, but not of the number of clock cycles the device actually
spent executing thread instructions. The former number is greater that the latter since
threads are time sliced.

B.11 Atomic Functions

An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-
bit word residing in global or shared memory. For example, atomicAdd () reads a word
at some address in global or shared memory, adds a number to it, and writes the result
back to the same address. The operation is atomic in the sense that it is guaranteed to be
performed without interference from other threads. In other words, no other thread can
access this address until the operation is complete. Atomic functions can only be used

in device functions and atomic functions operating on mapped page-locked memory
(Mapped Memory) are not atomic from the point of view of the host or other devices.
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As mentioned in Table 9 Feature Support per Compute Capability, the support for
atomic operations varies with the compute capability:

» Atomic functions are only available for devices of compute capability 1.1 and higher.

» Atomic functions operating on 32-bit integer values in shared memory and atomic
functions operating on 64-bit integer values in global memory are only available for
devices of compute capability 1.2 and higher.

» Atomic functions operating on 64-bit integer values in shared memory are only
available for devices of compute capability 2.x and higher.

» Only atomicExch () and atomicAdd () can operate on 32-bit floating-point values:

» in global memory for atomicExch () and devices of compute capability 1.1 and
higher.

» in shared memory for atomicExch () and devices of compute capability 1.2 and
higher.

» in global and shared memory for atomicAdd () and devices of compute capability
2.x and higher.

Note however that any atomic operation can be implemented based on atomicCAS ()
(Compare And Swap). For example, atomicAdd () for double-precision floating-point
numbers can be implemented as follows:

__device  double atomicAdd(double* address, double val)
{
unsigned long long int* address as ull =
(unsigned long long int*)address;
unsigned long long int old = *address_as ull, assumed;
do {
assumed = old;
old = atomicCAS (address _as ull, assumed,
__double as longlong(val +
__longlong as double(assumed))) ;
} while (assumed != old):;
return _ longlong as double (old);

}
B.11.1 Arithmetic Functions

B.11.1.1 atomicAdd()

int atomicAdd (int* address, int wval);
unsigned int atomicAdd (unsigned int* address,
unsigned int wval);
unsigned long long int atomicAdd(unsigned long long int* address,
unsigned long long int wval);
float atomicAdd (float* address, float wval);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old + val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns o1d.
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The floating-point version of atomicAdd () is only supported by devices of compute
capability 2.x and higher.

B.11.1.2 atomicSub()

int atomicSub (int* address, int wval);
unsigned int atomicSub (unsigned int* address,

unsigned int wval);
reads the 32-bit word o1d located at the address address in global or shared memory,
computes (old - val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns
old.

B.11.1.3 atomicExch()

int atomicExch (int* address, int val);
unsigned int atomicExch (unsigned int* address,
unsigned int wval);
unsigned long long int atomicExch (unsigned long long int* address,
unsigned long long int wval);
float atomicExch (float* address, float val);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory and stores val back to memory at the same address. These two operations are
performed in one atomic transaction. The function returns o1ld.

B.11.1.4 atomicMin()

int atomicMin (int* address, int wval);
unsigned int atomicMin (unsigned int* address,
unsigned int wval);
unsigned long long int atomicMin (unsigned long long int* address,
unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes the minimum of o1d and val, and stores the result back to memory
at the same address. These three operations are performed in one atomic transaction.
The function returns old.

The 64-bit version of atomicMin () is only supported by devices of compute capability
3.5 and higher.

B.11.1.5 atomicMax()

int atomicMax (int* address, int wval);
unsigned int atomicMax (unsigned int* address,
unsigned int wval);
unsigned long long int atomicMax (unsigned long long int* address,
unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes the maximum of o1d and val, and stores the result back to memory
at the same address. These three operations are performed in one atomic transaction.
The function returns old.
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The 64-bit version of atomicMax () is only supported by devices of compute capability
3.5 and higher.

B.11.1.6 atomiclnc()

unsigned int atomicInc (unsigned int* address,

unsigned int wval);
reads the 32-bit word o1d located at the address address in global or shared memory,
computes ( (old >= val) ? 0 : (old+l)), and stores the result back to memory
at the same address. These three operations are performed in one atomic transaction.
The function returns old.

B.11.1.7 atomicDec()

unsigned int atomicDec (unsigned int* address,

unsigned int wval);
reads the 32-bit word o1ld located at the address address in global or shared memory,
computes ( ((old == 0) | (old > val)) ? val : (old-1) ), and stores the
result back to memory at the same address. These three operations are performed in one
atomic transaction. The function returns o1d.

B.11.1.8 atomicCAS()

int atomicCAS (int* address, int compare, int val);
unsigned int atomicCAS (unsigned int* address,
unsigned int compare,
unsigned int wval);
unsigned long long int atomicCAS (unsigned long long int* address,
unsigned long long int compare,
unsigned long long int wval);
reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old == compare ? val : old) ,and stores the result back
to memory at the same address. These three operations are performed in one atomic

transaction. The function returns o1d (Compare And Swap).

B.11.2 Bitwise Functions

B.11.2.1 atomicAnd()

int atomicAnd(int* address, int wval);
unsigned int atomicAnd (unsigned int* address,

unsigned int wval);
unsigned long long int atomicAnd(unsigned long long int* address,

unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old & val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function

returns old.
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The 64-bit version of atomicAnd () is only supported by devices of compute capability
3.5 and higher.

B.11.2.2 atomicOr()

int atomicOr (int* address, int wval);
unsigned int atomicOr (unsigned int* address,
unsigned int wval);
unsigned long long int atomicOr (unsigned long long int* address,
unsigned long long int val);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old | val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicOr () is only supported by devices of compute capability
3.5 and higher.

B.11.2.3 atomicXor()

int atomicXor (int* address, int wval);
unsigned int atomicXor (unsigned int* address,
unsigned int wval);
unsigned long long int atomicXor (unsigned long long int* address,
unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old ~ val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns o1d.

The 64-bit version of atomicXor () is only supported by devices of compute capability
3.5 and higher.

B.12 Warp Vote Functions

Warp vote functions are only supported by devices of compute capability 1.2 and higher
(see SIMT Architecture for the definition of a warp).

int  all(int predicate);

evaluates predicate for all active threads of the warp and returns non-zero if and only
if predicate evaluates to non-zero for all of them.

int  any(int predicate);

evaluates predicate for all active threads of the warp and returns non-zero if and only
if predicate evaluates to non-zero for any of them.

unsigned int  ballot (int predicate);
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evaluates predicate for all active threads of the warp and returns an integer whose
Nth bit is set if and only if predicate evaluates to non-zero for the Nth thread of the
warp. This function is only supported by devices of compute capability 2.x and higher.

B.13 Warp Shuffle Functions

__shfl, shfl up, shfl down, shfl xor exchange a variable between
threads within a warp.

They are only supported by devices of compute capability 3.x (see SIMT Architecture for
the definition of a warp).

B.13.1 Synopsis

int  shfl(int var, int srclLane, int width=warpSize);
int  shfl up(int var, unsigned int delta, int width=warpSize);
int  shfl down(int var, unsigned int delta, int width=warpSize);

int Aishfl:xor(int var, int laneMask, int width=warpSize);

float  shfl(float var, int srclLane, int width=warpSize);
float _ shfl up(float var, unsigned int delta,
int width=warpSize);

float _ shfl down(float var, unsigned int delta,
int width=warpSize);
float _ shfl xor(float var, int laneMask, int width=warpSize);

B.13.2 Description

The shfl () intrinsics permit exchanging of a variable between threads within

a warp without use of shared memory. The exchange occurs simultaneously for all
active threads within the warp, moving 4 bytes of data per thread. Exchange of 8-byte
quantities must be broken into two separate invocations of _ shfl ().

Threads within a warp are referred to as lanes, and for devices of compute capability 3.x
may have an index between 0 and warpSize-1 (inclusive). Four source-lane addressing
modes are supported:
__shfl()
Direct copy from indexed lane
__shfl up()
Copy from a lane with lower ID relative to caller
__shfl down()
Copy from a lane with higher ID relative to caller
__shfl xor()
Copy from a lane based on bitwise XOR of own lane ID

Threads may only read data from another thread which is actively participating in the
__shfl () command. If the target thread is inactive, the retrieved value is undefined.

Allthe  shfl () intrinsics take an optional width parameter which permits sub-
division of the warp into segments — for example to exchange data between 4 groups of
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8 lanes in a SIMD manner. If width is less than warpSi ze then each subsection of the
warp behaves as a separate entity with a starting logical lane ID of 0. A thread may only
exchange data with others in its own subsection. width must have a value which is a
power of 2 so that the warp can be subdivided equally; results are undefined if width is
not a power of 2, or is a number greater than warpSize.

__shfl () returns the value of var held by the thread whose ID is given by srcLane.
If srcLane is outside the range [0:width-1], then the thread's own value of var is
returned.

__shfl up() calculates a source lane ID by subtracting delta from the caller's lane
ID. The value of var held by the resulting lane ID is returned: in effect, var is shifted
up the warp by delta lanes. The source lane index will not wrap around the value of
width, so effectively the lower delta lanes will be unchanged.

__shfl down () calculates a source lane ID by adding delta to the caller's lane ID.
The value of var held by the resulting lane ID is returned: this has the effect of shifting
var down the warp by delta lanes. As for shfl up (), the ID number of the source
lane will not wrap around the value of width and so the upper delta lanes will remain
unchanged.

_shfl xor () calculates a source line ID by performing a bitwise XOR of the caller's
lane ID with 1aneMask: the value of var held by the resulting lane ID is returned. If the
resulting lane ID falls outside the range permitted by width, the thread's own value of
var is returned. This mode implements a butterfly addressing pattern such as is used in
tree reduction and broadcast.

B.13.3 Return Value

All  shfl () intrinsics return the 4-byte word referenced by var from the source lane
ID as an unsigned integer. If the source lane ID is out of range or the source thread has
exited, the calling thread’s own var is returned.

B.13.4 Notes

All  shfl () intrinsics share the same semantics with respect to code motion as the
vote intrinsics __any () and __all ().

Threads may only read data from another thread which is actively participating in the
__shfl() command. If the target thread is inactive, the retrieved value is undefined.

width must be a power-of-2 (i.e. 2, 4, 8, 16 or 32). Results are unspecified for other
values.

Types other than int or float must first be cast in order to use the  shf1l () intrinsics.
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B.13.5 Examples

B.13.5.1 Broadcast of a single value across a warp

__global  void bcast (int arg) {
int laneId = threadIdx.x & O0x1f;
int value;

if (laneId == 0) // Note unused variable for

value = arg; // all threads except lane 0
value = _ shfl(value, 0); // Get “value” from lane 0
if (value != argqg)

printf (“Thread %d failed.\n”, threadIdx.x):;
}

volid main () {
bcast<<< 1, 32 >>>(1234);
cudaDeviceSynchronize () ;

B.13.5.2 Inclusive plus-scan across sub-partitions of 8 threads

__global  void scan4 () {
// Seed sample starting value (inverse of lane ID)
int value = 31 - laneld;

// Loop to accumulate scan within my partition.
// Scan requires log2(n) == 3 steps for 8 threads
// It works by an accumulated sum up the warp
// by 1, 2, 4, 8 etc. steps.
for (int i=1; i<=4; i*=2) {
// Note: shfl requires all threads being
// accessed to be active. Therefore we do
// the _ shfl unconditionally so that we
// can read even from threads which won’t do a
// sum, and then conditionally assign the result.
int n =  shfl up(value, i, 8);
if (laneId >= 1i)
value += n;

}

printf (“"Thread %d final value = %d\n”, threadIdx.x, value);

}

void main () {
scand<<< 1, 32 >>>();
cudaDeviceSynchronize () ;

B.13.5.3 Reduction across a warp

~_global  void warpReduce () {
// Seed starting value as inverse lane ID
int value = 31 - laneld;

// Use XOR mode to perform butterfly reduction
for (int i=16; i>=1; 1/=2)
value +=  shfl xor(value, i, 32);

// “value” now contains the sum across all threads
printf (“Thread %d final value = %d\n”, threadIdx.x, value);
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}

void main () {
warpReduce<<< 1, 32 >>>();
cudaDeviceSynchronize () ;

B.14 Profiler Counter Function

Each multiprocessor has a set of sixteen hardware counters that an application can
increment with a single instruction by calling the prof trigger () function.

[void _ prof trigger (int counter);

increments by one per warp the per-multiprocessor hardware counter of index
counter. Counters 8 to 15 are reserved and should not be used by applications.

The value of counters 0, 1, ..., 7 for the first multiprocessor can be obtained via

the CUDA profiler by listing prof trigger 00, prof trigger 01, ..,

prof trigger 07 ,etc.intheprofiler.conf file (see the profiler manual for more
details). All counters are reset before each kernel launch (note that when collecting
counters, kernel launches are synchronous as mentioned in Concurrent Execution
between Host and Device).

