
RR

Cray C and C++ Reference Manual

S–2179–83

© 1996-2000, 2002-2014 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in
any form unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: Cray and
design, Sonexion, Urika, and YarcData. The following are trademarks of Cray Inc.: ACE, Apprentice2, Chapel,
Cluster Connect, CrayDoc, CrayPat, CrayPort, ECOPhlex, LibSci, NodeKARE, Threadstorm. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark Linux is used pursuant to a sublicense from LMI, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of
their respective owners.

Intel, Aries and Gemini are trademarks of Intel Corporation in the United States and/or other countries. CUDA,
Kepler, OpenACC and NVIDIA are trademarks of NVIDIA Corporation. Google is a trademark of Google. ISO
is a trademark of International Organization for Standardization (Organisation Internationale de Normalisation).
OpenMP is a trademark of OpenMP architecture Review Board. O2 is a trademark of Silicon Graphics, Inc. Opteron
is a trademark of Advanced Micro Devices, Inc. PGI is a trademark of The Portland Group Compiler Technology,
STMicroelectronics, Inc. Platform is a trademark of Platform Computing Corporation. TotalView is a trademark
of Rogue Wave Software, Inc. UNIX, the “X device,” X Window System, and X/Open are trademarks of The
Open Group.

Portions of this document were copied by permission of OpenMP Architecture Review Board from OpenMP C and
C++ Application Program Interface, Version 2.0, March 2002, Copyright © 1997-2002, OpenMP Architecture
Review Board.

RECORD OF REVISION

S–2179–83 Published June 2014 Supports the Cray C and C++ compilers running on Cray XE, Cray XK, and
XC30 compute nodes.

S–2179–82 Published September 2013 Supports the Cray C and C++ compilers running on Cray XE, Cray XK,
and XC30 compute nodes.

S–2179–81 Published September 2012 Supports the Cray C and C++ compilers running on Cray XE and Cray XK
compute nodes.

S–2179–80 Published December 2011 Supports the Cray C and C++ compilers running on Cray XE and Cray XK
compute nodes.

S–2179–74 Published June 2011 Supports the Cray C and C++ compilers running on Cray XT and Cray XE compute
nodes.

S–2179–73 Published December 2010 Supports the Cray C and C++ compilers running on Cray XT and Cray XE
compute nodes.

7.2 Published February 2010 Supports the Cray C and C++ compilers running on Cray XT compute nodes.

7.1 Published June 2009 Supports the Cray C and C++ compilers running on Cray XT compute nodes.

7.0 Published December 2008 Supports the Cray C and (Deferred implementation) C++ compilers running on
Cray XT compute nodes.

6.0 Published September 2007 Supports the Cray C and Cray C++ 6.0 release running on Cray X1 series and
Cray X2 systems.

5.6 Published March 2007 Supports Cray C++ 5.6 and Cray C 8.6 releases running on Cray X1 series systems.

5.5 Published December 2005 Supports Cray C++ 5.5 and Cray C 8.5 releases running on UNICOS/mp 3.0 or
later operating systems.

5.4 Published March 2005 Supports Cray C++ 5.4 and Cray C 8.4 releases running on UNICOS/mp 3.0 or later
operating systems.

5.3 Published November 2004 Supports Cray C++ 5.3 and Cray C 8.3 releases running on UNICOS/mp 2.5 or
later operating systems.

5.2 Published April 2004 Supports Cray C++ 5.2 and Cray C 8.2 releases running on UNICOS/mp 2.3 or later
operating systems.

5.1 Published October 2003 Supports Cray C++ 5.1 and Cray C 8.1 releases running on UNICOS/mp 2.2 or later
operating systems.

5.0 Published June 2003 Supports Cray C++ 5.0 and Cray C 8.0 releases running on UNICOS/mp 2.1 or later
operating systems.

4.3 Published March 31, 2003 Draft version to support Cray C 7.3 and Cray C++ 4.3 releases running on
UNICOS/mp operating systems.

4.2 Published December 20, 2002 Draft version to support Cray C 7.2 and Cray C++ 4.2 releases running on
UNICOS/mp operating systems.

4.1 Published August 20, 2002 Draft version to support Cray C 7.1 and Cray C++ 4.1 releases running on
UNICOS/mp operating systems.

3.6 Published June 2002 This para supports the Cray Standard C 6.6 and Cray Standard C++ 3.6 releases running on
UNICOS and UNICOS/mk operating systems.

3.4 Published October 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and
UNICOS/mk operating systems. This para supports a new inlining level, inline4.

3.4 Published August 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and
UNICOS/mk operating systems. It includes updates to para 3.3.

3.3 Published July 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.3, which is supported on the Cray SV1, Cray C90, Cray J90, and Cray T90 systems running
UNICOS 10.0.0.5 and later, and Cray T3E systems running UNICOS/mk 2.0.4 and later. On all supported Cray
systems, the C++ compiler is Cray C++ 3.3 and the C compiler is Cray C 6.3.

3.2 Published January 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.2, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.2 and the C compiler is Cray C 6.2.

3.1 Published August 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.1, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.1 and the C compiler is Cray C 6.1.

3.0.2 Published March 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.0.2, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.0.2 and the C compiler is Cray C 6.0.2.

3.0 Published May 1997 This rewrite supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.0, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.0 and the C compiler is Cray C 6.0.

2.0 Published January 1996 Original Printing. This manual supports the C and C++ compilers contained in the Cray
C++ Programming Environment release 2.0. On all Cray systems, the C++ compiler is Cray C++ 2.0. On Cray
systems with IEEE floating-point hardware, the C compiler is Cray Standard C 5.0. On Cray systems without IEEE
floating-point hardware, the C compiler is Cray Standard C 4.0.

Changes to this Document

Cray C and C++ Reference Manual S–2179–83

S–2179–83

Added information:

• -h develop selects compiler optimization levels to balance compile time against application execution
time. Use this option during application development, when quick turnaround is desired. It minimizes
compile time at the cost of execution time performance. See -h develop on page 53.

• -h flex_mp=strict provides a level repeatability of between the conservative and
intolerant levels. See -h flex_mp=level on page 37.

• -h concurrent is equivalent to adding a CONCURRENT directive (pragma) before every loop in the
file, including loops created from array syntax. See -h concurrent on page 45 and concurrent
Directive on page 85.

• The -Wx,arg option can be used to pass command line arguments to the PTX assembler for OpenACC
applications. See -W phase,"opt ..." on page 57.

• The -Wc,arg option can be used to pass command line arguments to the CUDA linker for OpenACC
applications. See -W phase,"opt ..." on page 57.

• The new cray_upc_sheap_info() call provides symmetric heap usage information to UPC
applications. See the cray_upc_sheap_info(3c) manpage.

• The new cray_upc_shared_cast() call creates a pointer-to-shared from a pointer-to-local,
providing the inverse functionality to upc_cast. See the cray_upc_shared_cast(3c) man page.

• See new CRAY_OMP_CHECK_AFFINITY Environment Variable on page 106.

• Added descriptions for __sync_val_compare_and_swap, and __sync_lock_test_and_set.
See Local Atomic Memory Operations on page 217.

Changed information:

• The -h accmodel=fast_addr performance option is now safe for all OpenACC applications and
is enabled by default.

• Correction to macro name. See the _RELEASE_MAJOR macro in Macros Based on the Compiler on
page 161.

• -h nokeep_frame_pointer is not an option. See -h keep_frame_pointer on page 65.

S–2179–82

Added information:

• This release supports OpenACC Application Programming Interface, Version 2.0 standard developed
by PGI, Cray Inc., NVIDIA, with support from CAPS entreprise. See Chapter 5, Using OpenACC on
page 115.

• This release offers support for the UPC 1.3 draft specification. See C/C++ Standard Compatibility on
page 22. Cray extensions to UPC that are not part of the UPC Language Specification 1.3 are listed here.
See Cray Extensions on page 128.

• This release introduces Coarray C++, a template library that implements the coarray concept in C++.
See Chapter 8, Using Coarray C++ on page 133.

• Intel™ Xeon™ processor E5-2600 v2 product family, code named Ivy Bridge cpu target support. See
-h cpu=target_system on page 64.

• Object files created in a pre-8.2 environment should be recompiled if they need to be relinked in the CCE
8.2 compiler environment. See Binary Compatibility on page 22.

• New compilation option for C++ applications that link with PGAS code. See -h [no]pgas_runtime
on page 62.

• Added [no]vector Directive on page 90.

• Added ivdep Directive on page 86.

• Added details regarding the printing of 128-bit floating point types. See 128-Bit Floating Point and
256-Bit Complex Predefined Types on page 189.

• Added more detailed description of pointer arithmetic. Arrays and Pointers on page 189.

• Cloning directives are recognized at -Oipa levels > 1. Revised description of IPA levels in Table 4.

• Added note. See -h [no]conform (CC, cc), -h [no]stdc (cc) on page 28.

• Updated predefined macros for UPC 1.3. See Predefined Macros on page 126.

Changed information:

• DWARF is generated by default. See -h nodwarf on page 53.

• Updated supported platforms. This release supports the Cray XE, Cray XK, or Cray XC30 systems.
See Chapter 1, Introduction.

• -hpgas_runtime is now default, changed from -hnopgas_runtime. See -h
[no]pgas_runtime on page 62.

• Numeric values replace alphabetic values in the level specification of the -G level option. -G0 replaces
-Gn, -G1 replaces -Gp, -G2 replaces -Gf, and -G3 replaces -Gfast. The usage of alphabetic values
results in a WARNING message and support will be removed in a future release. See Debugging Options
and Compiler Debugging Options on page 166 .

• More specific guidance regarding the use of -K trap=opt[,opt] ... on page 67.

Deleted information:

• Directives shortloop, shortloop128 are deprecated. loop_info min_trips(1)
max_trips(64) replaces shortloop and loop_info min_trips(1) max_trips(128)
replaces shortloop128.

• Remove references to compile option -h matherror=method deprecated.

Contents

Page

Introduction [1] 21

1.1 General Compiler Description . 21

1.1.1 Cray C Compiler . 21

1.1.2 Cray C++ Compiler . 21

1.2 C/C++ Standard Compatibility . 22

1.3 Binary Compatibility . 22

1.4 Related Publications . 23

Invoking the C and C++ Compilers [2] 25

2.1 CC Command . 26

2.2 cc Command . 26

2.3 Command Line Options . 27

2.4 Standard Language Conformance Options 28

2.4.1 -h [no]c99 (cc) . 28

2.4.2 -h [no]conform (CC, cc), -h [no]stdc (cc) 28

2.4.3 -h cfront (CC) . 29

2.4.4 -h [no]parse_templates (CC) 29

2.4.5 -h [no]dep_name (CC) 29

2.4.6 -h [no]exceptions (CC) 29

2.4.7 -h [no]anachronisms (CC) 29

2.4.8 -h [no]new_for_init (CC) 30

2.4.9 -h [no]tolerant (cc) 30

2.4.10 -h [no]const_string_literals (CC) 30

2.4.11 -h [no]gnu . 31

2.5 Virtual Function Options . 33

2.5.1 -h forcevtbl (CC) . 33

2.5.2 -h suppressvtbl (CC) 33

2.6 General Language Options . 33

2.6.1 -h keep=file (CC) . 34

2.6.2 -h restrict=args . 34

S–2179–83 9

Cray C and C++ Reference Manual

Page

2.6.3 -h [no]calchars . 35

2.6.4 -h [no]signedshifts 35

2.7 General Optimization Options . 36

2.7.1 -h [no]add_paren . 36

2.7.2 -h [no]aggress . 36

2.7.3 -h [no]autoprefetch 36

2.7.4 -h [no]autothread . 36

2.7.5 -h display_opt . 36

2.7.6 -h flex_mp=level . 37

2.7.7 -h fusionn . 37

2.7.8 -h [no]intrinsics . 38

2.7.9 -h list . 38

2.7.10 -h [no]msgs . 39

2.7.11 -h [no]negmsgs . 39

2.7.12 -h [no]omp_trace . 39

2.7.13 -h [no]func_trace 40

2.7.14 -h [no]overindex . 40

2.7.15 -h [no]pattern . 40

2.7.16 -h pl=program_library 40

2.7.17 -h profile_generate 41

2.7.18 -h threadn . 41

2.7.19 -h unrolln . 42

2.7.20 -h wp . 43

2.7.21 -O level . 43

2.8 Automatic Cache Management Options 44

2.8.1 -h cachen . 44

2.9 Vector Optimization Options . 45

2.9.1 -h concurrent . 45

2.9.2 -h vectorn . 45

2.10 Interprocedural Analysis (IPA) Optimization Options 46

2.10.1 Inlining . 46

2.10.2 Cloning . 47

2.10.3 -h ipan . 47

2.10.4 -h ipafrom=source[:source] 48

2.11 Scalar Optimization Options . 48

2.11.1 -h [no]interchange 49

2.11.2 -h scalarn . 49

10 S–2179–83

Contents

Page

2.11.3 -h [no]zeroinc . 49

2.12 Math Options . 50

2.12.1 -h fpn . 50

2.13 Debugging Options . 51

2.13.1 -G level and -g . 52

2.13.2 -h [no]bounds (cc) . 52

2.13.3 -h develop . 53

2.13.4 -h dir_check . 53

2.13.5 -h nodwarf . 53

2.13.6 -h gasp[=opt[:opt]] 53

2.13.7 -h zero . 54

2.14 Compiler Message Options . 54

2.14.1 -h msglevel_n . 54

2.14.2 -h [no]message=n[:n...] 55

2.14.3 -h report=args . 55

2.14.4 -h [no]abort . 55

2.14.5 -h errorlimit . 56

2.15 Compilation Phase Options . 56

2.15.1 -E . 56

2.15.2 -P . 56

2.15.3 -h feonly . 56

2.15.4 -S . 57

2.15.5 -c . 57

2.15.6 -#, -##, and -### . 57

2.15.7 -W phase,"opt ..." . 57

2.15.8 -Y phase,dirname . 58

2.16 Preprocessing Options . 59

2.16.1 -C . 59

2.16.2 -D macro[=def] . 59

2.16.3 -h [no]pragma=name[:name ...] 59

2.16.4 -I incldir . 60

2.16.5 -M . 61

2.16.6 -nostdinc . 61

2.16.7 -U . 62

2.17 Linker Options . 62

2.17.1 -h [system|default]_alloc 62

2.17.2 -h [no]pgas_runtime 62

S–2179–83 11

Cray C and C++ Reference Manual

Page

2.17.3 -l libname . 62

2.17.4 -L ldir . 63

2.17.5 -o outfile . 63

2.18 Miscellaneous Options . 63

2.18.1 -h [no]acc . 64

2.18.2 -h cpu=target_system . 64

2.18.3 -h [no]fp_trap . 64

2.18.4 -h ident=name . 65

2.18.5 -h keepfiles . 65

2.18.6 -h keep_frame_pointer 65

2.18.7 -h loop_trips=[tiny | small | medium | large | huge] 65

2.18.8 -h mpin . 65

2.18.9 -h network=nic . 65

2.18.10 -h [no]omp . 66

2.18.11 -h [no]omp_acc . 66

2.18.12 -h pic, -h PIC . 66

2.18.13 -h prototype_intrinsics 66

2.18.14 -h [no]threadsafe 66

2.18.15 -h upc (cc) . 67

2.18.16 -K trap=opt[,opt] ... 67

2.18.17 -V . 68

2.18.18 -X npes . 68

2.19 Command Line Examples . 68

2.20 Compile Time Environment Variables 69

2.21 Run Time Environment Variables 71

2.22 OpenMP Environment Variables 71

Using #pragma Directives [3] 73

3.1 Protecting Directives . 74

3.2 Directives in Cray C++ . 74

3.3 Loop Directives . 74

3.4 Alternative Directive Form: _Pragma 75

3.5 General Directives . 75

3.5.1 [no]autothread Directive 76

3.5.2 [no]bounds Directive . 76

3.5.3 cache Directive . 77

3.5.4 cache_nt Directive . 77

3.5.5 duplicate Directive . 78

12 S–2179–83

Contents

Page

3.5.6 ident Directive . 80

3.5.7 message Directive . 80

3.5.8 [no]opt Directive . 80

3.5.9 prefetch Directive . 81

3.5.10 Probability Directives . 83

3.5.11 weak Directive . 84

3.6 Vectorization Directives . 85

3.6.1 concurrent Directive . 85

3.6.2 hand_tuned Directive . 86

3.6.3 ivdep Directive . 86

3.6.4 loop_info Directive . 87

3.6.5 loop_info prefer_thread, prefer_nothread Directives 89

3.6.6 nopattern Directive . 89

3.6.7 [no]vector Directive . 90

3.6.8 permutation Directive . 90

3.6.9 [no]pipeline Directive 91

3.6.10 prefervector Directive 92

3.6.11 pgo loop_info Directive 92

3.6.12 safe_address Directive 92

3.6.13 safe_conditional Directive 94

3.7 Scalar Directives . 94

3.7.1 blockable Directive . 95

3.7.2 blockingsize Directive 95

3.7.3 noblocking Directive . 96

3.7.4 collapse and nocollapse Directives 96

3.7.5 [no]interchange Directive 97

3.7.6 suppress Directive . 97

3.7.7 [no]unroll Directive . 98

3.7.8 nofission Directive . 100

3.7.9 [no]fusion Directive . 100

3.8 Inlining and Cloning Directives . 100

3.8.1 inline_enable, inline_disable, and inline_reset Directives 100

3.8.2 inline_always and inline_never Directives 102

3.8.3 clone_enable, clone_disable, clone_reset Directives 102

3.8.4 clone_always and clone_never Directives 103

3.9 PGAS Directive . 103

3.9.1 defer_sync Directive . 103

S–2179–83 13

Cray C and C++ Reference Manual

Page

Using the OpenMP C/C++ API [4] 105

4.1 Standard Support . 105

4.2 Cray Enhancements . 105

4.2.1 cray_omp_set_wait_policy() 105

4.2.2 CRAY_OMP_CHECK_AFFINITY Environment Variable 106

4.3 Compiling . 106

4.4 Executing . 106

4.5 Debugging . 107

4.6 Cray Implementation Defined Behaviors 107

4.6.1 Directives and Clauses . 110

4.6.1.1 atomic Directive . 110

4.6.1.2 for Directive . 110

4.6.1.3 parallel Directive . 111

4.6.1.4 threadprivate Directive 111

4.6.1.5 private Clause . 111

4.6.2 Library Routines . 111

4.6.2.1 omp_get_max_active_levels() 111

4.6.2.2 omp_set_dynamic() 111

4.6.2.3 omp_set_schedule() 112

4.6.2.4 omp_set_max_active_levels() 112

4.6.2.5 omp_set_nested() 112

4.6.2.6 omp_set_num_threads() 112

4.6.3 OpenMP Environment Variables 112

4.6.3.1 OMP_DYNAMIC . 112

4.6.3.2 OMP_MAX_ACTIVE_LEVELS 112

4.6.3.3 OMP_NESTED . 112

4.6.3.4 OMP_NUM_THREADS 112

4.6.3.5 OMP_SCHEDULE . 113

4.6.3.6 OMP_STACKSIZE . 113

4.6.3.7 OMP_THREAD_LIMIT 113

4.6.3.8 OMP_WAIT_POLICY 113

4.7 Limitations . 113

4.8 OpenMP Accelerator Support . 114

Using OpenACC [5] 115

5.1 OpenACC Execution Model . 115

5.2 OpenACC Memory Model . 116

5.3 Mapping the OpenACC Programming Model onto Accelerator Components 116

14 S–2179–83

Contents

Page

5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) cores 117

5.3.2 Memory . 117

5.4 Mixed Model Support . 117

5.5 Compiling . 118

5.6 Module Support . 119

5.7 Debugging . 119

5.8 OpenACC Directives . 120

5.9 Runtime Routines . 120

5.9.1 Cray Specific Runtime Library Routines 121

5.9.2 CRAY_ACC_DEBUG Output Routines 121

5.10 Environment Variables . 122

5.10.1 Cray Specific . 122

5.10.2 Standard . 122

5.11 OpenACC Examples . 123

Using Cray Unified Parallel C (UPC) [6] 125

6.1 Implementation . 126

6.1.1 Predefined Macros . 126

6.1.2 False Sharing . 126

6.2 Compiling and Linking UPC Code 127

6.3 Launching a UPC Application . 128

6.4 Cray Extensions . 128

6.4.1 Team Collectives . 129

6.4.2 Node Affinity . 129

6.4.2.1 upc_nodeof() . 129

6.4.2.2 NODES . 129

6.4.2.3 MYNODE . 130

Using Cray C++ Libraries [7] 131

7.1 Unsupported Standard C++ Library Features 131

Using Coarray C++ [8] 133

8.1 Compiling Coarray C++ . 134

8.2 Declaring and Accessing Coarrays 135

8.2.1 Basic Types . 135

8.2.2 Arrays . 137

8.2.3 Pointers . 138

8.2.4 Structs, Unions, and Classes 138

8.3 Type System . 140

S–2179–83 15

Cray C and C++ Reference Manual

Page

8.3.1 Coreferences . 140

8.3.2 Copointers . 141

8.3.3 shape_cast . 142

8.4 Control Flow and Synchronization 144

8.4.1 Writing SPMD Code . 144

8.4.2 Barriers . 144

8.4.3 Function Calls . 145

8.4.3.1 coatomic . 145

8.4.3.2 coevent . 145

8.4.3.3 comutex . 146

8.5 Collectives . 146

8.5.1 cobroadcast . 146

8.5.2 coreduce . 147

8.6 Exceptions . 148

8.7 Memory Consistency Model . 148

8.7.1 atomic_image_fence() 148

8.7.2 Accesses within a Single Image 148

8.7.3 Accesses to Other Images . 149

8.7.3.1 Multi-byte Accesses . 149

8.7.3.2 From Different Images . 149

8.7.3.3 From the Same Image . 149

8.8 Blocking Versus Non-blocking Accesses 150

8.8.1 Writes (Puts) . 150

8.8.2 Reads (Gets) . 151

8.8.3 Cofutures . 151

8.9 Code Patterns . 152

8.9.1 Coobjects . 152

8.9.2 Hoisting a coptr . 153

Using Cray C Extensions [9] 155

9.1 Complex Data Extensions . 155

9.2 fortran Keyword . 155

9.3 Hexadecimal Floating-point Constants 156

Using Predefined Macros [10] 159

10.1 Macros Required by the C and C++ Standards 159

10.2 Macros Based on the Host Machine 160

10.3 Macros Based on the Target Machine 160

16 S–2179–83

Contents

Page

10.4 Macros Based on the Compiler . 161

10.5 UPC Predefined Macros . 161

Running C and C++ Applications [11] 163

Debugging Cray C and C++ Code [12] 165

12.1 TotalView Debugger . 166

12.2 Compiler Debugging Options . 166

Using Interlanguage Communication [13] 169

13.1 Calls Between C and C++ Functions 169

13.2 Calling Fortran Functions and Subroutines from C or C++ 170

13.2.1 Requirements . 171

13.2.2 Argument Passing . 171

13.2.3 Array Storage . 172

13.2.4 Logical and Character Data 173

13.2.5 Accessing Named Common from C and C++ 173

13.2.6 Accessing Blank Common from C or C++ 175

13.2.7 Cray C and Fortran Example 177

13.2.8 Calling a Fortran Program from Cray C++ 179

13.3 Calling a C or C++ Function from Fortran 180

13.3.1 Portable Interoperability Mechanism 180

13.3.2 Standard Fortran/C Interoperability 183

Implementation-defined Behavior [14] 185

14.1 Messages . 185

14.2 Environment . 185

14.2.1 Identifiers . 186

14.2.2 Types . 186

14.2.3 Characters . 187

14.2.4 Wide Characters . 188

14.2.5 Integers . 188

14.2.6 128-Bit Floating Point and 256-Bit Complex Predefined Types 189

14.2.7 Arrays and Pointers . 189

14.2.8 Registers . 190

14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields 190

14.2.10 Qualifiers . 191

14.2.11 Declarators . 191

14.2.12 Statements . 191

S–2179–83 17

Cray C and C++ Reference Manual

Page

14.2.13 Exceptions . 191

14.2.14 System Function Calls . 191

14.3 Preprocessing . 191

Appendix A Using Libraries and the Linker 193

A.1 Cray C and C++ Libraries . 193

A.2 Linker . 193

Appendix B Using Cray C and C++ Dialects 195

B.1 C++ Language Conformance . 195

B.1.1 Supported C++ Language Features 195

B.2 C++ Anachronisms Accepted . 198

B.3 Extensions Accepted in Normal C++ Mode 199

B.4 Extensions Accepted in C or C++ Mode 200

B.5 C++ Extensions Accepted in cfront Compatibility Mode 202

Appendix C Using the Compiler Message System 209

C.1 Expanding Messages with the explain Command 209

C.2 Controlling the Use of Messages 209

C.2.1 Command Line Options . 210

C.2.2 Environment Options for Messages 210

C.2.3 ORIG_CMD_NAME Environment Variable 211

C.3 Message Severity . 211

C.4 Common System Messages . 212

Appendix D Using Intrinsic Functions 215

D.1 Atomic Memory Operations . 216

D.1.1 Local Atomic Memory Operations 217

D.1.2 Global Atomic Memory Operations 218

D.2 Bit Operations . 220

D.3 Mask Operations . 221

D.4 Miscellaneous Operations . 221

Tables
Table 1. GCC C Language Extensions 31

Table 2. GCC C++ Language Extensions 33

Table 3. Cache Levels . 45

Table 4. IPA Level . 47

Table 5. File Types . 48

Table 6. Floating-point Optimization Levels 51

18 S–2179–83

Contents

Page

Table 7. -G level Definitions . 52

Table 8. -W phase Definitions . 57

Table 9. -Y phase Definitions . 59

Table 10. -h pragma Directive Processing 60

Table 11. Data Type Mapping . 186

Table 12. Packed Characters . 187

Table 13. Unrecognizable Escape Sequences 187

Examples
Example 1. CC -X8 -h myprog.C 68

Example 2. CC -h conform myprog.C 68

Example 3. cc -c -h ipa1 myprog.c subprog.c 68

Example 4. cc -I. disc.c vend.c 69

Example 5. cc -P -D DEBUG newprog.c 69

Example 6. cc -c -h report=s mydata1.c 69

Example 7. CC -h ipa5,report=if myfile.C 69

Example 8. Trip counts . 88

Example 9. Unrolling outer loops . 99

Example 10. Illegal unrolling of outer loops 99

Example 11. Using the inline_enable, inline_disable, and inline_reset directives 101

Example 12. Using inline_reset 101

Example 13. Using defer_sync 104

Example 14. Calling a C function from Fortran 181

S–2179–83 19

Introduction [1]

The Cray Compiling Environment (CCE) contains both the Cray C and C++
compilers.

Log in either to a login node or a standalone application development system and use
the Cray XE, Cray XK, or Cray XC series Programming Environment, and related
products to create an application which executes on compute nodes. For further
information about login nodes and the user environment, see the Cray Programming
Environment User's Guide.

Throughout this manual, the differences between the Cray C and C++ compilers
are noted when appropriate. When there is no difference, the phrase the compiler
refers to both compilers. All compiler command options apply to Cray C and C++
unless noted.

1.1 General Compiler Description
Both the Cray C and C++ compilers are contained within the Cray Compiling
Environment (CCE). If compiling code written in C, use the cc command to compile
source files. If you are compiling code written in C++, use the CC command.

1.1.1 Cray C Compiler

The Cray C compiler consists of a preprocessor, a language parser, an optimizer, and
a code generator. Invoke the Cray C compiler with the cc compiler driver command.
The cc command is described in cc Command on page 26. This command and
its options are also described in the craycc(1) man page. See Command Line
Examples on page 68.

1.1.2 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, a language parser, an optimizer,
and a code generator. Invoke the Cray C++ compiler with the CC compiler driver
command. The CC command is described in CC Command on page 26 and the
crayCC(1) man page. See Command Line Examples on page 68.

S–2179–83 21

Cray C and C++ Reference Manual

1.2 C/C++ Standard Compatibility
The Cray C compiler conforms to the International Organization of Standards (ISO)
standard ISO/IEC 9899:1999 (C99).

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:2003 standard, with some exceptions. The exceptions are noted in Appendix
B, Using Cray C and C++ Dialects on page 195.

This release offers preliminary support for the UPC 1.3 draft specification.
The proposed UPC 1.3 standard is discussed on the UPC specification website,
http://code.google.com/p/upc-specification.

1.3 Binary Compatibility
UPC 1.3 requires a non-backwards compatible API change to the UPC runtime
library. PGAS files compiled with CCE 8.2 are not binary compatible with those
compiled with earlier versions of CCE. Attempting to link a pre-CCE 8.2 object
file in the 8.2 CCE runtime environment will result in a runtime error message
containing the text ". . . source file compiled with compiler expecting PGAS runtime
API version 1.1, but linked with PGAS runtime using API version 2.0 . . . ". If you
see this error, recompile the indicated source file/s with CCE 8.2 and relink your
application.

22 S–2179–83

http://code.google.com/p/upc-specification/

Introduction [1]

1.4 Related Publications
The following documents contain additional information that may be helpful:

• cc(1) compiler driver man page for all C compilers

• craycc(1) man page for the Cray C compiler

• CC(1) compiler driver man page for all C++ compilers

• crayCC(1) man page for the Cray C++ compiler

• intro_directives(7) man page

• intro_openacc(7)

• intro_pgas(7)

• ftn(1) compiler driver man page for Fortran compilers

• crayftn(1) man page for the Cray Fortran compiler

• aprun(1) man page

• Cray Fortran Reference Manual

• Cray Programming Environments Installation Guide

• Cray Programming Environment User's Guide

• Using Cray Performance Measurement and Analysis Tools

S–2179–83 23

Cray C and C++ Reference Manual

24 S–2179–83

Invoking the C and C++ Compilers [2]

This chapter describes the compiler driver commands that used to launch the Cray C
and C++ compilers. The following commands invoke the compilers:

• CC, which invokes the Cray C++ compiler.

• cc, which invokes the Cray C compiler.

• cpp, the C language preprocessor, is not part of the Cray Compilation
Environment (CCE). The cpp command resolves to the GNU cpp command
and does not predefine any Cray compiler-specific macros (Chapter 10,
Using Predefined Macros on page 159). If the predefinition of the Cray
compiler-specific macros is required, then use the cc or CC command to do the
source preprocessing using the -E or -P option.

A successful compilation creates an executable, named a.out by default, that
reflects the contents of the source code and any referenced library functions. Use the
aprun command to run the executable on the compute nodes.

For example, the following command sequence compiles file mysource.c and
launches the resulting executable program on 64 compute nodes:

% cc mysource.c
% aprun -n 64 ./a.out

With the use of appropriate options, it is possible to direct the compiler to generate
intermediate translations, including relocatable object files (-c option), assembly
source expansions (-S option), or the output of the preprocessor phase of the
compiler (-P or -E option). In general, it is possible to save the intermediate files and
reference them later on a CC or cc command, with other files or libraries included
as necessary.

By default, the CC and cc commands automatically call the linker, which creates an
executable file. If only one source file is specified, the object file (*.o) is deleted. If
more than one source file is specified, the object files are retained.

For example, the following command creates and retains object files file1.o,
file2.o, and file3.o, and creates the executable file a.out:

% cc file1.c file2.c file3.c

The following command creates file.o and a.out; file.o is not retained.

% cc file.c

S–2179–83 25

Cray C and C++ Reference Manual

2.1 CC Command
The CC command invokes the Cray C++ compiler. The CC command accepts C++
source files with the following suffixes:

.c

.C

.i

.c++

.C++

.cc

.cxx

.Cxx

.CXX

.CC

The .i files are created when the preprocessing compiler command option (-P) is
used. The CC command also accepts object files with the .o suffix, library files with
the .a suffix, and assembler source files with the .s suffix.

The CC command format is as follows:

CC [-c] [-C] [-D macro[=def]] [-E] [-g] [-G level] [-h arg] [-I incldir]
[-K trap=opt[,opt]...] [-l libfile] [-L ldir] [-M] [-nostdinc] [-o outfile]
[-O level] [-P] [-S] [-U macro] [-V] [-Wphase,"opt ..."]
[-X npes] [-Yphase,dirname] [-#] [-##] [-###] files ...

For an explanation of the command line options, see Command Line Options on
page 27.

2.2 cc Command
The cc command invokes the Cray C compiler. The cc command accepts C source
files that have the .c and .i suffixes; object files with the .o suffix; library files with
the .a suffix; and assembler source files with the .s suffix.

The cc command format is as follows:

cc [-c] [-C] [-D macro[=def]] [-E] [-g] [-G level] [-h arg] [-I incldir]
[-K trap=opt[,opt]...] [-l libfile] [-L ldir] [-M] [-nostdinc] [-o outfile]
[-O level] [-P] [-S] [-U macro] [-V] [-W phase,"opt..."]
[-X npes] [-Y phase,dirname] [-#] [-##] [-###] files ...

For an explanation of the command line options, see Command Line Options on
page 27.

26 S–2179–83

Invoking the C and C++ Compilers [2]

2.3 Command Line Options
The following subsections describe options for the CC and cc commands. These
options are grouped according to the following functions:

• Standard conformance options (Standard Language Conformance Options on
page 28)

• Virtual function options (Virtual Function Options on page 33)

• General language options (General Language Options on page 33)

• General optimization options (General Optimization Options on page 36)

• Automatic cache management options (-h cachen on page 44)

• Vector optimization options (Vector Optimization Options on page 45)

• Inlining options (Interprocedural Analysis (IPA) Optimization Options on
page 46)

• Scalar optimization options (Scalar Optimization Options on page 48)

• Math options (Math Options on page 50)

• Debugging options (Debugging Options on page 51)

• Compiler message options (Compiler Message Options on page 54)

• Compilation phase options (Compilation Phase Options on page 56)

• Preprocessing options (Preprocessing Options on page 59)

• Linker options (Linker Options on page 62)

• Miscellaneous options (Miscellaneous Options on page 63)

• Command line examples (Command Line Examples on page 68)

Options other than those described in this manual are passed to the linker.

There are many options that start with -h. Specify multiple -h options using
commas to separate the arguments. For example, the -h parse_templates and
-h fp0 command line options can be specified as -h parse_templates,fp0.

If you specify conflicting options, the option specified last on the command line
overrides the previously specified option. Exceptions to this rule are noted in the
individual descriptions of the options.

S–2179–83 27

Cray C and C++ Reference Manual

The following examples illustrate the use of conflicting options:

• In this example, -h fp0 overrides -h fp1:

% cc -h fp1,fp0 myfile.c

• In this example, -h vector2 overrides the earlier vector optimization level
3 implied by the -O3 option:

% CC -O3 -h vector2 myfile.C

Most #pragma directives override corresponding command line options. Exceptions
to this rule are noted in descriptions of options or #pragma directives.

2.4 Standard Language Conformance Options
This section describes standard conformance language options. Each subsection
heading shows in parentheses the compiler with which the option can be used.

2.4.1 -h [no]c99 (cc)

Default: -h c99

This option enables or disables language features new to the C99 standard and Cray C
compiler, while providing support for features that were previously defined as Cray
extensions. If the previous implementation of the Cray extension differed from the
C99 standard, both implementations will be available when the -h c99 option
is enabled. The -h c99 option is also required for C99 features not previously
supported as extensions.

When -h noc99 is used, C99 language features such as variable-length arrays
(VLAs) and restricted pointers that were available as extensions previously to
adoption of the C99 standard remain available to you.

2.4.2 -h [no]conform (CC, cc), -h [no]stdc (cc)

Default: -h noconform, -h nostdc

The -h conform and -h stdc options specify strict conformance to the ISO
C standard or the ISO C++ standard. The -h noconform and -h nostdc
options specify partial conformance to the standard. The -h exceptions, -h
dep_name, -h parse_templates, and -h const_string_literals
options are enabled by the -h conform option in Cray C++.

Note: By default, the compiler calls the Cray mathlib versions of intrinsic
functions (abs, cos, exp, for example) which do not set errno and do not raise
IEEE-754 underflow exceptions. If -hconform is specified, the compiler calls the
stdc glibc versions of the runtime intrinsic functions.

28 S–2179–83

Invoking the C and C++ Compilers [2]

2.4.3 -h cfront (CC)

The -h cfront option causes the Cray C++ compiler to accept or reject constructs
that were accepted by previous cfront-based compilers (such as Cray C++ 1.0) but
which are not accepted in the C++ standard. The -h anachronisms option is
implied when -h cfront is specified.

2.4.4 -h [no]parse_templates (CC)

Default: -h noparse_templates

This option allows existing code that defines templates using previous versions of the
Cray Standard Template Library (STL) (before Programming Environment 3.6) to
compile successfully with the -h conform option. Consequently, this allows you
to compile existing code without having to use the Cray C++ STL. To do this, use the
noparse_templates option. Also, the compiler defaults to this mode when the
-h dep_name option is used. To have the compiler verify that your code uses the
Cray C++ STL properly, use the parse_templates option.

2.4.5 -h [no]dep_name (CC)

Default: -h nodep_name

This option enables or disables dependent name processing (that is, the separate
lookup of names in templates when the template is parsed and when it is instantiated).
The -h dep_name option cannot be used with the -h noparse_templates
option.

2.4.6 -h [no]exceptions (CC)

Default: The default is -h exceptions; however, if the
CRAYOLDCPPLIB environment variable is set to a nonzero
value, the default is -h noexceptions.

The -h exceptions option enables support for exception handling. The
-h noexceptions option issues an error whenever an exception construct, a try
block, a throw expression, or a throw specification on a function declaration is
encountered. The -h exceptions option is enabled by -h conform.

2.4.7 -h [no]anachronisms (CC)

Default: -h noanachronisms

The -h [no]anachronisms option disables or enables anachronisms in Cray
C++. This option is overridden by -h conform.

S–2179–83 29

Cray C and C++ Reference Manual

2.4.8 -h [no]new_for_init (CC)

Default: -h new_for_init

The -h new_for_init option enables the new scoping rules for a declaration
in a for-init-statement. This means that the new standard-conforming rules are in
effect; the entire for statement is wrapped in its own implicitly generated scope. The
-h new_for_init option is implied by the -h conform option.

This is the result of the scoping rule:

{
.
.
.
for (int i = 0; i < n; i++) {
.
.
.

} // scope of i ends here for -h new_for_init
.
.
.

} // scope of i ends here for -h nonew_for_init

2.4.9 -h [no]tolerant (cc)

Default: -h notolerant

The -h tolerant option allows older, less standard C constructs, thereby making
it easier to port code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler generates
casts so that the types agree. With -h notolerant, the compiler is intolerant
of the older constructs.

The -h tolerant option causes the compiler to tolerate accessing an object with
one type through a pointer to an entirely different type. For example, a pointer to a
long might be used to access an object declared with type double. Such references
violate the C standard and should be eliminated if possible. They can reduce the
effectiveness of alias analysis and inhibit optimization.

2.4.10 -h [no]const_string_literals (CC)

Default: -h noconst_string_literals

The -h [no]const_string_literals option controls whether string literals
are const (as required by the standard) or non-const (as was true in earlier
versions of the C++ language).

30 S–2179–83

Invoking the C and C++ Compilers [2]

2.4.11 -h [no]gnu

Default: -h nognu

The -h gnu option enables the compiler to recognize the subset of the GCC version
4.4.4 extensions to C listed in Table 1. Table 2 lists the extensions that apply only to
C++.

For detailed descriptions of the GCC C and C++ language extensions, see
http://gcc.gnu.org/onlinedocs/.

Table 1. GCC C Language Extensions

GCC C Language Extension Description

Typeof typeof: referring to the type of an expression

Lvalues Using ?:, and casts in lvalues

Conditionals Omitting the middle operand of a ?: expression

Long Long Double-word integers – long long int

Complex Data types for complex numbers

Statement Exprs Putting statements and declarations inside expressions

Zero Length Zero-length arrays

Variable Length Arrays whose length is computed at run time

Empty Structures Structures with no members; applies to C but not C++

Variadic Macros Macros with a variable number of arguments

Escaped Newlines Slightly looser rules for escaped newlines

Multiline strings String literals with embedded newlines

Initializers Non-constant initializers

Compound Literals Compound literals give structures, unions or arrays as values

Designated Inits Labeling elements of initializers

Cast to Union Casting to union type from any member of the union

Case Ranges 'case 1 ... 9' and such

Mixed Declarations Mixing declarations and code

Attribute Syntax Formal syntax for attributes

Function Prototypes Prototype declarations and old-style definitions; applies to C
but not C++

C++ Comments C++ comments are recognized

Dollar Signs Dollar sign is allowed in identifiers

Character Escapes \e stands for the character <ESC>

Alignment Inquiring about the alignment of a type or variable

S–2179–83 31

http://gcc.gnu.org/onlinedocs/

Cray C and C++ Reference Manual

GCC C Language Extension Description

Inline Defining inline functions (as fast as macros)

Alternate Keywords __const__, __asm__, and so on, for header files

Incomplete Enums enum foo;, with details to follow

Function Names Printable strings which are the name of the current function

Return Address Getting the return or frame address of a function

Unnamed Fields Unnamed struct/union fields within structs/unions

Function Attributes: nothrow; format,
format_arg; deprecated; used; unused;
alias; weak

Declaring that functions have no side effects, or that they can
never return

Variable Attributes: alias; deprecated;
unused; used; transparent_union; weak;

Specifying attributes of variables

Type Attributes: deprecated; unused;
used; transparent_union

Specifying attributes of types

Asm Labels Specifying the assembler name to use for a C symbol

Other Builtins:
__builtin_types_compatible_p,
__builtin_choose_expr,
__builtin_constant_p,
__builtin_huge_val,
__builtin_huge_valf,
__builtin_huge_vall,
__builtin_inf, __builtin_inff,
__builtin_infl,
__builtin_nan, __builtin_nanf,
__builtin_nanl,
__builtin_nans,
__builtin_nansf,
__builtin_nansl

Other built-in functions

Special files such as /dev/null may be used as source files.

The supported subset of the GCC version 4.4.4 extensions to C++ are listed in Table
2.

32 S–2179–83

Invoking the C and C++ Compilers [2]

Table 2. GCC C++ Language Extensions

GCC C++ Extensions Description

Min and Max C++ minimum and maximum operators

Restricted Pointers C99 restricted pointers and references

Backwards Compatibility Compatibilities with earlier definitions of C++

Strong Using A using directive with __attribute ((strong))

Explicit template specializations Attributes may be used on explicit template specializations

2.5 Virtual Function Options
This section describes general language options.

2.5.1 -h forcevtbl (CC)

The -h forcevtbl option forces the definition of virtual function tables in cases
where the heuristic methods used by the compiler to decide on definition of virtual
function tables provide no guidance. The virtual function table for a class is defined
in a compilation if the compilation contains a definition of the first non-inline,
non-pure virtual function of the class. For classes that contain no such function, the
default behavior is to define the virtual function table (but to define it as a local static
entity). The -h forcevtbl option differs from the default behavior in that it does
not force the definition to be local.

2.5.2 -h suppressvtbl (CC)

The -h suppressvtbl option suppresses the definition of virtual function tables
in cases where the heuristic methods used by the compiler to decide on definition of
virtual function tables provide no guidance.

2.6 General Language Options
This section describes general language options. Each subsection heading shows in
parentheses the compiler with which the option can be used.

S–2179–83 33

Cray C and C++ Reference Manual

2.6.1 -h keep=file (CC)

When the -h keep=file option is specified, the static constructor/destructor object
(.o) file is retained as file. This option is useful when linking .o files on a system
that does not have a C++ compiler. The use of this option requires that the main
function must be compiled by C++ and the static constructor/destructor function must
be included in the link. With these precautions, mixed object files (files with .o
suffixes) from C and C++ compilations can be linked into executables by using the
linker command instead of the CC command.

2.6.2 -h restrict=args

The -h restrict=args option globally tells the compiler to treat certain classes
of pointers as restricted pointers. Use this option to enhance optimizations (this
includes vectorization).

Classes of affected pointers are determined by the value contained in args, as follows:

args Description

a All pointers to object and incomplete types are considered
restricted pointers, regardless of where they appear in the
source code. This includes pointers in class, struct, and
union declarations, type casts, function prototypes, and so
on.

!
Caution: Do not specify restrict=a if, during
execution of any function, an object is modified and that
object is referenced through either two different pointers
or through the declared name of the object and a pointer.
Undefined behavior may result.

f All function parameters that are pointers to objects or
incomplete types can be treated as restricted pointers.

!
Caution: Do not specify restrict=f if, during
execution of any function, an object is modified and that
object is referenced through either two different pointer
function parameters or through the declared name of
the object and a pointer function parameter. Undefined
behavior may result.

t All parameters that are this pointers can be treated as
restricted pointers (Cray C++ only).

!
Caution: Do not specify restrict=t if, during
execution of any function, an object is modified and that
object is referenced through the declared name of the object
and a this pointer. Undefined behavior may result.

34 S–2179–83

Invoking the C and C++ Compilers [2]

The args arguments tell the compiler to assume that, in the current compilation unit,
each pointer (=a), each pointer that is a function parameter (=f), or each this
pointer (=t) points to a unique object. This assumption eliminates those pointers
as sources of potential aliasing, and may allow additional vectorization or other
optimizations. These options cause only data dependencies from pointer aliasing to
be ignored, rather than all data dependencies.

!
Caution: The arguments make assertions about your program that, if incorrect,
can introduce undefined behavior. Do not use -h restrict=a if, during the
execution of any function, an object is modified and that object is referenced
through either of the following:

• Two different pointers

• The declared name of the object and a pointer

The -h restrict=f and -h restrict=t options are subject to the
analogous restriction, with "function parameter pointer" replacing "pointer."

2.6.3 -h [no]calchars

Default: -h nocalchars

The -h calchars option allows the use of the $ character in identifier names. This
option is useful for porting code containing identifiers that include this character.
With -h nocalchars, this character is not allowed in identifier names.

!
Caution: Use this option with extreme care, because identifiers with this character
are within CNL name space and are included in many library identifiers, internal
compiler labels, objects, and functions. Prevent conflicts between identifiers within
CNL name space and your code; any such conflict is an error.

2.6.4 -h [no]signedshifts

Default: -h nosignedshifts

The -h [no]signedshifts option affects the result of the right shift
operator. For the expression e1 >> e2, where e1 has a signed type, when
-h signedshifts is in effect, the vacated bits are filled with the sign bit of e1.
When -h nosignedshifts is in effect, the vacated bits are filled with zeros,
identical to the behavior when e1 has an unsigned type.

Also, see Integers on page 188 about the effects of this option when shifting integers.

S–2179–83 35

Cray C and C++ Reference Manual

2.7 General Optimization Options

2.7.1 -h [no]add_paren

Default: -h noadd_paren

The -h [no]add_paren option automatically adds parenthesis to select
associative operations (+,-,*) to encourage left to right evaluation of floating point
and complex expressions. The default is -h noadd_paren. For more information,
see the crayftn(1) man page.

Left to right evaluation is not required by the language standards, but some
applications may expect it.

2.7.2 -h [no]aggress

Default: -h noaggress

The -h aggress option provides greater opportunity to optimize loops that would
otherwise by inhibited from optimization due to an internal compiler size limitation.
-h noaggress leaves this size limitation in effect.

With -h aggress, internal compiler tables are expanded to accommodate larger
loop bodies. This option can increase the compilation's time and memory size.

2.7.3 -h [no]autoprefetch

Default: -h autoprefetch

The -h [no]autoprefetch option controls automatic prefetch optimization.
Does not affect the loop_info [no]prefetch directive.

2.7.4 -h [no]autothread

Default: -h noautothread

The -h [no]autothread option enables or disables automatic threading.

2.7.5 -h display_opt

The -h display_opt option displays the current optimization settings for this
compilation.

36 S–2179–83

Invoking the C and C++ Compilers [2]

2.7.6 -h flex_mp=level

Default: -h flex_mp=default

The -h flex_mp=level option controls the aggressiveness of optimizations which
may affect floating point and complex repeatability when application requirements
require identical results when varying the number of ranks or threads.

The values for level are:

level Description

intolerant Has the highest probability of repeatable results, but also the highest
performance penalty.

strict Uses some safe optimizations and yields higher performance than
intolerant, with a high probability of repeatable results.

conservative Uses more aggressive optimization and yields higher performance
than strict, but results may not be sufficiently repeatable for some
applications.

default Uses more aggressive optimization and yields higher performance than
conservative, but results may not be sufficiently repeatable for
some applications.

tolerant Uses most aggressive optimization and yields highest performance, but
results may not be sufficiently repeatable for some applications.

2.7.7 -h fusionn

Default: -h fusion2

The –h fusion n option controls loop fusion and changes the assertiveness of
the fusion pragma. Loop fusion can improve the performance of loops, although
in rare cases it may degrade performance. The n argument allows you to turn loop
fusion on or off and determine where fusion should occur.

Note: Loop fusion is disabled when the scalar level is set to 0.

Default: -h fusion2

The values for n are:

0 No fusion (ignore all fusion pragmas and do not attempt to fuse
other loops)

1 Attempt to fuse loops that are marked by the fusion pragma.

2 Attempt to fuse all loops (includes array syntax implied loops),
except those marked with the nofusion pragma.

S–2179–83 37

Cray C and C++ Reference Manual

2.7.8 -h [no]intrinsics

Default: -h intrinsics

The -h intrinsics option allows the use of intrinsic hardware functions, which
allow direct access to some hardware instructions or generate inline code for some
functions. This option has no effect on specially handled library functions.

Intrinsic functions are described in Appendix D, Using Intrinsic Functions on
page 215.

2.7.9 -h list

The -h list=opt option allows you to create listings and control their formats. The
listings are written to source_file_name_without_suffix.lst.

The values for opt are:

a Use all list options; source_file_name_without_suffix.lst includes a
summary report, an options report, and the source listing.

d Decompiles (translates) the intermediate representation of the
compiler into listings that resemble the format of the source code.
This is performed twice, resulting in two output files, at different
points during the optimization process. You can use these files to
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to
your source code to improve its performance.

The compiler produces two decompilation listing files with these
extensions per specified source file: .opt and .cg. The compiler
generates the .opt file after applying most high-level loop nest
transformations to the code. The code structure of this listing most
resembles your source code and is readable by most users. In some
cases, because of optimizations, the structure of the loops and
conditionals will be significantly different than the structure in your
source file.

The .cg file contains a much lower level of decompilation. It is
quite close to what will be produced as assembly output. This version
displays the intermediate text after all vector translation and other
optimizations have been performed. An intimate knowledge of the
hardware architecture of the system is helpful to understanding this
listing.

38 S–2179–83

Invoking the C and C++ Compilers [2]

The .opt and .cg files are intended as a tool for performance
analysis and are not valid source code. The format and contents of
the files can be expected to change from release to release.

e Expand include files.

Note: Using this option may result in a very large listing file. All
system include files are also expanded.

i Intersperse optimization messages within the source listing rather
than at the end.

m Create loopmark listing; source_file_name_without_suffix.lst
includes summary report and source listing.

s Create a complete source listing (include files not expanded).

Using -h list=m creates a loopmark listing. The e, i, s, and w options provide
additional listing features. Using -h list=a combines all options.

2.7.10 -h [no]msgs

Default: -h nomsgs

The -h msgs option causes the compiler to write optimization messages to
stderr.

When the -h msgs option is in effect, you may request that a listing be produced
so that you can see the optimization messages in the listing. For information about
obtaining listings, see -h list on page 38.

2.7.11 -h [no]negmsgs

Default: -h nonegmsgs

The -h negmsgs option causes the compiler to generate messages to stderr that
indicate why optimizations such as vectorization, inlining, or cloning did not occur
in a given instance.

The -h negmsgs option enables the -h msgs option. The -h list=a option
enables the -h negmsgs option.

2.7.12 -h [no]omp_trace

Default: -h noomp_trace (tracing is off)

The -h [no]omp_trace option turns the insertion of the CrayPat OpenMP tracing
calls on or off.

S–2179–83 39

Cray C and C++ Reference Manual

2.7.13 -h [no]func_trace

The -h func_trace option is for use only with CrayPat. If this option is
specified, the compiler inserts CrayPat trace entry points into each function in the
compiled source file. The names of the trace entry points are:

• __pat_tp_func_entry

• __pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the
pat_build command. When the instrumented program is executed and it
encounters either of these trace entry points, CrayPat captures the address of the
current function and its return address.

2.7.14 -h [no]overindex

Default: -h nooverindex

The -h overindex option declares that there are array subscripts that index
a dimension of an array that is outside the declared bounds of that array. The
-h nooverindex option declares that there are no array subscripts that index a
dimension of an array that is outside the declared bounds of that array.

2.7.15 -h [no]pattern

Default: -h pattern

The -h [no]pattern option globally enables or disables pattern matching.

When the compiler recognizes certain patterns in the source code, it replaces the
construct with a call to an optimized library routine. A loop or statement that has
been pattern matched and replaced with a call to a library routine is indicated with an
A in the loopmark listing.

Note: Pattern matching is not always worthwhile. If there is a small amount of
work in the pattern-matched construct, the call overhead may outweigh the time
saved by using the optimized library routine. When compiling using the default
optimization settings, the compiler attempts to determine whether each given
candidate for pattern matching will in fact yield improved performance.

2.7.16 -h pl=program_library

Create and use a persistent repository of compiler information specified by
program_library. When used with -hwp, this option provides application-wide,
cross-file, automatic inlining. See -h wp on page 43.

40 S–2179–83

Invoking the C and C++ Compilers [2]

The program_library repository is implemented as a directory and the information
contained in program library is built up with each compiler invocation. Any
compilation that does not have the -hpl option will not add information to this
repository.

Because of the persistence of program_library, it is the user's responsibility to
manage it. For example, rm -r program_library might be added to the make
clean target in an application makefile. Because program_library is a directory,
use rm -r to remove it.

If an application makefile works by creating files in multiple directories during
a single build, the program_library should be an absolute path, otherwise multiple
and incomplete program library repositories will be created. For example, avoid
-hpl=./PL.1 and use -hpl=/fullpath/builddir/PL.1 instead.

2.7.17 -h profile_generate

The -h profile_generate option directs that the source code be instrumented
for gathering profile information. The compiler inserts calls and data-gathering
instructions to allow CrayPat to gather information about the loops in a compilation
unit. If you use this option, you must run CrayPat on the resulting executable so the
CrayPat data-gathering routines are linked in. For information about CrayPat and
profile information, see the Using Cray Performance Measurement and Analysis
Tools guide.

2.7.18 -h threadn

Default: –h thread2

The -h threadn options control the optimization of both OpenMP and automatic
threading.

S–2179–83 41

Cray C and C++ Reference Manual

The values of n are:

0 No autothreading or OMP threading. The thread0 option is similar
to -h noomp, but -h noomp disables OpenMP only and does not
affect autothreading.

1 Specifies strict compliance with the OpenMP standard for directive
compilation. Strict compliance is defined as no extra optimizations in
or around OpenMP constructs. In other words, the compiler performs
only the requested optimizations.

2 OpenMP parallel regions are subjected to some optimizations;
that is, some parallel region expansion. Parallel region expansion
is an optimization that merges two adjacent parallel regions in a
compilation unit into a single parallel region.

3 Full optimization: loop restructuring, including modifying iteration
space for static schedules (breaking standard compliance). Reduction
results may not be repeatable.

2.7.19 -h unrolln

Default: –h unroll2

The -h unrolln option globally controls loop unrolling and changes the
assertiveness of the unroll pragma. By default, the compiler attempts to unroll all
loops, unless the nounroll pragma is specified for a loop. Generally, unrolling
loops increases single processor performance at the cost of increased compile time
and code size.

The n argument allows you to turn loop unrolling on or off and specify where
unrolling should occur. It also affects the assertiveness of the unroll pragma.

The values for n are:

0 No unrolling (ignore all unroll pragmas and do not attempt to
unroll other loops).

1 Attempt to unroll loops that are marked by the unroll pragma.

2 Unroll loops when performance is expected to improve. Loops
marked with the unroll or nounroll pragma override automatic
unrolling.

Note: Loop unrolling is disabled when the scalar level is set to 0.

42 S–2179–83

Invoking the C and C++ Compilers [2]

2.7.20 -h wp

Enables the whole program mode. This option causes the compiler backend (IPA,
optimizer, codegenerator) to be invoked at application link time, enabling whole
program automatic inlining/cloning and future whole program interprocedural
analysis (IPA) optimizations. Since the -hwp option provides automatic
application-wide inlining, the -Oipafrom option is no longer needed for cross-file
inlining and using these two options together is not permitted. Requires that
pl=program_library is also specified. See -h pl=program_library on page 40.

The options -hpl=program_library and -hwp should be specified on all compiler
invocations and on the compiler link invocation. Since -hwp delays the compiler
optimization step until link time, -c compiles will take less time and the link step
will take longer. Normally, this is just a time shift from one build phase to another
with roughly the same overall compile time. In some cases increased inlining may
cause an increase in overall compile time. Using -hwp allows the compiler backend
to be invoked in parallel during a build. Setting the environment variable NPROC
controls the number of concurrent compiler backend invocations and this parallelism
may reduce overall compile time.

2.7.21 -O level

The -O 0, -O 1, -O 2, and -O 3 options allow you to specify a general level of
optimization that includes vectorization, scalar optimization, and inlining. Generally,
as the optimization level increases, compilation time increases and execution time
decreases.

The -O 1, -O 2, and -O 3 specifications do not directly correspond to the numeric
optimization levels for scalar optimization, vectorization, and inlining. For example,
specifying -O 3 does not necessarily enable vector3. Cray reserves the right to
alter the specific optimizations performed at these levels from release to release. You
can use the -h display_opt option to display the optimization options used
during compilation.

The -On option performs general optimization at these levels: 0 (none), 1
(conservative), 2 (moderate, default), and 3 (aggressive).

• The -O 0 option disables all optimizations including floating point
optimizations. Implies -h fp0. This option's characteristics include low compile
time, small compile size, and no global scalar optimization.

Most array syntax statements are vectorized, but all other vectorizations are
disabled.

• The -O 1 option specifies conservative optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, and loop
nest restructuring. Results may differ from the results obtained when -O 0 is
specified because of operator reassociation. No optimizations will be performed
that might create false exceptions.

S–2179–83 43

Cray C and C++ Reference Manual

Only array syntax statements and inner loops are vectorized and the system
does not perform some vector reductions. User tasking is enabled, so OpenMP
directives are recognized.

• The -O 2 option specifies moderate optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, pattern
matching, and loop nest restructuring.

Results may differ from results obtained when -O 1 is specified because of
vector reductions. The -O 2 option enables automatic vectorization of array
syntax and entire loop nests.

This is the default level of optimization.

• The -O 3 option specifies aggressive optimization. This option's characteristics
include a potentially larger compile time and size, global scalar optimizations,
possible loop nest restructuring, and pattern matching. The optimizations
performed might create false exceptions in rare instances.

Results may differ from results obtained when -O 1 is specified because of
vector reductions.

Table 3 shows the equivalent level of automatic cache optimization for the -h option.

2.8 Automatic Cache Management Options
This section describes the automatic cache management options. Automatic
cache management can be overridden by the use of the cache directives (cache,
cache_nt, and loop_info).

2.8.1 -h cachen

Default: -h cache2

The -h cachen option specifies the levels of automatic cache management to
perform. The default is -h cache2.

The values for n are:

0 Cache blocking (including directive-based blocking) is turned off.
This level is compatible with all scalar and vector optimization
levels.

1 Conservative automatic cache management. Characteristics include
moderate compile time. Symbols are placed in the cache when the
possibility of cache reuse exists and the predicted cache footprint of
the symbol in isolation is small enough to experience the reuse.

44 S–2179–83

Invoking the C and C++ Compilers [2]

2 Moderately aggressive automatic cache management. Characteristics
include moderate compile time. Symbols are placed in the cache
when the possibility of cache reuse exists and the predicted state of
the cache model is such that the symbol will experience the reuse.

3 Aggressive automatic cache management. Characteristics include
potentially high compile time. Symbols are placed in the cache when
the possibility of cache reuse exists and the allocation of the symbol
to the cache is predicted to increase the number of cache hits.

Table 3. Cache Levels

-O Option Cache Level

-O0 -h cache0

-O1 -h cache1

-O2 -h cache2

-O3 -h cache2

2.9 Vector Optimization Options
This section describes vector optimization options. Each subsection heading shows in
parentheses the compiler command with which the option can be used.

2.9.1 -h concurrent

Indicates that no data dependence exists between array references of the same
loop, for every loop in the file. This can be useful for vectorization optimizations.
Equivalent to adding a CONCURRENT pragma before every loop in the file,
including loops created from array syntax. See concurrent Directive on page 85.

2.9.2 -h vectorn

Default: -h vector2

The -h vectorn option specifies the level of automatic vectorizing to be
performed. Vectorization results in significant performance improvements with a
small increase in object code size. Vectorization directives are unaffected by this
option.

S–2179–83 45

Cray C and C++ Reference Manual

The values of n are:

n Description

0 No automatic vectorization. Characteristics include low compile time
and small compile size. This option is compatible with all scalar
optimization levels.

1 Specifies conservative vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured. No
vectorizations that might create false exceptions are performed.
Results may differ slightly from results obtained when -h
vector0 is specified because of vector reductions.

The -h vector1 option is compatible with -h scalar1,
-h scalar2, and -h scalar3.

2 Specifies moderate vectorization. Characteristics include moderate
compile time and size. Loop nests are restructured.

The -h vector2 option is compatible with -h scalar2 and
-h scalar3.

3 Specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may
be performed.

For further information, see Vectorization Directives on page 85.

2.10 Interprocedural Analysis (IPA) Optimization Options
Inlining and cloning transform code in ways that increase the opportunity for
interprocedural (IPA) optimizations.

The user controls inlining and cloning through the use of command line options alone
or command line options in combination with directives placed within the code. By
default, the compiler will attempt inline optimizations where appropriate, but not
cloning. Inlining and cloning may increase object code size.

Also see Inlining and Cloning Directives on page 100.

2.10.1 Inlining

Inlining is the process of replacing a user procedure call with the procedure definition
itself. This can improve performance by saving the expense of the call overhead. It
also increases the possibility of additional code optimization of the inlined code. If all
calls within a loop are inlined, the loop becomes a candidate for parallelization.

46 S–2179–83

Invoking the C and C++ Compilers [2]

The compiler supports the following inlining modes through the indicated options:

• Automatic inlining allows the compiler to automatically select which functions to
inline. This occurs with the -h ipa2 or greater option. When -h ipan is used
alone, the candidates for expansion are all those functions that are present in the
input file to the compile step. See -h ipan on page 47.

• Explicit inlining allows you to explicitly indicate which procedures the compiler
should attempt to inline and occurs with the -h ipafrom=source [:source]
option alone as described in -h ipafrom=source[:source] ... on page 48.

• Combined inlining allows you to specify potential targets for inline expansion,
while applying the selected level of inlining heuristics. If -h ipan is used in
conjunction with -h ipafrom=source[:source], the candidates for expansion
are those functions present in source and -h ipan selects level of heuristics.

2.10.2 Cloning

Cloning replaces a call to a procedure with a call to a modified version of that same
procedure (clone) in which the parameters in the original procedure are replaced with
the constant actual parameters present at the call site.

Automatic cloning is enabled at -Oipa5. The compiler first attempts to inline a
call site. If inlining the call site fails, the compiler attempts to clone the procedure
for the specific call site.

2.10.3 -h ipan

Default: -h ipa3

The -h ipan option controls the level of automatic inlining and cloning. Table 4
explains what type of IPA optimization is performed at each level.

Table 4. IPA Level

IPA level Description

0 All interprocedural analysis and optimizations disabled. All inlining and cloning
compiler directives are ignored.

1 Directive IPA. Inlining/cloning is attempted for call sites and routines that are under
the control of a compiler directive. See Inlining and Cloning Directives on page 100.

2 Inlining. Inline a call site to an arbitrary depth as long as the expansion does not
exceed some compiler-determined threshold. The call site must flatten for any
expansion to occur. The call site is said to "flatten" when there are no calls present in
the expanded code. The call site must reside within the body of a loop and the entire
loop body must flatten. A loop body is said to "flatten" when all call sites within the
body of the loop are flattened. Includes level 1.

S–2179–83 47

Cray C and C++ Reference Manual

IPA level Description

3 Constant actual argument inlining and tiny routine inlining. Default level for inlining.
This includes levels 1 and 2, plus any call site that contains a constant actual
argument. Additionally, any call nest (regardless of location) that is below some small
compiler-determined threshold will be inlined provided that call nest completely
flattens. Cloning directives are recognized.

4 Aggressive inlining. This includes levels 1, 2, and 3, plus a call site does not have to
reside in a loop body to inline nor does the call site have to necessarily flatten.

5 Cloning. Includes levels 1, 2, 3, 4, plus routine cloning is attempted if inlining fails
at a given call site.

2.10.4 -h ipafrom=source[:source] ...

The -h ipafrom=source [:source] option allows you to explicitly indicate the
procedures to consider for inline expansion or cloning. The source arguments identify
each file or directory that contains the routines to consider for inlining or cloning.

Note: Spaces are not allowed on either side of the equal sign.

All inlining directives are recognized at -O ipa levels > 1. For information about
inlining directives, see Inlining and Cloning Directives on page 100.

Note: The routines in source are not actually linked with the final program. They
are simply templates for the inliner. To have a routine contained in source linked
with the program, you must include it in an input file to the compilation.

Use one or more of the following file types in the source argument.

Table 5. File Types

C or C++ source files The routines in C or C++ source files are candidates
for expansion and must contain error-free code.

Source files that are acceptable are files that have
one of the following extensions: .C, .c++, .C++,
.cc, .cxx, .Cxx, .CXX, or .CC.

dir A directory that contains any of the file types
described in this table.

2.11 Scalar Optimization Options
This section describes scalar optimization options. Each subsection heading shows in
parentheses the compiler command with which the option can be used.

48 S–2179–83

Invoking the C and C++ Compilers [2]

2.11.1 -h [no]interchange

Default: -h interchange

The -h interchange option allows the compiler to attempt to interchange all
loops, a technique that is used to gain performance by having the compiler swap
an inner loop with an outer loop. The compiler attempts the interchange only if the
interchange will increase performance. Loop interchange is performed only at scalar
optimization level 2 or higher.