B.15 Assertion

Assertion is only supported by devices of compute capability 2.x and higher.

void assert (int expression) ;

stops the kernel execution if expression is equal to zero. If the program is

run within a debugger, this triggers a breakpoint and the debugger can be used

to inspect the current state of the device. Otherwise, each thread for which
expression is equal to zero prints a message to stderr after synchronization with
the host via cudaDeviceSynchronize (), cudaStreamSynchronize (), or
cudaEventSynchronize (). The format of this message is as follows:

<filename>:<line number>:<function>:

block: [blockId.x,blockId.x,blockIdx.z],

thread: [threadIdx.x,threadIdx.y,threadIdx.z]

Assertion “<expression>" failed.

Any subsequent host-side synchronization calls made for the same device will
return cudaErrorAssert. No more commands can be sent to this device until

cudaDeviceReset () is called to reinitialize the device.
If expression is different from zero, the kernel execution is unaffected.

For example, the following program from source file test.cu

#include <assert.h>

// assert () is only supported
// for devices of compute capability 2.0 and higher
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#if defined( CUDA ARCH ) && (_ CUDA ARCH _ < 200)
#undef assert

#define assert (arg)

#endif

__global void testAssert (void)
{

int is one = 1;
int should be one = 0;

// This will have no effect
assert (is_one);

// This will halt kernel execution
assert (should be one);

}

int main(int argc, char* argv[])
{

testAssert<<<l,1>>>();

cudaDeviceSynchronize () ;

return 0O;
}
will output:
test.cu:19: void testAssert(): block: [0,0,0], thread: [0,0,0] Assertion

"should be one’ failed.

Assertions are for debugging purposes. They can affect performance and it is therefore
recommended to disable them in production code. They can be disabled at compile time
by defining the NDEBUG preprocessor macro before including assert . h. Note that
expression should not be an expression with side effects (something like (++i >
0), for example), otherwise disabling the assertion will affect the functionality of the

code.

B.16 Formatted Output

Formatted output is only supported by devices of compute capability 2.x and higher.

int printf (const char *format[, arg, ...]);

prints formatted output from a kernel to a host-side output stream.

The in-kernel printf () function behaves in a similar way to the standard C-library
printf() function, and the user is referred to the host system’s manual pages for a
complete description of printf () behavior. In essence, the string passed in as format
is output to a stream on the host, with substitutions made from the argument list
wherever a format specifier is encountered. Supported format specifiers are listed below.

The printf () command is executed as any other device-side function: per-thread,
and in the context of the calling thread. From a multi-threaded kernel, this means that a
straightforward call to printf () will be executed by every thread, using that thread’s
data as specified. Multiple versions of the output string will then appear at the host
stream, once for each thread which encountered the printf ().
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It is up to the programmer to limit the output to a single thread if only a single output
string is desired (see Examples for an illustrative example).

Unlike the C-standard printf (), which returns the number of characters printed,
CUDA’s printf () returns the number of arguments parsed. If no arguments follow
the format string, 0 is returned. If the format string is NULL, -1 is returned. If an internal
error occurs, -2 is returned.

B.16.1 Format Specifiers

As for standard printf (), format specifiers take the form: $ [flags] [width]
[.precision] [size] type

The following fields are supported (see widely-available documentation for a complete
description of all behaviors):

> Flags:'# "0+ "~

» Width: ¥ "0-9’

» Precision: ‘0-9’

» Size:'h" ‘1" ‘1l

> Type: “JocdiouxXpeEfgGaAs’

Note that CUDA’s print £ () will accept any combination of flag, width, precision,
size and type, whether or not overall they form a valid format specifier. In other
words, “$hd” will be accepted and printf will expect a double-precision variable in the
corresponding location in the argument list.

B.16.2 Limitations

Final formatting of the printf () output takes place on the host system. This means
that the format string must be understood by the host-system’s compiler and C library.
Every effort has been made to ensure that the format specifiers supported by CUDA'’s
printf function form a universal subset from the most common host compilers, but exact
behavior will be host-O/S-dependent.

As described in Format Specifiers, printf () will accept all combinations of valid flags
and types. This is because it cannot determine what will and will not be valid on the
host system where the final output is formatted. The effect of this is that output may be
undefined if the program emits a format string which contains invalid combinations.

The printf () command can accept at most 32 arguments in addition to the format
string. Additional arguments beyond this will be ignored, and the format specifier
output as-is.

Owing to the differing size of the 1ong type on 64-bit Windows platforms (four bytes
on 64-bit Windows platforms, eight bytes on other 64-bit platforms), a kernel which is
compiled on a non-Windows 64-bit machine but then run on a win64 machine will see
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corrupted output for all format strings which include “%$1d”. It is recommended that the
compilation platform matches the execution platform to ensure safety.

The output buffer for printf () is set to a fixed size before kernel launch (see
Associated Host-Side API). It is circular and if more output is produced during kernel
execution than can fit in the buffer, older output is overwritten. It is flushed only when
one of these actions is performed:

» Kernel launch via <<<>>>or cuLaunchKernel () (at the start of the launch, and if
the CUDA_LAUNCH_BLOCKING environment variable is set to 1, at the end of the
launch as well),

» Synchronization via cudaDeviceSynchronize (), cuCtxSynchronize (),
cudaStreamSynchronize (), cuStreamSynchronize (),
cudaEventSynchronize (), or cuEventSynchronize (),

» Memory copies via any blocking version of cudaMemcpy* () or cuMemcpy* (),
» Module loading/unloading via cuModuleLoad () or cuModuleUnload (),
» Context destruction via cudaDeviceReset () or cuCtxDestroy ().

Note that the buffer is not flushed automatically when the program exits. The user must
call cudaDeviceReset () or cuCtxDestroy () explicitly, as shown in the examples
below.

B.16.3 Associated Host-Side API

The following API functions get and set the size of the buffer used to transfer the
printf () arguments and internal metadata to the host (default is 1 megabyte):

» cudaDeviceGetLimit (size t* size,cudalimitPrintfFifoSize)

» cudaDeviceSetLimit (cudaLimitPrintfFifoSize, size t size)

B.16.4 Examples

The following code sample:

#include "stdio.h"

// printf () is only supported
// for devices of compute capability 2.0 and higher

#if defined( CUDA ARCH ) && (_ CUDA ARCH < 200)
#define printf(f, ...) ((void) (£, _ VA ARGS_ ),0)
#endif

__global  void helloCUDA (float f)
{

printf ("Hello thread %d, f=%f\n", threadIdx.x, f);
}

int main ()

{
helloCUDA<<<1, 5>>>(1.2345f);
cudaDeviceSynchronize () ;
return 0O;
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will output:

Notice how each thread encounters the printf () command, so there are as many lines
of output as there were threads launched in the grid. As expected, global values (i.e.,
float f)are common between all threads, and local values (i.e., threadIdx.x) are
distinct per-thread.

The following code sample:

#include "stdio.h"

// printf() is only supported
// for devices of compute capability 2.0 and higher

#if defined( CUDA ARCH ) && (_CUDA ARCH _ < 200)
#define printf(f, ...) ((void) (£, _ VA ARGS_ ),0)
#endif

__global  void helloCUDA (float f)
{
if (threadIdx.x == 0)
printf ("Hello thread %d, f=%f\n", threadIdx.x, f) ;
}

int main ()

{
helloCUDA<<<1, 5>>>(1.2345f);
cudaDeviceSynchronize () ;
return O;

1
will output:

Self-evidently, the i f () statement limits which threads will call printf£, so that only a
single line of output is seen.

B.17 Dynamic Global Memory Allocation and
Operations

Dynamic global memory allocation and operations are only supported by devices of
compute capability 2.x and higher.

void* malloc(size t size);
void free(void* ptr);

allocate and free memory dynamically from a fixed-size heap in global memory.
void* memcpy (void* dest, const void* src, size t size);

copy size bytes from the memory location pointed by src to the memory location
pointed by dest.

void* memset (void* ptr, int value, size t size);

set size bytes of memory block pointed by ptr to value (interpreted as an unsigned
char).

The CUDA in-kernel malloc () function allocates at least size bytes from the device
heap and returns a pointer to the allocated memory or NULL if insufficient memory
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exists to fulfill the request. The returned pointer is guaranteed to be aligned to a 16-byte
boundary.

The CUDA in-kernel free () function deallocates the memory pointed to by ptr,
which must have been returned by a previous call tomalloc ().If ptris NULL, the
call to free () isignored. Repeated calls to free () with the same ptr has undefined
behavior.

The memory allocated by a given CUDA thread viamalloc () remains allocated for the
lifetime of the CUDA context, or until it is explicitly released by a call to free (). It can
be used by any other CUDA threads even from subsequent kernel launches. Any CUDA
thread may free memory allocated by another thread, but care should be taken to ensure
that the same pointer is not freed more than once.

B.17.1 Heap Memory Allocation

The device memory heap has a fixed size that must be specified before any program
using malloc () or free () isloaded into the context. A default heap of eight
megabytes is allocated if any program uses malloc () without explicitly specifying the
heap size.

The following API functions get and set the heap size:

» cudaDeviceGetLimit (size t* size, cudalLimitMallocHeapSize)

» cudaDeviceSetLimit (cudaLimitMallocHeapSize, size t size)

The heap size granted will be at least size bytes. cuCtxGetLimit ()and
cudaDeviceGetLimit () return the currently requested heap size.

The actual memory allocation for the heap occurs when a module is loaded into the
context, either explicitly via the CUDA driver API (see Module), or implicitly via the
CUDA runtime API (see CUDA C Runtime). If the memory allocation fails, the module
load will generate a CUDA_ ERROR_SHARED OBJECT INIT FAILED error.

Heap size cannot be changed once a module load has occurred and it does not resize
dynamically according to need.

Memory reserved for the device heap is in addition to memory allocated through host-
side CUDA API calls such as cudaMalloc ().

B.17.2 Interoperability with Host Memory API

Memory allocated viamalloc () cannot be freed using the runtime (i.e., by calling any
of the free memory functions from Device Memory).

Similarly, memory allocated via the runtime (i.e., by calling any of the memory
allocation functions from Device Memory) cannot be freed via free ().
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B.17.3 Examples

B.17.3.1 Per Thread Allocation

The following code sample:

#include <stdlib.h>
#include <stdio.h>

_ _global void mallocTest ()

{

int

}

size_t size = 123;

char* ptr = (char*)malloc(size);

memset (ptr, 0, size);

printf ("Thread %d got pointer: %$p\n", threadIdx.x, ptr);
free (ptr);

main ()

// Set a heap size of 128 megabytes. Note that this must

// be done before any kernel is launched.
cudaDeviceSetLimit (cudalLimitMallocHeapSize, 128*1024*1024);
mallocTest<<<l, 5>>>();

cudaDeviceSynchronize () ;

return 0;

will output:
Thread 0 got pointer: 00057020

Thread 1 got pointer: 0005708c
Thread 2 got pointer: 000570£8
Thread 3 got pointer: 00057164
Thread 4 got pointer: 000571d0

Notice how each thread encounters themalloc () and memset () commands and so
receives and initializes its own allocation. (Exact pointer values will vary: these are
illustrative.)

B.17.3.2 Per Thread Block Allocation

#include <stdlib.h>

__global void mallocTest ()

{

__shared  int* data;

// The first thread in the block does the allocation and initialization

// and then shares the pointer with all other threads through shared memory,
// so that access can easily be coalesced.

// 64 bytes per thread are allocated.

if (threadIdx.x == 0) {
size t size = blockDim.x * 64;
data = (int*)malloc(size);

memset (data, 0, size);

}

__syncthreads () ;

// Check for failure
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if (data == NULL)
return;

// Threads index into the memory, ensuring coalescence
int* ptr = data;
for (int 1 = 0; 1 < 64; ++1)

ptr[i * blockDim.x + threadIdx.x] = threadIdx.x;

// Ensure all threads complete before freeing
__syncthreads() ;

// Only one thread may free the memory!
if (threadIdx.x == 0)
free (data);

int main ()

cudaDeviceSetLimit (cudalLimitMallocHeapSize, 128*1024*1024);
mallocTest<<<10, 128>>>();

cudaDeviceSynchronize () ;

return 0O;

B.17.3.3 Allocation Persisting Between Kernel Launches

#include <stdlib.h>
#include <stdio.h>

#define NUM BLOCKS 20
__device  int* dataptr[NUM BLOCKS]; // Per-block pointer

__global  void allocmem/()
{
// Only the first thread in the block does the allocation
// since we want only one allocation per block.
if (threadIdx.x == 0)
dataptr[blockIdx.x] = (int*)malloc(blockDim.x * 4);
__syncthreads() ;

// Check for failure
if (dataptr[blockIdx.x] == NULL)
return;

// Zero the data with all threads in parallel
dataptr[blockIdx.x] [threadIdx.x] = 0;
}

// Simple example: store thread ID into each element
__global  void usemem()
{
int* ptr = dataptr[blockIdx.x];
if (ptr != NULL)
ptr[threadIdx.x] += threadIldx.x;
}

// Print the content of the buffer before freeing it
__global void freemem ()
{
int* ptr = dataptr[blockIdx.x];
if (ptr != NULL)
printf ("Block %d, Thread %d: final value = %d\n",
blockIdx.x, threadIdx.x, ptr[threadIdx.x]);

// Only free from one thread!
if (threadIdx.x == 0)
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free (ptr);
}

int main ()

{
cudaDeviceSetLimit (cudalimitMallocHeapSize, 128*1024*1024);

// Allocate memory
allocmem<<< NUM BLOCKS, 10 >>>();

// Use memory

usemem<<< NUM BLOCKS, 10 >>>();
usemem<<< NUM BLOCKS, 10 >>>();
usemem<<< NUM BLOCKS, 10 >>>();

// Free memory
freemem<<< NUM BLOCKS, 10 >>>();

cudaDeviceSynchronize () ;

return 0O;

B.18 Execution Configuration

Any calltoa global function must specify the execution configuration for that call.
The execution configuration defines the dimension of the grid and blocks that will be
used to execute the function on the device, as well as the associated stream (see CUDA C
Runtime for a description of streams).

The execution configuration is specified by inserting an expression of the form <<<
Dg, Db, Ns, S >>>between the function name and the parenthesized argument list,
where:

> Dgis of type dim3 (see dim3) and specifies the dimension and size of the grid, such
that Dg.x * Dg.y * Dg.z equals the number of blocks being launched; Dg.z must
be equal to 1 for devices of compute capability 1.x;

» Db is of type dim3 (see dim3) and specifies the dimension and size of each block, such
that Db.x * Db.y * Db.z equals the number of threads per block;

> Nsis of type size t and specifies the number of bytes in shared memory that is
dynamically allocated per block for this call in addition to the statically allocated
memory; this dynamically allocated memory is used by any of the variables declared
as an external array as mentioned in __shared__; Ns is an optional argument which
defaults to 0;

» Sisof type cudaStream t and specifies the associated stream; S is an optional
argument which defaults to 0.

As an example, a function declared as
__global void Func(float* parameter);

must be called like this:

Func<<< Dg, Db, Ns >>>(parameter);
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The arguments to the execution configuration are evaluated before the actual function
arguments. For devices of compute capability 1.x, they are passed via shared memory to
the device.

The function call will fail if Dg or Db are greater than the maximum sizes allowed for

the device as specified in Compute Capabilities, or if Ns is greater than the maximum
amount of shared memory available on the device, minus the amount of shared memory
required for static allocation, functions arguments (for devices of compute capability
1.x), and execution configuration.

B.19 Launch Bounds

As discussed in detail in Multiprocessor Level, the fewer registers a kernel uses, the
more threads and thread blocks are likely to reside on a multiprocessor, which can
improve performance.

Therefore, the compiler uses heuristics to minimize register usage while keeping
register spilling (see Device Memory Accesses) and instruction count to a minimum.
An application can optionally aid these heuristics by providing additional
information to the compiler in the form of launch bounds that are specified using the
__launch bounds__ () qualifier in the definitionof a global function:

__global wvoid

~_launch bounds (maxThreadsPerBlock, minBlocksPerMultiprocessor)
MyKernel (...)

{

}

» maxThreadsPerBlock specifies the maximum number of threads per block with
which the application will ever launch MyKernel () ; it compiles to the .maxntid
PTX directive;

» minBlocksPerMultiprocessor is optional and specifies the desired minimum

number of resident blocks per multiprocessor; it compiles to the .minnctapersm
PTX directive.

If launch bounds are specified, the compiler first derives from them

the upper limit L on the number of registers the kernel should use to

ensure that minBlocksPerMultiprocessor blocks (or a single block if
minBlocksPerMultiprocessor is not specified) of maxThreadsPerBlock threads
can reside on the multiprocessor (see Hardware Multithreading for the relationship
between the number of registers used by a kernel and the number of registers allocated
per block). The compiler then optimizes register usage in the following way:

» If the initial register usage is higher than L, the compiler reduces it further until it
becomes less or equal to L, usually at the expense of more local memory usage and/or
higher number of instructions;

» If the initial register usage is lower than L
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» If maxThreadsPerBlock is specified and minBlocksPerMultiprocessoris
not, the compiler uses maxThreadsPerBlock to determine the register usage
thresholds for the transitions between n and n+1 resident blocks (i.e., when using
one less register makes room for an additional resident block as in the example
of Multiprocessor Level) and then applies similar heuristics as when no launch
bounds are specified;

» If bothminBlocksPerMultiprocessor and maxThreadsPerBlock are
specified, the compiler may increase register usage as high as L to reduce the
number of instructions and better hide single thread instruction latency.

A kernel will fail to launch if it is executed with more threads per block than its launch
bound maxThreadsPerBlock.

Optimal launch bounds for a given kernel will usually differ across major architecture
revisions. The sample code below shows how this is typically handled in device code
using the  CUDA ARCH  macro introduced in Application Compatibility

#define THREADS PER BLOCK 256

#if _ CUDA_ARCH _ >= 200
#define MY KERNEL MAX THREADS (2 = THREADS_PER_BLOCK)
#define MY KERNEL MIN BLOCKS 3

#else
#define MY KERNEL MAX THREADS THREADS PER BLOCK
#define MY KERNEL MIN BLOCKS 2

#endif

// Device code

__global wvoid

__launch bounds (MY KERNEL MAX THREADS, MY KERNEL MIN BLOCKS)
MyKernel (...)

{

}

In the common case where MyKernel is invoked with the maximum number of threads
per block (specified as the first parameter of launch bounds  ()), itis tempting
touse MY KERNEL MAX THREADS as the number of threads per block in the execution
configuration:

// Host code

MyKernel<<<blocksPerGrid, MY KERNEL MAX_THREADS>>>(...);

This will not work however since  CUDA ARCH  is undefined in host code as
mentioned in Application Compatibility, so MyKernel will launch with 256 threads
per block even when  CUDA ARCH _is greater or equal to 200. Instead the number of
threads per block should be determined:

» Either at compile time using a macro that does not depend on  CUDA ARCH , for

example

// Host code
MyKernel<<<blocksPerGrid, THREADS PER BLOCK>>>(...);

» Or at runtime based on the compute capability

// Host code
cudaGetDeviceProperties (&deviceProp, device);
int threadsPerBlock =

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 121



C Language Extensions

(deviceProp.major >= 2 ?
2 = THREADS PER BLOCK : THREADS PER BLOCK) ;
MyKernel<<<blocksPerGrid, threadsPerBlock>>>(...);

Register usage is reported by the --ptxas options=-v compiler option. The number
of resident blocks can be derived from the occupancy reported by the CUDA profiler
(see Device Memory Accessesfor a definition of occupancy).

Register usage can also be controlled forall global functions in a file using the
maxrregcount compiler option. The value of maxrregcount is ignored for functions
with launch bounds.

B.20 #pragma unroll

By default, the compiler unrolls small loops with a known trip count. The #pragma
unroll directive however can be used to control unrolling of any given loop. It must
be placed immediately before the loop and only applies to that loop. It is optionally
followed by a number that specifies how many times the loop must be unrolled.

For example, in this code sample:

#pragma unroll 5
for (int 1 = 0; 1 < n; ++1)

the loop will be unrolled 5 times. The compiler will also insert code to ensure correctness
(in the example above, to ensure that there will only be n iterations if n is less than 5,

for example). It is up to the programmer to make sure that the specified unroll number
gives the best performance.

#pragma unroll 1 will prevent the compiler from ever unrolling a loop.

If no number is specified after #pragma unroll, the loop is completely unrolled if its
trip count is constant, otherwise it is not unrolled at all.

B.21 SIMD Video Instructions

PTX ISA version 3.0 includes SIMD (Single Instruction, Multiple Data) video instructions
which operate on pairs of 16-bit values and quads of 8-bit values. These are available on
devices of compute capability 3.0.

The SIMD video instructions are:

» vadd2, vadd4

» vsub2, vsub4

> vavrg2, vavrgd

» vabsdiff2, vabsdiff4
» vmin2, vimin4

» vmax2, vimax4
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» vset2, vsetd

PTX instructions, such as the SIMD video instructions, can be included in CUDA
programs by way of the assembler, asm (), statement.

The basic syntax of an asm() statement is:

asm("template-string”" : "constraint" (output) : "constraint" (input)"));

An example of using the vabsdiff4 PTX instruction is:

asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %$3;": "=r" (result):"r" (A), "r"
(B), "r" (C));

This uses the vabsdiff4 instruction to compute an integer quad byte SIMD sum of

absolute differences. The absolute difference value is computed for each byte of the

unsigned integers A and B in SIMD fashion. The optional accumulate operation (. add)

is specified to sum these differences.

Refer to the document "Using Inline PTX Assembly in CUDA" for details on using

the assembly statement in your code. Refer to the PTX ISA documentation ("Parallel
Thread Execution ISA Version 3.0" for example) for details on the PTX instructions for
the version of PTX that you are using.
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Appendix C.
MATHEMATICAL FUNCTIONS

The reference manual lists, along with their description, all the functions of the C/C++
standard library mathematical functions that are supported in device code, as well as all
intrinsic functions (that are only supported in device code).

This appendix provides accuracy information for some of these functions when
applicable.

C.1 Standard Functions

The functions from this section can be used in both host and device code.

This section specifies the error bounds of each function when executed on the device and
also when executed on the host in the case where the host does not supply the function.

The error bounds are generated from extensive but not exhaustive tests, so they are not
guaranteed bounds.

Single-Precision Floating-Point Functions

Addition and multiplication are IEEE-compliant, so have a maximum error of 0.5 ulp.
However, on the device, the compiler often combines them into a single multiply-
add instruction (FMAD) and for devices of compute capability 1.x, FMAD truncates
the intermediate result of the multiplication as mentioned in Floating-Point Standard.
This combination can be avoided by using the  fadd [rn,rz,ru,rd] () and
__fmul [rn,rz,ru,rd] () intrinsic functions (see Intrinsic Functions).

The recommended way to round a single-precision floating-point operand to an
integer, with the result being a single-precision floating-point number is rintf (),
not roundf (). The reason is that roundf () maps to an 8-instruction sequence on
the device, whereas rintf () maps to a single instruction. truncf (), ceilf (), and
floorf () each map to a single instruction as well.
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Table 4 Mathematical Standard Library Functions with Maximum ULP

Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded single-precision result and the result returned by the CUDA library

function.

Function Maximum ulp error

Xty 0 (IEEE-754 round-to-nearest-even)
(except for devices of compute capability 1.x when addition
is merged into an FMAD)

x*y 0 (IEEE-754 round-to-nearest-even)
(except for devices of compute capability 1.x when
multiplication is merged into an FMAD)

x/y 0 for compute capability > 2 when compiled with -prec-
div=true
2 (full range), otherwise

1/% 0 for compute capability > 2 when compiled with -prec-
div=true
1 (full range), otherwise

rsqgrtf (x) 2 (full range)

1/sqgrtf (x)

Applies to 1 /sgrtf (x) only when it is converted to
rsqrtf (x) by the compiler.

sqrtf (x) 0 for compute capability > 2 when compiled with -prec-
sqrt=true
3 (full range), otherwise

cbrtf (x) 1 (full range)

rcbrtf (x) 2 (full range)

hypotf (x,y)

3 (full range)

expf (x) 2 (full range)
exp2f (x) 2 (full range)
explOf (x) 2 (full range)
expmlf (x) 1 (full range)
logf (x) 1 (full range)
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Function Maximum ulp error
log2f (x) 3 (full range)
loglOf (x) 3 (full range)
loglpf (%) 2 (full range)
sinf (x) 2 (full range)
cosf (x) 2 (full range)
tanf (x) 4 (full range)

sincosf (x, sptr, cptr)

2 (full range)

sinpif (x)

2 (full range)

cospif (x)

2 (full range)

sincospif (x, sptr, cptr)

2 (full range)

asinf (x) 4 (full range)
acosf (x) 3 (full range)
atanf (x) 2 (full range)

atan2f (y, x)

3 (full range)

sinhf (x) 3 (full range)
coshf (x) 2 (full range)
tanhf (x) 2 (full range)

asinhf (x)

3 (full range)

acoshf (x)

4 (full range)

atanhf (x) 3 (full range)
powf (x,V) 8 (full range)
erff (x) 3 (full range)
erfcf (x) 6 (full range)

erfinvf (x)

3 (full range)

erfcinvf (x)

4 (full range)

erfcexf (x)

6 (full range)

normcdff (x)

6 (full range)

normcdfinvf (x)

5 (full range)
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Function

Maximum ulp error

lgammaf (x)

6 (outside interval -10.001 ... -2.264; larger inside)

tgammaf (x)

11 (full range)

fmaf (x,vy,2z)

0 (full range)

frexpf (x,exp)

0 (full range)

ldexpf (x, exp)

0 (full range)

scalbnf (x,n)

0 (full range)

scalblnf (x,1)

0 (full range)

logbf (x) 0 (full range)
ilogbf (x) 0 (full range)
JjOf (x) 9 for |x| <8

otherwise, the maximum absolute error is 2.2 x 10°®
J1f (%) 9 for x| <8

otherwise, the maximum absolute error is 2.2 x 10°®
Jnf (x) For n = 128, the maximum absolute error is 2.2 x 10°¢
yOf (x) 9 for |x| <8

otherwise, the maximum absolute error is 2.2 x 10°®
y1lf (x) 9 for |x| <8

otherwise, the maximum absolute error is 2.2 x 10°®
ynf (x) ceil(2 + 2.5n) for |x| <n

otherwise, the maximum absolute error is 2.2 x 10°®

fmodf (x,vy)

0 (full range)

remainderf (x,Vy)

0 (full range)

remquof (x,y,iptr)

0 (full range)

modff (x,iptr)

0 (full range)

fdimf (x,vy)

0 (full range)

truncft (x)

0 (full range)

roundf (x)

0 (full range)

rintf (x)

0 (full range)
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Function Maximum ulp error
nearbyintf (x) 0 (full range)
ceilf (x) 0 (full range)
floorf (x) 0 (full range)
lrintf (x) 0 (full range)
lroundf (x) 0 (full range)
llrintf (x) 0 (full range)
1lroundf (x) 0 (full range)

Double-Precision Floating-Point Functions

The errors listed below only apply when compiling for devices with native double-
precision support. When compiling for devices without such support, such as devices
of compute capability 1.2 and lower, the double type gets demoted to f1oat by
default and the double-precision math functions are mapped to their single-precision
equivalents.