The -h nointerchange option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individually, use the
#pragma _CRI nointerchange directive.

2.11.2 -h scalarn

Default: -h scalar2

The -h scalarn option specifies the level of automatic scalar optimization to be
performed. Scalar optimization directives are unaffected by this option (see Scalar
Directives on page 94).

The values for n are:

0 Minimal automatic scalar optimization. The -h zeroinc option is
implied by -h scalar0.

1 Conservative automatic scalar optimization. This level implies
-h nozeroinc.

2 Aggressive automatic scalar optimization. The scalar optimizations
that provide the best application performance are used, with some
limitations imposed to allow for faster compilation times.

3 Very aggressive optimization; compilation times may increase
significantly.

2.11.3 -h [no]zeroinc

Default: -h nozeroinc

The -h nozeroinc option improves run time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The -h zeroinc option causes the compiler to assume that some constant
increment variables (CIVs) in loops might be incremented by 0 for each pass through
the loop, preventing generation of optimized code.

S–2179–83 49

Cray C and C++ Reference Manual

For example, in a loop with index i, the expression expr in the statement i +=expr
can evaluate to 0. This rarely happens in actual code. -h zeroinc is the safer
and slower option. This option is affected by the -h scalarn option (see -h
scalarn on page 49).

2.12 Math Options
This section describes compiler options pertaining to math functions. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

2.12.1 -h fpn

Default: -h fp2

The -h fp option allows you to control the level of floating-point and complex
arithmetic optimizations. The n argument controls the level of allowable
optimization; 0 gives the compiler minimum freedom to optimize floating-point
operations, while 4 gives it maximum freedom. The higher the level, the lesser the
floating-point operations conform to the IEEE standard.

Generally, this is the behavior and usage for each -h fp level:

• The -h fp0 causes your program's executable code to conform more closely
to the IEEE floating-point standard than the default mode (-h fp2). When
you specify this level, many identity optimizations are disabled, vectorization of
floating-point and complex reductions are disabled, executable code is slower than
higher floating-point optimization levels. Use the -h fp0 option only when
your code pushes the limits of IEEE accuracy or requires strong IEEE standard
conformance.

• The -h fp1 option performs various generally safe, non-conforming IEEE
optimizations, such as folding a == a to true, where a is a floating point
object. At this level, a scaled complex divide mechanism is enabled that increases
the range of complex values that can be handled without producing an underflow,
and rewrite of division into multiplication by reciprocal is inhibited. You should
never use the -h fp1 option except when your code pushes the limits of IEEE
accuracy or requires strong IEEE standard conformance.

• The -h fp2 option includes optimizations of -h fp1.

• The -h fp3 option includes optimizations of -h fp2. You should use the -h
fp3 option when performance is more critical than the level of IEEE standard
conformance provided by -h fp2. The -h fp3 option is an acceptable level
of optimization for many applications.

• The -h fp4 option includes optimizations of -h fp3. You should only use -h
fp4 if your application uses algorithms which are tolerant of reduced precision.

50 S–2179–83

Invoking the C and C++ Compilers [2]

Table 6 compares the various optimization levels of the -h fp option. The table lists
some of the optimizations performed; the compiler may perform other optimizations
not listed.

Table 6. Floating-point Optimization Levels

Optimization Type fp0 fp1 fp2 (default) fp3 fp4

Safety Maximum High High Moderate Low

Complex divisions Accurate and
slower

Accurate and
slower

Fast1 Fast1 Fast1

Exponentiation
rewrite

None None When
beneficial2

Always2, 3 Always2, 3

Strength reduction None None Fast Fast Fast

Rewrite division as
reciprocal equivalent 4

None None Yes Aggressive Aggressive

Floating point
reductions

Slow Fast Fast Fast Fast

Expression factoring None Yes Yes Yes Yes

Expression tree
balancing

None None Yes Yes Yes

Inline 32-bit
operations 5

No No No Yes Yes

Fused multiply-add 6 No Yes Yes Yes Yes

2.13 Debugging Options
This section describes compiler options used for debugging. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

1 Algebraically correct but may lack precision in boundary cases.
2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications

and/or square roots.
3 Rewriting exponentiations (ab) not previously optimized into the algebraically equivalent form exp(b

* ln(a)).
4 For example, x/y is transformed to x * 1.0/y.
5 32-bit division, square root, and reciprocal square root use very fast but less precise code sequences.
6 Uses fused multiply-add instructions on architectures that support it.

S–2179–83 51

Cray C and C++ Reference Manual

2.13.1 -G level and -g

The -G level options enable the generation of debugging information used by
symbolic debuggers. These options allow debugging with breakpoints. Table 7
describes the values for the -G option.

Table 7. -G level Definitions

level Optimization
Breakpoints
Allowed On Debugging

Execution
Speed

-G0 Full Function entry and
exit

Limited Best

-G1 Partial Block boundaries Better Better

-G2 None Every executable
statement

Best Limited

-G3 Full Every executable
statement

Best:
requires
fast-track
debugger

Best

Better debugging information comes at the cost of inhibiting certain optimization
techniques, so choose the option that best fits the debugging needs of any particular
source file in an application.

The -g option is equivalent to -G0. The -g option is included for compatibility with
earlier versions of the compiler and many other UNIX systems; the -G option is the
preferred specification.

The -g and -G0 options recognize OpenMP directives and disable all optimizations.
They imply -hthread1 -homp -hfp0.

The debugging options take precedence over any conflicting options that appear on
the command line. If more than one debugging option appears, the last one specified
overrides the others.

Debugging is described in more detail in Chapter 12, Debugging Cray C and C++
Code on page 165.

2.13.2 -h [no]bounds (cc)

Default: -h nobounds

The -h bounds option provides checking of pointer and array references to ensure
that they are within acceptable boundaries. The -h nobounds option disables
these checks.

52 S–2179–83

Invoking the C and C++ Compilers [2]

For each dimension, the checks verify that the subscript is greater than or equal to 0
and less than the upper bound. For pointers, the upper bound is computed based
on the amount of the memory on the node. This amount is scaled at runtime by the
number of UPC threads in the job for UPC pointers-to-shared with definite blocksize.
For arrays, the declared (possibly implicit) upper bound of the dimension is used.
If the dimension is the THREADS-scaled dimension of a UPC shared array with
definite blocksize, the upper bound for the check is computed at runtime based on
the number of UPC threads in the job.

2.13.3 -h develop

Default: off

Reduce compile time at the expense of optimization. This option is intended to be
used when a program is under development and compiled frequently. This option
is different from and independent of the -O option. For example, -O0 disables all
optimizations, but sometimes can increase compile time because certain optimizations
reduce code size, which allow other phases of the compiler to deal with less code.

2.13.4 -h dir_check

Default: off

The -h dir_check option enables directive checking at run time. Errors detected
at compile time are reported during compilation and so are not reported at run time.
The following directives are checked: collapse, and the loop_info clauses
min_trips and max_trips. Violation of a run time check results in an immediate fatal
error diagnostic.

Warning: Optimization of enclosing and adjacent loops is degraded when run
time directive checking is enabled. This capability, though useful for debugging, is
not recommended for production runs.

2.13.5 -h nodwarf

The -h nodwarf option disables DWARF generation during compilation. By
default, DWARF source line information is generated to support traceback analysis.
-hdwarf is deprecated. This option has no affect if -g or -G dbg_opt is
specified.

2.13.6 -h gasp[=opt[:opt]]

Default: disabled

S–2179–83 53

Cray C and C++ Reference Manual

Request GASP (Global Address Space Performance Analysis) instrumentation.
Requests instrumentation of events generated by shared local accesses. Instrumenting
these events can add runtime overhead to the application. #pragma pupc
[on|off] has no effect in the current GASP implementation. Possible values for
opt:

• local

Requests instrumentation of events generated by shared local accesses.
Instrumenting these events can add runtime overhead to the application

• functions

Enables function instrumentation. Sets -hipa0. See -h ipan on page 47.

2.13.7 -h zero

The -h zero option causes stack-allocated memory to be initialized to all zeros.

2.14 Compiler Message Options
This section describes compiler options that affect messages. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

2.14.1 -h msglevel_n

Default: -h msglevel_3

The -h msglevel_n option specifies the lowest level of severity of messages to be
issued. Messages at the specified level and above are issued. Values for n are:

0 Comment

1 Note

2 Caution

3 Warning

4 Error

54 S–2179–83

Invoking the C and C++ Compilers [2]

2.14.2 -h [no]message=n[:n...]

Default: Determined by -h msglevel_n

The -h [no]message=n[:n...] option enables or disables specified compiler
messages, where n is the number of a message to be enabled or disabled. You can
specify more than one message number; multiple numbers must be separated by a
colon with no intervening spaces. For example, to disable messages CC-174 and
CC-9, specify:

-h nomessage=174:9

The -h [no]message=n option overrides -h msglevel_n for the specified
messages. If n is not a valid message number, it is ignored. Any compiler message
except ERROR, INTERNAL, and LIMIT messages can be disabled; attempts to
disable these messages by using the -h nomessage=n option are ignored.

2.14.3 -h report=args

The -h report=args option generates report messages specified in args and lets
you direct the specified messages to a file. The args field can be any combination
of the following options:

f Writes specified messages to file.V, where file is the source file
specified on the command line. If the f option is not specified,
messages are written to stderr.

i Generates inlining optimization messages.

s Generates scalar optimization messages.

v Generates vector optimization messages.

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example prints inlining and scalar optimization messages for
myfile.c:

% cc -h report=is myfile.c

The -h msgs option also provides optimization messages.

2.14.4 -h [no]abort

Default: -h noabort

The -h [no]abort option controls whether a compilation aborts if an error is
detected.

S–2179–83 55

Cray C and C++ Reference Manual

2.14.5 -h errorlimit

Default: -h errorlimit=100

The -h errorlimit[=n] option specifies the maximum number of error
messages the compiler prints before it exits, where n is a positive integer. Specifying
-h errorlimit=0 disables exiting on the basis of the number of errors.
Specifying -h errorlimit with no qualifier is the same as setting n to 1.

2.15 Compilation Phase Options
This section describes compiler options that affect compilation phases. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

2.15.1 -E

The -E option directs the compiler to execute only the preprocessor phase of the
compiler. The -E and -P options are equivalent, except that -E directs output to
stdout and inserts appropriate #line linenumber preprocessing directives. The
-E option takes precedence over the -h feonly, -S, and -c options.

When both the -E and -P options are specified, the last one specified takes
precedence.

2.15.2 -P

The -P option directs the compiler to execute only the preprocessor phase of the
compiler for each source file specified. The preprocessed output for each source file
is written to a file with a name that corresponds to the name of the source file and
has a .i suffix substituted for the suffix of the source file. The -P option is similar
to the -E option, except that #line linenumber directives are suppressed, and the
preprocessed source does not go to stdout. This option takes precedence over
-h feonly, -S, and -c.

When both the -P and -E options are specified, the last one specified takes
precedence.

2.15.3 -h feonly

The -h feonly option limits the compiler to syntax checking. The optimizer and
code generator are not executed. This option takes precedence over -S and -c.

56 S–2179–83

Invoking the C and C++ Compilers [2]

2.15.4 -S

The -S option compiles the named source files and leaves their assembly language
output in the corresponding files suffixed with a .s. If this option is used with -G or
-g, debugging information is not generated. This option takes precedence over -c.

2.15.5 -c

The -c option creates a relocatable object file for each named source file but does not
link the object files. The relocatable object file name corresponds to the name of the
source file. The .o suffix is substituted for the suffix of the source file.

2.15.6 -#, -##, and -###

The -# option produces output indicating each phase of the compilation as it is
executed. Each succeeding output line overwrites the previous line.

The -## option produces output indicating each phase of the compilation as it is
executed.

The -### option is the same as -##, except the compilation phases are not executed.

2.15.7 -W phase,"opt ..."

The -W phase option passes arguments directly to a phase of the compiling system.
Table 8 shows the system phases that phase can indicate.

Table 8. -W phase Definitions

Phase System Phase Command

0 (zero) Compiler CC and cc

a Assembler as

c CUDA linker nvlink

l Linker ld

x PTX Assembler ptxas

S–2179–83 57

Cray C and C++ Reference Manual

Arguments to be passed to system phases can be entered in either of two styles. If
spaces appear within a string to be passed, the string is enclosed in double quotes.
When double quotes are not used, spaces cannot appear in the string. Commas can
appear wherever spaces normally appear; an option and its argument can be either
separated by a comma or not separated. If a comma is part of an argument, it must
be preceded by the \ character. For example, any of the following command lines
would send -e name and -s to the linker:

% cc -Wl,"-e name -s" file.c

% cc -Wl,-e,name,-s file.c

% cc -Wl,"-ename",-s file.c

Because the preprocessor is built into the compiler, -Wp and -W0 are equivalent.

The -Wl,-rpath ldir option changes the runtime library search algorithm to look
for files in directory ldir. To request more than one library directory, specify multiple
-rpath options. Note that a library may be found at link time with a -L option, but
may not be found at run time if a corresponding -rpath option was not supplied.
Also note that the compiler driver does not pass the -rpath option to the linker. You
must explicitly specify -Wl when using this option.

At link time, all ldir arguments are added to the executable. The dynamic
linker will search these paths first for shared dynamic libraries at runtime,
with one exception. The Linux environment variable LD_LIBRARY_PATH
precedes all other search paths for shared dynamically linked libraries. The use of
LD_LIBRARY_PATH is discouraged.

!
Caution: Caution should be used when setting LD_LIBRARY_PATH. Doing so
will change the shared dynamically linked library search paths for all executable
files in your environment.

The -Wx,arg option can be used to pass command line arguments to the PTX
assembler for OpenACC applications.

The -Wc,arg option can be used to pass command line arguments to the CUDA
linker for OpenACC applications.

2.15.8 -Y phase,dirname

The -Y phase,dirname option specifies a new directory (dirname) from which the
designated phase should be executed. The values of phase are Table 9.

58 S–2179–83

Invoking the C and C++ Compilers [2]

Table 9. -Y phase Definitions

Phase System Phase Command

0 (zero) Compiler CC,cc

a Assembler as

l Linker ld

Because there is no separate preprocessor, -Yp and -Y0 are equivalent.

2.16 Preprocessing Options
This section describes compiler options that affect preprocessing. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

2.16.1 -C

The -C option retains all comments in the preprocessed source code, except those on
preprocessor directive lines. By default, the preprocessor phase strips comments from
the source code. This option is useful in combination with the -P or -E option.

2.16.2 -D macro[=def]

The -D macro[=def] option defines macro as if it were defined by a #define
directive. If no =def argument is specified, macro is defined as 1.

Predefined macros also exist; these are described in Chapter 10, Using Predefined
Macros on page 159. Any predefined macro except those required by the standard
(see Macros Required by the C and C++ Standards on page 159) can be redefined by
the -D option. The -U option overrides the -D option when the same macro name is
specified, regardless of the order of options on the command line.

2.16.3 -h [no]pragma=name[:name ...]

Default: -h pragma (no pragmas disabled)

The [no]pragma=name[:name...] option enables or disables the processing of
specified directives in the source code, where name can be the name of a directive or
a word shown in Table 10 to specify a group of directives. More than one name can
be specified. Multiple names must be separated by a colon and have no intervening
spaces.

S–2179–83 59

Cray C and C++ Reference Manual

Table 10. -h pragma Directive Processing

Name Group Directives Affected

all All All directives

allinline Inlining inline_enable,
inline_disable,
inline_reset,
inline_always,
inline_never

allscalar Scalar optimization blockable, blockingsize,
noblocking,
nointerchange, suppress,
unroll/nounroll

allvector Vectorization concurrent, novector,
loop_info, hand_tuned,
ivdep, nopattern,
novector, permutation,
pipeline/nopipeline,
prefervector,
safe_address,
safe_conditional

omp OpenMP All OpenMP directives

acc OpenACC All OpenACC directives

When using this option to enable or disable individual directives, note that some
directives must occur in pairs. For these directives, you must disable both directives if
you want to disable either; otherwise, the disabling of one of the directives may cause
errors when the other directive is (or is not) present in the compilation unit.

2.16.4 -I incldir

The -I incldir option specifies a directory for files named in #include directives
when the #include file names do not have a specified path. Each directory
specified must be specified by a separate -I option.

The order in which directories are searched for files named on #include directives
is determined by enclosing the file name in either quotation marks ("") or angle
brackets (< and >).

60 S–2179–83

Invoking the C and C++ Compilers [2]

Directories for #include "file" are searched in the following order:

1. Directory of the input file.

2. Directories named in -I options, in command-line order.

3. Site-specific and compiler release-specific include files directories.

4. Directory /usr/include.

Directories for #include <file> are searched in the following order:

1. Directories named in -I options, in command-line order.

2. Site-specific and compiler release-specific include files directories.

3. Directory /usr/include.

If the -I option specifies a directory name that does not begin with a slash (/), the
directory is interpreted as relative to the current working directory and not relative to
the directory of the input file (if different from the current working directory).

For example:

% cc -I. -I yourdir mydir/b.c

The preceding command line produces the following search order:

1. mydir (#include "file" only).

2. Current working directory, specified by -I.

3. yourdir (relative to the current working directory), specified by -I yourdir.

4. Site-specific and compiler release-specific include files directories.

5. Directory /usr/include.

2.16.5 -M

The -M option provides information about recompilation dependencies that the source
file invokes on #include files and other source files. This information is printed in
the form expected by make. Such dependencies are introduced by the #include
directive. The output is directed to stdout.

2.16.6 -nostdinc

The -nostdinc option stops the preprocessor from searching for include
files in the standard directories (/usr/include and for Cray C++ also
/usr/include/c++).

S–2179–83 61

Cray C and C++ Reference Manual

2.16.7 -U

The -U option removes any initial definition of macro. Any predefined macro except
those required by the standard (see Macros Required by the C and C++ Standards
on page 159) can be undefined by the -U option. The -U option overrides the -D
option when the same macro name is specified, regardless of the order of options on
the command line.

Predefined macros are described in Chapter 10, Using Predefined Macros on
page 159. Macros defined in the system headers are not predefined macros and are
not affected by the -U option.

2.17 Linker Options
This section describes compiler options that affect linker tasks.

2.17.1 -h [system|default]_alloc

Default: -h default_alloc

By default, the compiler uses a modified malloc implementation that offers
better support for memory needs. The -h system_alloc option directs the
compiler to link in the native malloc provided by the OS instead of the modified
implementation.

2.17.2 -h [no]pgas_runtime

Default: -h pgas_runtime

The -h pgas_runtime option directs the compiler driver to link with the runtime
libraries required when linking programs that use UPC, or coarrays, which is default.
In general, aprun must be used to launch the resulting executable.

The -hnopgas_runtime option prevents this runtime library environment from
being added to the link line. Use the -hnopgas_runtime option when you have
a program, that does not use UPC or coarrays, and you wish to execute it outside of
the aprun/alps job launch context. For example, you may wish to test a serial
program which does not contain any UPC or coarray code on a login or service node,
or fork/exec an executable on a compute node. Also, compile non-coarray Fortran
using the -hnocaf option.

2.17.3 -l libname

The -l libname option directs the compiler driver to search for the specified object
library file when linking an executable file. To request more than one library file,
specify multiple -l options.

62 S–2179–83

Invoking the C and C++ Compilers [2]

When statically linking, the compiler driver searches for libraries by prepending
ldir/lib on the front of libname and appending .a on the end of it, for each ldir that
has been specified by using the -L option. It uses the first file it finds. See also the
-L option (-L ldir on page 63).

When dynamically linking, the library search process is similar to the static case, with
a few differences. The compiler driver searches for libraries by prepending ldir/lib
on the front of libname and appending .so on the end of it, for each ldir that has
been specified by using the -L option. If a matching .so is not found, the compiler
driver replaces .so with .a and repeats the process from the beginning. It uses the
first file it finds. See also the -L option (-L ldir on page 63).

There is no search order dependency for libraries.

If you specify personal libraries by using the -l command line option, as in the
following example, those libraries are added before the default CCE library list. (The
-l option is passed to the linker.)

cc -l mylib target.c

When the previous command line is issued, the linker looks for a library named
libmylib.a (following the naming convention) and adds it to the top of the list
of default libraries.

2.17.4 -L ldir

The -L ldir option changes the -l option search algorithm to look for library files in
directory ldir during link time. To request more than one library directory, specify
multiple -L options.

The linker searches for library files in the compiler release-specific directories.

Note: Multiple -L options are treated cumulatively as if all ldir arguments
appeared on one -L option preceding all -l options. Therefore, do not attempt
to link functions of the same name from different libraries through the use of
alternating -L and -l options.

2.17.5 -o outfile

The -o outfile option produces an absolute binary file named outfile. A file named
a.out is produced by default. When this option is used in conjunction with the -c
option and a single source file, a relocatable object file named outfile is produced.

2.18 Miscellaneous Options
This section describes compiler options that affect general tasks. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

S–2179–83 63

Cray C and C++ Reference Manual

2.18.1 -h [no]acc

Default: -h acc

The -h [no]acc option enables or disables compiler recognition of OpenACC
pragmas.

2.18.2 -h cpu=target_system

The -h cpu=target_system option specifies the Cray system on which the absolute
binary file is to be executed, where target_system can be either x86-64 or opteron
(single or dual-core), barcelona or shanghai (quad-core), istanbul (6-core),
mc8 (8-core), mc12 (12-core), interlagos (16-core), interlagos-cu
(8-compute unit), abudhabi (16-core) , abudhabi-cu (8-compute unit),
ivybridge, sandybridge, or haswell.

The interlagos and abudhabi processors contain up to 8 compute units, each
of which contains two integer cores and a shared FPU. These targets assume that
the user intends to run with one thread per core (up to 16 per processor), while the
cpu-cu target assumes that the user intends to run with one thread per compute unit
(up to 8 per processor or one thread per FPU).

Rather than setting this option directly, users should load one of the targeting modules
(craype-mc12 or craype-interlagos-cu, for example). The targeting
modules set CRAY_CPU_TARGET and define paths to the corresponding libraries.
The compiler driver script translates CRAY_CPU_TARGET to the corresponding
cpu=target_system option when calling the compiler.

If the target_system is set during compilation of any source file, it must also be set to
that same target during linking and loading.

If a user wishes to override the current target_system value set by the module
environment (via the CRAY_CPU_TARGET definition), they should do so by
specifying -hcpu=target_system on the compiler command line.

See Compile Time Environment Variables on page 69. For more information, see the
Cray Application Developer's Environment User's Guide.

2.18.3 -h [no]fp_trap

Controls whether the compiler generates code that is compatible with floating-point
traps.

Default: fp_trap, if traps are enabled using the -K trap option, or if
-Ofp[0,1] is in effect. Otherwise, the default is nofp_trap. See -K
trap=opt[,opt] ... on page 67.

64 S–2179–83

Invoking the C and C++ Compilers [2]

2.18.4 -h ident=name

Default: File name specified on the command line

The -h ident=name option changes the ident name to name. This name is used
as the module name in the object file (.o suffix) and assembler file (.s suffix).
Regardless of whether the name is specified or the default name is used, the following
transformations are performed on name:

• All . characters in the ident name are changed to $.

• If the ident name starts with a number, a $ is added to the beginning of the
ident name.

2.18.5 -h keepfiles

The -h keepfiles option prevents the removal of the object (.o) and temporary
assembly (.s) files after an executable is created. Normally, the compiler
automatically removes these files after linking them to create an executable. Since the
original object files are required to instrument a program for performance analysis, if
you plan to use CrayPat to conduct performance analysis experiments, you can use
this option to preserve the object files.

2.18.6 -h keep_frame_pointer

Retain call stack information back to main entry point for CrayPat performance
sampling. Prevents call stack frame from being optimized out of a function so
CrayPat performance sampling is able to trace call stack back to entry point.

Default: off

2.18.7 -h loop_trips=[tiny | small | medium | large | huge]

Specifies runtime loop trip counts for all loops in a compiled source file. This
information is used to optimize the runtime characteristics of the application.

2.18.8 -h mpin

Enables or disables optimization of MPI operations. -h mpi1 enables this option.

Default: mpi0

2.18.9 -h network=nic

The -h network=nic option specifies the target machine's system interconnection
network. Currently, supported values for nic are gemini and aries.

S–2179–83 65

Cray C and C++ Reference Manual

2.18.10 -h [no]omp

Default: -h omp (if -O1 or higher is implied or specified)

The -h [no]omp option enables or disables compiler recognition of OpenMP
pragmas. If -O0 is specified, then -h noomp is implied. For details, see Chapter 4,
Using the OpenMP C/C++ API on page 105.

2.18.11 -h [no]omp_acc

Default: -h omp_acc

The -h [no]omp_acc option enables or disables compiler recognition of OpenMP
acc pragmas.

2.18.12 -h pic, -h PIC

Generate position independent code (PIC), which allows a virtual address change
from one process to another, as is necessary in the case of shared, dynamically linked
objects. The virtual addresses of the instructions and data in PIC code are not known
until dynamic link time. For the Cray implementation, the pic and PIC options have
the same effect and should be used to compile codes using more than 2GB of static
memory, or for creating dynamically linked libraries.

2.18.13 -h prototype_intrinsics

The -h prototype_intrinsics option simulates the effect of including
intrinsics.h at the beginning of a compilation. Use this option if the source
code does not include the intrinsics.h statement and you cannot modify the
code. This option is off by default. For details, see Appendix D, Using Intrinsic
Functions on page 215.

2.18.14 -h [no]threadsafe

Default: -h threadsafe

The -h [no]threadsafe option enables or disables the generation of threadsafe
code. Code that is threadsafe can be used with pthreads and OpenMP. This option is
not binary-compatible with code generated by Cray C 8.1 or Cray C++ 5.1 and earlier
compilers. Users who need binary compatibility with previously compiled code can
use -h nothreadsafe, which causes the compiler to be compatible with Cray C
8.1 or Cray C++ 5.1 and earlier compilers at the expense of not being threadsafe.

C or C++ code compiled with -h threadsafe (the default) cannot be linked with
C or C++ code compiled with -h nothreadsafe or with code compiled with a
Cray C 8.1, Cray C++ 5.1, or earlier compiler.

66 S–2179–83

Invoking the C and C++ Compilers [2]

2.18.15 -h upc (cc)

Default: off

The -h upc option enables compilation of Unified Parallel C (UPC) code. UPC is a
C language extension for parallel program development that allows you to explicitly
specify parallel programming through language syntax rather than through library
functions such as are used in MPI or SHMEM.

The Cray implementation of UPC is discussed in Chapter 6, Using Cray Unified
Parallel C (UPC) on page 125.

2.18.16 -K trap=opt[,opt] ...

Enable traps for the specified exceptions. By default, no exceptions are trapped.
Enabling traps by using this option also has the effect of setting -h fp_trap.

If the specified options contradict each other, the last option predominates. For
example, -K trap=none,fp is equivalent to -K trap=fp.

This option does not affect compile time optimizations; it detects runtime exceptions.
This option is processed only at link time and affects the entire program; it is not
processed when compiling subprograms. Therefore, traps may be set using this
command line option at the beginning of execution of the main program only. The
program may subsequently change these settings by calling intrinsic or library
procedures. Use of this option may require the specification of -hfp_trap when
compiling other files of the application.

See -h [no]fp_trap on page 64.

opt Exceptions

denorm Trap on denormalized operands.

divz Trap on divide-by-zero.

fp Trap on divz, inv, or ovf exceptions.

inexact Trap on inexact result (i.e., rounded result). Enabling traps for
inexact results is not recommended.

inv Trap on invalid operation.

none Disables all traps (default).

ovf Trap on overflow (i.e., the result of an operation is too large to be
represented).

unf Trap on underflow (i.e., the result of an operation is too small to be
represented).

S–2179–83 67

Cray C and C++ Reference Manual

2.18.17 -V

The -V option displays compiler version information. If the command line specifies
no source file, no compilation occurs.

Version information consists of the product name, the version number, and the current
date and time, as shown in the following example:

% CC -V
/opt/cray/xt-asyncpe/2.5/bin/CC: INFO: native target is being used
Cray C++ : Version 7.1.0.129 Thu May 21, 2009 12:59:44

2.18.18 -X npes

The -X npes option specifies the number of processing elements (PEs) that will be
specified through aprun at job launch. The value for npes ranges from 1 through
2**31 - 1 inclusive.

Ensure that you compile all object files with the same -X npes value and run the
resulting executable with that number of PEs. If you use mixed -X npes values or
if the number of PEs provided at run time differs from the -X npes value, you will
receive a run time error.

You cannot change the number of PEs to use at link or run time. You must recompile
the program with a different value for npes to change the number of PEs.

For further information about running applications, see the Cray Application
Developer's Environment User's Guide or the aprun(1) man page.

2.19 Command Line Examples
The following examples illustrate a variety of command lines for the C and C++
compiler commands:

Example 1. CC -X8 -h myprog.C

This example compiles myprog.C and fixes the number of processing elements to 8.

% CC -X8 myprog.C

Example 2. CC -h conform myprog.C

This example compiles myprog.C. The -h conform option specifies strict
conformance to the ISO C++ standard.

% CC -h conform myprog.C

Example 3. cc -c -h ipa1 myprog.c subprog.c

This example compiles input files myprog.c and subprog.c. The -c option

68 S–2179–83

Invoking the C and C++ Compilers [2]

tells the compiler to create object files myprog.o and subprog.o but not call
the linker. Option -h ipa1 tells the compiler to inline function calls marked with
the inline_always pragma.

% cc -c -h ipa1 myprog.c subprog.c

Example 4. cc -I. disc.c vend.c

This example specifies that the compiler search the current working directory,
represented by a period (.), for #include files before searching the default
#include file locations.

% cc -I. disc.c vend.c

Example 5. cc -P -D DEBUG newprog.c

This example specifies that source file newprog.c be preprocessed only.
Compilation and linking are suppressed. In addition, the macro DEBUG is defined.

% cc -P -D DEBUG newprog.c

Example 6. cc -c -h report=s mydata1.c

This example compiles mydata1.c, creates object file mydata1.o, and produces
a scalar optimization report to stdout.

% cc -c -h report=s mydata1.c

Example 7. CC -h ipa5,report=if myfile.C

This example compiles myfile.C and tells the compiler to attempt to aggressively
inline calls to functions defined within myfile.C. An inlining report is directed to
myfile.V.

% CC -h ipa5,report=if myfile.C

2.20 Compile Time Environment Variables
The following environment variables are used during compilation.

Variable Description

CRAYOLDCPPLIB

When set to a nonzero value, enables C++ code to use the following
nonstandard Cray C++ headers files:

• common.h
• complex.h
• fstream.h
• generic.h
• iomanip.h
• iostream.h
• stdiostream.h

S–2179–83 69

Cray C and C++ Reference Manual

• stream.h
• strstream.h
• vector.h

If you want to use the standard header files, your code may require
modification to compile successfully. For more information, see
Appendix B, Using Cray C and C++ Dialects on page 195.

Note: Setting the CRAYOLDCPPLIB environment variable
disables exception handling, unless you compile with the -h
exceptions option.

CRI_CC_OPTIONS
CRI_cc_OPTIONS

Specifies command line options that are applied to all compilations.
Options specified by this environment variable are added following
the options specified directly on the command line. This is especially
useful for adding options to compilations done with build tools.

Identifies your requirements for native language, local customs, and
coded character set with regard to compiler messages.

Controls the format in which you receive compiler messages.

Specifies the message system catalogs that should be used.

Specifies the number of processes used for simultaneous
compilations The default is 1. When more than one source file is
specified on the command line, compilations may be multiprocessed
by setting the environment variable NPROC to a value greater than 1.
You can set NPROC to any value; however, large values can overload
the system.

70 S–2179–83

Invoking the C and C++ Compilers [2]

2.21 Run Time Environment Variables
CRAY_MALLOPT_OFF

If set, then the system default mallopt parameters are used, instead
of the compiler default parameters. For most programs, run time
performance is improved by using the compiler defaults, but more
memory may be used.

MALLOC_MMAP_MAX_

Specifies the maximum number of memory chunks to allocate with
mmap. The compiler default value is 0. For most programs, run time
performance is improved by using the compiler default, but more
memory may be used.

MALLOC_TRIM_THRESHOLD_

Specifies the minimum size of the unused memory region at the top
of the heap before the region is returned to the operating system. The
compiler default value is 536870912 bytes. For most programs, run
time performance is improved by using the compiler default, but
more memory may be used.

PGAS_ERROR_FILE

Specifies the location to which libpgas (the library which provides
an interface to the internal system network) error messages are
written. The default is stderr. If stdout is specified, errors will
be written to standard output.

2.22 OpenMP Environment Variables
For Cray-specific information about OpenMP environment variables, see Chapter 4,
Using the OpenMP C/C++ API on page 105. For documentation of standard OpenMP
environment variables, see the OpenMP Application Program Interface Version 3.1
July 2011 standard (http://openmp.org/wp/openmp-specifications/).

S–2179–83 71

http://openmp.org/wp/openmp-specifications/

Cray C and C++ Reference Manual

72 S–2179–83

Using #pragma Directives [3]

The #pragma directives are used within the source program to request certain kinds
of special processing. The directives are part of the C and C++ languages, but the
meaning of any #pragma directive is defined by the implementation. #pragma
directives are expressed in the following form:

#pragma [_CRI] identifier [arguments]

The _CRI specification is optional; it ensures that the compiler will issue a message
concerning any directives that it does not recognize. Diagnostics are not generated for
directives that do not contain the _CRI specification.