The recommended way to round a double-precision floating-point operand to an
integer, with the result being a double-precision floating-point number is rint (), not
round (). The reason is that round () maps to an 8-instruction sequence on the device,
whereas rint () maps to a single instruction. trunc (), ceil (), and floor () each
map to a single instruction as well.

Table 5 Mathematical Standard Library Functions with Maximum ULP
Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded double-precision result and the result returned by the CUDA library
function.

Function Maximum ulp error

Xty 0 (IEEE-754 round-to-nearest-even)
x*y 0 (IEEE-754 round-to-nearest-even)
x/y 0 (IEEE-754 round-to-nearest-even)
1/x O(IEEE-754 round-to-nearest-even)
sgrt (x) 0 (IEEE-754 round-to-nearest-even)
rsqrt (x) 1 (full range)
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Function Maximum ulp error
cbrt (x) 1 (full range)
rcbrt (x) 1 (full range)

hypot (x,y)

2 (full range)

exp (x) 1 (full range)
exp2 (x) 1 (full range)
explO (x) 1 (full range)
expml (x) 1 (full range)
log (%) 1 (full range)
log2 (x) 1 (full range)
logl0 (x) 1 (full range)
loglp (%) 1 (full range)
sin (x) 1 (full range)
cos (x) 1 (full range)
tan (x) 2 (full range)

sincos (x, sptr, cptr)

1 (full range)

sinpi (x)

1 (full range)

cospi (x)

1 (full range)

sincospi (x, sptr, cptr)

1 (full range)

asin (x) 2 (full range)
acos (x) 2 (full range)
atan (x) 2 (full range)

atan2 (y, x)

2 (full range)

sinh (x) 1 (full range)
cosh (x) 1 (full range)
tanh (x) 1 (full range)
asinh (x) 2 (full range)
acosh (x) 2 (full range)
atanh (x) 2 (full range)
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Function Maximum ulp error
pow (X,Y) 2 (full range)
erf (x) 2 (full range)
erfc(x) 4 (full range)

erfinv (x)

5 (full range)

erfcinv (x)

8 (full range)

erfcx (x)

3 (full range)

normcdf (x)

5 (full range)

normcdfinv (x)

8 (full range)

lgamma (x)

4 (outside interval -11.0001 ... -2.2637; larger

inside)

tgamma (x)

8 (full range)

fma (x, vy, z)

0 (IEEE-754 round-to-nearest-even)

frexp (x, exp)

0 (full range)

ldexp (x, exp)

0 (full range)

scalbn (x,n)

0 (full range)

scalbln(x, 1)

0 (full range)
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logb (%) 0 (full range)

ilogb (x) 0 (full range)

70 (%) 7 for |x| <8
otherwise, the maximum absolute error is 5 x
10712

J1(x) 7 for |x| <8
otherwise, the maximum absolute error is 5 x
1012

Jn(x) For n = 128, the maximum absolute error is 5 x
1012

v0 (x) 7 for |x| <8
otherwise, the maximum absolute error is 5 x
1012

vl (%) 7 for |x| <8
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Function Maximum ulp error
otherwise, the maximum absolute error is 5 x
10"

yn (x) For |x| > 1.5n, the maximum absolute error is 5
x 1072

fmod (x,vy) 0 (full range)

remainder (x,Vy) 0 (full range)

remquo (x,y, iptr) 0 (full range)

mod (x, iptr) 0 (full range)

fdim(x, y) 0 (full range)

trunc (x) 0 (full range)

round (x) 0 (full range)

rint (x) 0 (full range)

nearbyint (x) 0 (full range)

ceil (x) 0 (full range)

floor (x) 0 (full range)

lrint (x) 0 (full range)

lround (x) 0 (full range)

llrint (x) 0 (full range)

1llround (x) 0 (full range)

C.2 Intrinsic Functions

The functions from this section can only be used in device code.

Among these functions are the less accurate, but faster versions of some of the
functions of Standard Functions. They have the same name prefixed with __ (such as
__sinf (x)). They are faster as they map to fewer native instructions. The compiler has
an option (-use_fast math) that forces each function in Table 6 Functions Affected
by -use_fast_math to compile to its intrinsic counterpart. In addition to reducing the
accuracy of the affected functions, it may also cause some differences in special case
handling. A more robust approach is to selectively replace mathematical function calls
by calls to intrinsic functions only where it is merited by the performance gains and
where changed properties such as reduced accuracy and different special case handling

can be tolerated.
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Table 6 Functions Affected by -use_fast_math

Operator/Function Device Function
x/y _ fdividef (x,y)
sinf (x) __sinf(x)

cosf (x) __cosf(x)

tanf (x) __tanf (x)

sincosf (x, sptr, cptr)

___sincosf (x,sptr,cptr)

logf (%) __logf (x)
log2f (x) _log2f (x)
loglOf (x) __loglOf (x)
expf (x) __expf(x)
explOf (x) __explOf (x)
powf (x,V) _ powf(x,y)

Functions suffixed with _rn operate using the round to nearest even rounding mode.

Functions suffixed with _rz operate using the round towards zero rounding mode.

Functions suffixed with _ru operate using the round up (to positive infinity) rounding

mode.

Functions suffixed with _rd operate using the round down (to negative infinity)

rounding mode.

Single-Precision Floating-Point Functions

__fadd [rn,rz,ru,rd] () and fmul [rn,rz,ru,rd] () map to addition and
multiplication operations that the compiler never merges into FMADs. By contrast,
additions and multiplications generated from the *' and '+' operators will frequently be

combined into FMADs.

The accuracy of floating-point division varies depending on the compute capability
of the device and whether the code is compiled with ~-prec-div=false or -prec-
div=true. For devices of compute capability 1.x or for devices of compute capability
2.x and higher when the code is compiled with -prec-div=false, both the regular

division / operator and  fdividef (x,y) have the same accuracy, but for
__fdividef (x,y) delivers a result of zero, whereas the / operator delivers the

2128,

2% <y <

correct result to within the accuracy stated in Table 7 Single-Precision Floating-Point

2126 2128

Intrinsic Functions. Also, for <y<

,if x is infinity, fdividef (x,y) delivers a

NaN (as a result of multiplying infinity by zero), while the / operator returns infinity. On
the other hand, the / operator is IEEE-compliant on devices of compute capability 2.x
and higher when the code is compiled with ~-prec-div=true or without any -prec-
div option at all since its default value is true.
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Table 7 Single-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)

Function

Error bounds

__fadd [rn,rz,ru,rd] (x,y)

IEEE-compliant.

__fmul [rn,rz,ru,rd] (x,Y)

IEEE-compliant.

__fmaf [rn,rz,ru,rd] (x,Y,2)

IEEE-compliant.

__frecp [rn,rz,ru,rd] (x)

IEEE-compliant.

__fsgrt [rn,rz,ru,rd] (x)

IEEE-compliant.

__frsqgrt rn(x)

IEEE-compliant.

__fdiv [rn,rz,ru,rd] (x,Y)

IEEE-compliant.

_ fdividef (x,Vy)

126 126
» 277,

For y in [2 the maximum ulp error is 2.

__expf(x) The maximum ulp erroris 2 +
floor(abs(l.16 * x)).

__explOf (x) The maximum ulp erroris 2 +
floor (abs(2.95 * x)).

__logf (x) For x in [0.5, 2], the maximum absolute error is
2'21'41, otherwise, the maximum ulp error is 3.

_ log2f (x) For x in [0.5, 2], the maximum absolute error is
2'22, otherwise, the maximum ulp error is 2.

_ 1oglOf (x) For x in [0.5, 2], the maximum absolute error is
2'24, otherwise, the maximum ulp error is 3.

__sinf(x) For x in [-m,m], the maximum absolute error is
2'21'41, and larger otherwise.

__cosf(x) For x in [-m,m], the maximum absolute error is

-21.19 .
2 , and larger otherwise.

__sincosf (x,sptr,cptr)

Same as sinf (x) and cosf (x).

__tanf (x) Derived from its implementation as _sinf (x)
* (1/  cosf(x)).
__powf(x, Vy) Derived from its implementation as exp2f (y *

__log2f(x)).
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Mathematical Functions

__dadd_rn() and dmul rn () map to addition and multiplication operations that
the compiler never merges into FMADs. By contrast, additions and multiplications
generated from the *' and '+' operators will frequently be combined into FMADs.

Table 8 Double-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)

Function

Error bounds

__dadd_[rn,rz,ru,rd] (x,y)

IEEE-compliant.

__dmul [rn,rz,ru,rd] (x,Y)

IEEE-compliant.

__fma [rn,rz,ru,rd] (X,y,2)

IEEE-compliant.

_ddiv ([rn,rz,ru,rd] (x,y) (X,¥)

IEEE-compliant.

Requires compute capability > 2.

__drcp_ lrn,rz,ru,rd] (x)

IEEE-compliant.

Requires compute capability > 2.

__dsqgrt [rn,rz,ru,rd] (x)

IEEE-compliant.

Requires compute capability > 2.
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Appendix D.
C/C++ LANGUAGE SUPPORT

As described in Compilation with NVCC, source files compiled with nvcc can include a
mix of host code and device code.

For the host code, nvcc supports whatever part of the C++ ISO/IEC 14882:2003
specification the host c++ compiler supports.

For the device code, nvcc supports the features illustrated in Code Samples with some
restrictions described in Restrictions; it does not support run time type information
(RTTI), exception handling, and the C++ Standard Library.

D.1 Code Samples
D.1.1 Data Aggregation Class

class PixelRGBA {
public:
__device  PixelRGBA(): r (0), g (0), b (0), a (0) { }

__device  PixelRGBA (unsigned char r, unsigned char g,
unsigned char b, unsigned char a = 255):
r (r), g_(g), b_(b), a (a) { }

private:
unsigned char r , g , b , a ;

friend PixelRGBA operator+ (const PixelRGBA const PixelRGBA%) ;
}i

device
PixelRGBA operator+ (const PixelRGBA& pl, const PixelRGBA& p2)
{
return PixelRGBA(pl.r + p2.r , pl.g + p2.g ,
pl.b + p2.b , pl.a + p2.a );
}

__device  void func(void)

{
PixelRGBA pl, p2;
/] ... // Initialization of pl and p2 here
PixelRGBA p3 = pl + p2;
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D.1.2 Derived Class

__device  void* operator new(size t bytes, MemoryPoolé& p);
__device  void operator delete(void*, MemoryPoolé& p);
class Shape {
public:
__device  Shape(void) { }
__device  void putThis (PrintBuffer *p) const;
__device  virtual void Draw (PrintBuffer *p) const ({
p—>put ("Shapeless") ;
}
__device  virtual ~Shape() {}
}i
class Point : public Shape {
public:
__device  Point() : x(0), y(0) {}
__device  Point(int ix, int iy) : x(ix), y(iy) { }
__device  void PutCoord(PrintBuffer *p) const;
__device  void Draw(PrintBuffer *p) const;
__device  ~Point () {}
private:
int x, y;
}i
__device  Shape* GetPointObj (MemoryPool& pool)
{
Shape* shape = new(pool) Point (rand(-20,10), rand(-100,-20));
return shape;

D.1.3 Class Template

template <class T>
class myValues {
T values[MAX VALUES];

public:
~_device myValues (T clear) { ... }
__device  void setValue (int Idx, T value) { ... }
__device  void putToMemory (T* valueLocation) { ... }

}i
template <class T>

void  global  useValues(T* memoryBuffer) ({
myValues<T> myLocation (0) ;

1
__device  void* buffer;

int main ()

{

useValues<int><<<blocks, threads>>> (buffer);

D.1.4 Function Template

template <typename T>
__device  bool func(T x)

{

return (...);
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template <>
__device  bool func<int>(T x) // Specialization

{

return true;

}

// Explicit argument specification
bool result = func<double> (0.5);

// Implicit argument deduction

int x = 1;
bool result = func(x);
D.1.5 Functor Class
class Add {
public:
__device__ float operator() (float a, float b) const

{

return a + b;
}
b

class Sub {
public:
__device__ float operator() (float a, float b) const

{

return a - b;
}
b

// Device code

template<class O> global

void VectorOperation(const float * A, const float * B, float * C,
unsigned int N, O op)

{

unsigned int iElement = blockDim.x * blockIdx.x + threadIdx.x;
if (iElement < N)
C[iElement] = op(A[iElement], B[iElement]) ;
}

// Host code
int main ()

{

VectorOperation<<<blocks, threads>>>(vl, v2, v3, N, Add());

D.2 Restrictions

D.2.1 Preprocessor Symbols

Ifa global functiontemplate is instantiated and launched from the host, the
function template must be instantiated with the same types irrespective of whether
_ CUDA ARCH _is defined and regardless of the value of the CUDA ARCH  macro.
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In the following example, the instantiation kern<int> only occurs when
___CUDA_ARCH__is not defined. This is not supported.

__device  int result;
template <typename T>
__global  void kern(T in)
{

result = in;

}

__host ~ device  void foo(void)
{
#if !defined( CUDA ARCH )
kern<<<1l,1>>> (1) ; // instantiation "kern<int>"
#endif /* !defined( CUDA ARCH ) */
}

int main (void)

{
foo ()
cudaDeviceSynchronize () ;
return 0;

}
D.2.2 Qualifiers

D.2.2.1 Device Memory Qualifiers
The device , shared and constant _ qualifiers are not allowed on:

» class, struct, and union data members,
» formal parameters,
» local variables within a function that executes on the host.

__shared and constant _ variables have implied static storage.

__device and constant  variable definitions are only allowed in namespace
scope (including global namespace scope).

__device , constant and shared variables defined in namespace scope,
that are of class type, cannot have a non-empty constructor or a non-empty destructor. A
constructor for a class type is considered empty at a point in the translation unit, if it is
either a trivial constructor or it satisfies all of the following conditions:

» The constructor function has been defined.

» The constructor function has no parameters, the initializer list is empty and the
function body is an empty compound statement.

» Its class has no virtual functions and no virtual base classes.

» The default constructors of all base classes of its class can be considered empty.

» For all the nonstatic data members of its class that are of class type (or array thereof),
the default constructors can be considered empty.

A destructor for a class is considered empty at a point in the translation unit, if it is
either a trivial destructor or it satisfies all of the following conditions:

» The destructor function has been defined.
» The destructor function body is an empty compound statement.
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» Its class has no virtual functions and no virtual base classes.

» The destructors of all base classes of its class can be considered empty.

» For all the nonstatic data members of its class that are of class type (or array thereof),
the destructor can be considered empty.

When compiling in the whole program compilation mode (see the nvcc user manual
for a description of this mode), device , shared ,and_ constant
variables cannot be defined as external using the extern keyword. The only exception is
for dynamically allocated ~ shared  variables as described in __shared__.

When compiling in the separate compilation mode (see the nvcc user manual for a
description of this mode), device , shared ,and_ constant _ variables
can be defined as external using the extern keyword. nvlink will generate an error when
it cannot find a definition for an external variable (unless it is a dynamically allocated
___shared__ variable).

D.2.2.2 Volatile Qualifier

Only after the executionofa  threadfence block(), threadfence(), or
__syncthreads () (Memory Fence Functions and Synchronization Functions) are prior
writes to global or shared memory guaranteed to be visible by other threads. As long

as this requirement is met, the compiler is free to optimize reads and writes to global or
shared memory.

This behavior can be changed using the volatile keyword: If a variable located in
global or shared memory is declared as volatile, the compiler assumes that its value can
be changed or used at any time by another thread and therefore any reference to this
variable compiles to an actual memory read or write instruction.

D.2.3 Pointers

For devices of compute capability 1.x, pointers in code that is executed on the device
are supported as long as the compiler is able to resolve whether they point to either the
shared memory space, the global memory space, or the local memory space, otherwise
they are restricted to only point to memory allocated or declared in the global memory
space. For devices of compute capability 2.x and higher, pointers are supported without
any restriction.

Dereferencing a pointer either to global or shared memory in code that is executed
on the host, or to host memory in code that is executed on the device results in an
undefined behavior, most often in a segmentation fault and application termination.

The address obtained by taking the addressofa device , shared or
__constant__ variable can only be used in device code. The addressofa  device
or constant _ variable obtained through cudaGetSymbolAddress () as
described in Device Memory can only be used in host code.

As a consequence of the use of C++ syntax rules, void pointers (e.g., returned by
malloc ()) cannot be assigned to non-void pointers without a typecast.

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 139



C/C++ Language Support

D.2.4 Operators

D.2.4.1 Assignment Operator

__constant__ variables can only be assigned from the host code through runtime
functions (Device Memory); they cannot be assigned from the device code.

___shared__ variables cannot have an initialization as part of their declaration.

It is not allowed to assign values to any of the built-in variables defined in Built-in
Variables.

D.2.4.2 Address Operator

It is not allowed to take the address of any of the built-in variables defined in Built-in
Variables.

D.2.5 Functions

D.2.5.1 Compiler generated functions

The execution space qualifiers (__host , device ) for acompiler generated
function are the union of the execution space qualifiers of all the functions that invoke
it (note thata global  caller will be treated asa device caller for this
analysis). For example:

class Base {
int x;
public:
__host ~ device  Base(void) : x(10) {}

}i

class Derived : public Base {
int y;
bi

class Other: public Base {
int z;

}i

__device  void foo(void)
{

Derived D1;

Other D2;
}

__host  void bar(void)

{
Other D3;

}

Here, the compiler generated constructor function "Derived::Derived" will be treated
asa__device function, since it is invoked only from the device function
"foo". The compiler generated constructor function "Other::Other" will be treated as
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a__host  device function, since it is invoked both froma device
function "foo"and a __host _ function "bar".

D.2.5.2 Function Parameters

__global function parameters are passed to the device:

» via shared memory and are limited to 256 bytes on devices of compute capability 1.x,
» via constant memory and are limited to 4 KB on devices of compute capability 2.x
and higher.

device and global functions cannot have a variable number of arguments.

D.2.5.3 Static Variables within Function

Static variables cannot be declared within the body of device  and  global
functions.

D.2.5.4 Function Pointers

Function pointersto global  functions are supported in host code, but not in
device code.

Function pointers to device  functions are only supported in device code compiled
for devices of compute capability 2.x and higher.

It is not allowed to take the address ofa  device  function in host code.

D.2.5.5 Function Recursion
__global functions do not support recursion.

__device  functions only support recursion in device code compiled for devices of
compute capability 2.x and higher.

D.2.6 Classes
D.2.6.1 Data Members

Static data members are not supported.

The layout of bit-fields in device code may currently not match the layout in host code
on Windows.

D.2.6.2 Function Members

Static member functions cannotbe  global functions.
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D.2.6.3 Virtual Functions

When a function in a derived class overrides a virtual function in a base class, the
execution space qualifiers (i.e., host , device )on the overridden and
overriding functions must match.

It is not allowed to pass as an argumenttoa _global _ function an object of a class
with virtual functions.

The virtual function table is placed in global or constant memory by the compiler.

D.2.6.4 Virtual Base Classes

It is not allowed to pass as an argumenttoa _global _ function an object of a class
derived from virtual base classes.

D.2.6.5 Windows-Specific

On Windows, the CUDA compiler may produce a different memory layout, compared
to the host Microsoft compiler, for a C++ object of class type T that satisfies any of the
following conditions:

» T has virtual functions or derives from a direct or indirect base class that has virtual
functions;

» T has a direct or indirect virtual base class;
» T has multiple inheritance with more than one direct or indirect empty base class.

The size for such an object may also be different in host and device code. As long as type
T is used exclusively in host or device code, the program should work correctly. Do not
pass objects of type T between host and device code (e.g., as arguments to _global
functions or through cudaMemcpy* () calls).

D.2.7 Templates

A global function template cannot be instantiated with a type or typedef that
is defined within a function or is private to a class or structure, as illustrated in the
following code sample:

template <typename T>
__global  void myKernell (void) { }

template <typename T>
__global void myKernel2(T par) { }

class myClass {
private:
struct inner t { };
public:
static void launch (void)
{
// Both kernel launches below are disallowed
// as myKernell and myKernel2 are instantiated
// with private type inner t

myKernell<inner t><<<1,1>>>();
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inner t var;
myKernel2<<<1l,1>>> (var) ;

}i

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 143



Appendix E.
TEXTURE FETCHING

This appendix gives the formula used to compute the value returned by the texture
functions of Texture Functions depending on the various attributes of the texture
reference (see Texture and Surface Memory).

The texture bound to the texture reference is represented as an array T of

» N texels for a one-dimensional texture,
» N x M texels for a two-dimensional texture,
» N x M x L texels for a three-dimensional texture.

It is fetched using non-normalized texture coordinates x, y, and z, or the normalized
texture coordinates x/N, y/M, and z/L as described in Texture Memory. In this appendix,
the coordinates are assumed to be in the valid range. Texture Memory explained how
out-of-range coordinates are remapped to the valid range based on the addressing
mode.

E.1 Nearest-Point Sampling

In this filtering mode, the value returned by the texture fetch is

» tex(x)=T[i] for a one-dimensional texture,
> tex(x,y)=T[i,jl for a two-dimensional texture,
» tex(x,y,z)=T[i,j,k] for a three-dimensional texture,

where i=floor(x), j=floor(y), and k=floor(z).

Figure 12 Nearest-Point Sampling of a One-Dimensional Texture of Four Texels
illustrates nearest-point sampling for a one-dimensional texture with N=4.

For integer textures, the value returned by the texture fetch can be optionally remapped
to [0.0, 1.0] (see Texture Memory).
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E.2 Linear Filtering

In this filtering mode, which is only available for floating-point textures, the value

returned by the texture fetch is

> tex(x)=(1-a)T[i]+aT[i+1] for a one-dimensional texture,

> tex(x,y)=(1-a)(1-B)T[i,jl+a(1-B)T[i+1,jl+(1-a)BTi,j+1]+apT[i+1,j+1] for a two-

dimensional texture,
> tex(x,y,z) =

(1-a)(1-B)(1-y)Tli,j kI+a(1-B)(1-y)T[i+1,j k]+
(1-a)B(1=y)T[i,j+1,k]+af(1=y)T[i+1,j+1,kI+
(1-a)(1-B)y Tli j k+1]+a(1-B)y T[i+1,j, k+1]+
(1-a)ByTli, j+1,k+1]+afyTli+1,j+1,k+1]

for a three-dimensional texture,

where:

v

i=floor(xp), a=frac(xp), xp=x-0.5,

j=floor(yg), p=frac(yp), yp=y-0.5,
k=floor(zg), y=frac(zp), zp= z-0.5,

v

v

a, B, and y are stored in 9-bit fixed point format with 8 bits of fractional value (so 1.0 is

exactly represented).
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Figure 13 Linear Filtering of a One-Dimensional Texture of Four Texels in Clamp
Addressing Mode illustrates nearest-point sampling for a one-dimensional texture with
N=4.
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Figure 13 Linear Filtering of a One-Dimensional Texture of Four Texels in
Clamp Addressing Mode

E.3 Table Lookup

A table lookup TL(x) where x spans the interval [0,R] can be implemented as
TL(x)=tex((N-1)/R)x+0.5) in order to ensure that TL(0)=T[0] and TL(R)=T[N-1].

Figure 14 One-Dimensional Table Lookup Using Linear Filtering illustrates the use of
texture filtering to implement a table lookup with R=4 or R=1 from a one-dimensional

texture with N=4.
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Appendix F.
COMPUTE CAPABILITIES

The general specifications and features of a compute device depend on its compute
capability (see Compute Capability).

Table 9 Feature Support per Compute Capability gives the features and technical
specifications associated to each compute capability.

Floating-Point Standard reviews the compliance with the IEEE floating-point standard.

Section Compute Capability 1.x, Compute Capability 2.x, and Compute Capability 3.x
give more details on the architecture of devices of compute capability 1.x, 2.x, and 3.x,
respectively.