These directives are classified according to the following types:

• General (General Directives on page 75)
• Vectorization (Vectorization Directives on page 85)
• Scalar (Scalar Directives on page 94)
• Inlining (Inlining and Cloning Directives on page 100)

Macro expansion occurs on the directive line after the directive name. That is, macro
expansion is applied only to arguments.

Note: OpenMP #pragma directives are described in Chapter 4, Using the
OpenMP C/C++ API on page 105.

At the beginning of each section that describes a directive, information is included
about the compilers that allow the use of the directive and the scope of the directive.
Unless otherwise noted, the following default information applies to each directive:

Compiler: Cray C and Cray C++

Scope: Local and global

The scoping list may also indicate that a directive has a lexical block scope. A lexical
block is the scope within which a directive is on or off and is bounded by the opening
curly brace just before the directive was declared and the corresponding closing curly
brace. Only applicable executable statements within the lexical block are affected
as indicated by the directive. The lexical block does not include the statements
contained within a procedure that is called from the lexical block.

S–2179–83 73

Cray C and C++ Reference Manual

This example code fragment shows the lexical block for the upc strict and upc
relaxed directives:

void Example(void)
{

#pragma _CRI upc strict // UPC strict state is on
...

{
... // UPC strict state is still on
#pragma _CRI upc relaxed // UPC strict state is now off
...

}

// UPC strict state is back on
...

}

3.1 Protecting Directives
To ensure that your directives are interpreted only by the Cray C and C++ compilers,
use the following coding technique in which directive is the name of the directive:

#if _CRAYC
#pragma _CRI directive

#endif

This ensures that other compilers used to compile this code will not interpret the
directive. Some compilers diagnose any directives that they do not recognize. The
Cray C and C++ compilers diagnose directives that are not recognized only if the
_CRI specification is used.

3.2 Directives in Cray C++
C++ prohibits referencing undeclared objects or functions. Objects and functions
must be declared prior to using them in a #pragma directive. This is not always the
case with C.

Some #pragma directives take function names as arguments (for example:
#pragma _CRI weak, #pragma _CRI suppress, and #pragma _CRI
inline_always name [,name ...]). Member functions and qualified names
are allowed for these directives.

3.3 Loop Directives
Many directives apply to groups. Unless otherwise noted, these directives must
appear before a for, while, or do while loop. These directives may also appear
before a label for if...goto loops. If a loop directive appears before a label that is
not the top of an if...goto loop, it is ignored.

74 S–2179–83

Using #pragma Directives [3]

3.4 Alternative Directive Form: _Pragma
Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier")

This form has the same effect as using the #pragma form, except that everything
that appeared on the line following the #pragma must now appear inside the double
quotation marks and parentheses. The expression inside the parentheses must be a
single string literal; it cannot be a macro that expands into a string literal. _Pragma
is an extension to the C and C++ standards.

The following is an example using the #pragma form:

#pragma _CRI concurrent

The following is the same example using the alternative form:

_Pragma("_CRI concurrent")

In the following example, the loop automatically vectorizes wherever the macro is
used:

#define _str(_X) # _X
#define COPY(_A, _B, _N

{
int i;
_Pragma("_CRI concurrent")
_Pragma(_str(_CRI loop_info cache_nt(_B)))
for (i = 0; i < _N; i++) {
_A[i] = _B[i];

}
}

void
copy_data(int *a, int *b, int n)
{

COPY(a, b, n);
}

Macros are expanded in the string literal argument for _Pragma in an identical
fashion to the general specification of a #pragma directive.

3.5 General Directives
General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections describe
general directives.

S–2179–83 75

Cray C and C++ Reference Manual

3.5.1 [no]autothread Directive

Scope: Local

The autothread and noautothread directives turn autothreading on and off for
selected blocks of code.

The format of these directives is as follows:

#pragma _CRI autothread
#pragma _CRI noautothread

3.5.2 [no]bounds Directive

The bounds directive specifies that pointer and array references are to be checked.
The nobounds directive specifies that this checking is to be disabled.

For each dimension, the checks verify that the subscript is greater than or equal to 0
and less than the upper bound. For pointers, the upper bound is computed based
on the amount of the memory on the node. This amount is scaled at runtime by the
number of UPC threads in the job for UPC pointers-to-shared with definite blocksize.
For arrays, the (possibly implicit) declared upper bound of the dimension is used.
If the dimension is the THREADS-scaled dimension of a UPC shared array with
definite blocksize, the upper bound for the check is computed at runtime based on
the number of UPC threads in the job.

Both directives may be used only within function bodies. They apply until the end
of the function body or until another bounds/nobounds directive appears. They
ignore block boundaries.

These directives have the following format:

#pragma _CRI bounds
#pragma _CRI nobounds

The following example illustrates the use of the bounds directive:

int a[30];
#pragma _CRI bounds
void f(void)
{

int x;
x = a[30];
.
.
.

}

76 S–2179–83

Using #pragma Directives [3]

3.5.3 cache Directive

The cache directive asserts that all memory operations with the specified symbols
as the base are to be allocated in cache. This is an advisory directive. The cache
directive is meaningful for stores in that it allows the user to override a decision made
by the automatic cache management. This directive may be locally overridden by the
use of a #pragma loop_info directive. This directive overrides automatic cache
management decisions (see -h cachen).

To use the directive, you must place it only in the specification part, before any
executable statement.

The format of the cache directive is:

#pragma _CRI cache base_name [,base_name ...]

base_name The base name of the object that should be placed into the cache.
This can be the base name of any object such as an array, scalar
structure, and so on, without member references like C[10]. If you
specify a pointer in the list, only the references, not the pointer itself,
are cached.

3.5.4 cache_nt Directive

The cache_nt directive is an advisory directive that specifies objects that should
use non-temporal reads and writes. Use this directive to identify objects that should
not be placed in cache.

The format of the cache_nt directive is:

#pragma _CRI cache_nt base_name [,base_name ...]

base_name The base name of the object that should use non-temporal reads and
writes. This can be the base name of any object such as an array,
scalar structure, and so on, without member references like C[10].
If you specify a pointer in the list, only the references, not the pointer
itself, have the cache non-temporal property.

This directive overrides the automatic cache management level that was specified
using the -h cachen option on the compiler command line. This directive may be
overridden locally by use of a loop_info directive.

S–2179–83 77

Cray C and C++ Reference Manual

3.5.5 duplicate Directive

Scope: Global

The duplicate directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using a
directive with one of the following forms:

#pragma _CRI duplicate actual as dupname...
#pragma _CRI duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate names will
be assigned. The dupname list contains the duplicate names that will be assigned to
the actual function. The dupname list may be optionally parenthesized. The word as
must appear as shown between the actual argument and the comma-separated list
of dupname arguments.

The duplicate directive can appear anywhere in the source file and it must appear
in global scope. The actual name specified on the directive line must be defined
somewhere in the source as an externally accessible function; the actual function
cannot have a static storage class.

The following example illustrates the use of the duplicate directive:

#include <complex.h>

extern void maxhits(void);

#pragma _CRI duplicate maxhits as count, quantity /* OK */

void maxhits(void)
{

#pragma _CRI duplicate maxhits as tempcount
/* Error: #pragma _CRI duplicate can't appear in local scope */

}

double _Complex minhits;

#pragma _CRI duplicate minhits as lower_limit
/* Error: minhits is not declared as a function */

extern void derivspeed(void);

#pragma _CRI duplicate derivspeed as accel
/* Error: derivspeed is not defined */

static void endtime(void)
{
}

#pragma _CRI duplicate endtime as limit
/* Error: endtime is defined as a static function */

78 S–2179–83

Using #pragma Directives [3]

Because duplicate names are simply additional names for functions and are not
functions themselves, they cannot be declared or defined anywhere in the compilation
unit. To avoid aliasing problems, duplicate names may not be referenced anywhere
within the source file, including appearances on other directives. In other words,
duplicate names may only be referenced from outside the compilation unit in which
they are defined.

The following example references duplicate names:

void converter(void)
{

structured(void);
}

#pragma _CRI duplicate converter as factor, multiplier /* OK */

void remainder(void)
{
}

#pragma _CRI duplicate remainder as factor, structured
/* Error: factor and structured are referenced in this file */

Duplicate names can be used to provide alternate external names for functions, as
shown in the following examples.

main.c:

extern void fctn(void), FCTN(void);

main()
{

fctn();
FCTN();

}

fctn.c:

#include <stdio.h>

void fctn(void)
{

printf("Hello world\n");
}

#pragma _CRI duplicate fctn as FCTN

Files main.c and fctn.c are compiled and linked using the following command
line:

% cc main.c fctn.c

When the executable file a.out is run, the program generates the following output:

Hello world
Hello world

S–2179–83 79

Cray C and C++ Reference Manual

3.5.6 ident Directive

The ident pragma directs the compiler to store the string indicated by text into
the object (.o) file. This can be used to place a source identification string into an
object file.

The format of this directive is as follows:

#pragma _CRI ident text

3.5.7 message Directive

The message directive directs the compiler to write the message defined by text to
stderr as a warning message. Unlike the error directive, the compiler continues
after processing a message directive. The format of this directive is as follows:

#pragma _CRI message "text"

The following example illustrates the use of the message compiler directive:

#define FLAG 1

#ifdef FLAG
#pragma _CRI message "FLAG is Set"
#else
#pragma _CRI message "FLAG is NOT Set"
#endif

3.5.8 [no]opt Directive

Scope: Global

The noopt directive disables all automatic optimizations and causes optimization
directives to be ignored in the source code that follows the directive. Disabling
optimization removes various sources of potential confusion in debugging. The opt
directive restores the state specified on the command line for automatic optimization
and directive recognition. These directives have global scope and override related
command line options.

The format of these directives is as follows:

#pragma _CRI opt
#pragma _CRI noopt

80 S–2179–83

Using #pragma Directives [3]

The following example illustrates the use of the opt and noopt compiler directives:

#include <stdio.h>

void sub1(void)
{

printf("In sub1, default optimization\n");
}

#pragma _CRI noopt
void sub2(void)
{

printf("In sub2, optimization disabled\n");
}
#pragma _CRI opt

void sub3(void)
{

printf("In sub3, optimization enabled\n");
}

main()
{

printf("Start main\n");
sub1();
sub2();
sub3();

}

3.5.9 prefetch Directive

The general prefetch directive instructs the compiler to generate explicit
prefetch instructions which load data from memory into cache prior to read or
write access. The memory location to be prefetched is defined by var, which specifies
any valid variable, member, or array element reference. The format of this directive
is as follows:

#pragma _CRI prefetch [([lines(num)][, level(num)] [,
write][, nt])] var[, var]...

The prefetch directive supports the following options:

lines(num) Specifies the number of cache lines to be prefetched. num is an
expression that evaluates to an integer constant at compilation time.
By default, the number of cache lines prefetched is 1.

level(num) Specifies the level of cache into which data is loaded. num is an
expression that evaluates to an integer constant at compilation time.
The cache level defaults to 1, the level closest to the processing unit.
This level specification has little effect for current x86 targets.

write Specifies that the prefetch is for data to be written. When data
is to be written, a prefetch instruction can move a block into

S–2179–83 81

Cray C and C++ Reference Manual

the cache so that the expected store will be to the cache. Prefetch
for write generally brings the data into the cache in an exclusive or
modified state. By default, the prefetch is for data to be read. If
the target architecture does not support prefetch for write, the
prefetch will automatically become a prefetch for read.

nt Specifies that the prefetch is for non-temporal data. By default,
the prefetch is for temporal data. Data with temporal locality
(persistence), is expected to be accessed multiple times.

The following example illustrates the use of the prefetch compiler directive:

void
add(long * restrict a, long * restrict b, const int n)
{

int i;

#pragma _CRI prefetch (lines(2)) b[0]

for (i = 0; i < n; i++) {
#pragma _CRI prefetch b[i+16]

a[i] += b[i];
}

return;
}

The compiler issues the prefetch instruction when it encounters the prefetch
directive. The directive allows the user to influence almost every aspect of
prefetch behavior. The default behavior prefetches one cache line, into L1 cache,
for read access, and assumes temporal locality.

The prefetch directive can be used inside and outside of loops, in a loop preamble,
or before a function call to reduce cache-miss memory latency.

The compiler will attempt to avoid multiple prefetches to the same cache line, which
can be created as a result of optimization.

All variables specified on the same prefetch directive line share the same
behavior. If different behavior is needed for different variables, use multiple
prefetch directive lines.

The general prefetch directive supersedes the effects of any relevant loop_info
[no]prefetch directives and the -h [no]autoprefetch command line
option.

The Cray Fortran compiler command line option -x prefetch can be used to
disable all general prefetch directives in Fortran source code. The Cray C and
C++ compiler command line option -h nopragma=prefetch can be used to
disable all general prefetch directives in C and C++ source code.

82 S–2179–83

Using #pragma Directives [3]

3.5.10 Probability Directives

The probability, probability_almost_always, and
probability_almost_never directives specify information used by
interprocedure analysis (IPA) and the optimizer to produce faster code sequences.
The specified probability is a hint, rather than a statement of fact. You can also
specify almost_never and almost_always by using the values 0.0 and 1.0,
respectively.

These directives have the following format:

#pragma probability const
#pragma probability_almost_always
#pragma probability_almost_never

const is an expression that evaluates to a floating point constant at compilation time.
(0.0 <= const <= 1.0.)

These directives can appear anywhere executable code is legal.

Each directive applies to the block of code where it appears. It is important to realize
that the directive should not be applied to a conditional test directly; rather, it should
be used to indicate the relative probability of a then or else branch being executed.

Example:

if (a[i] > b[i]) {
#pragma probability 0.3

a[i] = b[i];
}

This example states that the probability of entering the block of code with the
assignment statement is 0.3 or 30%. This also means that a[i] is expected to be
greater than b[i] 30% of the time.

Note that the probability directive appears within the conditional block of code,
rather than before it. This removes some of the ambiguity that has plagued other
implementations that tie the directive directly to the conditional code.

This information is used to guide inlining decisions, branch elimination
optimizations, branch hint marking, and the choice of the optimal algorithmic
approach to the vectorization of conditional code.

The following GCC-style intrinsic is also accepted when it appears in a conditional
test:

__builtin_expect(expr, const)

S–2179–83 83

Cray C and C++ Reference Manual

The following example:

if (__builtin_expect(a[i] > b[i], 0)) {
a[i] = b[i];

}

is roughly equivalent to:

if (a[i] > b[i]) {
#pragma _CRI probability_almost_never

a[i] = b[i];
}

3.5.11 weak Directive

Scope: Global

When statically linking, the weak directive specifies an external identifier that may
remain unresolved throughout the compilation. This directive has no effect when
dynamically linking. A weak external reference can be a reference to a function or
to a data object. A weak external does not increase the total memory requirements
of your program.

Declaring an object as a weak external directs the linker to do one of these tasks:

• Link the object only if it is already linked (that is, if a strong reference exists);
otherwise, leave it is as an unsatisfied external. The linker does not display an
unsatisfied external message if weak references are not resolved.

• If a strong reference is specified in the weak directive, resolve all weak
references to it.

Note: The linker treats weak externals as unsatisfied externals, so they remain
silently unresolved if no strong reference occurs during compilation. Thus, it is
your responsibility to ensure that run time references to weak external names do
not occur unless the linker (using some "strong” reference elsewhere) has actually
linked the entry point in question.

These are the forms of the weak directive:

#pragma _CRI weak var
#pragma _CRI weak sym1 = sym2

var The name of an external

sym1 Defines an externally visible weak symbol

sym2 Defines an externally visible strong symbol defined in the current
compilation.

The first form allows you to declare one or more weak references on one line. The
second form allows you to assign a strong reference to a weak reference.

The weak directive must appear at global scope.

84 S–2179–83

Using #pragma Directives [3]

The attributes that weak externals must have depend on the form of the weak directive
that you use:

• First form, weak externals must be declared, but not defined or initialized, in the
source file.

• Second form, weak externals may be declared, but not defined or initialized, in
the source file.

• Either form, weak externals cannot be declared with a static storage class.

The following example illustrates these restrictions:

extern long x;
#pragma _CRI weak x /* x is a weak external data object */
extern void f(void);
#pragma _CRI weak f /* f is a weak external function */

extern void g(void);
#pragma _CRI weak g=fun; /* g is a weak external function

with a strong reference to fun */

long y = 4;
#pragma _CRI weak y /* ERROR - y is actually defined */

static long z;
#pragma _CRI weak z /* ERROR - z is declared static */

void fctn(void)
{
#pragma _CRI weak a /* ERROR - directive must be at global scope */
}

3.6 Vectorization Directives
Because vector operations cannot be expressed directly in Cray C and C++, the
compilers must be capable of vectorization, which means transforming scalar
operations into equivalent vector operations. The candidates for vectorization are
operations in loops and assignments of structures.

The subsections that follow describe the compiler directives used to control
vectorization.

3.6.1 concurrent Directive

Scope: Local

The concurrent directive indicates that no data dependence exists between array
references in different iterations of the loop. This directive affects the loop that
immediately follows it. This can be useful for vectorization optimizations.

S–2179–83 85

Cray C and C++ Reference Manual

The format of the concurrent directive is as follows:

#pragma _CRI concurrent [safe_distance=n]

n An integer that represents the number of additional consecutive loop
iterations that can be executed in parallel without danger of data
conflict. n must be an integer constant > 0.

If SAFE_DISTANCE=n is not specified, the distance is assumed to
be infinite, and the compiler ignores all cross-iteration dependencies.

The concurrent directive is ignored if the safe_distance
clause is used and vectorization is requested on the command line.

In the following example, the concurrent directive indicates that the relationship
k>3 is true. The compiler will safely load all the array references x[i-k],
x[i-k+1], x[i-k+2], and x[i-k+3] during loop iteration i.

#pragma _CRI concurrent safe_distance=3

for (i = k + 1; i < n;i++) {
x[i] = a[i] + x[i-k];

}

3.6.2 hand_tuned Directive

The format of this directive is:

#pragma _CRI hand_tuned

This directive asserts that the code in the loop nest has been arranged by hand for
maximum performance, and the compiler should restrict some of the more aggressive
automatic expression rewrites. The compiler should still fully optimize and vectorize
the loop within the constraints of the directive.

The hand_tuned directive applies to the next loop in the same manner as the
concurrent and safe_address directives.

Warning: Use of this directive may severely impede performance. Use carefully
and evaluate before and after performance.

3.6.3 ivdep Directive

When the ivdep directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize the loop.
ivdep applies to the first for loop or while loop that follows the directive. The
directive applies to only the first loop that appears after the directive within the same
program unit.

86 S–2179–83

Using #pragma Directives [3]

Whether or not ivdep is used, conditions other than vector dependencies can inhibit
vectorization. The format of this directive is as follows:

#pragma _CRI ivdep [SAFEVL=vlen | INFINITEVL]

vlen Specifies a vector length in which no dependency will occur. vlen
must be an integer between 1 and 1024 inclusive.

INFINITEVL Specifies an infinite safe vector length. That is, no dependency will
occur at any vector length.

If no vector length is specified, the vector length used is infinity.

If a loop with an ivdep directive is enclosed within another loop with an ivdep
directive, the ivdep directive on the outer loop is ignored.

When the Cray compiler vectorizes a loop, it may reorder the statements in the source
code to remove vector dependencies. When ivdep is specified, the statements in the
loop or array syntax statement are assumed to contain no dependencies as written,
and the Cray compiler does not reorder loop statements.

3.6.4 loop_info Directive

Scope: Local

The loop_info directive allows additional information to be specified about
the behavior of a loop, including run time trip count and hints on cache allocation
strategy.

loop_info directive provides information to the optimizer and can produce faster
code sequences. loop_info is used immediately before a for loop to indicate
minimum, maximum, or estimated trip count. The compiler will diagnose misuse at
compile time (when able) or when option -h dir_check is specified at run time.

For cache allocation hints, the loop_info directive can be used to override default
settings, cache or cache_nt directives, or override automatic cache management
decisions. The cache hints are local and apply only to the specified loop nest.

S–2179–83 87

Cray C and C++ Reference Manual

The format of this directive is:

#pragma _CRI loop_info
[min_trips(c)] [est_trips(c)] [max_trips(c)][cache(
symbol[,symbol ...])][cache_nt(symbol[,symbol ...])
][prefetch] [noprefetch]

c An expression that evaluates to an integer constant at compilation
time.

min_trips Specifies guaranteed minimum number of trips.

est_trips Specifies estimated or average number of trips.

max_trips Specifies guaranteed maximum number of trips.

cache Specifies that symbol is to be allocated in cache; this is the default if
no hint is specified and the cache_nt directive is not specified.

cache_nt Specifies that symbol is to use non-temporal reads and writes.

prefetch Specifies a preference that prefetches be performed for the following
loop.

noprefetch Specifies a preference that no prefetches be performed for the
following loop.

symbol The base name of the object that should not be placed into the cache.
This can be the base name of any object (such as an array or scalar
structure) without member references like C[10]. If you specify
a pointer in the list, only the references, not the pointer itself, have
the no cache allocate property.

Example 8. Trip counts

In the following example, the minimum trip count is 1 and the maximum trip count
is 1000:

void
loop_info(double *restrict a, double *restrict b, double s1, int n)
{

int i;

#pragma _CRI loop_info min_trips(1) max_trips(1000), cache_nt(b)
for (i = 0; i< n; i++) {

if(a[i] != 0.0) {
a[i] = a[i] + b[i]*s1;

}
}

}

88 S–2179–83

Using #pragma Directives [3]

3.6.5 loop_info prefer_thread, prefer_nothread Directives

Scope: Local

Use these directives to indicate a preference for turning threading on or off for
selected loops. Use the loop_info prefer_thread directive to indicate your
preference that the loop following the directive be threaded. The loop_info
prefer_nothread indicates your preference that the loop following the directive
should not be threaded.

The format of these directives is:

#pragma _CRI loop_info prefer_thread
#pragma _CRI loop_info prefer_nothread

3.6.6 nopattern Directive

Scope: Local

The nopattern directive disables pattern matching for the loop immediately
following the directive.

The format of this directive is as follows:

#pragma _CRI nopattern

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library functions. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with very
low trip counts. In such a case, you can use the nopattern directive to disable
pattern matching and cause the compiler to generate inline code.

In the following example, placing the nopattern directive in front of the outer loop
of a nested loop turns off pattern matching for the matrix multiply that takes place
inside the inner loop:

double a[100][100], b[100][100], c[100][100];

void nopat(int n)
{

int i, j, k;

#pragma _CRI nopattern
for (i=0; i < n; ++i) {
for (j = 0; j < n; ++j) {

for (k = 0; k < n; ++k) {
c[i][j] += a[i][k] * b[k][j];

}
}

}
}

S–2179–83 89

Cray C and C++ Reference Manual

3.6.7 [no]vector Directive

[no]vector controls vectorization of for loops. It may affect specific
optimizations.

#pragma _CRI vector [clause[, clause]...]
#pragma _CRI novector

The novector directive suppresses compiler attempts to vectorize loops and array
syntax statements. It overrides any other vectorization-related directives, as well as
the -h vector and -O vectorn command line options. These directives are
ignored if vectorization or scalar optimization has been disabled.

In C/C++, the novector directive applies only to the following loop. When applied
to an outer loop in a nest, the directive also applies to all inner loops.

After a vector directive is specified, automatic vectorization is enabled for all loop
nests.

The vector directive supports the following optional clauses:

always Vectorize the loop that immediately follows the directive. This
directive states a vectorization preference and does not guarantee that
the loop has no memory-dependence hazard. This directive has the
same effect as the prefervector(7) directive.

aligned Directs the compiler to generate aligned data movement instructions
for array references when vectorizing. For current INTEL processors,
data alignment is necessary for efficient vectorization. Use with care
to improve performance. If some of the access patterns are actually
unaligned, using the ALIGNED clause may generate incorrect code.
This directive also directs the compiler to ignore explicit and implicit
vector dependencies.

unaligned Directs the compiler to generate unaligned data movement
instructions for all array references when vectorizing.

The following example illustrates the use of the novector compiler directive:

#pragma _CRI novector
for (i = 0; i < h; i++) { /* Loop not vectorized */

a[i] = b[i] + c[i];
}

3.6.8 permutation Directive

The permutation directive specifies that an integer array has no repeated values.
This directive is useful when the integer array is used as a subscript for another array
(vector-valued subscript). This directive may improve code performance.

This directive has the following format:

#pragma _CRI permutation symbol [, symbol] ...

90 S–2179–83

Using #pragma Directives [3]

In a sequence of array accesses that read array element values from the specified
symbols with no intervening accesses that modify the array element values, each of
the accessed elements will have a distinct value.

When an array with a vector-valued subscript appears on the left side of the equal
sign in a loop, many-to-one assignment is possible. Many-to-one assignment occurs if
any repeated elements exist in the subscripting array. If it is known that the integer
array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case, an
integer array is used to select only the desired elements, and no repeated elements
exist in the integer array, as in the following example:

int *ipnt;
#pragma permutation ipnt
...

for (i = 0; i < N; i++) {
a[ipnt[i]] = b[i] + c[i];

}

The permutation directive does not apply to the array a. Rather, it applies to the
pointer used to index into it, ipnt. By knowing that ipnt is a permutation, the
compiler can safely generate an unordered scatter for the write to a.

3.6.9 [no]pipeline Directive

Software-based vector pipelining (software vector pipelining) provides additional
optimization beyond the normal hardware-based vector pipelining. In software vector
pipelining, the compiler analyzes all vector loops and automatically attempts to
pipeline a loop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler either does not pipeline a loop that could be pipelined or
pipelines a loop without producing performance gains. In these situations, you can
use the pipeline or nopipeline directive to advise the compiler to pipeline or
not pipeline the loop immediately following the directive.

Software vector pipelining is valid only for the innermost loop of a loop nest.

The pipeline and nopipeline directives are advisory only. While you can
use the nopipeline directive to inhibit automatic pipelining, and you can use the
pipeline directive to attempt to override the compiler's decision not to pipeline a
loop, you cannot force the compiler to pipeline a loop that cannot be pipelined.

Loops that have been pipelined are so noted in loopmark listing messages.

The formats of the pipelining directives are as follows:

#pragma _CRI pipeline
#pragma _CRI nopipeline

S–2179–83 91

Cray C and C++ Reference Manual

3.6.10 prefervector Directive

Scope: Local

The prefervector pragma directs the compiler to vectorize the loop immediately
following the directive if the loop contains more than one loop in the nest that can be
vectorized. The directive states a vectorization preference and does not guarantee that
the loop has no memory-dependence hazard.

The format of this directive is:

#pragma _CRI prefervector

The following example illustrates the use of the prefervector directive:

float a[1000], b[100][1000];

void
f(int m, int n)
{

int i, j;

#pragma _CRI prefervector
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {

a[i] += b[j][i];
}

}
}

In this example, both loops can be vectorized, but the directive directs the compiler to
vectorize the outer for loop. Without the directive and without any knowledge of
n and m, the compiler would vectorize the inner loop.

3.6.11 pgo loop_info Directive

Scope: Local

The format of this directive is as follows:

#pragma _CRI pgo loop_info

The pgo loop_info directive enables profile-guided optimizations by tagging
loopmark information as having come from profiling. For information about CrayPat
and profile information, see the Using Cray Performance Measurement and Analysis
Tools guide.

3.6.12 safe_address Directive

Scope: Local

The format of this directive is as follows:

#pragma _CRI safe_address

92 S–2179–83

Using #pragma Directives [3]

The safe_address directive specifies that it is safe to speculatively execute
memory references within all conditional branches of a loop. In other words, you
know that these memory references can be safely executed in each iteration of the
loop.

For most code, the safe_address directive can improve performance significantly
by preloading vector expressions. However, most loops do not require this directive
to have preloading performed. The directive is required only when the safety of the
operation cannot be determined or index expressions are very complicated.

The safe_address directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on a loop and the compiler determines that it would
benefit from the directive, it issues a message indicating such. The message is similar
to this:

CC-6375 cc: VECTOR File = ctest.c, Line = 6
A loop would benefit from "#pragma safe_address".

If you use the directive on a loop and the compiler determines that it does not benefit
from the directive, it issues a message that states the directive is superfluous and
can be removed.

To see the messages, you must use the -h report=v or -h msgs option.

!
Caution: Incorrect use of the directive can result in segmentation faults, bus errors,
or excessive page faulting. However, it should not result in incorrect answers.
Incorrect usage can result in very severe performance degradations or program
aborts.

In the example below, the compiler will not preload vector expressions, because the
value of j is unknown. However, if you know that references to b[i][j] is safe
to evaluate for all iterations of the loop, regardless of the condition, you can use the
safe_address directive for this loop as shown below:

void x3(double a[restrict 1000], int j)
{

int i;
#pragma _CRI safe_address

for (i = 0; i < 1000; i++) {
if (a[i] != 0.0) {

b[j][i] = 0.0;
}

}
}

With the directive, the compiler can safely load b[i][j] as a vector, merge 0.0
where the condition is true, and store the resulting vector safely.

S–2179–83 93

Cray C and C++ Reference Manual

3.6.13 safe_conditional Directive

The safe_conditional directive specifies that it is safe to execute all references
and operations within all conditional branches of a loop. In other words, you know
that these memory references can be safely executed in each iteration of the loop.
This directive specifies that memory and arithmetic operations are safe.

This directive applies to scalar and vector loop nests. It can improve performance by
allowing the hoisting of invariant expressions from conditional code and by allowing
prefetching of memory references.

The safe_conditional directive is an advisory directive. That is, the compiler
may override the directive if it determines the directive is not beneficial.

!
Caution: Incorrect use of the directive can result in segmentation faults, bus errors,
excessive page faulting, or arithmetic aborts. However, it should not result in
incorrect answers. Incorrect usage can result in severe performance degradations
or program aborts.

The safe_conditional directive has the following format:

#pragma _CRI safe_conditional

In the following example, without the safe_conditional directive, the compiler
cannot precompute the invariant expression s1*s2 because their values are unknown
and may cause an arithmetic trap if executed unconditionally. However, if you know
that the condition is true at least once, then s1*s2 is safe to speculatively execute.
The safe_conditional compiler directive can be used to imply the safety of the
operation. With the directive, the compiler evaluates s1*s2 outside of the loop,
rather than under control of the conditional code. In addition, all control flow is
removed from the body of the vector loop, because s1*s2 no longer poses a safety
risk.

void
safe_cond(double a[restrict 1000], double s1, double s2)
{

int i;

#pragma _CRI safe_conditional
for (i = 0; i< 1000; i++) {

if(a[i] != 0.0) {
a[i] = a[i] + s1*s2;

}
}

}

3.7 Scalar Directives
This section describes the scalar optimization directives, which control aspects of
code generation, register storage, and other scalar operations.

94 S–2179–83

Using #pragma Directives [3]

3.7.1 blockable Directive

The blockable directive specifies that it is legal to cache block the subsequent
loops.

The format of this directive is as follows:

#pragma _CRI blockable (nest-depth)

where nest-depth specifies the depth of the loop nest to be blocked.

This directive instructs the compiler to perform a cache blocking rewrite in which
the following nest-depth loops participate. The nest to be transformed must be
a fully-permutable, perfect, rectangular nest. A fully-permutable nest is a nest
that may be legally interchanged in any order. To be perfect, a nest must have no
statements between the participating loops. Rectangular means that the lower and
upper bounds (and stride) of each loop must be independent of the value of the
loop control variables of all enclosing member loops in the rewrite set. Though the
compiler will catch some misuse of this directive, it will not detect all misuses. The
blockingsize directive may be used to control the size and shape of the cache
block, otherwise known as a tile.

3.7.2 blockingsize Directive

When a loop is annotated with a blockingsize directive, and this loop is to be
cache blocked automatically or by blockable directive, the indicated blocking
factors are employed. In the absence of a blockingsize directive, the compiler
will select blocking factors.

The compiler attempts to include this loop within cache, but it cannot guarantee this.

The formats of this directive is as follows:

#pragma _CRI blockingsize (n1,[,n2])

where n1 and n2 are integer constants that indicate the block size, with 0 <= n1 <=
n2 <= 2**30.

Note: The Cray compiler only blocks one level of cache – the secondary cache,
which is specified by n2. If a single is block size is specified, it is interpreted as the
blocking factor for the secondary cache.

A loop with blockingsize n > 1 is strip mined to length n as shown:

do ii = 1, trips, n
do i = ii, min(ii + n - 1, trips)

S–2179–83 95

Cray C and C++ Reference Manual

To fully understand the interaction of blockingsizes, it is helpful to examine the two
steps employed by the compiler:

1. Strip mine blockable nest members according to blockingsize

• if n > 1, strip mine by n, creating loop_outer and loop_inner.

• if n = 0, do not strip mine, treat loop as loop_inner. Full tripcount. The entire
loop is inside the block.

• if n = 1, do not strip mine, treat loop as loop_outer.

2. Interchange the loops resulting from previous step so all "outer" loops are outside
the "inner" loops and the relative order within each subset is preserved.