F.1 Features and Technical Specifications

Table 9 Feature Support per Compute Capability

Feature Support Compute Capability

(Unlisted features are supported for all 1.0 1.1 1.2 1.3 2.x,

compute capabilities) 3.0 o

Atomic functions operating on 32-bit integer

values in global memory (Atomic Functions)
No Yes

atomicExch() operating on 32-bit floating
point values in global memory (atomicExch())

Atomic functions operating on 32-bit integer
values in shared memory (Atomic Functions)

atomicExch() operating on 32-bit floating
point values in shared memory (atomicExch()) No Yes

Atomic functions operating on 64-bit integer
values in global memory (Atomic Functions)

Warp vote functions (Warp Vote Functions)

Double-precision floating-point numbers No Yes

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 148



Compute Capabilities

Feature Support Compute Capability
(Unlisted featm:e's'are supported for all 1.0 1.1 1.2 1.3 2.x, 3.5
compute capabilities) 3.0
Atomic functions operating on 64-bit integer
values in shared memory (Atomic Functions)
Atomic addition operating on 32-bit floating
point values in global and shared memory
(atomicAdd())
__ballot() (Warp Vote Functions)
__threadfence_system() (Memory Fence
Functions) No Yes
__syncthreads_count(),
__syncthreads_and(),
__syncthreads_or() (Synchronization
Functions)
Surface functions (Surface Functions)
3D grid of thread blocks
Funnel shift (see reference manual) No Yes
Table 10 Technical Specifications per Compute Capability
Compute Capability
Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5
Maximum dimensionality of grid of thread
2 3
blocks
Maximum x-dimension of a grid of thread 65535 2314
blocks
Maximum y- or z-dimension of a grid of
thread blocks 65535
Maximum dimensionality of thread block 3
Maximum x- or y-dimension of a block 512 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 512 1024
Warp size 32
Maximum number of resident blocks per 8 16
multiprocessor
Maxir_num number of resident warps per 24 32 48 64
multiprocessor
Maximum number of resident threads per 768 1024 1536 2048
multiprocessor
Numper of 32-bit registers per 8 K 16 K 32 K 64 K
multiprocessor
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Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5
Maximum number of 32-bit registers per 128 63 255
thread

Maximum amount of shared memory per

multiprocessor 16 KB 48 KB
Number of shared memory banks 16 32
Amount of local memory per thread 16 KB 512 KB
Constant memory size 64 KB

Cache working set per multiprocessor for 8 KB

constant memory

Cache working set per multiprocessor for

Device dependent, between 6 KB and 8 KB
texture memory

Maximum width for a 1D texture

reference bound to a CUDA array 8192 65536
Maximum width for a 1D texture 227

reference bound to linear memory

Maximum width and number of layers for 8192 x 512 16384 x 2048
a 1D layered texture reference

Maximum width and height for a 2D

texture reference bound to a CUDA array 65536 x 32768 65336 x 65535
Maximum width and height for a 2D 65000 x 65000 65000 x 65000

texture reference bound to linear memory

Maximum width and height for a 2D
texture reference bound to a CUDA array N/A 16384 x 16384
supporting texture gather

Maximum width, height, and number of

layers for a 2D layered texture reference 8192 x 8192 x 512 16384 x 16384 x 2048
Maximum width, height, and depth for

a 3D texture reference bound to a CUDA 2048 x 2048 x 2048 40?(6 4)((); g %6
array

Maximum width (and height) for a N/A 16384
cubemap texture reference

Maximum width (and height) and number

of layers for a cubemap layered texture N/A 16384 x 2046
reference

Maximum number of textures that can be 128 256
bound to a kernel

Maximum width for a 1D surface 65536
reference bound to a CUDA array

Maximum width and number of layers for N/A 65536 x 2048

a 1D layered surface reference

Maximum width and height for a 2D

surface reference bound to a CUDA array 65336 x 32768
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Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum width, height, and number of

layers for a 2D layered surface reference 65536 x 32768 x 2048

Maximum width, height, and depth for
a 3D surface reference bound to a CUDA 65536 x 32768 x 2048
array

Maximum width (and height) for a
cubemap surface reference bound to a 32768
CUDA array

Maximum width (and height) and number
of layers for a cubemap layered surface 32768 x 2046
reference

Maximum number of surfaces that can be

bound to a kernel 8 16

Maximum number of instructions per

2 million 512 million
kernel

F.2 Floating-Point Standard

All compute devices follow the IEEE 754-2008 standard for binary floating-point
arithmetic with the following deviations:

» There is no dynamically configurable rounding mode; however, most of the
operations support multiple IEEE rounding modes, exposed via device intrinsics;

» There is no mechanism for detecting that a floating-point exception has occurred and
all operations behave as if the IEEE-754 exceptions are always masked, and deliver
the masked response as defined by IEEE-754 if there is an exceptional event; for the
same reason, while SNaN encodings are supported, they are not signaling and are
handled as quiet;

» The result of a single-precision floating-point operation involving one or more input
NaNs is the quiet NaN of bit pattern Ox7fffffff;

» Double-precision floating-point absolute value and negation are not compliant with
IEEE-754 with respect to NaNs; these are passed through unchanged;

» For single-precision floating-point numbers on devices of compute capability 1.x:

» Denormalized numbers are not supported; floating-point arithmetic and
comparison instructions convert denormalized operands to zero prior to the
floating-point operation;

» Underflowed results are flushed to zero;

» Some instructions are not IEEE-compliant:

» Addition and multiplication are often combined into a single multiply-add
instruction (FMAD), which truncates (i.e., without rounding) the intermediate
mantissa of the multiplication;

» Division is implemented via the reciprocal in a non-standard-compliant way;
y
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> Square root is implemented via the reciprocal square root in a non-standard-
compliant way;

» For addition and multiplication, only round-to-nearest-even and round-
towards-zero are supported via static rounding modes; directed rounding
towards +/- infinity is not supported.

To mitigate the impact of these restrictions, IEEE-compliant software (and
therefore slower) implementations are provided through the following intrinsics
(c.f. Intrinsic Functions):

» fmaf r{n,z,u,d} (float, float, float):single-precision fused
multiply-add with IEEE rounding modes,
» frcp rln,z,u,d] (float): single-precision reciprocal with IEEE

rounding modes,

» fdiv r[n,z,u,d] (float, float):single-precision division with IEEE
rounding modes,

» fsqrt rin,z,u,d] (float): single-precision square root with IEEE
rounding modes,

» fadd r[u,d] (float, float):single-precision addition with IEEE
directed rounding,

»  fmul rlu,d] (float, float):single-precision multiplication with IEEE
directed rounding;

» For double-precision floating-point numbers on devices of compute capability 1.x:

» Round-to-nearest-even is the only supported IEEE rounding mode for reciprocal,
division, and square root.

When compiling for devices without native double-precision floating-point support,
i.e., devices of compute capability 1.2 and lower, each double variable is converted
to single-precision floating-point format (but retains its size of 64 bits) and double-
precision floating-point arithmetic gets demoted to single-precision floating-point
arithmetic.

For devices of compute capability 2.x and higher, code must be compiled with -
ftz=false, -prec-div=true, and -prec-sqgrt=true to ensure IEEE compliance
(this is the default setting; see the nvcc user manual for description of these compilation
flags); code compiled with ~ftz=true, -prec-div=false, and -prec-sgrt=false
comes closest to the code generated for devices of compute capability 1.x.

Addition and multiplication are often combined into a single multiply-add instruction:

» FMAD for single precision on devices of compute capability 1.x,
» FFMA for single precision on devices of compute capability 2.x and higher.

As mentioned above, FMAD truncates the mantissa prior to use it in the addition.
FFMA, on the other hand, is an IEEE-754(2008) compliant fused multiply-add
instruction, so the full-width product is being used in the addition and a single rounding
occurs during generation of the final result. While FFMA in general has superior
numerical properties compared to FMAD, the switch from FMAD to FFMA can cause
slight changes in numeric results and can in rare circumstances lead to slighty larger
error in final results.
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In accordance to the IEEE-754R standard, if one of the input parameters to fminf (),
fmin (), fmaxf (), or fmax () is NaN, but not the other, the result is the non-NaN
parameter.

The conversion of a floating-point value to an integer value in the case where the
floating-point value falls outside the range of the integer format is left undefined by
IEEE-754. For compute devices, the behavior is to clamp to the end of the supported
range. This is unlike the x86 architecture behavior.

The behavior of integer division by zero and integer overflow is left undefined by
IEEE-754. For compute devices, there is no mechanism for detecting that such integer
operation exceptions have occurred. Integer division by zero yields an unspecified,
machine-specific value.

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-
compliance-nvidia-gpus includes more information on the floating point accuracy and
compliance of NVIDIA GPUs.

F.3 Compute Capability 1.x
F.3.1 Architecture

For devices of compute capability 1.x, a multiprocessor consists of:

» 8 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs
of arithmetic operations),

» 1 double-precision floating-point unit for double-precision floating-point arithmetic
operations (this is only for devices of compute capability 1.3 and above),

» 2 special function units for single-precision floating-point transcendental functions
(these units can also handle single-precision floating-point multiplications),

» 1 warp scheduler.

To execute an instruction for all threads of a warp, the warp scheduler must therefore
issue the instruction over:

» 4 clock cycles for an integer or single-precision floating-point arithmetic instruction,

» 32 clock cycles for a double-precision floating-point arithmetic instruction (this is only
for devices of compute capability 1.3 and above),

» 16 clock cycles for a single-precision floating-point transcendental instruction.

A multiprocessor also has a read-only constant cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

Multiprocessors are grouped into Texture Processor Clusters (TPCs). The number of
multiprocessors per TPC is:

» 2 for devices of compute capabilities 1.0 and 1.1,
» 3 for devices of compute capabilities 1.2 and 1.3.
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Each TPC has a read-only texture cache that is shared by all multiprocessors and
speeds up reads from the texture memory space, which resides in device memory. Each
multiprocessor accesses the texture cache via a texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

The local and global memory spaces reside in device memory and are not cached.

F.3.2 Global Memory

A global memory request for a warp is split into two memory requests, one for each
half-warp, that are issued independently. Devices of Compute Capability 1.0 and 1.1
and Devices of Compute Capability 1.2 and 1.3 describe how the memory accesses

of threads within a half-warp are coalesced into one or more memory transactions
depending on the compute capability of the device. Figure 15 Examples of Global
Memory Accesses shows some examples of global memory accesses and corresponding
memory transactions based on compute capability.

The resulting memory transactions are serviced at the throughput of device memory.

Devices of Compute Capability 1.0 and 1.1
To coalesce, the memory request for a half-warp must satisfy the following conditions:

» The size of the words accessed by the threads must be 4, 8, or 16 bytes;
» If this size is:

> 4, all 16 words must lie in the same 64-byte segment,
» 8, all 16 words must lie in the same 128-byte segment,
> 16, the first 8 words must lie in the same 128-byte segment and the last 8 words in
the following 128-byte segment;
» Threads must access the words in sequence: The k'™ thread in the half-warp must
access the k™ word.

If the half-warp meets these requirements, a 64-byte memory transaction, a 128-byte
memory transaction, or two 128-byte memory transactions are issued if the size of the
words accessed by the threads is 4, 8, or 16, respectively. Coalescing is achieved even
if the warp is divergent, i.e., there are some inactive threads that do not actually access
memory.

If the half-warp does not meet these requirements, 16 separate 32-byte memory
transactions are issued.

Devices of Compute Capability 1.2 and 1.3

Threads can access any words in any order, including the same words, and a single
memory transaction for each segment addressed by the half-warp is issued. This is in
contrast with devices of compute capabilities 1.0 and 1.1 where threads need to access
words in sequence and coalescing only happens if the half-warp addresses a single
segment.
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More precisely, the following protocol is used to determine the memory transactions
necessary to service all threads in a half-warp:

» Find the memory segment that contains the address requested by the active thread
with the lowest thread ID. The segment size depends on the size of the words
accessed by the threads:

» 32 bytes for 1-byte words,

> 64 bytes for 2 byte words,

» 128 bytes for 4-, 8- and 16-byte words.
» Find all other active threads whose requested address lies in the same segment.
» Reduce the transaction size, if possible:

» If the transaction size is 128 bytes and only the lower or upper half is used, reduce
the transaction size to 64 bytes;
» If the transaction size is 64 bytes (originally or after reduction from 128 bytes) and
only the lower or upper half is used, reduce the transaction size to 32 bytes.
» Carry out the transaction and mark the serviced threads as inactive.
» Repeat until all threads in the half-warp are serviced.

F.3.3 Shared Memory

Shared memory has 16 banks that are organized such that successive 32-bit words map
to successive banks. Each bank has a bandwidth of 32 bits per two clock cycles.

A shared memory request for a warp is split into two memory requests, one for each
half-warp, that are issued independently. As a consequence, there can be no bank
conflict between a thread belonging to the first half of a warp and a thread belonging to
the second half of the same warp.

If a non-atomic instruction executed by a warp writes to the same location in shared
memory for more than one of the threads of the warp, only one thread per half-warp
performs a write and which thread performs the final write is undefined.

32-Bit Strided Access

A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:

extern  shared  float shared[];

float data = shared[BaseIndex + s * tid];

In this case, threads tid and tid+n access the same bank whenever s*n is a multiple of
the number of banks (i.e., 16) or, equivalently, whenever n is a multiple of 16/d where

d is the greatest common divisor of 16 and s. As a consequence, there will be no bank
conflict only if half the warp size (i.e., 16) is less than or equal to 16/d, i.e,, only if d is
equalto1,i.e., s is odd.

Figure 16 Examples of Strided Shared Memory Accesses for Devices of Compute
Capability 3.x (in 32-bit mode) shows some examples of strided access for devices of
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compute capability 3.x. The same examples apply for devices of compute capability 1.x,
but with 16 banks instead of 32. Also, the access pattern for the example in the middle
generates 2-way bank conflicts for devices of compute capability 1.x.

32-Bit Broadcast Access

Shared memory features a broadcast mechanism whereby a 32-bit word can be read and
broadcast to several threads simultaneously when servicing one memory read request.
This reduces the number of bank conflicts when several threads read from an address
within the same 32-bit word. More precisely, a memory read request made of several
addresses is serviced in several steps over time by servicing one conflict-free subset of
these addresses per step until all addresses have been serviced; at each step, the subset
is built from the remaining addresses that have yet to be serviced using the following
procedure:

» Select one of the words pointed to by the remaining addresses as the broadcast word;
» Include in the subset:

» All addresses that are within the broadcast word,

» One address for each bank (other than the broadcasting bank) pointed to by the
remaining addresses.

Which word is selected as the broadcast word and which address is picked up for each
bank at each cycle are unspecified.

A common conflict-free case is when all threads of a half-warp read from an address
within the same 32-bit word.

Figure 17 Examples of Irregular Shared Memory Accesses for Devices of Compute
Capability 3.x shows some examples of memory read accesses that involve the broadcast
mechanism for devices of compute capability 3.x. The same examples apply for devices
of compute capability 1.x, but with 16 banks instead of 32. Also, the access pattern for
the example at the right generates 2-way bank conflicts for devices of compute capability
1.x.

8-Bit and 16-Bit Access

8-bit and 16-bit accesses typically generate bank conflicts. For example, there are bank
conflicts if an array of char is accessed the following way:

extern  shared float shared[];

char data = shared[BaselIndex + tid];

because shared[0], shared[1], shared[2], and shared[3], for example, belong
to the same bank. There are no bank conflicts however, if the same array is accessed the
following way:

char data = shared[BaseIndex + 4 * tid];
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Larger Than 32-Bit Access

Accesses that are larger than 32-bit per thread are split into 32-bit accesses that typically
generate bank conflicts.

For example, there are 2-way bank conflicts for arrays of doubles accessed as follows:
extern  shared float shared[];

double data = shared[BaselIndex + tid];

as the memory request is compiled into two separate 32-bit requests with a stride of two.
One way to avoid bank conflicts in this case is two split the double operands like in the
following sample code:

__shared  int shared 1o([32];

__shared  int shared hi[32];

double dataln;
shared lo[BaselIndex + tid]
shared hi[BaseIndex + tid]

__double2loint (dataln);
__double2hiint (dataln);

double dataOut =
~_hiloint2double (shared hi[BaseIndex + tid],
shared lo[BaselIndex + tid]);

This might not always improve performance however and does perform worse on
devices of compute capabilities 2.x and higher.

The same applies to structure assignments. The following code, for example:

extern  shared  float shared[];
struct type data = shared[BaselIndex + tid];

results in:

» Three separate reads without bank conflicts if type is defined as
struct type {
float x, vy, z;
b
since each member is accessed with an odd stride of three 32-bit words;
» Two separate reads with bank conflicts if type is defined as

struct type {
float x, y;
i

since each member is accessed with an even stride of two 32-bit words.

F.4 Compute Capability 2.x
F.4.1 Architecture

For devices of compute capability 2.x, a multiprocessor consists of:
» For devices of compute capability 2.0:

» 32 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),
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» 4 special function units for single-precision floating-point transcendental
functions,
» For devices of compute capability 2.1:

» 48 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),
» 8 special function units for single-precision floating-point transcendental
functions,
» 2 warp schedulers.

At every instruction issue time, each scheduler issues:

» One instruction for devices of compute capability 2.0,
» Two independent instructions for devices of compute capability 2.1,

for some warp that is ready to execute, if any. The first scheduler is in charge of the
warps with an odd ID and the second scheduler is in charge of the warps with an even
ID. Note that when a scheduler issues a double-precision floating-point instruction, the
other scheduler cannot issue any instruction.

A warp scheduler can issue an instruction to only half of the CUDA cores. To execute
an instruction for all threads of a warp, a warp scheduler must therefore issue the
instruction over two clock cycles for an integer or floating-point arithmetic instruction.

A multiprocessor also has a read-only constant cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors, both of which are used to cache accesses to local or global memory,
including temporary register spills. The cache behavior (e.g., whether reads are cached
in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using
modifiers to the load or store instruction.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory and 48
KB of L1 cache, using cudaFuncSetCacheConfig ()/cuFuncSetCacheConfig():

// Device code
__global  void MyKernel (int* foo, int* bar, int a)

{

// Host code

// Runtime API

// cudaFuncCachePreferShared: shared memory is 48 KB

// cudaFuncCachePreferLl: shared memory is 16 KB

// cudaFuncCachePreferNone: no preference
cudaFuncSetCacheConfig (MyKernel, cudaFuncCachePreferShared)

// Or via a function pointer:

void (*funcPtr) (int*, int*, int);

funcPtr = MyKernel;

cudaFuncSetCacheConfig (*funcPtr, cudaFuncCachePreferShared) ;
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The default cache configuration is "prefer none," meaning "no preference."

If a kernel is configured to have no preference, then it will default

to the preference of the current thread/context, which is set using
cudaDeviceSetCacheConfig ()/cuCtxSetCacheConfig () (see the reference
manual for details). If the current thread/context also has no preference (which is again
the default setting), then whichever cache configuration was most recently used for any
kernel will be the one that is used, unless a different cache configuration is required to
launch the kernel (e.g., due to shared memory requirements). The initial configuration is
48 KB of shared memory and 16 KB of L1 cache.

Applications may query the L2 cache size by checking the 12CacheSize device
property (see Device Enumeration). The maximum L2 cache size is 768 KB.

Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes
four multiprocessors.

Each multiprocessor has a read-only texture cache to speed up reads from the texture
memory space, which resides in device memory. It accesses the texture cache via a
texture unit that implements the various addressing modes and data filtering mentioned
in Texture and Surface Memory.

F.4.2 Global Memory

Global memory accesses are cached. Using the ~d1cm compilation flag, they can be
configured at compile time to be cached in both L1 and L2 (-Xptxas -dlcm=ca) (this
is the default setting) or in L2 only (-Xptxas -dlcm=cg).

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.
Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory
transactions whereas memory accesses that are cached in L2 only are serviced with
32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for
example, in the case of scattered memory accesses.

If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are issued
independently:

» Two memory requests, one for each half-warp, if the size is 8 bytes,
» Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in
case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global
memory for more than one of the threads of the warp, only one thread performs a write
and which thread does it is undefined.

Figure 15 Examples of Global Memory Accesses shows some examples of global
memory accesses and corresponding memory transactions based on compute capability.
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F.4.3 Shared Memory

Shared memory has 32 banks that are organized such that successive 32-bit words map
to successive banks. Each bank has a bandwidth of 32 bits per two clock cycles.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any address within the same 32-bit word (even though the two
addresses fall in the same bank): In that case, for read accesses, the word is broadcast to
the requesting threads (and unlike for devices of compute capability 1.x, multiple words
can be broadcast in a single transaction) and for write accesses, each address is written
by only one of the threads (which thread performs the write is undefined).

This means, in particular, that unlike for devices of compute capability 1.x, there are no
bank conflicts if an array of char is accessed as follows, for example:

extern shared float shared[];

char data = shared[BaseIndex + tid];

Also, unlike for devices of compute capability 1.x, there may be bank conflicts between a
thread belonging to the first half of a warp and a thread belonging to the second half of
the same warp.

Figure 17 Examples of Irregular Shared Memory Accesses for Devices of Compute
Capability 3.x shows some examples of memory read accesses that involve the broadcast
mechanism for devices of compute capability 3.x. The same examples apply for devices
of compute capability 2.x.

32-Bit Strided Access

A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:

extern  shared float shared[];

float data = shared[BaseIndex + s * tid];

In this case, threads tid and tid+n access the same bank whenever s*n is a multiple of
the number of banks (i.e., 32) or, equivalently, whenever n is a multiple of 32/d where

d is the greatest common divisor of 32 and s. As a consequence, there will be no bank
conflict only if the warp size (i.e., 32) is less than or equal to 32/4, i.e., only if d is equal
to1,1i.e., sisodd.

Figure 16 Examples of Strided Shared Memory Accesses for Devices of Compute
Capability 3.x (in 32-bit mode) shows some examples of strided access for devices of
compute capability 3.x. The same examples apply for devices of compute capability
2.x. However, the access pattern for the example in the middle generates 2-way bank
conflicts for devices of compute capability 2.x.

Larger Than 32-Bit Access

64-bit and 128-bit accesses are specifically handled to minimize bank conflicts as
described below.
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Other accesses larger than 32-bit are split into 32-bit, 64-bit, or 128-bit accesses. The
following code, for example:

struct type {
float x, vy, z;
}i

extern  shared float shared[];

struct type data = shared[BaselIndex + tid];

results in three separate 32-bit reads without bank conflicts since each member is
accessed with a stride of three 32-bit words.

64-Bit Accesses: For 64-bit accesses, a bank conflict only occurs if two threads in either of
the half-warps access different addresses belonging to the same bank.

Unlike for devices of compute capability 1.x, there are no bank conflicts for arrays of
doubles accessed as follows, for example:

extern  shared  float shared[];

double data = shared[BaseIndex + tid];

128-Bit Accesses: The majority of 128-bit accesses will cause 2-way bank conflicts, even if
no two threads in a quarter-warp access different addresses belonging to the same bank.
Therefore, to determine the ways of bank conflicts, one must add 1 to the maximum
number of threads in a quarter-warp that access different addresses belonging to the
same bank.

F.4.4 Constant Memory

In addition to the constant memory space supported by devices of all compute
capabilities (wWhere  constant  variables reside), devices of compute capability
2.x support the LDU (LoaD Uniform) instruction that the compiler uses to load any
variable that is:

> pointing to global memory,
» read-only in the kernel (programmer can enforce this using the const keyword),
» not dependent on thread ID.

F.5 Compute Capability 3.x
F.5.1 Architecture

A multiprocessor consists of:

» 192 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),

» 32 special function units for single-precision floating-point transcendental functions,

» 4 warp schedulers.
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When a multiprocessor is given warps to execute, it first distributes them among
the four schedulers. Then, at every instruction issue time, each scheduler issues two
independent instructions for one of its assigned warps that is ready to execute, if any.

A multiprocessor has a read-only constant cache that is shared by all functional units
and speeds up reads from the constant memory space, which resides in device memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors, both of which are used to cache accesses to local or global memory,
including temporary register spills. The cache behavior (e.g., whether reads are cached
in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using
modifiers to the load or store instruction.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory

and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using
cudaFuncSetCacheConfig ()/cuFuncSetCacheConfig():

// Device code
__global  void MyKernel ()
{

}
// Host code

// Runtime API

// cudaFuncCachePreferShared: shared memory is 48 KB

// cudaFuncCachePreferEqual: shared memory is 32 KB

// cudaFuncCachePreferLl: shared memory is 16 KB

// cudaFuncCachePreferNone: no preference
cudaFuncSetCacheConfig (MyKernel, cudaFuncCachePreferShared)

The default cache configuration is "prefer none," meaning "no preference."

If a kernel is configured to have no preference, then it will default

to the preference of the current thread/context, which is set using
cudaDeviceSetCacheConfig ()/cuCtxSetCacheConfig () (see the reference
manual for details). If the current thread/context also has no preference (which is again
the default setting), then whichever cache configuration was most recently used for any
kernel will be the one that is used, unless a different cache configuration is required to
launch the kernel (e.g., due to shared memory requirements). The initial configuration is
48 KB of shared memory and 16 KB of L1 cache.

Applications may query the L2 cache size by checking the 12CacheSize device property
(see Device Enumeration). The maximum L2 cache size is 1.5 MB.

Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes
three multiprocessors.

Each multiprocessor has a read-only data cache of 48 KB to speed up reads from device
memory. It accesses this cache either directly (for devices of compute capability 3.5 only),
or via a texture unit that implements the various addressing modes and data filtering
mentioned in Texture and Surface Memory. When accessed via the texture unit, the
read-only data cache is also referred to as texture cache.
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F.5.2 Global Memory

Global memory accesses for devices of compute capability 3.x are cached in L2 and
for devices of compute capability 3.5, may also be cached in the read-only data cache
described in the previous section; they are not cached in L1.

Caching in L2 behaves in the same way as for devices of compute capability 2.x (see
Global Memory).

The compiler determines whether a given global memory read is cached in the read-
only data cache or not. A requirement for data to be cached in the read-only cache is
that it must be read-only. In order to allow the compiler to detect that this condition is
satisfied, pointers used for loading such data should be marked with both the const
and restrict  qualifiers.

Figure 15 Examples of Global Memory Accesses shows some examples of global
memory accesses and corresponding memory transactions based on compute capability.