3.7.3 noblocking Directive

The noblocking directive asserts that the loop following the directive should
not be cache blocked for the primary or secondary cache. It is an error to place a
noblocking directive before a loop that is part of a blockable collection.

The format of this directive is as follows:

#pragma _CRI noblocking

3.7.4 collapse and nocollapse Directives

Scope: Local

The loop collapse directives control collapse of the immediately following loop nest.

The formats of these directives are as follows:

#pragma _CRI collapse(loop-number1,loop-number2[,loop-number3] ...)
#pragma _CRI nocollapse

When the collapse directive is applied to a loop nest, the loop numbers of the
participating loops must be listed in order of increasing access stride. Loop numbers
range from 1 to the nesting level of the most deeply nested loop. The directive
enables the compiler to assume appropriate conformity between trip counts. The
compiler diagnoses misuse at compile time (when able); or, if -h dir_check
is specified, at run time.

The nocollapse directive disqualifies the immediately following loop from
collapsing with any other loop. Collapse is almost always desirable, so use this
directive sparingly.

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate values of
original loop control variables. The rediscovery cost, which generally involves integer
division, is quite high. Therefore, coalesce is rarely suitable for vectorization. It may
be beneficial for multithreading.

96 S–2179–83

Using #pragma Directives [3]

By definition, loop collapse occurs when loop coalesce may be done without the
rediscovery overhead. To meet this requirement, all memory accesses must have
uniform stride.

3.7.5 [no]interchange Directive

Scope: Local

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the
loops that they immediately precede.

The formats of these directives are as follows:

#pragma _CRI interchange(loop_number1, loop_number2[, loop_number3] ...)
#pragma _CRI nointerchange

The first format specifies two or more loop numbers. Loop numbers range from 1 to
nesting depth of the most deeply nested loop. They can be specified in any order, and
the compiler reorders the loops. The loops must be perfectly nested. If the loops are
not perfectly nested, you may receive unexpected results. The compiler reorders the
loops such that the loop with loop-number1 is outermost, then loop-number2, then
loop-number3.

The second format inhibits loop interchange on the loop that immediately follows
the directive.

In the following example, the interchange directive reorders the loops; the k loop
becomes the outermost and the i loop the innermost:

#define N 100

A[N][N][N];

void
f(int n)
{

int i, j, k;

#pragma _CRI interchange(2, 3, 1)
for (i=0; i < n; i++) {
for (k=0; k < n; k++) {

for (j = 0; j < n; j++) {
A[k][j][i] = 1.0;

}
}

}
}

3.7.6 suppress Directive

The suppress directive suppresses optimization in two ways, determined by its use
with either global or local scope.

S–2179–83 97

Cray C and C++ Reference Manual

The global scope suppress directive specifies that all associated local variables are
to be written to memory before a call to the specified function. This ensures that the
value of the variables will always be current.

The global suppress directive takes the following form:

#pragma _CRI suppress func...

The local scope suppress directive stores current values of the specified variables
in memory. If the directive lists no variables, all variables are stored to memory.
This directive causes the values of these variables to be reloaded from memory at the
first reference following the directive.

The local suppress directive has the following format:

#pragma _CRI suppress [var] ...

The net effect of the local suppress directive is similar to declaring the affected
variables to be volatile except that the volatile qualifier affects the entire
program, whereas the local suppress directive affects only the block of code
in which it resides.

3.7.7 [no]unroll Directive

Scope: Local

The unroll directive allows the user to control unrolling for individual loops or to
specify no unrolling of a loop. Loop unrolling can improve program performance by
revealing cross-iteration memory optimization opportunities such as read-after-write
and read-after-read. The effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size
• Reduced loop overhead
• Improved chances for cache hits

The formats for these compiler directives are:

#pragma _CRI unroll n
#pragma _CRI nounroll

The nounroll directive disables loop unrolling for the next loop. The nounroll
directive is functionally equivalent to the unroll 0 and unroll 1 directives.

The n argument applies only to the unroll directive and specifies no loop unrolling
(n = 0 or 1) or the total number of loop body copies to be generated (2 ≤ n ≤ 63).

If you do not specify a value for n, the compiler will determine the number of copies
to generate based on the number of statements in the loop nest.

Note: The compiler cannot always safely unroll non-innermost loops due to data
dependencies. In these cases, the directive is ignored (see Example 10).

98 S–2179–83

Using #pragma Directives [3]

The unroll directive can be used only on loops with iteration counts that can be
calculated before entering the loop. If unroll is specified on a loop that is not the
innermost loop in a loop nest, the inner loops must be nested perfectly. That is, all
loops in the nest can contain only one loop, and the innermost loop can contain work.

Example 9. Unrolling outer loops

In the following example, assume that the outer loop of the following nest will be
unrolled by 2:

#pragma _CRI unroll 2
for (i = 0; i < 10; i++) {

for (j = 0; j < 100; j++) {
a[i][j] = b[i][j] + 1;

}
}

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent:

for (i = 0; i < 10; i += 2) {
for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;
}
for (j = 0; j < 100; j++) {

a[i+1][j] = b[i+1][j] + 1;
}

}

The compiler then jams, or fuses, the inner two loop bodies, producing the following
nest:

for (i = 0; i < 10; i += 2) {
for (j = 0; j < 100; j++) {

a[i][j] = b[i][j] + 1;
a[i+1][j] = b[i+1][j] + 1;

}
}

Example 10. Illegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the
semantics of the original program. For example, unrolling the following loop nest
on the outer loop would change the program semantics because of the dependency
between a[i][...] and a[i+1][...]:

/* directive will cause incorrect code due to dependencies! */
#pragma _CRI unroll 2
for (i = 0; i < 10; i++) {

for (j = 1; j < 100; j++) {
a[i][j] = a[i+1][j-1] + 1;

}
}

S–2179–83 99

Cray C and C++ Reference Manual

3.7.8 nofission Directive

Scope: Local

The nofission directive instructs the compiler not to split statements in a given
loop into distinct loops. Fission is prevented only for the loop specified; loops nested
within the indicated loop remain fission candidates unless likewise annotated.

3.7.9 [no]fusion Directive

Scope: Local

The nofusion directive instructs the compiler to not attempt loop fusion on the
following loop even when the -h fusion option was specified on the compiler
command line. The fusion directive instructs the compiler to attempt loop
fusion on the following loop unless -h nofusion was specified on the compiler
command line.

The formats for these compiler directives are:

#pragma _CRI fusion
#pragma _CRI nofusion

3.8 Inlining and Cloning Directives
Inlining and cloning directives can only appear in local scope — inside a function
definition.

Inlining directives always take precedence over the command line settings with the
exception of -h ipa0, which instructs the compiler to ignore inlining directives.

Cloning directives are enabled with -h ipa5.

3.8.1 inline_enable, inline_disable, and inline_reset Directives

The inline_enable pragma directs the compiler to attempt to inline functions at
call sites. It has the following format:

#pragma _CRI inline_enable

The inline_disable directive tells the compiler to not inline functions at call
sites. It has the following format:

#pragma _CRI inline_disable

The inline_reset directive returns the inlining state to the state specified on the
command line (-h ipan). It has the following format:

#pragma _CRI inline_reset

The following example illustrates the use of these directives.

100 S–2179–83

Using #pragma Directives [3]

Example 11. Using the inline_enable, inline_disable, and inline_reset
directives

The following code fragment shows how the inline_enable,
inline_disable, and inline_reset directives would affect code compiled
with the -h ipa4 option:

void qux(int x)
{
void bar(void);
int a = 1;

x = a+a+a+a+a+a+a+a+a+a+a+a;
bar();

}

void foo(void)
{
int j = 1;

/* enable inlining at all call sites here forward */
#pragma _CRI inline_enable
qux(j);
qux(j);

/* disable inlining at all call sites here forward */
#pragma _CRI inline_disable
qux(j);

/* reset control to the command line -hipa4 */
#pragma _CRI inline_reset
qux(j);

}

Example 12. Using inline_reset

The following code fragment shows how the #pragma _CRI inline_reset
directive would affect code compiled with the -h ipa3 option:

void f1()
{
#pragma _CRI inline_disable /* No inlining will be done in f1;

...
}

void f2()
{
/* turn off all inlining to the end of the routine or another directive is encountered. */
#pragma _CRI inline_disable

...

/* The inlining state is -h ipa3 for the remainder of f2 */
#pragma _CRI inline_reset

...
}

S–2179–83 101

Cray C and C++ Reference Manual

3.8.2 inline_always and inline_never Directives

The inline_always directive specifies functions that the compiler should always
attempt to inline. If the directive is placed in the definition of the function, inlining
is attempted at every call site to name in the entire input file being compiled. If the
directive is placed in a function other than the definition, inlining is attempted at
every call site to name within the specific function containing the directive.

The format of the inline_always directive is as follows:

#pragma _CRI inline_always name [,name] ...

The inline_never directive specifies functions that are never to be inlined. If the
directive is placed in the definition of the function, inlining is never attempted at any
call site to name in the entire input file being compiled. If the directive is placed in a
function other than the definition, inlining is never attempted at any call site to name
within the specific function containing the directive.

The format of the inline_never directive is as follows:

#pragma _CRI inline_never name [,name] ...

The name argument is the name of a function.

When applied to a function template specialization, the inlining directive will apply
to all instantiations of the template, not just the specialization. For example, in the
following case, both foo<double> and foo<float> will be affected by the
inline_always directive:

template<typename T>
int foo(T i, int j) {

return j;
}

template <>
int foo(double f, int i) {
#pragma _CRI inline_always foo

return i + 5;
}

int bar(float f,int i) {
return foo(f,i);

}

int main(void) {
foo(1.0,7);
bar(1.0,7);
return 0;

}

3.8.3 clone_enable, clone_disable, clone_reset Directives

The clone_enable and clone_disable directives control whether cloning is
attempted over a range of code.

102 S–2179–83

Using #pragma Directives [3]

If clone_enable is in effect, cloning is attempted at call sites. If
clone_disable is in effect, cloning is not attempted at call sites.

The clone_reset directive resets cloning to the state specified on the compiler
command line.

These directives have the following formats:

#pragma _CRI clone_enable
#pragma _CRI clone_disable
#pragma _CRI clone_reset

One of these directives remains in effect until the opposite directive is encountered,
until the end of the program unit, or until the clone_reset directive is
encountered.

3.8.4 clone_always and clone_never Directives

The clone_always and clone_never directives specify functions or procedures
that the compiler should always/never attempt to clone. If the directive is placed in
the definition of the function, cloning is always/never attempted at every call site to
name in the entire input file being compiled. If the directive is placed in a function
other the definition, cloning is always/never attempted at every call to name within
the specific function containing the directive.

The clone_always, clone_never directives control cloning of a procedure for
the compilation of the whole input file.

Use compile options -hipaN or -OipaN where N is equal to 5 to enable cloning
directives.

These directives have the following formats:

#pragma _CRI clone_always name [,name ...]
#pragma _CRI clone_never name [,name ...]

!DIR$ CLONEALWAYS name [,name ...]
!DIR$ CLONENEVER name [,name ...]

The name argument is the name of a function.

3.9 PGAS Directive

3.9.1 defer_sync Directive

The defer_sync directive defers the synchronization of PGAS data until the next
synchronization.

S–2179–83 103

Cray C and C++ Reference Manual

Normally the compiler synchronizes the references in a statement as late as possible
without violating program semantics. The purpose of the defer_sync directive is
to synchronize the references even later, beyond where the compiler can determine it
is safe. PGAS data references made by the single statement immediately following
the pgas defer_sync directive are not synchronized until the next fence
instruction.

Use this directive to force all references in the next statement to be non-blocking.
This helps for cases where the compiler cannot prove that it is safe. For example,
if there is a remote-memory access (RMA) put near the end of a subroutine, the
compiler must guard against the put value being read back immediately after
the subroutine returns, so the put is synchronized just before returning. The
programmer, however, may know that the value is not read back and can insert a
pgas defer_sync directive.

The format is as follows:

#pragma pgas defer_sync

Example 13. Using defer_sync

void my_put(shared int* x, int thread, int value) {
#pragma pgas defer_sync

x[thread] = value;
}

104 S–2179–83

Using the OpenMP C/C++ API [4]

OpenMP is a parallel programming model that is portable across shared memory
architectures from Cray and other vendors.

The OpenMP C/C++ specification is accessible at
http://openmp.org/wp/openmp-specifications/.

4.1 Standard Support
This compiler supports the OpenMP API, Version 3.1 (OpenMP Application Program
Interface Version 3.1 July 2011 Copyright © 1997-2011 OpenMP Architecture
Review Board), with a few exceptions. See Limitations on page 113.

4.2 Cray Enhancements
This section describes features not described by the API specification which are
included in Cray's implementation of OpenMP.

4.2.1 cray_omp_set_wait_policy()

This routine allows dynamic modification of the wait-policy-var ICV value,
which corresponds to the OMP_WAIT_POLICY environment variable. The policy
argument provides a hint to the OpenMP runtime library environment about the
desired behavior of waiting threads; acceptable values are ACTIVE or PASSIVE
(case insensitive). It is an error to call this routine in an active parallel region.

The OpenMP runtime library supports a "wait policy" and a "contention policy", both
of which can be set with the following environment variables:

OMP_WAIT_POLICY=(ACTIVE|PASSIVE)
CRAY_OMP_CONTENTION_POLICY=(Automatic|Standard|MonitorMwait|IntegerDivision)

S–2179–83 105

http://openmp.org/wp/openmp-specifications/

Cray C and C++ Reference Manual

These environment variables allow the policies to be set once at program launch for
the entire execution. However, in some circumstances it would be useful for the
programmer to explicitly change the policy at various points during a program's
execution. This cray-specific routine allows the programmer to dynamically change
the wait policy (and potentially the contention policy). This addresses the situation
when an application needs OpenMP for the first part of program execution, but
there is a clear point after which OpenMP is no longer used. Unfortunately, the
idle OpenMP threads still consume resources since they are waiting for more work,
resulting in performance degradation for the remainder of the application. A
passive-waiting policy might eliminate the performance degradation after OpenMP is
no longer needed, but the developer may still want an active-waiting policy for the
openmp-intensive region of the application. This routine notifies all threads of the
policy change at the same time, regardless of whether they are idle or active (to avoid
deadlock from waiting and signaling threads using different policies).

4.2.2 CRAY_OMP_CHECK_AFFINITY Environment Variable

Setting this environment variable to TRUE at execution time causes the CCE OpenMP
runtime environment to display affinity binding for each OpenMP thread. The
messages contain hostname, process identifier, OS thread identifier, OpenMP thread
identifier, and affinity binding.

4.3 Compiling
By default, the CCE compiler recognizes OpenMP directives. These Cray C and C++
Compiler options affect OpenMP applications:

• -h [no]omp (-h [no]omp on page 66)
• -h threadn (-h threadn on page 41)

4.4 Executing
For OpenMP applications, use both the OMP_NUM_THREADS environment variable
to specify the number of threads and the aprun -d depth option to specify
the number of CPUs hosting the threads. The number of threads specified by
OMP_NUM_THREADS should not exceed the number of cores in the CPU.

If neither the OMP_NUM_THREADS environment variable nor the
omp_set_num_threads() call is used to set the number of OpenMP threads,
the system defaults to 1 thread.

For further information, including example OpenMP programs, see the Cray
Application Developer's Environment User's Guide.

106 S–2179–83

Using the OpenMP C/C++ API [4]

4.5 Debugging
The -g option provides debugging support for OpenMP directives. The -g option
provides debugging support identical to specifying the -G0 option. This level of
debugging implies -homp (most optimizations disabled but OpenMP directives are
recognized) and -h fp0.

If you want to debug without OpenMP, use -g -xomp or -g -hnoomp, which will
disable OpenMP and turn on debugging.

4.6 Cray Implementation Defined Behaviors
The OpenMP Application Program Interface Specification, Appendix E presents a list
of implementation defined behaviors. This section presents a corresponding list of
Cray specific behavior:

• Task scheduling points in untied task regions

There are no untied tasks in Cray's implementation of OpenMP.

• Atomicity of memory access by multiple threads

When multiple threads access the same shared memory location and at least one
thread is a write, threads should be ordered by explicit synchronization to avoid
data race conditions and the potential for non-deterministic results. Always use
explicit synchronization for any access smaller than one byte.

• Initial values of internal control variables

nthreads-var 1

dyn-var TRUE

run-sched-var static, 0

stacksize-var 128 MB

wait-policy-var ACTIVE

thread-limit-var 64

max-active-levels-var 1

def-sched-var static, 0

• Dynamic adjustment of threads

dyn-var is supported and enabled by default. It behaves according to Algorithm
2-1 (See Section 2.4.1 of the OpenMP specifications). Threads may be
dynamically created up to an upper limit which is 4 times the number of
cores/node. It is up to the programmer to try to limit oversubscription.

S–2179–83 107

Cray C and C++ Reference Manual

• loop directive

The integer type or kind used to compute the iteration count of a collapsed loop
are signed 64-bit integers, regardless of how the original induction variables and
loop bounds are defined.

If the schedule specified by the runtime schedule clause is specified and
run-sched-var is auto, then the Cray implementation generates a static schedule.

• sections directive

Multiple structured blocks within a single sections construct are scheduled in
lexical order and an individual block is assigned to the first thread that reaches it.
It is possible for a different thread to execute each section block, or for a single
thread to execute multiple section blocks. There is not a guaranteed order of
execution of structured blocks within a section.

• single directive

A single block is assigned to the first thread in the team to reach the block; this
thread may or may not be the master thread.

• atomic directive

Different optimization levels produce different behavior. At thread-level 1
and lower (-hthread1), the atomic construct is transformed into a critical
section with a shared lock between all atomic regions. This approach enforces
mutual exclusion with respect to all atomic constructs. At thread-level 2 and
above (-hthread2), the compiler will use hardware atomic instructions when
available, which allows atomic constructs that access independent memory
locations to execute in parallel. Data types larger than 64-bits are not supported
by hardware atomic instructions; in these cases an atomic construct is transformed
into a critical section with a shared lock between all atomic regions, regardless of
the optimization level.

Note: For all data types that are 64-bits or less, we use hardware atomic
instructions. In Fortran we can have 128-bit floats and 64-bit complex (128-bits
of total data), and for those types we fall back to a critical section.

• omp_set_num_threads routine

Sets nthreads-var to a positive integer. If the argument is < 1, then set
nthreads-var to 1.

• omp_set_schedule routine

Sets the schedule type as defined by the current specification. There are no
implementation defined schedule types.

• omp_set_max_active_levels routine

Sets the max-active-levels-var ICV. Defaults to 1. If argument is < 1, then set to 1.

108 S–2179–83

Using the OpenMP C/C++ API [4]

• omp_get_max_active_levels routine

There is a single max-active-levels-var ICV for the entire runtime system. Thus, a
call to omp_get_max_active_levels will bind to all threads, regardless
of which thread calls it.

• OMP_SCHEDULE environment variable

If the value of the variable does not conform to the specified format then print a
warning and default to static with chunk 1 (each thread is a single iteration).

• OMP_NUM_THREADS environment variable

aprun -d depth has no effect on OMP_NUM_THREADS, but the programmer
should usually set them to be equal. OMP_NUM_THREADS determines the
number of threads that the program should create, while aprun -d depth
determines the number of hardware cores that are available for the program to
run on. Setting OMP_NUM_THREADS lower than depth will likely result in
under-utilization of the allocated cores, while setting OMP_NUM_THREADS
higher than depth will likely result in over-utilization of the allocated cores.

• OMP_DYNAMIC environment variable

If the value is neither true nor false, print a warning and set to default
(true).

• OMP_NESTED environment variable

If the value is neither true nor false, print a warning and set to default
(true).

• OMP_STACKSIZE

• OMP_WAIT_POLICY environment variable

active causes idle threads to use a spin-wait loop, consuming compute
resources. passive causes idle threads to enter a blocked wait state, which does
not consume compute resources but has a higher wake-up latency.

• OMP_MAX_ACTIVE_LEVELS

If the value is less than 1, it is set to 1. There is no explicit upper limit on the
maximum number of active levels of parallelism; rather, the limit is determined
by the maximum number of threads and the available memory. Additional levels
of parallelism may be created after the thread limit is reached, but they will run
with only one thread.

• OMP_THREAD_LIMIT

Max number of threads is 1024. No warning if try to exceed that. If < 1,
4*(cores/node) (default)

S–2179–83 109

Cray C and C++ Reference Manual

Fortran only implementation specific behavior:

• threadprivate directive

If the conditions for values of data in the threadprivate objects of threads
(other than the initial thread) to persist between two consecutive active parallel
regions do not all hold, the allocation status of an allocatable array in the second
region is implementation defined (see Section 2.9.2 on page 81). If a number
of threads remain which is less than the allocated number, and if the number of
threads increase, then new threads will allocate data.

• shared clause

Passing a shared variable to a non-intrinsic procedure may result in the value of
the shared variable being copied into temporary storage before the procedure
reference, and back out of the temporary storage into the actual argument storage
after the procedure reference. Situations where this occurs other than those
specified are implementation defined (see Section 2.9.3.2 on page 88). Copies are
used only where required by the Fortran spec. Put interface block in place.

• Runtime library definitions

It is implementation defined whether the include file omp_lib.h or the module
omp_lib (or both) is provided. It is implementation defined whether any
of the OpenMP runtime library routines that take an argument are extended
with a generic interface so arguments of different KIND type can be Fortran
accommodated (see Section 3.1 on page 108). Both omp_lib.h and the module
omp_lib are provided. Cray Fortran uses generic interfaces for routines.

4.6.1 Directives and Clauses

4.6.1.1 atomic Directive

The atomic directive is replaced with a critical section that encloses the
statement.

4.6.1.2 for Directive

For the schedule(guided,chunk) clause, the size of the initial chunk for the
master thread and other team members is approximately equal to the trip count
divided by the number of threads.

For the schedule(runtime) clause, the schedule type and chunk size can be
chosen at run time by setting the OMP_SCHEDULE environment variable. If this
environment variable is not set, the schedule type and chunk size default to static
and 0, respectively.

110 S–2179–83

Using the OpenMP C/C++ API [4]

In the absence of the schedule clause, the default schedule is static and the
default chunk size is approximately the number of iterations divided by the number of
threads.

4.6.1.3 parallel Directive

If a parallel region is encountered while dynamic adjustment of the number of threads
is disabled, and the number of threads specified for the parallel region exceeds the
number that the runtime system can supply, the program terminates.

The number of physical processors actually hosting the threads at any given time is
fixed at program startup and is specified by the aprun -d depth option.

The OMP_NESTED environment variable and the omp_set_nested() call
control nested parallelism. To enable nesting, set OMP_NESTED to true or use the
omp_set_nested() call. Nesting is disabled by default.

4.6.1.4 threadprivate Directive

The threadprivate directive specifies that variables are replicated, with each
thread having its own copy. If the dynamic threads mechanism is enabled, the
definition and association status of a thread's copy of the variable is undefined, and
the allocation status of an allocatable array is undefined.

4.6.1.5 private Clause

If a variable is declared as private, the variable is referenced in the definition of
a statement function, and the statement function is used within the lexical extent of
the directive construct, then the statement function references the private version
of the variable.

4.6.2 Library Routines

4.6.2.1 omp_get_max_active_levels()

The omp_get_max_active_levels() routine returns the maximum number of
nested parallel levels currently allowed.

4.6.2.2 omp_set_dynamic()

The omp_set_dynamic() routine enables or disables dynamic adjustment of the
number of threads available for the execution of subsequent parallel regions by setting
the value of the dyn-var ICV. The default is on.

S–2179–83 111

Cray C and C++ Reference Manual

4.6.2.3 omp_set_schedule()

The omp_set_schedule() routine affects the schedule that is applied when
runtime is used as schedule kind, by setting the value of the run-sched-var ICV.
The default is on.

4.6.2.4 omp_set_max_active_levels()

The omp_set_max_active_levels() routine limits the depth of nested
parallelism. The number specified controls the maximum number of nested parallel
levels with more than one thread. The default value is 1 (nesting disabled).

4.6.2.5 omp_set_nested()

The omp_set_nested() routine enables or disables nested parallelism, by setting
the nest-var internal control variable (ICV). The default is false.

4.6.2.6 omp_set_num_threads()

If dynamic adjustment of the number of threads is disabled, the
number_of_threads_expr argument sets the number of threads for all
subsequent parallel regions until this procedure is called again with a different value.

4.6.3 OpenMP Environment Variables

4.6.3.1 OMP_DYNAMIC

The default value is true.

4.6.3.2 OMP_MAX_ACTIVE_LEVELS

The default value is 1.

4.6.3.3 OMP_NESTED

The default value is false.

4.6.3.4 OMP_NUM_THREADS

If this environment variable is not set and you do not use the
omp_set_num_threads() routine to set the number of OpenMP
threads, the default is 1 thread.

112 S–2179–83

Using the OpenMP C/C++ API [4]

The maximum number of threads per compute node is 4 times the number of
allocated processors. If the requested value of OMP_NUM_THREADS is more
than the number of threads an implementation can support, the behavior of the
program depends on the value of the OMP_DYNAMIC environment variable. If
OMP_DYNAMIC is false, the program terminates. If OMP_DYNAMIC is true,
it uses up to 4 times the number of allocated processors. For example, on a 8-core
Cray XE system, this means the program can use up to 32 threads per compute node.

4.6.3.5 OMP_SCHEDULE

The default values for this environment variable are static for type and 0 for
chunk.

4.6.3.6 OMP_STACKSIZE

The default value for this environment variable is 128 MB.

4.6.3.7 OMP_THREAD_LIMIT

Sets the number of OpenMP threads to use for the entire OpenMP program by setting
the thread-limit-var ICV. The Cray implementation defaults to 4 times the number
of available processors.

4.6.3.8 OMP_WAIT_POLICY

Provides a hint to an OpenMP implementation about the desired behavior of waiting
threads by setting the wait-policy-var ICV. A compliant OpenMP implementation
may or may not abide by the setting of the environment variable. The default value
for this environment variable is active.

4.7 Limitations
The following OpenMP features are not currently supported by the Cray C and Cray
C++ compilers.

• Orphaned task constructs may have an implicit taskwait directive added to
the end of the routine. This is not required by the specification but is currently
required by the Cray implementation. This limits the amount of parallelism that
may be seen.

• Task switching is not implemented. The thread that starts executing a task is the
thread that finishes the task.

• Support for OpenMP Random Access Iterators (RAIs) in the C++ Standard
Template Library (STL) is deferred.

S–2179–83 113

Cray C and C++ Reference Manual

4.8 OpenMP Accelerator Support
The OpenMP accelerator directives are deprecated. Please use the OpenACC
accelerator directives instead.

114 S–2179–83

Using OpenACC [5]

OpenACC is a parallel programming model which facilitates the use of an accelerator
device attached to a host CPU. The OpenACC API allows the programmer to
supplement information available to the compilers in order to offload code from a
host CPU to an attached accelerator device.

This release supports the OpenACC Application Programming Interface, Version 2.0
standard developed by PGI, Cray Inc., NVIDIA, with support from CAPS entreprise.

Refer to the OpenACC home page at http://www.openacc-standard.org. Under the
Downloads link, select the OpenACC 2.0 Specification.

For the most current information regarding the Cray implementation of OpenACC,
see the intro_openacc(7) man page.

5.1 OpenACC Execution Model
The CPU host offloads compute intensive regions to the accelerator device. The
accelerator executes parallel regions, which contain work sharing loops executed as
kernels on the accelerator. The CPU host manages execution on the accelerator by
allocating memory on the accelerator, initiating data transfer, sending code, passing
arguments to the region, waiting for completion, transferring accelerator results back
to the CPU host and releasing memory.

The accelerator supports multiple levels of parallelism. The accelerator executes a
kernel composed of parallel threads or vectors. Vectors (threads) are grouped into
sets called workers. Threads in a set of workers are scheduled together and execute
together. Workers are grouped into larger sets called gangs. One or more gangs may
comprise a kernel. To summarize, a kernel is executed as a set of gangs of workers
of vectors.

S–2179–83 115

http://www.openacc-standard.org

Cray C and C++ Reference Manual

The compiler determines the number of gangs/workers/vectors based on the problem
and then maps the vectors, workers, and gangs onto the accelerator architecture.
Specifying the number of gangs, workers, or vectors is optional but may permit
tuning to a particular target architecture. The way that the compiler maps a particular
problem onto a constellation of gangs, workers, and vectors which are then mapped
onto the accelerator architecture is implementation defined. See Mapping the
OpenACC Programming Model onto Accelerator Components on page 116 for more
information on this topic.

Note: OpenACC terminology is situated in the context of the PGAS programming
model. In the PGAS model, there may be one or more Processing Elements
(PEs) per node. Each PE is multi-threaded and each thread can execute vector
instructions. The PGAS thread concept is not the same as the OpenACC thread
concept.

5.2 OpenACC Memory Model
The memory on the accelerator is separate from host memory. Accelerator device
memory is not mapped onto the host's virtual memory space. All data movement
between host and accelerator memory is initiated by the host through the library
functions that move data. Also, it is not assumed that the accelerator can access host
memory, though it is supported by some devices. In this model, data movement
between memories is managed by the compiler according to OpenACC directives.
The programmer needs to be aware of device memory size, as well as memory
bandwidth between host and device in order to effectively accelerate a region of code.

Current accelerators implement a weak memory model; they do not support
memory coherence between operations executed by different execution units — an
execution unit is a hardware abstraction which can execute one or more gangs. If an
operation updates a memory location and another reads from the same location, or
two operations store a value to the same location, the hardware may not guarantee
repeatable results. Some potential errors of this type are prevented by the compiler,
but it is possible to write an accelerator parallel region that produces inconsistent
results. Memory coherence is guaranteed when memory operations referencing the
same location are separated by an explicit barrier.

5.3 Mapping the OpenACC Programming Model onto
Accelerator Components

The compiler maps the OpenACC execution model (kernels, gangs, workers, vectors)
onto the accelerator architecture as described in the following sections.

116 S–2179–83

Using OpenACC [5]

5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) cores

The accelerator architecture is comprised of two main components — global memory
and some number of streaming multiprocessors (SM). Each SM contains multiple
scalar processor (SP) cores, schedulers, special-function units, and memory which
is shared among all the SP cores. An SP core contains floating point, integer, logic,
branching, and move and compare units. Each thread/vector is executed by a core.
The SM manages thread execution.

The OpenACC execution model maps to the NVIDIA GPU hardware as follows
(GPU terms are in parenthesis): One or more OpenACC kernels may execute
on an GPU. The compiler divides a kernel into one or more gangs (blocks) of
vectors (threads). Several concurrent gangs (blocks) of threads may execute on
one SM depending on several factors, including memory requirements, compiler
optimizations, or user directives. A single block (gang) does not span SMs and will
remain on one SM until completion. When the SM encounters a block (gang), each
gang (block) is further broken up into workers (warps) which are groups of threads
to execute in parallel. Scheduling occurs at the granularity of the worker (warp).
Individual threads within a warp start together and execute one common instruction
at a time. If conditional branching occurs within a worker (warp), the warp serially
executes each branch path taken causing some threads to wait until threads converge
back to the same instruction. Data dependent conditional code within a warp usually
has negative performance impact. Worker (warp) threads also fetch data from
memory together and when accessing global memory, the accesses of the threads
within a warp are grouped to minimize transactions. Each thread in a worker (warp)
is executed on a different SP core.

There may be up to 32 threads in a worker (warp) — a limit defined by the hardware.

See the intro_openacc(7) man page for more detail on Partition Mapping.

5.3.2 Memory

There is a hierarchy of memory spaces used by OpenACC threads. Each thread has
its own private local memory. Each gang of workers of threads has shared memory
visible to all threads of the gang. All OpenACC threads running on a GPU have
access to the same global memory. Global memory on the accelerator is accessible to
the host CPU.

5.4 Mixed Model Support
OpenMP directives may appear inside of OpenACC data or host data regions only.
OpenMP directives are not allowed inside of any other OpenACC directives.

S–2179–83 117

Cray C and C++ Reference Manual

For example, the following is permitted:

#pragma acc data
{
#pragma omp parallel

{a = 10}
}

OpenACC may not appear inside OpenMP directives. If you wish to have OpenACC
directives nested inside of OpenMP constructs, place them in calls that are not
inlined.

5.5 Compiling
The CCE compiler recognizes OpenACC directives, by default. Use either the ftn or
cc command to compile.

The CCE compiler does not produce CUDA code. It generates PTX (Parallel Thread
Execution) instructions which are then translated into assembly.

Note the following interactions between directives and command line options.

• -h [no]acc

-h noacc disables OpenACC directives.

• -h [no]pragma

See -h [no]pragma=name[:name ...] on page 59.

• -h acc_model=option[:option] ...

Explicitly controls the execution and memory model utilized by the
accelerator support system. The option arguments identify the type of
behavior desired. There are three option sets. Only one member of a set
may be used at a time; however, all three sets may be used together. Default:
auto_async_kernel:fast_addr:no_deep_copy

option Set 1:

auto_async_none

Execute kernels and updates synchronously, unless there is an
async clause present on the kernels or update directive.

auto_async_kernel

Execute all kernels asynchronously ensuring program order is
maintained.

auto_async_all

Execute all kernels and data transfers asynchronously, ensuring
program order is maintained.

118 S–2179–83

Using OpenACC [5]

option Set 2:

no_fast_addr

Use default types for addressing.

fast_addr (Default) Attempt to use 32 bit integers in all addressing to
improve performance. Base addresses remain as 64 bit. The
performance is improved by potentially using fewer registers
and faster arithmetic for offset calculations. This optimization
may result in incorrect behavior for codes that make use within
accelerator regions of any of the following: very large arrays
(offsets would require greater than 32 bits); very large array lower
bounds (max offset plus lower bound is greater than 32 bits);
bitfields/other bit operations.

option Set 3:

no_deep_copy

Do not look inside of an object type to transfer sub-objects.
Allocatable members of derived type objects will not be allocated
on the device.

deep_copy (Fortran only) Look inside of derived type objects and recreate
the derived type on the accelerator recursively. A derived type
object that contains an allocatable member will have memory
allocated on the device for the member.

5.6 Module Support
To compile, ensure that PrgEnv-cray module is loaded and that it includes CCE
8.2 or later. Then, either load the craype-accel-nvidia20 module for Fermi
support or the craype-accel-nvidia35 module for Kepler support.

The craype-accel-host module supports compiling and running an OpenACC
application on the host X86 processor. This provides source code portability between
systems with and without an accelerator. The accelerator directives are automatically
converted at compile time to OpenMP equivalent directives.

Use either the ftn or cc command to compile.

5.7 Debugging
Use either Alinea DDT or Rogue Wave TotalView.

S–2179–83 119

Cray C and C++ Reference Manual

The following apply to all debuggers:

• To enable debugging, compile using the -g option.

When compiling with the debug option (-g), CCE may require additional
memory from the accelerator heap, exceeding the 8MB default. In this case,
there will be malloc failures during compilation. The environment variable
CRAY_ACC_MALLOC_HEAPSIZE specifies the accelerator heap size in bytes.
It may be necessary to increase the accelerator heap size to 32MB (33554432),
64MB (67108864), or greater by setting CRAY_ACC_MALLOC_HEAPSIZE
accordingly. The accelerator heap size defaults to 8MB.

• Debug one rank/image/thread/PE per node.

• CCE does not generate CUDA code, but generates PTX code. Debuggers will
not display CUDA intermediate code.

• To enter an OpenACC region using a debugger, breakpoints may be set inside the
OpenACC region. It is not possible to do a single step into the region from the
code immediately prior to the start of an OpenACC directive.

5.8 OpenACC Directives
For information on the OpenACC directives, see the OpenACC 2.0 Specification
available at at http://www.openacc-standard.org.

For the most current information regarding the Cray implementation of OpenACC,
see the intro_openacc(7) man page. See the OpenACC.EXAMPLES(7) man
page for example OpenACC codes.

5.9 Runtime Routines
Runtime routines defined by the standard specification are supported unless otherwise
noted in the intro_openacc(7) man page.

120 S–2179–83

http://www.openacc-standard.org

Using OpenACC [5]

5.9.1 Cray Specific Runtime Library Routines

The following routines are currently Cray specific. These interfaces are subject to
change and their usage may result in non-portable code.

• void cray_acc_memcpy_to_host_async(void* host_destination,
const void* device_source,size_t size, int async_id);

Asynchronously copies size bytes from the accelerator source address to the
host destination address; returns destination address. See async clause for
explanation of async_id.

• void cray_acc_memcpy_to_device_async(void*
host_destination, const void* device_source,size_t size, int
async_id);

Asynchronously copies size bytes from the accelerator source address to the
host destination address; returns destination address. See async clause for
explanation of async_id.

• bool cray_acc_get_async_info(int async_id, void*
async_info);

Returns true if the async_id was found to have any architecture specific async
information available. The user is responsible for ensuring that the async_info
pointer points to a async structure from the underlying architecture. For an
NVIDIA target this would be a CUDA Stream (CUstream).

5.9.2 CRAY_ACC_DEBUG Output Routines

When the runtime environment variable CRAY_ACC_DEBUG is set to 1, 2, or 3,
CCE writes runtime commentary of accelerator activity to STDERR for debugging
purposes; every accelerator action on every PE generates output prefixed with "ACC:".
This may produce a large volume of output and it may be difficult to associate
messages with certain routines and/or certain PEs.

With this set of API calls, the programmer can enable or disable output at certain
points in the code, and modify the string that is used as the debug message prefix.

The cray_acc_set_debug_*_prefix(void) routines define
a string that is used as the prefix, with the default being "ACC:". The
cray_acc_get_debug_*_prefix(void) routines are provided so that the
previous setting can be restored.

Output from the library is printed with a format string starting with "ACC: %s %s",
where the global prefix is printed for the first %s (if not NULL), and the thread
prefix is printed for the second %s. The global prefix is shared by all host threads in
the application, and the thread prefix is set per-thread. By default, strings used in
the %s fields are empty.

S–2179–83 121

Cray C and C++ Reference Manual

The C interface is provided by omp.h:

• char *cray_acc_get_debug_global_prefix(void)

• void cray_acc_set_debug_global_prefix(char *)

• char *cray_acc_get_debug_thread_prefix(void)

• void cray_acc_set_debug_thread_prefix(char *)

To enable debug output, set level from 1 to 3, with 3 being the most verbose. Setting a
level less than or equal to 0 disables the debug output. The get version is provided
so the previous setting can be restored. The thread level is an optional override of
the global level.

• int cray_acc_get_debug_global_level(void)

• void cray_acc_set_debug_global_level(int level)

• int cray_acc_get_debug_thread_level(void)

• void cray_acc_set_debug_thread_level(int level)

5.10 Environment Variables

5.10.1 Cray Specific

• CRAY_ACC_MALLOC_HEAPSIZE

Specifies the accelerator heap size in bytes. The accelerator heap size defaults to
8MB. When compiling with the debug option (-g), CCE may require additional
memory from the accelerator heap, exceeding the 8MB default. In this case, there
will be malloc failures during compilation. It may be necessary to increase the
accelerator heap size to 32MB (33554432), 64MB (67108864), or greater.

• CRAY_ACC_DEBUG

When set to 1, 2, or 3 (most verbose), writes runtime commentary of accelerator
activity to STDERR for debugging purposes. There is also an API which allows
the programmer to enable/disable debug output and set the output message prefix
from within the application. See CRAY_ACC_DEBUG Output Routines.

5.10.2 Standard

The following are environment variables are defined by the API specification:

• ACC_DEVICE_NUM

• ACC_DEVICE_TYPE

122 S–2179–83

Using OpenACC [5]

5.11 OpenACC Examples
See the OpenACC.EXAMPLES(7) man page for examples.

S–2179–83 123

Cray C and C++ Reference Manual

124 S–2179–83

Using Cray Unified Parallel C (UPC) [6]

Unified Parallel C (UPC) is a C language extension for parallel program development.
UPC supports a Partitioned Global Address Space (PGAS) programming model.

This release supports the UPC Language Specification, Version 1.3. The
proposed UPC 1.3 standard is discussed on the UPC specification website,
http://code.google.com/p/upc-specification.

This chapter describes the Cray specific UPC functionality available in CCE,
and features of the specification which are implementation defined. Also see
intro_pgas(7), or refer to the appropriate UPC man page.

You should be familiar with UPC and understand the differences between the
published UPC Introduction and Language Specification paper and the current UPC
specification. If you are not familiar with UPC, refer to the UPC home page at
http://upc.gwu.edu/. Under the Publications link, select the Introduction to
UPC and Language Specification paper. This paper is slightly outdated but contains
valuable information about understanding and using UPC. The UPC home page also
contains, under the Documentation link, the UPC Language Specification 1.2 paper.

UPC allows you to explicitly specify parallel programming through language syntax
rather than library functions such as those used in MPI and SHMEM by allowing you
to read and write memory of other processes with simple assignment statements.
Program synchronization occurs only when explicitly programmed; there is no
implied synchronization.

Note: UPC is a dialect of the C language. It is not available in C++.

UPC allows you to maintain a view of your program as a collection of threads
operating in a common global address space without burdening you with details of
how parallelism is implemented on the machine (for example, as shared memory or as
a collection of physically distributed memories).

UPC data objects are private to a single thread or shared among all threads of
execution. Each thread has a unique memory space that holds its private data objects,
and access to a globally-shared memory space that is distributed across the threads.
Thus, every part of a shared data object has an affinity to a single thread.

S–2179–83 125

http://code.google.com/p/upc-specification/
http://upc.gwu.edu/

Cray C and C++ Reference Manual

Cray UPC is compatible with MPI and SHMEM.

Note: UPC 1.3 supports a parallel I/O model which provides control over file
synchronization. However, if you continue to use the regular C I/O routines, you
must supply the controls as needed to remove race conditions. File I/O under UPC
is very similar to standard C because one thread opens a file and shares the file
handle, and multiple threads may read or write to the same file.

Cray UPC supports GASP instrumentation. GASP instrumentation enables the use
of external performance tools, such as the Parallel Performance Wizard (PPW)
from the University of Florida. For more information on GASP and PPW, see
http://gasp.hcs.ufl.eduhttp://ppw.hcs.ufl.edu. To instrument for GASP, refer to the
command line option -h gasp[=opt[:opt]] on page 53.

For a description of UPC related command line options, see Compiling and Linking
UPC Code on page 127.

6.1 Implementation

6.1.1 Predefined Macros

The following UPC 1.3 preprocessor macros are supported and defined as follows:

• __UPC__: 1

• __UPC_VERSION__: 201309 (corresponds to the date that 1.3 spec is published)

• UPC_MAX_BLOCK_SIZE: 1073741823

• __UPC_DYNAMIC_THREADS__: 1 (if compiling for dynamic threads,
otherwise undefined)

• __UPC_STATIC_THREADS__: 1 (if compiling for static threads, otherwise
undefined)

• __UPC_COLLECTIVE__: 1

• __UPC_TICK__: 1

• __UPC_CASTABLE__: 1

• __UPC_IO__: 1

• __UPC_NB__: 1

6.1.2 False Sharing

There is a false sharing hazard when referencing shared char and short integers.

126 S–2179–83

http://gasp.hcs.ufl.edu
http://ppw.hcs.ufl.edu

Using Cray Unified Parallel C (UPC) [6]

If two PEs store a char or short to the same 64-bit word in memory without
synchronization, incorrect results can occur. It is possible for one PE's store to be
lost. This is because these stores are implemented by reading the entire 64-bit word,
inserting the char or short value and writing the entire word back to memory.

The following output is a result of two PEs writing two different characters into the
same word in memory without synchronization:

Register Memory
Initial Value 0x0000
PE 0 Reads 0x0000 0x0000
PE 1 Reads 0x0000 0x0000
PE 0 Inserts 3 0x3000 0x0000
PE 1 Inserts 7 0x0700 0x0000
PE 0 Writes 0x3000 0x3000
PE 1 Writes 0x0700 0x0700

Notice that the value stored by PE 0 has been lost. The final value intended was
0x3700. This situation is referred to as false sharing. It is the result of supporting
data types that are smaller than the smallest type that can be individually read or
written by the hardware. UPC programmers must take care when storing to shared
char and short data that this situation does not occur.

6.2 Compiling and Linking UPC Code
Compiling a PGAS application (UPC, Fortran 2008) requires the PrgEnv-cray
module to be loaded.

The -hupc option is required to enable recognition of UPC syntax because it is not
part of the standard C language.

The -X npes option can optionally be used to define the number of threads to use
and statically set the value of the THREADS constant. See -X npes on page 68 for
requirements regarding the use of the -X npes option.

The following command creates an executable file:

% cc -hupc hello.c -o hello

An executable can be created by linking together various object files that were
generated from source code written in standard C, UPC, and Fortran. Either cc or
ftn can be used to link the object files:

% cc -hupc x.o y.o z.o
% ftn x.o y.o z.o

For dynamic linking, add the -dynamic option. For information about linking
PGAS applications to use huge pages, see the intro_hugepages(1) man page.

The Cray implementation of UPC supports adding GASP instrumentation to
UPC codes. To instrument for GASP, refer to the command line option -h
gasp[=opt[:opt]] on page 53.

S–2179–83 127

Cray C and C++ Reference Manual

6.3 Launching a UPC Application
After compiling the UPC code, you run the program using the aprun command.

Launch the application using 128 PEs:

% aprun -n 128 ./hello

If you use the –X npes compiler option, you must specify the same number of
threads in the aprun command. The processing elements specified by npes are
compute node cores/PEs.

By default, each PE reserves 64 MB of symmetric heap space. To increase or
decrease this amount, set the XT_SYMMETRIC_HEAP_SIZE environment variable
to the desired number of bytes. The suffixes K, M, and G are permitted to simplify
requests for large values:

% export XT_SYMMETRIC_HEAP_SIZE=512M
% aprun -n 128 ./hello

The UPC run time system uses GNI and DMAPP (low level libraries) to implement
a logically shared, distributed memory programming model. The symmetric heap is
mapped onto hugepages by DMAPP. It is advisable to also map the static data
and/or private heap onto huge pages. See the intro_hugepages(1) man page.

6.4 Cray Extensions
Cray extensions to UPC that are not part of the UPC Language Specification 1.3
are listed here.

Note: A number of former extensions to UPC 1.2 have been standardized in
UPC 1.3, including non-blocking bulk copies (upc_nb.h), privatizability
(upc_castable.h) and timing (upc_tick.h) interfaces. These interfaces
have been removed from the upc_cray.h header and moved into new headers
as required by the UPC 1.3 specification. Additionally, some of the semantics and
interfaces have been changed slightly, so existing users of these interfaces may
need to update their applications.

128 S–2179–83

Using Cray Unified Parallel C (UPC) [6]

6.4.1 Team Collectives

The following interfaces, declared in upc_collective_cray.h, provide
common collective operations on a subset (team) of threads. These are loosely based
on the UPC Collectives Library 2.0 proposal, with changes to argument ordering to
better match existing practice in UPC and no explicit initialization.

• CRAY_UPC_TEAM_ALL

• CRAY_UPC_TEAM_NODE

• cray_upc_op_create(3c)

• cray_upc_op_free(3c)

• cray_upc_type_size(3c)

• cray_upc_team_rank(3c)

• cray_upc_team_size(3c)

• cray_upc_team_split(3c)

• cray_upc_team_free(3c)

• cray_upc_team_barrier(3c)

• cray_upc_team_allreduce(3c)

• cray_upc_team_reduce(3c)

6.4.2 Node Affinity

Include upc_cray.h to use these extensions.

6.4.2.1 upc_nodeof()

Returns the index of the node of the thread that has affinity to the shared object
pointed to by ptr. Similar to upc_threadof().

6.4.2.2 NODES

NODES is an expression with a value of type int; it specifies the number of nodes and
has the same value on every thread in the job.

Similar to THREADS, but evaluates to the number of nodes used by the application,
equal to the ceiling of the aprun -n value divided by the -N value.

S–2179–83 129

Cray C and C++ Reference Manual

6.4.2.3 MYNODE

MYNODE is an expression with a value of type int; it specifies the unique node index
associated with the current thread and has the same value on all threads that are
located on the same node.

Similar to MYTHREAD, but evaluates to a node number in the range 0 to NODES -
1, inclusive.

130 S–2179–83

Using Cray C++ Libraries [7]

Most of the standard C++ features are supported, except for the few mentioned in
Unsupported Standard C++ Library Features.

For information about C++ language conformance and exceptions, see Appendix B,
Using Cray C and C++ Dialects on page 195.

7.1 Unsupported Standard C++ Library Features
The Cray C++ compiler supports the C++ standard except for wide characters and
multiple locales as follows:

• String classes using basic string class templates with wide character types or that
use the wstring standard template class

• I/O streams using wide character objects

• File-based streams using file streams with wide character types (wfilebuf,
wifstream, wofstream, and wfstream)

• Multiple localization libraries; Cray C++ supports only one locale

Note: The C++ standard provides a standard naming convention for library
routines. Therefore, classes or routines that use wide characters are named
appropriately. For example, the fscanf and sprintf functions do not use wide
characters, but the fwscanf and swprintf function do.

S–2179–83 131

Cray C and C++ Reference Manual

132 S–2179–83

Using Coarray C++ [8]

This release introduces Coarray C++, a template library that implements the coarray
concept for Partitioned Global Address Space (PGAS) programming in C++. The
template library specifications are contained on a set of *.html pages that the
CCE installation copies to /opt/cray/cce/version/doc/html/ on the Cray
platform; they may be copied to any location which provides HTML web content for
your site, or any location that can be accessed by site local web browsers.

The coarray concept used in Coarray C++ is intentionally very similar to Fortran
(ISO/IEC 1539-1:2010) coarrays. Users familiar with Fortran coarrays will notice
that terminology and even function names are identical, although the syntax follows
C++ conventions.

A coarray adds an additional dimension, called a codimension, to a normal scalar or
array type. The codimension spans instances of a Single-Program Multiple-Data
(SPMD) application, called images, such that each image contains a slice of the
coarray equivalent in shape to the original scalar or array type. Each image has
immediate access via processor loads and stores to its own slice of the coarray, which
resides in that image's local partition of the global address space. By specifying an
image number in the cosubscript of the codimension, each image also has access to
the slices residing in other images' partitions.

Images are an orthogonal concept to threads, such as those provided by C++11 or
OpenMP. Threads are used for shared memory programming where each thread
has immediate access to the address space of a single process and possibly some
thread-local storage to which only it has access. Images are a broader concept
intended to provide communication among cooperating processes that each have their
own address space. The mechanism for this cooperation varies by implementation.
Typically it involves network communication between processes that have arranged
to have identical virtual memory layouts. This communication is one-sided such
that a programmer can have an image read or write data that belongs to a different
image without writing any code for the second image. Note that images and threads
may coexist in the same application; a large networked system with multicore nodes
could use coarrays to communicate among nodes but use threads within each node to
exploit the multicore parallelism.

S–2179–83 133

Cray C and C++ Reference Manual

In Coarray C++, a coarray is presented as a class template that collectively allocates
an object of a specified type within the address space of each image. The coarray
object is responsible for managing storage for the object that it allocates. When used
in an expression context, the coarray object automatically converts to its managed
object so that an image can access its own slice of the coarray without using special
syntax. Accessing a slice that belongs to a different image requires specifying the
image number as a cosubscript in parenthesis immediately following the coarray
object, before any array subscripts. Therefore, the codimension is the slowest-running
array dimension, just like Fortran.

Note: The subscript order is backwards from Fortran because in Fortran the
slowest-running dimension is rightmost whereas in C++ it is leftmost.

In addition to providing the fundamental ability to allocate and access a coarray,
Coarray C++ provides image synchronization, atomic operations, and collectives.

Although this chapter presents Cray's implementation, Coarray C++ is designed to
allow portable applications to be written for a variety of computing platforms in the
sense that the template library interface is platform independent and can be compiled
by any C++03 (ISO/IEC 14882:2003) or C++11 (ISO/IEC 14882:2011) compliant
compiler. The implementation of the template library is likely to differ for each
platform due to different transport layers (e.g., shared memory or various networks)
for communicating data between images.

8.1 Compiling Coarray C++
The following program is the Coarray C++ equivalent of the classic "Hello World"
program. The header file coarray_cpp.h provides all Coarray C++ declarations
within namespace coarray_cpp. Normally a program imports all of the
declarations into its namespace with a using directive, but having the namespace gives
the programmer flexibility to deal with name conflicts.

#include <iostream>
#include <coarray_cpp.h>
using namespace coarray_cpp;
int main(int argc, char* argv[])
{

std::cout << "Hello from image " << this_image()
<< " of " << num_images() << std::endl;
return 0;

}

134 S–2179–83

Using Coarray C++ [8]

The program is compiled with the Cray compiler and executed using four images as
follows:

> module load PrgEnv-cray
> CC -o hello hello.cpp
> aprun -n4 ./hello
Hello from image 0 of 4
Hello from image 1 of 4
Hello from image 2 of 4
Hello from image 3 of 4

8.2 Declaring and Accessing Coarrays
The general form of a coarray declaration is:

coarray<T> name;

where T is the type of the object that will be allocated in the address space of each
image.

A coarray declaration may appear anywhere that a C++ object can be declared.
Therefore, a coarray may be declared as a global variable, local variable, static local
variable, or as part of a struct or class. It may be allocated statically or dynamically.
The only restriction is that a coarray allocation must be executed collectively by all
images. The C++ language ensures that this restriction is met for global and static
local coarray declarations, but the programmer is responsible for ensuring that local
and dynamically-allocated coarrays are declared collectively. For example:

coarray<int> x; // global
void
foo(void)
{

static coarray<int> y; // static local
coarray<int> z; // local
coarray<int>* p = new coarray<int>; // dynamically allocated
...
delete p;

} // z is automatically destroyed here

8.2.1 Basic Types

A coarray of a basic C++ type is the simplest kind of coarray. Each image has an
instance of the basic type that is managed by its coarray object. A coarray of type
int is declared as:

coarray<int> x;

S–2179–83 135

Cray C and C++ Reference Manual

The declaration may pass an initial value to the constructor. Different images may
pass different initial values:

coarray<int> x(2);

The initializer syntax below is not supported. If it were permitted, then automatic
conversion from int to coarray<int> would be allowed, which would loosen type
checking and lead to unexpected collective allocations:

coarray<int> x = 2;

This coarray object will behave as if it were the int that it manages. Assigning to the
coarray object will assign a value to the int that is managed by the coarray object:

x = 42;

Likewise, using the coarray object in any expression where an int is expected shall
read the value of the managed int:

int y = x + 1;

If the coarray object needs to be used in an expression where no particular type is
expected, then the managed object can be accessed explicitly via empty parenthesis:

// prints the address of the coarray object
std::cout << &x << std::endl;
// prints the address of the int managed by the coarray object
std::cout << &x() << std::endl;

Accessing an int that is managed by another image requires specifying the image
number within the parenthesis:

x(5) = 42; // set x = 42 within the address space of image 5
int y = x(2); // obtain the value of x from the address space of image 2

Finally, consider an enhanced version of the Hello World program. In this program,
all images write their image number to their local object and then call sync_all(),
which synchronizes control flow across all images. After the sync_all(), each
image computes the image number of its left and right neighbors in the image space
and prints the values that were written by its neighbors.

#include <iostream>
#include <coarray_cpp.h>
using namespace coarray_cpp;
int main(int argc, char* argv[])
{

coarray<int> x;
x = this_image();
sync_all();
const int left = (this_image() - 1) % num_images();
const int right = (this_image() + 1) % num_images();
std::cout << "Hello from image " << x << "

where x(left) = " << x(left) << " and x(right) = "
<< x(right) << std::endl;

136 S–2179–83

Using Coarray C++ [8]

return 0;}

> CC -o hello2 hello2.cpp
> aprun -n4 ./hello2
Hello from image 0 where x(left) = 3 and x(right) = 1
Hello from image 3 where x(left) = 2 and x(right) = 0
Hello from image 2 where x(left) = 1 and x(right) = 3
Hello from image 1 where x(left) = 0 and x(right) = 2

8.2.2 Arrays

A coarray of an array type gives every image an array of the same shape. An example
of a statically-sized coarray is below. The complete array type, including all extents,
is provided as the coarray template's type argument:

// Declares a coarray of an array of 10 arrays of 20 ints
coarray<int[10][20]> x;

Note: The following declaration is very different:

// Declares an array of 10 arrays of 20 coarrays
// of type int. Legal, but very inefficient!
coarray<int> bad[10][20];

A coarray of a multidimensional array type is not achieved via nested coarray
types. Although such declarations are legal, they are strange and not particularly
useful:

// Declares a coarray of an array of 10 coarrays of arrays of 20 ints
coarray< coarray<int[20]>[10] > weird;

In a dynamically-sized coarray declaration, the extent of the leading dimension is left
unbounded. The size of this extent cannot be part of the template type because it is
not known at compile time. Instead, the size is passed as a constructor argument:

coarray<int[][20]> y(n); // each image must pass the same value

Later, the extent of the leading dimension can be extracted from the coarray object
via the extent() member function:

size_t y_extent = y.extent();

An individual element of the local array managed by the coarray object is accessed
by applying subscripts directly to the coarray object. When accessing part of the
coarray managed by another image, the cosubscript appears in parenthesis before
the subscripts:

x[4][5] = 1; // set x[4][5] = 1 within this image's address space
y(3)[6][7] = 2; // set y[6][7] = 2 within the address space of image 3

S–2179–83 137

Cray C and C++ Reference Manual

8.2.3 Pointers

A coarray of pointers is typically used to implement a "ragged array" where different
images need to allocate a different amount of memory as part of the same coarray.
An example of a coarray of pointers is:

coarray<int*> x;

Each image allocates additional memory independently from the collective allocation
of the coarray object itself:

x = new int[n]; // n usually varies per image

Due to the independent allocations, the allocated memory might not be located at
the same address within every image's address space. Therefore, accessing the data
requires an additional read of the pointer from the target image before a normal read
or write can occur. This additional read happens automatically as part of the usual
syntax for accessing the data:

x(i)[3] = 4; // set x[3] = 4 within the address space of image i

Note: The address stored within the pointer may be valid only on the allocating
image, unless the program is careful to target the pointer at only symmetric virtual
addresses. Great care should be taken with the following code pattern:

int* p = x(i); // get an address from image i
p[3] = 4; // and dereference it on this image

Finally, the program must ensure prior to performing any accesses that other images
have allocated their memory:

coarray<int*> x;x = new int[n];
sync_all();
x(i)[3] = 4;

8.2.4 Structs, Unions, and Classes

A coarray of a struct, union, or class behaves like a coarray of a basic type when the
entire object is accessed, however special syntax is required for member access due to
limitations of C++ operator overloading:

struct Point { int x, y; };

coarray<Point> pt;
Point p;

pt = p; // set pt = p in this image's address space
pt(2) = p; // set pt = p within the address space of image

2pt->x = 0; // set pt.x = 0 in this image's address space
pt().x = 0; // alternate syntax

// set pt.x = 1 within address space of image i
pt(i).member(&Point::x) = 1;

138 S–2179–83

Using Coarray C++ [8]

Calling a member function of an object that resides in the address space of another
image (i.e., a remote procedure call) is not supported. By default, when a struct,
union, or class is copied between images, it is treated as a Plain Old Data (POD)
type such that a bitwise copy occurs. This behavior is not appropriate if the type
contains pointers to allocated data. The default behavior can be changed by creating
a specialization of coarray_traits where is_trivially_gettable is
false. C++ requires that the specialization be placed in the same namespace as the
general template:

struct my_string {
char* data;
size_t length;

};

namespace coarray_cpp {
template < >
struct coarray_traits<my_string> {

static const bool is_trivially_gettable = false;
static const bool is_trivially_puttable = false;

};
}

When is_trivially_gettable is false for a type, Coarray C++ expects the
type to have a special constructor and a special assignment operator to facilitate
reading an object from a remote image:

struct my_string {
char* data;
size_t length;

// remote constructor
my_string(const_coref<my_string> ref);
// remote assignment operator
my_string& operator = (const_coref<my_string> ref);

};

The role of the remote constructor or remote assignment operator is to read the POD
parts of the object from the other image, use that data to calculate how much memory
needs to be allocated, allocate the memory, then read the rest of the object into the
newly allocated memory. See Section 8.3.1 for an explanation of the parameters
of these functions.

Typically, if is_trivially_gettable is false for a type,
then is_trivially_puttable should also be false. When
is_trivially_puttable is false for a type, a compile time error will occur the
program attempts to copy an instance of the type to another image.

S–2179–83 139

Cray C and C++ Reference Manual

8.3 Type System
The Coarray C++ type system is modeled closely on the C++ type system. In addition
to the coarray type that extends the C++ array concept across images, there are
coreferences and copointers that extend the C++ concepts of references and pointers
to refer to objects on other images.

8.3.1 Coreferences

A coreference is returned when a cosubscript is applied to a coarray. Like a C++
reference, a coreference is always associated with an object, called its referent,
can never be rebound to a different object, and can never be null. Typically a
coreference is either immediately converted to its referent or subscripted, such that
it is not necessary to declare a coreference and its fleeting presence can be ignored.
Nevertheless, explicit coreferences are useful in some situations. Suppose that a
function needs to have access to an object in another image's address space, but does
not need to know anything about the coarray containing the object. For example:

void foo(coref<int>);
int main(int argc, char* argv[]){

coarray<int> x;
coarray<int[10]> y;
...
foo(x(2));
foo(y(3)[4]);
...

return 0;
}

In the above code, function foo can access an int that is part of either x or y even
though x and y have different shapes. If foo were to require a coarray parameter
instead, then it could accept either x or y but not both because the coarrays have
different types. Furthermore, foo's coreference parameter makes it clear to someone
reading the code that the function's effect is narrow, limited to one object instead of
an entire coarray. Two other uses of coreferences are to operate on coarray slices that
are larger than a single object and to move data in bulk between images. To make
these techniques more useful, coreferences can be created for local objects:

int main(int argc, char* argv[]){
coarray<int[5][10]> x;
int local[10];
coref<int[10]> local_ref(local);
...
// local[0...9] = x(2)[1][0...9]
local_ref = x(2)[1];
...
// x(3)[4][0...9] = local[0...9]
x(3)[4] = local_ref;
...
return 0;

}

140 S–2179–83

Using Coarray C++ [8]

For convenience, the make_coref and make_const_coref functions create
coreferences for local objects without requiring the programmer to write the type
of the local object:

int main(int argc, char* argv[])
{

coarray<int[5][10]> x;
int local[10];
...
// local[0...9] = x(2)[1][0...9]
make_coref(local) = x(2)[1];
...
// x(3)[4][0...9] = local[0...9]
x(3)[4] = make_const_coref(local);
...
return 0;

}

A const_coref behaves exactly like a coref except that it cannot be used to
modify its referent.

8.3.2 Copointers

A coreference can be converted to a copointer by calling its address function; the
address-of operator is not overloaded. Local pointers are automatically convertible
to copointers. Unlike coreferences, a copointer can be reassociated and can be
unassociated or null. Arithmetic on a copointer changes the address to which it points
but never changes the image to which it points. Comparisons between two copointers
are allowed provided that both copointers point to the same image. Copointers can be
used as iterators with standard C++ function templates. For example, the following
code will not assert:

int
main(int argc, char* argv[])
{

coarray<int[10]> x;
const size_t left = (this_image() - 1) % num_images();
const size_t right = (this_image() + 1) % num_images();
coptr<int> begin = x(right)[0].address();
// Apply a standard algorithm, using a coptr as an iterator.
coptr<int> end = x(right)[10].address();
std::fill(begin, end, image);
sync_all();
for (int i = 0; i < 10; ++i) {

assert(x[i] == left);
}
return 0;

}

They can be used to form linked lists spanning images. The list even can include links
that point to local data:

#include <iostream>
#include <coarray_cpp.h>

S–2179–83 141

Cray C and C++ Reference Manual

using namespace coarray_cpp;

template < typename T >
struct Link {

T data;
coptr< Link<T> > next;

};

coarray< Link<int> > global_links;

int main(int argc, char* argv[])
{

Link<int> local_link;
global_links->data = 2 * this_image();
global_links->next = &local_link;
local_link.data = 2 * this_image() + 1;
if (this_image() < num_images() - 1) {

local_link.next = global_links(this_image() + 1).address();
}
else {

local_link.next = 0;
}
sync_all(); // ensure every image has setup the data

if (this_image() == 0) {
for (coptr< Link<int> > p = global_links(0).address();

p != NULL; p = p->member(&Link<int>::next)) {
std::cout << p->member(&Link<int>::data) << std::endl;

}
}
// ensure local_link is not destroyed before it's read by image 0
sync_all();
return 0;

}

Compiling and executing the above program:

> CC -o list list.cpp

> aprun -n4 ./list

A const_coptr behaves exactly like a coptr except that it cannot be used to
modify its target.