Examples of Global Memory Accesses by a Warp, 4-Byte Word per Thread, and
Associated Memory Transactions Based on Compute Capability
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Figure 15 Examples of Global Memory Accesses

F.5.3 Shared Memory

Shared memory has 32 banks with two addressing modes that are described below.
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The addressing mode can be queried using cudaDeviceGetSharedMemConfig ()
and set using cudaDeviceSetSharedMemConfig () (see reference manual for more
details). Each bank has a bandwidth of 64 bits per clock cycle.

Figure 16 Examples of Strided Shared Memory Accesses for Devices of Compute
Capability 3.x (in 32-bit mode) shows some examples of strided access.

Figure 17 Examples of Irregular Shared Memory Accesses for Devices of Compute
Capability 3.x shows some examples of memory read accesses that involve the broadcast
mechanism.

64-Bit Mode
Successive 64-bit words map to successive banks.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any sub-word within the same 64-bit word (even though the
addresses of the two sub-words fall in the same bank): In that case, for read accesses, the
64-bit word is broadcast to the requesting threads and for write accesses, each sub-word
is written by only one of the threads (which thread performs the write is undefined).

In this mode, the same access pattern generates fewer bank conflicts than on devices of
compute capability 2.x for 64-bit accesses and as many or fewer for 32-bit accesses.

32-Bit Mode
Successive 32-bit words map to successive banks.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any sub-word within the same 32-bit word or within two 32-bit
words whose indices i and j are in the same 64-word aligned segment (i.e. a segment
whose first index is a multiple of 64) and such that j=i+32 (even though the addresses of
the two sub-words fall in the same bank): In that case, for read accesses, the 32-bit words
are broadcast to the requesting threads and for write accesses, each sub-word is written
by only one of the threads (which thread performs the write is undefined).

In this mode, the same access pattern generates as many or fewer bank conflicts than on
devices of compute capability 2.x.
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Left: Linear addressing with a stride of one 32-bit word (no bank conflict).

Middle: Linear addressing with a stride of two 32-bit words (no bank conflict).
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Right: Linear addressing with a stride of three 32-bit words (no bank conflict).

Figure 16 Examples of Strided Shared Memory Accesses for Devices of
Compute Capability 3.x (in 32-bit mode)
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Middle: Conflict-free access since threads 3, 4, 6, 7, and 9 access the same word within
bank 5.

Right: Conflict-free broadcast access (threads access the same word within a bank).

Figure 17 Examples of Irregular Shared Memory Accesses for Devices of
Compute Capability 3.x
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Appendix G.
DRIVER API

This appendix assumes knowledge of the concepts described in CUDA C Runtime.

The driver API is implemented in the nvcuda dynamic library which is copied on the
system during the installation of the device driver. All its entry points are prefixed with
cu.

It is a handle-based, imperative API: Most objects are referenced by opaque handles that
may be specified to functions to manipulate the objects.

The objects available in the driver API are summarized in Table 11 Objects Available in
the CUDA Driver APL

Table 11 Objects Available in the CUDA Driver API

Object Handle Description

Device CUdevice CUDA-enabled device

Context CUcontext Roughly equivalent to a CPU process

Module CUmodule Roughly equivalent to a dynamic library
Function CUfunction Kernel

Heap memory CUdeviceptr Pointer to device memory

CUDA array CUarray Opaque container for one-dimensional or two-

dimensional data on the device, readable via
texture or surface references

Texture reference CUtexref Object that describes how to interpret texture
memory data

Surface reference CUsurfref Object that describes how to read or write CUDA
arrays

Event CUevent Object that describes a CUDA event

The driver API must be initialized with cuInit () before any function from the driver
APl s called. A CUDA context must then be created that is attached to a specific device
and made current to the calling host thread as detailed in Context.
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Within a CUDA context, kernels are explicitly loaded as PTX or binary objects by the
host code as described in Module. Kernels written in C must therefore be compiled
separately into PTX or binary objects. Kernels are launched using API entry points as
described in Kernel Execution.

Any application that wants to run on future device architectures must load PTX,

not binary code. This is because binary code is architecture-specific and therefore
incompatible with future architectures, whereas PTX code is compiled to binary code at
load time by the device driver.

Here is the host code of the sample from Kernels written using the driver API:

int main ()
{
int N = ...;
size t size = N * sizeof (float);

// Allocate input vectors h A and h B in host memory
float* h A = (float*)malloc(size);

float* h B = (float*)malloc(size);

// Initialize input vectors

// Initialize

culnit (0);

// Get number of devices supporting CUDA

int deviceCount = 0;

cuDeviceGetCount (&deviceCount) ;

if (deviceCount == 0) {
printf ("There is no device supporting CUDA.\n");
exit (0);

}

// Get handle for device 0
CUdevice cuDevice;
cuDeviceGet (&cuDevice, 0);

// Create context
CUcontext cuContext;
cuCtxCreate (&cuContext, 0, cuDevice);

// Create module from binary file
CUmodule cuModule;
cuModuleLoad (&cuModule, "VecAdd.ptx"):;

// Allocate vectors in device memory
CUdeviceptr d A;

cuMemAlloc (&d A, size);

CUdeviceptr d B;

cuMemAlloc (&d B, size);

CUdeviceptr d C;

cuMemAlloc (&d C, size);

// Copy vectors from host memory to device memory
cuMemcpyHtoD(d A, h A, size);
cuMemcpyHtoD(d B, h B, size);

// Get function handle from module
CUfunction vecAdd;
cuModuleGetFunction (&vecAdd, cuModule, "VecAdd");

// Invoke kernel
int threadsPerBlock = 256;
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int blocksPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock;
void* args[] = { & A, &d B, &d C, &N };
cuLaunchKernel (vecAdd,
blocksPerGrid, 1, 1, threadsPerBlock, 1, 1,
0, 0, args, 0);

}
Full code can be found in the vectorAddDrv SDK code sample.

G.1 Context

A CUDA context is analogous to a CPU process. All resources and actions performed
within the driver API are encapsulated inside a CUDA context, and the system
automatically cleans up these resources when the context is destroyed. Besides objects
such as modules and texture or surface references, each context has its own distinct
address space. As a result, CUdeviceptr values from different contexts reference
different memory locations.

A host thread may have only one device context current at a time. When a context

is created with cuCtxCreate (), it is made current to the calling host thread.

CUDA functions that operate in a context (most functions that do not involve device
enumeration or context management) will return CUDA_ERROR_INVALID CONTEXT if a
valid context is not current to the thread.

Each host thread has a stack of current contexts. cuCtxCreate () pushes the new
context onto the top of the stack. cuCtxPopCurrent () may be called to detach the
context from the host thread. The context is then "floating" and may be pushed as the
current context for any host thread. cuCtxPopCurrent () also restores the previous
current context, if any.

A usage count is also maintained for each context. cuCtxCreate () creates a

context with a usage count of 1. cuCtxAttach () increments the usage count and
cuCtxDetach () decrements it. A context is destroyed when the usage count goes to 0
when calling cuCtxDetach () or cuCtxDestroy ().

Usage count facilitates interoperability between third party authored code operating in
the same context. For example, if three libraries are loaded to use the same context, each
library would call cuCtxAttach () to increment the usage count and cuCtxDetach ()
to decrement the usage count when the library is done using the context. For most
libraries, it is expected that the application will have created a context before loading

or initializing the library; that way, the application can create the context using its

own heuristics, and the library simply operates on the context handed to it. Libraries
that wish to create their own contexts — unbeknownst to their API clients who may or
may not have created contexts of their own — would use cuCtxPushCurrent () and
cuCtxPopCurrent () asillustrated in Figure 18 Library Context Management.
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Figure 18 Library Context Management

G.2 Module

Driver API

Modules are dynamically loadable packages of device code and data, akin to DLLs in
Windows, that are output by nvcc (see Compilation with NVCC). The names for all
symbols, including functions, global variables, and texture or surface references, are
maintained at module scope so that modules written by independent third parties may

interoperate in the same CUDA context.

This code sample loads a module and retrieves a handle to some kernel:

CUmodule cuModule;

cuModuleload (&cuModule, "myModule.ptx");

CUfunction myKernel;

cuModuleGetFunction (&myKernel, cuModule, "MyKernel");

This code sample compiles and loads a new module from PTX code and parses
compilation errors:

#define ERROR BUFFER SIZE 100
CUmodule cuModule;

CUjit option options[3];
void* wvalues[3];

char* PTXCode = "some PTX code";
options[0] = CU ASM ERROR LOG BUFFER;
values[0] = (void*)malloc (ERROR BUFFER SIZE) ;

options[l] = CU ASM ERROR LOG BUFFER SIZE BYTES;

values([1] = (void*)ERROR_BUFFER_SIZE;

options[2] = CU ASM TARGET FROM CUCONTEXT;

values[2] = 0;

cuModuleloadDataEx (&cuModule, PTXCode, 3, options, values);
for (int 1 = 0; i < values[1l]; ++1i) {

// Parse error string here

}

G.3 Kernel Execution

cuLaunchKernel () launches a kernel with a given execution configuration.
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Parameters are passed either as an array of pointers (next to last parameter of
cuLaunchKernel ()) where the nth pointer corresponds to the nth parameter and
points to a region of memory from which the parameter is copied, or as one of the extra
options (last parameter of cuLaunchKernel ()).

When parameters are passed as an extra option (the

CU_LAUNCH PARAM BUFFER POINTER option), they are passed as a pointer to a single
buffer where parameters are assumed to be properly offset with respect to each other by
matching the alignment requirement for each parameter type in device code.

Alignment requirements in device code for the built-in vector types are listed in

Table 3 Alignment Requirements in Device Code. For all other basic types, the
alignment requirement in device code matches the alignment requirement in host code
and can therefore be obtained using alignof (). The only exception is when the host
compiler aligns double and long long (and long on a 64-bit system) on a one-word
boundary instead of a two-word boundary (for example, using gcc’s compilation flag
-mno-align-double) since in device code these types are always aligned on a two-
word boundary.

CUdeviceptr is an integer, but represents a pointer, so its alignment requirement is
__alignof (void*).

The following code sample uses a macro (ALIGN UP ()) to adjust the offset

of each parameter to meet its alignment requirement and another macro

(ADD_TO_ PARAM BUFFER ()) to add each parameter to the parameter buffer passed to
the CU_LAUNCH PARAM BUFFER POINTER option.

#define ALIGN UP (offset, alignment) \
(offset) = ((offset) + (alignment) - 1) & ~((alignment) - 1)

char paramBuffer([1024];
size t paramBufferSize = 0;

#define ADD TO PARAM BUFFER (value, alignment) \
do { \
paramBufferSize = ALIGN UP (paramBufferSize, alignment); \
memcpy (paramBuffer + paramBufferSize, \
& (value), sizeof (value)):; \
paramBufferSize += sizeof (value); \
} while (0)
int i;
ADD TO PARAM BUFFER(i,  alignof(i));
floatd f4;
ADD_TO_PARAM BUFFER(f4, 16); // floatd4’s alignment is 16
char c;
ADD TO PARAM BUFFER(c, _ alignof(c));
float £;

ADD TO PARAM BUFFER (f,  alignof (f));

CUdeviceptr devPtr;

ADD TO PARAM BUFFER (devPtr,  alignof (devPtr));

float2 £2;

ADD TO PARAM BUFFER(f2, 8); // float2’s alignment is 8

void* extral[] = {
CU_LAUNCH PARAM BUFFER POINTER, paramBuffer,
CU_LAUNCH PARAM BUFFER SIZE, sparamBufferSize,
CU_LAUNCH PARAM END
}i
cuLaunchKernel (cuFunction,
blockWidth, blockHeight, blockDepth,

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v5.0 | 173



Driver API

gridWidth, gridHeight, gridDepth,

0, 0, 0, extra):;
The alignment requirement of a structure is equal to the maximum of the alignment
requirements of its fields. The alignment requirement of a structure that contains built-in
vector types, CUdeviceptr, or non-aligned double and long long, might therefore
differ between device code and host code. Such a structure might also be padded
differently. The following structure, for example, is not padded at all in host code, but it
is padded in device code with 12 bytes after field f since the alignment requirement for
field £4 is 16.

typedef struct {
float £;
floatd f4;

} myStruct;

G.4 Interoperablility between Runtime and Driver
APls

An application can mix runtime API code with driver API code.

If a context is created and made current via the driver API, subsequent runtime calls will
pick up this context instead of creating a new one.

If the runtime is initialized (implicitly as mentioned in CUDA C Runtime),
cuCtxGetCurrent () can be used to retrieve the context created during initialization.
This context can be used by subsequent driver API calls.

Device memory can be allocated and freed using either API. CUdeviceptr can be cast
to regular pointers and vice-versa:

CUdeviceptr devPtr;
float* d data;

// Allocation using driver API
cuMemAlloc (&devPtr, size);
d data = (float*)devPtr;

// Allocation using runtime API

cudaMalloc (&d data, size);

devPtr = (CUdeviceptr)d data;

In particular, this means that applications written using the driver API can invoke
libraries written using the runtime API (such as CUFFT, CUBLAS, ...).

All functions from the device and version management sections of the reference manual
can be used interchangeably.
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