8.3.3 shape_cast

Various different array types have the same number of elements even though
they have a different shape. For example, int[100], int[2][50],
and int[2][2][25] all have 100 elements. A reference or pointer to a
coarray of one of these types can be reinterpreted as a coarray of any of the
others via a shape_cast, which has the same syntax as the standard C++
static_cast, dynamic_cast, reinterpret_cast, and const_cast.
A shape_cast converts between coarray types of the same ultimate type that
have different shapes. For example, a shape_cast cannot be used to reinterpret a
coarray<int[100]>& as a coarray<float[100]>&; that conversion will
throw a std::bad_cast exception. A shape_cast can be used to convert to a
smaller shape but not to a larger shape. For example, a coarray<int[100]>&

142 S–2179–83

Using Coarray C++ [8]

may be converted to a coarray<int[50]>&, in which case the new coarray
can access only the first 50 elements of the original, but it may not be converted
to a coarray<int[200]>& because that requires more storage and will throw
a std::bad_cast exception. The example code below shows various legal
shape_casts:

#include <cassert>
#include <iostream>
#include <coarray_cpp.h>

using namespace coarray_cpp;

void foo(const coarray<int[]>& y) { }
void foo10(const coarray<int[10]>& y) { }
void foo5(const coarray<int[][5]>& y) { }
void foo10_5(const coarray<int[10][5]>& y) { }
void foo50(const coarray<int[50]>& y) { }
int
main(int argc, char* argv[])
{

int extent = 10;
coarray<int[10]> x_10_s;
coarray<int[]> x_10_d(extent);
coarray<int[10][5]> x_10_5_s;
coarray<int[][5]> x_10_5_d(extent);
coarray<int> y;

// Perform all valid combinations of passing the coarrays to the functions,
// using shape_cast when necessary.
foo(x_10_s);
foo(x_10_d);
foo(shape_cast<int[]>(x_10_5_s));
foo(shape_cast<int[]>(x_10_5_d));
foo10(x_10_s);
foo10(x_10_d);
foo5(shape_cast<int[2][5]>(x_10_s));
foo5(shape_cast<int[][5]>(x_10_d));

foo5(x_10_5_s);
foo5(x_10_5_d);
foo10_5(x_10_5_s);
foo10_5(x_10_5_d);
foo50(shape_cast<int[50]>(x_10_5_s));
foo50(shape_cast<int[50]>(x_10_5_d));

// Trivial reshape to same shape.
shape_cast<int>(y);

// shape_cast from scalar to array.
shape_cast<int[1]>(y);

// shape_cast from array to scalar.
shape_cast<int>(x_10_s);

// shape_cast to smaller array.
shape_cast<int[5]>(x_10_s);

S–2179–83 143

Cray C and C++ Reference Manual

// shape_cast to larger array.
bool passed = false;
try {

shape_cast<int[25]>(x_10_s);
} catch (std::bad_cast& e){

passed = true;
}
assert(passed);

return 0;
}

8.4 Control Flow and Synchronization

8.4.1 Writing SPMD Code

Coarray C++ follows the Single-Program Multiple-Data model where all images
begin executing the same main program but may operate on different data.
Conditional code is used to restrict execution to certain images:

#include <iostream>
#include <coarray_cpp.h>

using namespace coarray_cpp;

int main(int argc, char* argv[])
{

if (this_image() % 2 == 0){
std::cout << "Hello from even image "

<< this_image() << std::endl;
}
else {

std::cout << "Hello from odd image "
<< this_image() << std::endl;

}
return 0;

}
> aprun -n4 ./a.out
Hello from odd image 3
Hello from even image 0
Hello from even image 2
Hello from odd image 1

8.4.2 Barriers

A sync_all() ensures that all images must execute a sync_all() before any
image may proceed beyond the sync_all() which it executed. It is not required
that all images execute exactly the same sync_all() in the source code, just that
they must execute some sync_all(). Failure of all images to participate will cause
deadlock.

144 S–2179–83

Using Coarray C++ [8]

8.4.3 Function Calls

A coarray may be passed to a function via a reference or a pointer, but may not be
passed by value. If a coarray could be passed by value, the call would have to be
collective. There would be a collective allocation of a temporary coarray, the data
within the original coarray would need to be copied into the temporary coarray, and
eventually the temporary coarray would need to be collectively destroyed. Pass
by value is expensive and there are better alternatives, like passing a coarray as a
const reference, so it is a compile-time error. No matter how a coarray parameter is
declared, the type of the actual argument must agree. Automatic conversions are
provided between bounded and unbounded arrays; a conversion from unbounded to
bounded performs a run-time check to ensure that the extents match and may throw a
mismatched_extent_error exception.

8.4.3.1 coatomic

The coatomic template is similar to the C++11 std::atomic template, but
provides operations that are atomic with respect to images rather than threads.
Specializations exist for all basic types and the same operations are supported
as for the C++11 std::atomic template. Similar convenience typedefs are
provided as well so that, for example, coatomic_long can be used in place of
coatomic<long>.

coarray< coatomic<long> > x; // or coarray<coatomic_long>

x(i) ^= 3; // atomic update x = x ^ 3 on image i

long old_value = x(i)++; // atomic increment, saving the old value

long new_value = ++x(i); // atomic increment, saving the new value

8.4.3.2 coevent

A coevent permits point-to-point synchronization between images. It wraps a
coatomic_long that acts as a counter and provides two operations, post and wait. Post
atomically increments the counter and wait blocks execution of the calling image
until it can atomically decrement the counter to a non-negative value.

coarray<coevent> x;

if (this_image() == 0) {
// do something, then notify image 1
x(1).post();

}
else if (this_image() == 1) {

// wait for notification from another image
x().wait(); // then do something

}

S–2179–83 145

Cray C and C++ Reference Manual

8.4.3.3 comutex

A comutex provides mutual exclusion. The lock function blocks until the mutex
can be acquired and the unlock function releases the mutex. The try_lock function
attempts to acquire the lock and returns a true upon success.

coarray<comutex> m;

m(i).lock();
// critical section, typically guarding access to data on image i
m(i).unlock();

8.5 Collectives
Coarray C++ provides broadcast and reduction collectives.

8.5.1 cobroadcast

cobroadcast replicates the value of a coarray on one image across all other
images.

#include <cassert>
#include <iostream>
#include <coarray_cpp.h>

using namespace coarray_cpp;

int
main(int argc, char* argv[])
{

coarray<int> x;
size_t image = this_image();
size_t n = num_images();
if (image == 0) {

x = 42;
}
sync_all();

// Make x on every image equal the x on image 0.
cobroadcast(x, 0);
sync_all();
assert(x == 42);
return 0;

}

146 S–2179–83

Using Coarray C++ [8]

8.5.2 coreduce

coreduce applies a function across the coarray values of all images. For
convenience, template specializations of coreduce are provided for the addition,
min, and max operations from the C++ functional header. Implementations are likely
to provide optimized versions of at least these reductions.

#include <cassert>
#include <iostream>
#include <coarray_cpp.h>
using namespace coarray_cpp;
int
main(int argc, char* argv[])
{

coarray<int> sum;
coarray<int> min;
coarray<int> max;
size_t image = this_image();
size_t n = num_images();
sum = image;
min = image;
max = image;

sync_all();

cosum(sum); // equivalent to coreduce(sum, std::plus<int>)
comin(min); // equivalent to coreduce(min, std::less<int>)
comax(max); // equivalent to coreduce(max, std::greater<int>)
sync_all();

assert(sum == (n * (n - 1) / 2));
assert(min == 0);
assert(max == (n - 1));

return 0;
}

S–2179–83 147

Cray C and C++ Reference Manual

8.6 Exceptions
Coarray C++ throws standard C++ exceptions, like std::bad_cast, but also
throws some special exceptions for coarray-specific errors.

• invalid_image_error

This exception is thrown whenever a cosubscript is invalid. For example, given
a coarray x in a program executed with 4 images, x(4) triggers an exception
because the only valid image numbers are 0, 1, 2, and 3.

• invalid_put_error

This exception is thrown whenever a user-defined type is copied to a different
image, but that type has coarray_traits that specify that it is not trivially
puttable.

• mismatched_extent_error

This exception is thrown when two arrays in an array assignment have a different
shape.

• mismatched_image_error

This exception is thrown when two copointers are compared or subtracted, but the
copointers point to objects on different images.

8.7 Memory Consistency Model

8.7.1 atomic_image_fence()

The atomic_image_fence() function is the Coarray C++ equivalent of the
C++11 std::atomic_thread_fence() function. It has the same behavior
with respect to images as std::atomic_thread_fence() has with respect to
threads. Typically, it is used to ensure that all memory accesses made by the calling
image are visible to all images before performing subsequent memory accesses.

8.7.2 Accesses within a Single Image

The effect of two memory accesses made by an image to its own address space is
governed by the C++ memory consistency model. The C++ memory consistency
model depends on which version of the C++ standard is implemented by the
compiler. In general, a C++03 compiler assumes that an image is single-threaded and
offers no memory consistency guarantees if multiple threads perform the accesses,
whereas a C++11 compiler provides a detailed memory consistency model that can be
used to reason about the effect of memory accesses within a multithreaded image.

148 S–2179–83

Using Coarray C++ [8]

8.7.3 Accesses to Other Images

8.7.3.1 Multi-byte Accesses

A memory access of an object of size N bytes shall be treated as if it was performed
as N arbitrarily ordered single-byte memory accesses. For example, the target image
of a write shall not rely on the Nth byte being written last to detect whether the full
object has been written.

8.7.3.2 From Different Images

The execution of a program contains a data race if it contains two conflicting actions
in different images, at least one of which is not atomic, and neither happens before
the other. Any such data race results in undefined behavior. For example, if two
images both write to the same object without any synchronization:

if (this_image() == 0) {
x(i) = 0;

}else if (this_image() == 1) {
x(i) = 1;

}

then the final value of the object is undefined. Various forms of synchronization can
impose a specific order, such as in this example:

if (this_image() == 0) {
x(i) = 0;

}

sync_all();

if (this_image() == 1)
{ x(i) = 1;

}

where the assignment by image 0 happens before the assignment by image 1 because
of the sync_all().

Two atomic operations issued by different images to the same coatomic object have
the same ordering relationship as two C++11 threads that perform the same atomic
operations on the same object.

8.7.3.3 From the Same Image

Two memory accesses issued by the same image to non-conflicting memory addresses
are unordered.

S–2179–83 149

Cray C and C++ Reference Manual

Two memory accesses issued by the same image to conflicting memory addresses
within the address space of a single, different image shall have the same order as
if they were made within the issuing image's address space. For example, in the
following code:

x(i) = 1;int y = x(i);

the value of y will be 1 provided that there are no data races. Therefore, a Coarray
C++ implementation for a shared memory system could inline x(i) as a direct
memory access, allowing the compiler to make the following optimization (forward
substitution):

x(i) = 1;int y = 1;

Note: For distributed memory systems, providing this ordering guarantee is
unfortunately somewhat onerous, but it is consistent with ordering guarantees of
other PGAS languages, namely UPC and Fortran. Two memory accesses issued
by an image to the same distant memory location typically will pass through the
issuing processor's memory system, a high-speed communication network, and
finally the target processor's memory system. Each hardware component is likely
to contain multiple data pathways to increase bandwidth and resiliency, such that
two memory accesses traveling on different pathways could bypass each other.
Providing the ordering guarantee may require constraining two memory accesses
to the same target location to always take the same hardware path to prevent
bypass. Alternatively, software can track outstanding memory accesses and defer
issuing an access if there is a conflict; however, software ordering adds overhead
to each memory access to check for conflicts as well as storage overhead to track
the accesses

8.8 Blocking Versus Non-blocking Accesses
When an image makes a blocking read or write access, it does not proceed to execute
its next operation until the access fully completes. By contrast, a non-blocking read
or write access permits an image to proceed to execute its next operation before the
access fully completes and provides some mechanism for ensuring that the operation
has completed later.

8.8.1 Writes (Puts)

Neither the target image nor any other image besides the issuing image is required
to be able to observe the effects of a write until some form of image synchronization
occurs. Therefore, an implementation is permitted to issue non-blocking writes for
all writes provided that it can ensure that conflicting accesses issued by the same
image occur in program order. Whether this guarantee is provided by software or
hardware depends on the implementation. To explicitly issue and manage completion
of a non-blocking write, see Cofutures on page 151.

150 S–2179–83

Using Coarray C++ [8]

8.8.2 Reads (Gets)

A Coarray C++ read access is blocking in order to provide a value for use in an
arbitrary expression context:

coarray<int> x;
...
int y = x(i) + 1; // read of x(i) shall block

A non-blocking read is performed via an explicit get() member function of coref:

int y;x(i).get(&y);
... // some code that does not access y
atomic_image_fence();
++y;

The get() member function issues a non-blocking read that is not guaranteed
to complete until the next fence. The atomic_image_fence() ensures
completion of all previously issued memory accesses. The get() plus fence solution
is appropriate in many cases, but it may be too broad if the fence would force
completion of other accesses on which the issuing image does not yet need to wait.
To explicitly issue and manage completion of a non-blocking read, see Cofutures
on page 151.

8.8.3 Cofutures

Coarray C++ provides explicit completion management of a non-blocking access
via a cofuture, which is modeled on C++11's std::future. A coref plays a
similar role to C++11's std::promise, providing member functions that create
a cofuture. Here is an example of a non-blocking read where the storage for the
value is contained within the cofuture. The value cannot be accidentally used
before the operation has completed, but existing storage cannot be used as the target
of the read:

coarray<int> x;
...
cofuture<int> f = x(i).get_cofuture(); // or just x(i)
...
int z = f + 1; // using f waits then implicitly returns the value

For convenience, a coref can automatically convert to a cofuture so that the
get_cofuture() call can be omitted. Here is an example of a non-blocking read
where the storage for the value is external to the cofuture. Care must be taken to
not access the storage until wait() has been called:

coarray<int[100]> x;
int y[100];
...
cofuture<void> f = x(i).get_cofuture(y);
... // code that does not read or write y
f.wait();
... // code that reads or writes y

Note that the cofuture's parameter type is void because it does not store any value.

S–2179–83 151

Cray C and C++ Reference Manual

Here is an example of a non-blocking write. Care must be taken to not overwrite the
source of the write until wait() has been called.

coarray<int> x;
int y;
...
cofuture<void> f = x(i).put_cofuture(y);
... // code that does not write y
f.wait(); // ensure that the x(i) = y assignment completed

Note that the cofuture's parameter type is void because a cofuture for a write
never stores a value.

8.9 Code Patterns

8.9.1 Coobjects

When a coarray is included as a member of a class, it can be allocated with the class
object or it can be allocated later:

// An X must be allocated and destroyed
// collectively because it contains a coarray.
class X {

coarray<int> x;
...

};

// But a Y defers its "collectiveness" until
// it needs to allocate the coarray.
class Y {

coarray<int>* y;
...

};

These two options provide flexibility for implementing collective objects, or
coobjects, which can encapsulate coarray data movement.

152 S–2179–83

Using Coarray C++ [8]

8.9.2 Hoisting a coptr

When a coarray of pointer type is accessed within a loop, there may be unnecessary
reads of the pointer from the target image if the same image is accessed repeatedly:

coarray<int*> x;
...
for (int i = 0; i < n; ++i) {

int y = x(1)[i]; // reads pointer x(1) each time
...

}

A coptr or const_coptr can be used to hoist the read of the pointer:

coarray<int*> x;
...
const_coptr<int> p = x(1)[0].address(); // reads pointer x(1) once
for (int i = 0; i < n; ++i) {

int y = p[i];
...

}

S–2179–83 153

Cray C and C++ Reference Manual

154 S–2179–83

Using Cray C Extensions [9]

9.1 Complex Data Extensions
Cray C extends the complex data facilities defined by standard C with these
extensions:

• Imaginary constants
• Incrementing or decrementing _Complex data

The Cray C compiler supports the Cray imaginary constant extension and is defined
in the <complex.h> header file. This imaginary constant has the following form:

Ri

R is either a floating constant or an integer constant; no space or other character
can appear between R and i. If you are compiling in strict conformance mode
(-h conform), the Cray imaginary constants are not available.

The following example illustrates imaginary constants:

#include <complex.h>
double complex z1 = 1.2 + 3.4i;
double complex z2 = 5i;

The other extension to the complex data facility allows the prefix– and postfix-
increment and decrement operators to be applied to the _Complex data type. The
operations affect only the real portion of a complex number.

9.2 fortran Keyword
In extended mode, the identifier fortran is treated as a keyword. It specifies a
storage class that can be used to declare a Fortran-coded external function. The use of
the fortran keyword when declaring a function causes the compiler to verify that
the arguments used in each call to the function are pass by addresses; any arguments
that are not addresses are converted to addresses.

As in any function declaration, an optional type-specifier declares the type returned,
if any. Type int is the default; type void can be used if no value is returned (by a
Fortran subroutine). The fortran storage class causes conversion of lowercase
function names to uppercase, and, if the function name ends with an underscore
character, the trailing underscore character is stripped from the function name.
(Stripping the trailing underscore character is in keeping with UNIX practice.)

S–2179–83 155

Cray C and C++ Reference Manual

Functions specified with a fortran storage class must not be declared elsewhere
in the file with a static storage class.

Note: The fortran keyword is not allowed in Cray C++.

An example using the fortran keyword is shown in Cray C and Fortran Example
on page 177.

9.3 Hexadecimal Floating-point Constants
The Cray C compiler supports the standard hexadecimal floating constant notations
and the Cray hexadecimal floating constant notation. The standard hexadecimal
floating constants are portable and have sizes that are dependent upon the hardware.
The remainder of this section discusses the Cray hexadecimal floating constant.

The Cray hexadecimal floating constant feature is not portable, because identical
hexadecimal floating constants can have different meanings on different systems. It
can be used whenever traditional floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by hexadecimal
characters. The optional floating suffix has the same form as for normal floating
constants: f or F (for float), l or L (for long), optionally followed by an i
(imaginary).

The constant must represent the same number of bits as its type, which is determined
by the suffix (or the default of double). The constant's bit length is four times the
number of hexadecimal digits, including leading zeros.

The following example illustrates hexadecimal constant representation:

0x7f7fffff.f

32-bit float

0x0123456789012345.

64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the specified
floating type. This uses an unsigned integral type of the same size as the floating
type, regardless of whether an object can be explicitly declared with such a type. No
conversion or range checking is performed. The resulting floating value is defined in
the same way as the result of accessing a member of floating type in a union after a
value has been stored in a different member of integral type.

156 S–2179–83

Using Cray C Extensions [9]

The following example illustrates hexadecimal floating-point constant representation
that use Cray floating-point format:

int main(void)
{

float f1, f2;
double g1, g2;

f1 = 0x3ec00000.f;
f2 = 0x3fc00000.f;
g1 = 0x40fa400100000000.;
g2 = 0x40fa400200000000.;

printf("f1 = %8.8g\n", f1);
printf("f2 = %8.8g\n", f2);
printf("g1 = %16.16g\n", g1);
printf("g2 = %16.16g\n", g2);
return 1;

}

This is the output for the previous example:

f1 = 0.375
f2 = 1.5
g1 = 107520.0625
g2 = 107520.125

S–2179–83 157

Cray C and C++ Reference Manual

158 S–2179–83

Using Predefined Macros [10]

The macros listed in this chapter are the Cray-specific predefined macros. To see the
entire list of predefined macros, add -Wp,-list_final_macros to your cc
command line. For example, if you have the file c.c, specify:

% cc -Wp,-list_final_macros c.c > out

Predefined macros can be divided into the following categories:

• Macros required by the C and C++ standards (Macros Required by the C and
C++ Standards on page 159)

• Macros based on the host machine (Macros Based on the Host Machine on
page 160)

• Macros based on the target machine (Macros Based on the Target Machine on
page 160)

• Macros based on the compiler (Macros Based on the Compiler on page 161)

• UPC macros (UPC Predefined Macros on page 161)

Predefined macros provide information about the compilation environment. In this
chapter, only those macros that begin with the underscore (_) character are defined
when running in strict-conformance mode.

Note: Any of the predefined macros except those required by the standard (see
Macros Required by the C and C++ Standards on page 159) can be undefined by
using the -U command line option; they can also be redefined by using the -D
command line option.

A large set of macros is also defined in the standard header files.

10.1 Macros Required by the C and C++ Standards
The following macros are required by the C and C++ standards:

Macro Description

__TIME__ Time of translation of the source file.

__DATE__ Date of translation of the source file.

__LINE__ Line number of the current line in your source file.

S–2179–83 159

Cray C and C++ Reference Manual

Macro Description

__FILE__ Name of the source file being compiled.

__STDC__ Defined as the decimal constant 1 if compilation
is in strict conformance mode; defined as the
decimal constant 2 if the compilation is in extended
mode. This macro is defined for Cray C and C++
compilations.

__cplusplus Defined as 1 when the compiling Cray C++ code
and undefined when compiling Cray C code. The
__cplusplus macro is required by the ISO C++
standard, but not the ISO C standard.

10.2 Macros Based on the Host Machine
The following macros provide information about the environment running on the
host machine:

Macro Description

__linux Defined as 1.

__linux__ Defined as 1.

linux Defined as 1.

__gnu_linux__ Defined as 1.

10.3 Macros Based on the Target Machine
The following macros provide information about the characteristics of the target
machine:

Macro x86 AVX

_ADDR64 Defined as 1 if the targeted CPU has 64-bit address registers; if the
targeted CPU does not have 64-bit address registers, the macro is not
defined.

__LITTLE_ENDIAN__ Defined as 1.

_LITTLE_ENDIAN Defined as 1.

_MAXVL_8 Defined as 16, the number of
8-bit elements that fit in an XMM
register ("vector length").

Defined as 32, the number of 8-bit
elements that fit in a YMM register
("vector length").

_MAXVL_16 Defined as 8. Defined as 16.

160 S–2179–83

Using Predefined Macros [10]

Macro x86 AVX

_MAXVL_32 Defined as 4. Defined as 8.

_MAXVL_64 Defined as 2. Defined as 4.

_MAXVL_128 Defined as 0. Defined as 2.

10.4 Macros Based on the Compiler
The following macros provide information about compiler features:

Macro Description

_RELEASE_MAJOR Defined as the major release level of the compiler.

_RELEASE_MINOR Defined as the minor release level of the compiler.

_RELEASE_STRING Defined as a string that describes the version of the
compiler.

_CRAYC Defined as 1 to identify the Cray C and C++
compilers.

10.5 UPC Predefined Macros
The following macros provide information about UPC functions:

Macro Description

__UPC__ The integer constant 1, indicating a
conforming implementation.

__UPC_DYNAMIC_THREADS__ The integer constant 1 in the dynamic
THREADS translation environment.

__UPC_STATIC_THREADS__ The integer constant 1 in the static
THREADS translation environment.

S–2179–83 161

Cray C and C++ Reference Manual

162 S–2179–83

Running C and C++ Applications [11]

To run applications, log in to a login node and set up your user environment. See the
Cray Application Developer's Environment User's Guide for details on setting up
your environment. In your working directory, load the appropriate modules, compile
your programs, and launch them using the aprun command.

To use the Cray C compiler, load the PrgEnv-cray module. Use the module
list command to get a list of currently loaded modules. If another Programming
Environment module is loaded, use the module swap command. For example, if
PrgEnv-pgi is loaded, use this command:

% module swap PrgEnv-pgi PrgEnv-cray

Then use the cc -V command to verify that the Cray C compiler is available.

Compile your application.

% cc -o simple simple.c

Move your application to a mount point on the Cray system to execute.

% aprun -n 4 ./simple | sort
Application 1024906 resources: utime 0, stime 0
hello from pe 0 of 4
hello from pe 1 of 4
hello from pe 2 of 4
hello from pe 3 of 4

If you specified the -X option on the cc command line, then the aprun -n option
must specify the same number of processing elements (npes). Otherwise, you will
receive a run time error.

For additional information, see the Cray Programming Environment User's Guide.

S–2179–83 163

Cray C and C++ Reference Manual

164 S–2179–83

Debugging Cray C and C++ Code [12]

The TotalView symbolic debugger is available to help you debug C and C++ codes.
In addition, the Cray C and C++ compilers provide the following features to help
you in debugging codes:

• The -G and -g compiler options provide symbol information about your source
code for use by the TotalView debugger. For more information about these
compiler options, see -G level and -g on page 52.

• The -h [no]bounds option and the #pragma _CRI [no]bounds
directive let you check pointer and array references. The -h [no]bounds
option is described in -h [no]bounds (cc) on page 52. The
#pragma _CRI [no]bounds directive is described in [no]bounds
Directive on page 76.

• The -G3 option optimizes code for use with Cray fast-track debugging and
requires use of a debugger that supports fast-track debugging. For more
information, see the lgdb(1) man page.

• The #pragma _CRI message directive lets you add warning messages to
sections of code where you suspect problems. The #pragma _CRI message
directive is described in message Directive on page 80.

• The #pragma _CRI [no]opt directive lets you selectively isolate portions of
your code to optimize, or to toggle optimization on and off in selected portions of
your code. The #pragma _CRI [no]opt directive is described in [no]opt
Directive on page 80.

S–2179–83 165

Cray C and C++ Reference Manual

12.1 TotalView Debugger
Some of the functions available in the TotalView debugger allow you to perform the
following actions:

• Set and clear breakpoints, which can be conditional, at both the source code level
and the assembly code level

• Examine core files

• Step through a program, including across function calls

• Reattach to the executable file after editing and recompiling

• Edit values of variables and memory locations

• Evaluate code fragments

12.2 Compiler Debugging Options
Compiler options control the trade-offs between ease of debugging and compiler
optimizations. The compiler produces internal debugger information (DWARF) at
all times. The DWARF data provides function and line information to debuggers
for tracebacks and breakpoints, as well as type and location information about data
variables.

These options are specified as follows:

• -G3 This option permits both full code optimization and the greatest flexibility
in setting breakpoints, but requires use of the Cray fast-track debugger. For more
information, see the lgdb(1) man page.

• -G2

With no DWARF, the executable is optimized and as small as possible, but cannot
be easily debugged. Only assembly instructions will be visible and only global
symbols will be available.

• -G1

With partial DWARF and at least some optimization, tracebacks and limited
breakpoints are available in the debugger. The source code will be visible and
many more symbols will be available. The executable will be somewhat slower
and larger in exchange for increased debugger functionality.

• -g or -G0

With full DWARF and no optimizations, full debugging will be available, but at
the cost of a slower and larger executable.

Note: The -g or -G options may be specified on a per file basis so that only
part of an application incurs the overhead of improved debugging.

166 S–2179–83

Debugging Cray C and C++ Code [12]

However, consider the following cases in which optimization is affected by the -G1
and -G2 debugging options:

• Vectorization can be inhibited if a label exists within the vectorizable loop.

• Vectorization can be inhibited if the loop contains a nested block and the -G1
option is specified.

• When the -G1 option is specified, setting a breakpoint at the first statement in a
vectorized loop allows you to stop and display at each vector iteration. However,
setting a breakpoint at the first statement in an unrolled loop may not allow you to
stop at each vector iteration.

S–2179–83 167

Cray C and C++ Reference Manual

168 S–2179–83

Using Interlanguage Communication [13]

The C and C++ compilers provide mechanisms for declaring external functions
written in other languages. This enables you to write portions of an application in C,
C++, Fortran, or assembly language, which can be useful in cases where the other
languages provide performance advantages or utilities not available in C or C++. The
calling sequence is described in detail on the callseq(3) man page.

13.1 Calls Between C and C++ Functions
The following requirements apply when making calls between functions written in C
and C++:

• In Cray C++, the extern "C" linkage is required when declaring an external
function that is written in Cray C or when declaring a Cray C++ function that is to
be called from Cray C. Normally the compiler mangles function names to encode
information about the function's prototype in the external name; this prevents
direct access to these function names from a C function. The extern "C"
keyword prevents the compiler from performing name mangling.

• The program must be linked using the CC command.

• The program's main routine must be C or C++ code compiled using the CC
command.

Objects can be shared between C and C++. There are some Cray C++ objects that
are not accessible to Cray C functions (such as classes). The following object types
can be shared directly:

• Integral and floating types.

• Structures and unions that are declared identically in C and C++. In order for
structures and unions to be shared, they must be declared with identical members
in the identical order.

• Arrays and pointers to the above types.

S–2179–83 169

Cray C and C++ Reference Manual

In the following example, a Cray C function (C_add_func) is called by the Cray
C++ main program:

#include <iostream.h>

extern "C" int C_add_func(int, int);
int global_int = 123;

main()
{

int res, i;

cout << "Start C++ main" << endl;

/* Call C function to add two integers and return result. */

cout << "Call C C_add_func" << endl;
res = C_add_func(10, 20);
cout << "Result of C_add_func = " << res << endl;
cout << "End C++ main << endl;

}

The Cray C function (C_add_func) is as follows:

#include <stdio.h>

extern int global_int;

int C_add_func(int p1, int p2)
{

printf("\tStart C function C_add_func.\n");
printf("\t\tp1 = %d\n", p1);
printf("\t\tp2 = %d\n", p2);
printf("\t\tglobal_int = %d\n", global_int);
return p1 + p2;

}

The output from the execution of the calling sequence illustrated in the preceding
example is as follows:

Start C++ main
Call C C_add_func

Start C function C_add_func.
p1 = 10
p2 = 20
global_int = 123

Result of C_add_func = 30
End C++ main

13.2 Calling Fortran Functions and Subroutines from C or C++
The following standard considerations apply when calling Fortran functions from C
or C++. In addition, new interoperability features are supported under the more recent
Fortran standards. These newer features are described in Calling a C or C++ Function
from Fortran on page 180.

170 S–2179–83

Using Interlanguage Communication [13]

13.2.1 Requirements

• Fortran uses the call-by-address convention. C and C++ use the call-by-value
convention, which means that only pointers should be passed to Fortran
subprograms. For more information, see Argument Passing on page 171.

• Fortran arrays are in column-major order. C and C++ arrays are in row-major
order. This indicates which dimension is indicated by the first value in an array
element subscript. For more information, see Array Storage on page 172.

• Single-dimension arrays of signed 32-bit integers and single-dimension arrays
of 32-bit floating-point numbers are the only aggregates that can be passed as
parameters without changing the arrays.

• Fortran character pointers and character pointers from Cray C and C++ are
incompatible. For more information, see Logical and Character Data on page 173.

• Fortran logical values and the Boolean values from C and C++ are not fully
compatible. For more information, see Logical and Character Data on page 173.

• External C and C++ variables are stored in common blocks of the same name,
making them readily accessible from Fortran programs if the C or C++ variable is
in uppercase.

• When declaring Fortran functions or objects in C or C++, the name must be
specified in all uppercase letters, digits, or underscore characters and consist of
31 or fewer characters.

• In Cray C, Fortran functions can be declared using the fortran keyword (see
fortran Keyword on page 155). The fortran keyword is not available in
Cray C++. Instead, Fortran functions must be declared by specifying extern
"C".

13.2.2 Argument Passing

Because Fortran subroutines expect arguments to be passed by pointers rather than
by value, C and C++ functions called from Fortran subroutines must pass pointers
rather than values.

All argument passing in Cray C is strictly by value. To prepare for a function call
between two Cray C functions, a copy is made of each actual argument. A function
can change the values of its formal parameters, but these changes cannot affect the
values of the actual arguments. It is possible, however, to pass a pointer. (All array
arguments are passed by this method.) This capability is analogous to the Fortran
method of passing arguments.

In addition to passing by value, Cray C++ also provides passing by reference.

S–2179–83 171

Cray C and C++ Reference Manual

13.2.3 Array Storage

C and C++ arrays are stored in memory in row-major order. Fortran arrays are stored
in memory in column-major order. For example, the C or C++ array declaration int
A[3][2] is stored in memory as:

A[0][0] A[0][1]

A[1][0] A[1][1]

A[2][0] A[2][1]

The previously defined array is viewed linearly in memory as:

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

The Fortran array declaration INTEGER A(3,2) is stored in memory as:

A(1,1) A(2,1) A(3,1)

A(1,2) A(2,2) A(3,2)

The previously defined array is viewed linearly in memory as:

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

When an array is shared between Cray C, C++, and Fortran, its dimensions are
declared and referenced in C and C++ in the opposite order in which they are
declared and referenced in Fortran. Arrays are zero-based in C and C++ and are
one-based in Fortran, so in C and C++ you should subtract 1 from the array subscripts
that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example, the
equivalent declaration in C or C++ is:

int a[2][3];

The following list shows how to access elements of the array from Fortran and from C
or C++:

Fortran C or C++

A(1,1) A[0][0]

A(2,1) A[0][1]

A(3,1) A[0][2]

172 S–2179–83

Using Interlanguage Communication [13]

A(1,2) A[1][0]

A(2,2) A[1][1]

A(3,2) A[1][2]

13.2.4 Logical and Character Data

Logical and character data need special treatment for calls between C or C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C and C++. The techniques used to represent logical (Boolean) values also
differ between Cray C, C++, and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
fortran.h header file and conversion macros shown in the following list:

Macro Description

_btol Conversion utility that converts a 0 to a Fortran logical .FALSE.
and a nonzero value to a Fortran logical .TRUE.

_ltob Conversion utility that converts a Fortran logical .FALSE. to a 0
and a Fortran logical .TRUE. to a 1.

13.2.5 Accessing Named Common from C and C++

The following example demonstrates how external C and C++ variables are accessible
in Fortran named common blocks. It shows a C or C++ function calling a Fortran
subprogram, the associated Fortran subprogram, and the associated input and output.

In this example, the C or C++ structure _st is accessed in the Fortran subprogram
as common block ST. The Fortran common block ST will be converted to lower
case with a trailing underscore added.

The name of the structure and the converted Fortran common block name must
match. The C and C++ structure member names and the Fortran common block
member names do not have to match, as is shown in this example.

S–2179–83 173

Cray C and C++ Reference Manual

The following Cray C main program calls the Fortran subprogram FCTN:

#include <stdio.h>
struct
{

int i;
double a[10];
long double d;

} _st;

main()
{

int i;

/* initialize struct _st */
_st.I = 12345;

for (i = 0; i < 10; i++)
_st.a[i] = i;

_st.d = 1234567890.1234567890L;

/* print out the members of struct _st */
printf("In C: _st.i = %d, _st.d = %20.10Lf\n", _st.i, _st.d);
printf("In C: _st.a = ");
for (i = 0; i < 10; i++)

printf("%4.1f", _st.a[i]);
printf("\n\n");

/* call the fortran function */
FCTN();

}

The following example is the Fortran subprogram FCTN called by the previous Cray
C main program:

C *********** Fortran subprogram (f.f): ***********

SUBROUTINE FCTN

COMMON /ST/STI, STA(10), STD
INTEGER STI
REAL STA
DOUBLE PRECISION STD

INTEGER I

WRITE(6,100) STI, STD
100 FORMAT ('IN FORTRAN: STI = ', I5, ', STD = ', D25.20)

WRITE(6,200) (STA(I), I = 1,10)
200 FORMAT ('IN FORTRAN: STA =', 10F4.1)

END

174 S–2179–83

Using Interlanguage Communication [13]

The previous Cray C and Fortran examples are executed by the following commands,
and they produce the output shown:

% cc -c c.c
% ftn -c f.f
% ftn c.o f.o
% ./a.out
ST.i = 12345, ST.d = 1234567890.1234567890
In C: ST.a = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

IN FORTRAN: STI = 12345, STD = .12345678901234567889D+10
IN FORTRAN: STA = 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

13.2.6 Accessing Blank Common from C or C++

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named common
block has a name specified in names of variables or arrays stored in the block. A
blank common block, sometimes referred to as blank common, is declared in the same
way, but without a name.

There is no way to access blank common from C or C++ similar to accessing a named
common block. However, you can write a simple Fortran function to return the
address of the first word in blank common to the C or C++ program and then use that
as a pointer value to access blank common.

S–2179–83 175

Cray C and C++ Reference Manual

The following example shows how Fortran blank common can be accessed using
C or C++ source code:

#include <stdio.h>

struct st
{

float a;
float b[10];

} *ST;

#ifdef __cplusplus
extern "C" struct st *MYCOMMON(void);
extern "C" void FCTN(void);

#else
fortran struct st *MYCOMMON(void);
fortran void FCTN(void);

#endif

main()
{

int i;

ST = MYCOMMON();
ST->a = 1.0;
for (i = 0; i < 10; i++)

ST->b[i] = i+2;
printf("\n In C and C++\n");
printf(" a = %5.1f\n", ST->a);
printf(" b = ");
for (i = 0; i < 10; i++)

printf("%5.1f ", ST->b[i]);
printf("\n\n");

FCTN();
}

This Fortran source code accesses blank common and is accessed from the C or C++
source code in the preceding example:

SUBROUTINE FCTN
COMMON // STA,STB(10)
PRINT *, "IN FORTRAN"
PRINT *, " STA = ",STA
PRINT *, " STB = ",STB
STOP
END

FUNCTION MYCOMMON()
COMMON // A
MYCOMMON = LOC(A)
RETURN
END

This is the output of the previous C or C++ source code:

a = 1.0
b = 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

176 S–2179–83

Using Interlanguage Communication [13]

This is the output of the previous Fortran source code:

STA = 1.
STB = 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.

13.2.7 Cray C and Fortran Example

Here is an example of a Cray C function that calls a Fortran subprogram. The Fortran
subprogram example follows the Cray C function example, and the input and output
from this sequence follows the Fortran subprogram example.

Note: This example assumes that the Cray Fortran function is compiled with
the -s default32 option enabled. The examples will not work if the -s
default64 option is enabled.

/* C program (main.c): */

#include <stdio.h>
#include <string.h>
#include <fortran.h>

/* Declare prototype of the Fortran function. Note the last */
/* argument passes the length of the first argument. */
fortran double FTNFCTN (char *, int *, int);

double FLOAT1 = 1.6;
double FLOAT2; /* Initialized in FTNFCTN */

main()
{

int clogical, ftnlogical, cstringlen;
double rtnval;
char *cstring = "C Character String";

/* Convert clogical to its Fortran equivalent */
clogical = 1;
ftnlogical = _btol(clogical);

/* Print values of variables before call to Fortran function */
printf(" In main: FLOAT1 = %g; FLOAT2 = %g\n",

FLOAT1, FLOAT2);
printf(" Calling FTNFCTN with arguments:\n");
printf(" string = \"%s\"; logical = %d\n\n", cstring, clogical);
cstringlen = strlen(cstring);
rtnval = FTNFCTN(cstring, &ftnlogical, cstringlen);

/* Convert ftnlogical to its C equivalent */
clogical = _ltob(&ftnlogical);

/* Print values of variables after call to Fortran function */
printf(" Back in main: FTNFCTN returned %g\n", rtnval);
printf(" and changed the two arguments:\n");
printf(" string = \"%.*s\"; logical = %d\n",
cstringlen, cstring, clogical);

}

C Fortran subprogram (ftnfctn.f):

FUNCTION FTNFCTN(STR, LOG)

S–2179–83 177

Cray C and C++ Reference Manual

REAL FTNFCTN
CHARACTER*(*) STR
LOGICAL LOG

COMMON /FLOAT1/FLOAT1
COMMON /FLOAT2/FLOAT2
REAL FLOAT1, FLOAT2
DATA FLOAT2/2.4/ ! FLOAT1 INITIALIZED IN MAIN

C PRINT CURRENT STATE OF VARIABLES
PRINT*, ' IN FTNFCTN: FLOAT1 = ', FLOAT1,

1 ';FLOAT2 = ', FLOAT2
PRINT*, ' ARGUMENTS: STR = "', STR, '"; LOG = ', LOG

C CHANGE THE VALUES FOR STR(ING) AND LOG(ICAL)
STR = 'New Fortran String'
LOG = .FALSE.

FTNFCTN = 123.4
PRINT*, ' RETURNING FROM FTNFCTN WITH ', FTNFCTN
PRINT*
RETURN
END

The previous Cray C function and Fortran subprogram are executed by the following
commands and produce the following output:

% cc -c main.c
% ftn -c ftnfctn.f
% ftn main.o ftnfctn.o
% ./a.out
In main: FLOAT1 = 1.6; FLOAT2 = 2.4
Calling FTNFCTN with arguments:
string = "C Character String"; logical = 1

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4
ARGUMENTS: STR = "C Character String"; LOG = T
RETURNING FROM FTNFCTN WITH 123.4
Back in main: FTNFCTN returned 123.4
and changed the two arguments:
string = "New Fortran String"; logical = 0

178 S–2179–83

Using Interlanguage Communication [13]

13.2.8 Calling a Fortran Program from Cray C++

The following example illustrates how a Fortran program can be called from a Cray
C++ program:

#include <iostream>
using namespace std;
extern "C" int fortran_add_ints_(int *arg1, int &arg2);

main()
{

int num1, num2, res;
cout << "Start C++ main" << endl << endl;

//Call FORTRAN function to add two integers and return result.
//Note that the second argument is a reference parameter so
//it is not necessary to take the address of the
//variable num2.

num1 = 10;
num2 = 20;
cout << "Before Call to FORTRAN_ADD_INTS" << endl;
res = fortran_add_ints_(&num1, num2);
cout << "Result of FORTRAN Add = " << res << endl << endl;
cout << "End C++ main" << endl;

}

The Fortran program that is called from the Cray C++ main function in the
preceding example is as follows:

INTEGER FUNCTION FORTRAN_ADD_INTS(Arg1, Arg2)
INTEGER Arg1, Arg2

PRINT *," FORTRAN_ADD_INTS, Arg1,Arg2 = ", Arg1, Arg2
FORTRAN_ADD_INTS = Arg1 + Arg2
END

The output from the execution of the preceding example is as follows:

Start C++ main

Before Call to FORTRAN_ADD_INTS
FORTRAN_ADD_INTS, Arg1,Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ main

S–2179–83 179

Cray C and C++ Reference Manual

13.3 Calling a C or C++ Function from Fortran
In addition to calling Fortran functions and subroutines from C or C++ programs,
C or C++ functions can be called from Fortran. Two methods can be used: either
the Standard Fortran/C Interoperability on page 183 or the Portable Interoperability
Mechanism on page 180, which provides a standard portable interoperability
mechanism for Fortran and C programs.

13.3.1 Portable Interoperability Mechanism

If you use the method documented in this section, keep in mind the information in
Calling Fortran Functions and Subroutines from C or C++ on page 170.

When calling a Cray C++ function from a Fortran program, observe the following
rules:

• The Cray C++ function must be declared with extern "C" linkage.

• The program must be linked using the CC command.

• The program's main routine must be C or C++ code compiled using the CC
command.

The example that follows illustrates a Fortran program, main.f, that calls a Cray
C function, ctctn.c. The Cray C function being called, the commands required,
and the associated input and output are also included.

Note: This example assumes that the Cray Fortran program is compiled with
the -s default32 option enabled, and will not work if the -s default64
option is enabled.

180 S–2179–83

Using Interlanguage Communication [13]

Example 14. Calling a C function from Fortran

Fortran program main.f source code:

C Fortran program (main.f):

PROGRAM MAIN

REAL CFCTN
COMMON /FLOAT1/FLOAT1
COMMON /FLOAT2/FLOAT2
REAL FLOAT1, FLOAT2
DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn.c
LOGICAL LOG
CHARACTER*24 STR
REAL RTNVAL

C INITIALIZE VARIABLES STR(ING) AND LOG(ICAL)
STR = 'Fortran Character String'
LOG = .TRUE.

C PRINT VALUES OF VARIABLES BEFORE CALL TO C FUNCTION
PRINT*, 'In main.f: FLOAT1 = ', FLOAT1,

1 '; FLOAT2 = ', FLOAT2
PRINT*, 'Calling cfctn.c with these arguments: '
PRINT*, 'LOG = ', LOG
PRINT*, 'STR = ', STR

RTNVAL = CFCTN(STR, LOG)

C PRINT VALUES OF VARIABLES AFTER CALL TO C FUNCTION
PRINT*, 'Back in main.f:: cfctn.c returned ', RTNVAL
PRINT*, 'and changed the two arguments to: '
PRINT*, 'LOG = ', LOG
PRINT*, 'STR = ', STR

END PROGRAM

Compile main.f, creating main.o:

% ftn -c main.f

S–2179–83 181

Cray C and C++ Reference Manual

C function cfctn.c source code:

/* C function (cfctn.c) */
#include <fortran.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

float FLOAT1; /* Initialized in MAIN */
float FLOAT2 = 2.4;

/* The slen argument passes the length of string in str */
float cfctn_(char * str, int *log, int slen)
{

int clog;
float rtnval;
char *cstring;

/* Convert log passed from Fortran MAIN */
/* into its C equivalent */

cstring = malloc(slen+1);
strncpy(cstring, str, slen);
cstring[slen] = '\0';
clog = _ltob(log);

/* Print the current state of the variables */
printf(" In CFCTN: FLOAT1 = %.1f; FLOAT2 = %.1f\n",

FLOAT1, FLOAT2);
printf(" Arguments: str = '%s'; log = %d\n",
cstring, clog);

/* Change the values for str and log */
strncpy(str, "C Character String ", 24);
*log = 0;

rtnval = 123.4;
printf(" Returning from CFCTN with %.1f\n\n", rtnval);
return(rtnval);

}

Compile cfctn.c, creating cfctn.o:

% cc -c cfctn.c

Link main.o and cfctn.o, creating executable interlang1:

% ftn -o interlang1 main.o cfctn.o

Run program interlang1:

% ./interlang1

182 S–2179–83

Using Interlanguage Communication [13]

Program output:

In main.f: FLOAT1 = 1.60000002 ; FLOAT2 = 2.4000001
Calling cfctn.c with these arguments:
LOG = T
STR = Fortran Character String
In CFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4
Arguments: str = 'Fortran Character String'; log = 1
Returning from CFCTN with 123.4

Back in main.f:: cfctn.c returned 123.400002
and changed the two arguments to:
LOG = F
STR = C Character String

13.3.2 Standard Fortran/C Interoperability

For more information about C interoperability, see the current Fortran standard.

The ISO_C_BINDING module provides interoperability between Fortran intrinsic
types and C types. The ISO_C_BINDING module provides named constants which
can be used as KIND type parameters, compatible with C types.

In addition to the named constants required by the Fortran 2003 standard, Cray
compiler provides, as an extension, definitions for 128-bit floating, and complex
types. C_FLOAT128 and C_FLOAT128_COMPLEX correspond to C types
__float128 and __float128 complex.

S–2179–83 183

Cray C and C++ Reference Manual

184 S–2179–83

Implementation-defined Behavior [14]

This chapter describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the behavior of
each particular implementation be documented, and define implementation-defined
behavior as behavior that is dependent on the characteristics of the implementation
for a correct program construct and correct data.

14.1 Messages
All diagnostic messages issued by the compilers are reported through the
Cray Linux Environment (CLE) message system. For information about messages
issued by the compilers and for information about the Cray Linux Environment
(CLE) message system, see Appendix C, Using the Compiler Message System on
page 209.

14.2 Environment
When argc and argv are used as parameters to the main function, the array
members argv[0] through argv[argc-1] contain pointers to strings that
are set by the command shell. The shell sets these arguments to the list of words
on the command line used to invoke the compiler (the argument list). For further
information about how the words in the argument list are formed, refer to the
documentation on the shell in which you are running. For information about
Cray Linux Environment (CLE) shells, see the sh(1) or csh(1) man page.

A third parameter, char **envp, provides access to environment variables. The
value of the parameter is a pointer to the first element of an array of null-terminated
strings that matches the output of the env command. The array of pointers is
terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that stdin, stdout,
and stderr (cin, cout, and cerr in Cray C++) refer to interactive devices and
buffer them accordingly.

S–2179–83 185

Cray C and C++ Reference Manual

14.2.1 Identifiers

The identifier (as defined by the standards) is merely a sequence of letters and digits.
Specific uses of identifiers are called names.

The Cray C compiler treats the first 255 characters of a name as significant, regardless
of whether it is an internal or external name. The case of names, including external
names, is significant. In Cray C++, all characters of a name are significant.

14.2.2 Types

Table 11 summarizes Cray C and C++ types and the characteristics of each type.
Representation is the number of bits used to represent an object of that type. Memory
is the number of storage bits that an object of that type occupies.

In the Cray C and C++ compilers, size, in the context of the sizeof operator,
refers to the size allocated to store the operand in memory; it does not refer to
representation, as specified in Table 11. Thus, the sizeof operator will return a size
that is equal to the value in the Memory column of Table 11 divided by 8 (the number
of bits in a byte).

Table 11. Data Type Mapping

Type
Representation Size and Memory Storage
Size (bits)

bool (C++) 8

_Bool (C) 8

char 8

wchar_t 32

short 16

int 32

long 64

long long 64

float 32

double 64

long double 64

float complex 64 (each part is 32 bits)

double complex 128 (each part is 64 bits)

long double complex 128 (each part is 64 bits)

_float128 128

186 S–2179–83

Implementation-defined Behavior [14]

Type
Representation Size and Memory Storage
Size (bits)

_float128 complex 256 (each part is 128 bits)

Pointers 64

Note: Vectorization of 8- and 16-bit data types is deferred.

14.2.3 Characters

The full 8-bit ASCII code set can be used in source files. Characters not in the
character set defined in the standard are permitted only within character constants,
string literals, and comments. The -h [no]calchars option allows the use of the
$ sign in identifier names. For more information about the -h [no]calchars
option, see -h [no]calchars on page 35.

A character consists of 8 bits. Up to 8 characters can be packed into a 64-bit word.
A plain char type (that is, one that is declared without a signed or unsigned
keyword) is treated as a signed type.

Character constants and string literals can contain any characters defined in the 8-bit
ASCII code set. The characters are represented in their full 8-bit form. A character
constant can contain up to 8 characters. The integer value of a character constant
is the value of the characters packed into a word from left to right, with the result
right-justified, as shown in the following table:

Table 12. Packed Characters

Character Constant Integer Value

'a' 0x61

'ab' 0x6162

In a character constant or string literal, if an escape sequence is not recognized, the
\ character that initiates the escape sequence is ignored, as shown in the following
table:

Table 13. Unrecognizable Escape Sequences

Character Constant Integer Value Explanation

'\a' 0x7 Recognized as the ASCII BEL character

'\8' 0x38 Not recognized; ASCII value for 8

'\[' 0x5b Not recognized; ASCII value for [

'\c' 0x63 Not recognized; ASCII value for c

S–2179–83 187

Cray C and C++ Reference Manual

14.2.4 Wide Characters

Wide characters are treated as signed 64-bit integer types. Wide character constants
cannot contain more than one multibyte character. Multibyte characters in wide
character constants and wide string literals are converted to wide characters in the
compiler by calling the mbtowc() function. The current locale in effect at the time
of compilation determines the method by which mbtowc() converts multibyte
characters to wide characters, and the shift states required for the encoding of
multibyte characters in the source code. If a wide character, as converted from a
multibyte character or as specified by an escape sequence, cannot be represented in
the extended execution character set, it is truncated.

14.2.5 Integers

All integral values are represented in a two's complement format. For representation
and memory storage requirements for integral types, see Table 11.

When an integer is converted to a shorter signed integer, and the value cannot be
represented, the result is the truncated representation treated as a signed quantity.
When an unsigned integer is converted to a signed integer of equal length, and the
value cannot be represented, the result is the original representation treated as a
signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ^, and |)
operate on signed integers in the same manner in which they operate on unsigned
integers. The result of e1 >> e2, where e1 is a negative-valued signed integral
value, is that e1 is right-shifted e2 bit positions; vacated bits are filled with 1s. This
behavior can be modified by using the -h nosignedshifts option (see -h
[no]signedshifts on page 35). Bits higher than the sixth bit are not ignored.

The result of the / operator is the largest integer less than or equal to the algebraic
quotient when either operand is negative and the result is a nonnegative value. If
the result is a negative value, it is the smallest integer greater than or equal to the
algebraic quotient. The / operator behaves the same way in C and C++ as in Fortran.

The sign of the result of the percent (%) operator is the sign of the first operand.

Integer overflow is ignored. Because some integer arithmetic uses the floating-point
instructions, floating-point overflow can occur during integer operations. Division by
0 and all floating-point exceptions, if not detected as an error by the compiler, can
cause a run time abort.

188 S–2179–83

Implementation-defined Behavior [14]

14.2.6 128-Bit Floating Point and 256-Bit Complex Predefined Types

The Cray C and C++ Compilers now support 128-bit floating point and 256-bit
complex predefined types using the X86-64 ABI definitions for type names and data
layout. These types are sometimes referred to as quad-precision. In C and C++, use
__float128, and __float128 _complex. The header file quadmath.h
defines the 128-bit functions and the header file complex.h defines the complex
functions.

The base type itself uses 128 bits of storage with a guaranteed minimum alignment on
a 128-bit boundary, little endian, has a 15-bit exponent, a 113-bit mantissa, and an
exponent bias of 16383, and is compatible with the gcc implementation.

In C and C++, long double remains identical to double – 64-bit IEEE, and
not 80-bit extended precision.

C forms of intrinsic math functions offer full support for quad-precision types.
See the intro_quad_precision(3i) man page for a complete list of intrinsic
functions that support quad-precision.

There is no printf descriptor for __float128. quadmath.h defines gnu functions
quadmath_snprintf() and strtoflt128() that convert __float128
to strings:

extern __float128 strtoflt128 (const char *, char **);
extern int quadmath_snprintf (char *str, size_t size, const char *format, ...)

Alternatively, use a Fortran subroutine to print a 128-bit floating point number:

% cat printf128main.c printf128.f
#include <quadmath.h>
#include <math.h>
printf128_(__float128 *x);
void main(){

__float128 x=1.234567890123456789012345678901234567890Q;
printf128_(&x);

}

subroutine printf128(qx)
real*16 qx
print "('qx:', f5.1, e45.35)",qx,qx
end

%cc printf128main.c printf128.o && ./a.out
qx: 1.2 0.12345678901234567890123456789012346E+01

14.2.7 Arrays and Pointers

An unsigned long value can hold the maximum size of an array. The type
size_t is defined to be a typedef name for unsigned long in the headers:
malloc.h, stddef.h, stdio.h, stdlib.h, string.h, and time.h. If
more than one of these headers is included, only the first defines size_t.

S–2179–83 189

Cray C and C++ Reference Manual

A type long can hold the difference between two pointers to elements of the same
array. The type ptrdiff_t is defined to be a typedef name for long in the
header stddef.h.

If a pointer type's value is cast to a signed or unsigned long int, and then
cast back to the original type's value, the two pointer values will compare equal.
Type-casting from pointer to long int enables pointer arithmetic. For example:

static void **Table;
size_t offset = -BlockSize[nr];
Table = (void **) malloc(MAXBLOCKS * sizeof(void *));
Table[i] = (void **) (((long) Table[i]) + offset);

Pointers on Cray Linux Environment (CLE) systems are byte pointers. Byte pointers
use the same internal representation as integers; a byte pointer counts the numbers
of bytes from the first address.

A pointer can be explicitly converted to any integral type large enough to hold it. The
result will have the same bit pattern as the original pointer. Similarly, any value of
integral type can be explicitly converted to a pointer. The resulting pointer will have
the same bit pattern as the original integral type.

14.2.8 Registers

Use of the register storage class in the declaration of an object has no effect on
whether the object is placed in a register. The compiler performs register assignment
aggressively; that is, it automatically attempts to place as many variables as possible
into registers.

14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields

Accessing a member of a union by using a member of a different type results in an
attempt to interpret, without conversion, the representation of the value of the member
as the representation of a value in the different type.

Members of a class or structure are packed into words from left to right. Padding is
appended to a member to correctly align the following member, if necessary. Member
alignment is based on the size of the member:

• For a member bit field of any size, alignment is any bit position that allows the
member to fit entirely within a 64–bit word.

• For a member with a size less than 64 bits, alignment is the same as the size.
For example, a char has a size and alignment of 8 bits; a float has a size and
alignment of 32 bits.

• For a member with a size equal to or greater than 64 bits, alignment is 64 bits.

• For a member with array type, alignment is equal to the alignment of the element
type.

190 S–2179–83

Implementation-defined Behavior [14]

A plain int type bit field is treated as a signed int bit field.

The values of an enumeration type are represented in the type signed int in C;
they are a separate type in C++.

14.2.10 Qualifiers

When an object that has volatile-qualified type is accessed, it is simply a
reference to the value of the object. If the value is not used, the reference need not
result in a load of the value from memory.

14.2.11 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to modify
an arithmetic, structure, or union type.

14.2.12 Statements

The compiler has no fixed limit on the maximum number of case values allowed
in a switch statement.

The Cray C++ compiler parses asm statements for correct syntax, but otherwise
ignores them.

14.2.13 Exceptions

In Cray C++, when an exception is thrown, the memory for the temporary copy of
the exception being thrown is allocated on the stack and a pointer to the allocated
space is returned.

14.2.14 System Function Calls

For a description of the form of the unsuccessful termination status that is returned
from a call to exit(3), see the exit(3) man page.

14.3 Preprocessing
The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution
character set. No such character constant has a negative value. For each, 'a' has the
same value in the two contexts:

#if 'a' == 97
if ('a' == 97)

The -I option and the method for locating included source files is described in -I
incldir on page 60.

S–2179–83 191

Cray C and C++ Reference Manual

The source file character sequence in a #include directive must be a valid or
Cray Linux Environment (CLE) file name or path name. A #include directive may
specify a file name by means of a macro, provided the macro expands into a source
file character sequence delimited by double quotes or < and > delimiters, as follows:

#define myheader "./myheader.h"
#include myheader

#define STDIO <stdio.h>
#include STDIO

The macros __DATE__ and __TIME__ contain the date and time of the beginning
of translation. For more information, refer to the description of the predefined macros
in Chapter 10, Using Predefined Macros on page 159.

The #pragma directives are described in Chapter 3, Using #pragma Directives on
page 73.

192 S–2179–83

Using Libraries and the Linker [A]

This appendix describes the libraries that are available with the Cray C and C++
compilers and the linker.

A.1 Cray C and C++ Libraries
Libraries that support Cray C and C++ are automatically available when you use
the CC or cc command to compile your programs. These commands automatically
issue the appropriate directives to link the program with the appropriate functions. If
your program strictly conforms to the C or C++ standards, you do not need to know
library names and locations. If your program requires other libraries or if you want
direct control over the linking process, more knowledge of the linker and libraries
is necessary.

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data structures
of computer science. The STL is a generic library, meaning that its components are
heavily parameterized: almost every component in the STL is a template. Be sure you
have a complete understanding of templates and how they work before using them.

A.2 Linker
When you use the cc or CC command to invoke the compiler, and the program
compiles without errors, the linker is called. Specifying the -c option on the
command line produces relocatable object files (*.o) without calling the linker.
These relocatable object files can then be used as input to the linker command by
specifying the file names on the appropriate linker command line.

For example, the following command line compiles a file called target.c and
produces the relocatable object file called target.o in your current working
directory:

cc -c target.c

You can then use file target.o as input to the linker or save the file to use with
other relocatable object files to compile and create a linked executable file (a.out by
default).

S–2179–83 193

Cray C and C++ Reference Manual

Because of the special code needed to handle templates, constructors, destructors,
and other C++ language features, object files generated by using the CC command
should be linked using the CC command.

194 S–2179–83

Using Cray C and C++ Dialects [B]

This appendix details the features of the C and C++ languages that are accepted by
the Cray C and C++ compilers, including certain language dialects and anachronisms.
Users should be aware of these details, especially users who are porting codes from
other environments.

B.1 C++ Language Conformance
The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:2003 standard, except for exported templates. C++ supports the ISO 2003
Standard Template Library (STL) headers but abrogates support for pre-standard
template headers that have the .h extension.

Note: C++ codes that use the pre-standard template headers must be updated to
the ISO C++ standard.

The Cray C++ compiler also has a cfront compatibility mode, which duplicates a
number of features and bugs of cfront. Complete compatibility is not guaranteed
or intended. The mode allows programmers who have used cfront features
to continue to compile their existing code (see General Directives on page 75).
Command line options are also available to enable and disable anachronisms (see
C++ Anachronisms Accepted on page 198) and strict standard-conformance checking
(see Extensions Accepted in Normal C++ Mode on page 199, and Extensions
Accepted in C or C++ Mode on page 200). The command line options are described
in Chapter 2, Invoking the C and C++ Compilers on page 25.

B.1.1 Supported C++ Language Features

The following features, which are in the ISO/IEC 14882:2003 standard but not in
traditional C++1, are supported:

• The dependent statement of an if, while, do-while, or for is considered
to be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first

1 As defined in The Annotated C++ Reference Manual (ARM), by Ellis and Stroustrup, Addison Wesley,
1990.

S–2179–83 195

Cray C and C++ Reference Manual

operand of a ? operator, or as an operand of the &&, ||, or ! operators
may have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the form
x.::A::B and p->::A::B.

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and the main() routine has an
integral return type, it is treated as if a return 0; statement was executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

• A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary that is created gets the same
default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when taking
the address of a function.

• Template friend declarations and definitions are permitted in class definitions
and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions such as conversion from T** to T const * const
are allowed.

• Digraphs are recognized.

• Operator keywords (for example, and or bitand) are recognized.

• Static data member declarations can be used to declare member constants.

• bool is recognized.

• RTTI (run time type identification), including dynamic_cast and the typeid
operator, is implemented.

• Declarations in tested conditions (within if, switch, for, and while
statements) are supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast)
are implemented.

196 S–2179–83

Using Cray C and C++ Dialects [B]

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives. Access
declarations are broadened to match the corresponding using declarations.

• The typename keyword is recognized.

• explicit is accepted to declare nonconverting constructors.

• The scope of a variable declared in the for-init-statement of a for loop
is the scope of the loop (not the surrounding scope).

• Member templates are implemented.

• The new specialization syntax (using template <>) is implemented.

• Type qualifiers, const and volatile referred to as cv-qualifiers are retained
on rvalues (in particular, on function return values).

• The distinction between trivial and nontrivial constructors has been implemented,
as has the distinction between process overlay directives (PODs) and non-PODs
with trivial constructors.

• The linkage specification is treated as part of the function type (affecting function
overloading and implicit conversions).

• A typedef name can be used in an explicit destructor call.

• Placement delete is supported.

• An array allocated via a placement new can be deallocated via delete.

• enum types are considered to be nonintegral types.

• Partial specification of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as independent
functions, not as “guiding declarations” that are instances of the template.

• It is possible to overload operators using functions that take enum types and no
class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and p->A::B
are supported.

• The notation :: template (and –>template, etc.) is supported.

S–2179–83 197

Cray C and C++ Reference Manual

• In a reference of the form f()->g(), with g a static member function, f() is
evaluated. Likewise for a similar reference to a static data member. The ARM
specifies that the left operand is not evaluated in such cases.

• enum types can contain values larger than can be contained in an int.

• Default arguments of function templates and member functions of class templates
are instantiated only when the default argument is used in a call.

• String literals and wide string literals have const type.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations are not
visible except for functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in a void function.

• reinterpret_cast allows casting a pointer to a member of one class to a
pointer to a member of another class even when the classes are unrelated.

• Two-phase name binding in templates as described in the Working Paper is
implemented.

• Putting a try/catch around the initializers and body of a constructor is
implemented.

• template parameters are implemented.

• Universal character set escapes (e.g., \uabcd) are implemented.

• extern inline functions are supported.

• Covariant return types on overriding virtual functions are supported.

B.2 C++ Anachronisms Accepted
C++ anachronisms are enabled by using the -h anachronisms command line
option (see -h [no]anachronisms (CC) on page 29). When anachronisms are
enabled, the following anachronisms are accepted:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized by
using the default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

• The number of elements in an array can be specified in an array delete operation.
The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

198 S–2179–83

Using Cray C and C++ Dialects [B]

• The base class name can be omitted in a base class initializer if there is only one
immediate base class.

• Assignment to the this pointer in constructors and destructors is allowed. This
is only allowed if anachronisms are enabled and the assignment to this
configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to a function.

• A nested class name may be used as a non-nested class name if no other class of
that name has been declared. The anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different
type. A temporary is created, it is initialized from the (converted) initial value,
and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the
class type or a derived class thereof. No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and can participate in
function overloading as though it were prototyped. Default argument promotion is
not applied to parameter types of such functions when checking for compatibility,
therefore, the following statements declare the overloading of two functions
named f:

int f(int);

int f(x) char x; { return x; }

Note: In C, this code is legal, but has a different meaning. A tentative declaration
of f is followed by its definition.

B.3 Extensions Accepted in Normal C++ Mode
The following C++ extensions are accepted (except when strict standard conformance
mode is enabled, in which case a warning or caution message may be issued):

• A friend declaration for a class can omit the class keyword, as shown in
the following example:

class B;
class A {

friend B; // Should be "friend class B"
};

• Constants of scalar type can be defined within classes, as shown in the following
example:

class A {
const int size=10;
int a[size];

};

S–2179–83 199

Cray C and C++ Reference Manual

• In the declaration of a class member, a qualified name can be used, as shown in
the following example:

struct A {
int A::f(); // Should be int f();

}

• An assignment operator declared in a derived class with a parameter type
matching one of its base classes is treated as a “default” assignment operator;
that is, such a declaration blocks the implicit generation of a copy assignment
operator. This is cfront behavior that is known to be relied upon in at least one
widely used library. Here is an example:

struct A { };
struct B : public A {

B& operator=(A&);
};

By default, as well as in cfront compatibility mode, there will be no implicit
declaration of B::operator=(const B&), whereas in strict-ANSI
mode, B::operator=(A&) is not a copy assignment operator and
B::operator=(const B&) is implicitly declared.

• Implicit type conversion between a pointer to an extern "C" function and
a pointer to an extern "C++" function is permitted. The following is an
example:

extern "C" void f(); // f's type has extern "C" linkage
void (*pf)() // pf points to an extern "C++" function

= &f; // error unless implicit conversion allowed

• The ? operator, for which the second and third operands are string literals or wide
string literals, can be implicitly converted to one of the following:

char *
wchar_t *

In C++ string literals are const. There is a deprecated implicit conversion that
allows conversion of a string literal to char *, dropping the const. That
conversion, however, applies only to simple string literals. Allowing it for the
result of a ? operation is an extension:

char *p = x ? "abc" : "def";

B.4 Extensions Accepted in C or C++ Mode
The following extensions are accepted in C or C++ mode except when strict standard
conformance modes is enabled, in which case a warning or caution message may
be issued.

• The special lint comments /*ARGSUSED*/, /*VARARGS*/ (with or without
a count of nonvarying arguments), and /*NOTREACHED*/ are recognized.

200 S–2179–83

Using Cray C and C++ Dialects [B]

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

• Bit fields can have base types that are enum or integral types in addition to
int and unsigned int. This corresponds to A.6.5.8 in the ANSI Common
Extensions appendix.

• enum tags can be incomplete as long as the tag name is defined and resolved by
specifying the brace-enclosed list later.

• An extra comma is allowed at the end of an enum list.

• The final semicolon preceding the closing of a struct or union type specifier
can be omitted.

• A label definition can be immediately followed by a right brace (}). (Normally,
a statement must follow a label definition.)

• An empty declaration (a semicolon preceded by nothing) is allowed.

• An initializer expression that is a single value and is used to initialize an entire
static array, struct, or union does not need to be enclosed in braces. ANSI C
requires braces.

• In an initializer, a pointer constant value can be cast to an integral type if the
integral type is large enough to contain it.

• The address of a variable with register storage class may be taken.

• In an integral constant expression, an integer constant can be cast to a pointer
type and then back to an integral type.

• In duplicate size and sign specifiers (for example, short short or
unsigned unsigned) the redundancy is ignored.

• Benign redeclarations of typedef names are allowed. That is, a typedef
name can be redeclared in the same scope with the same type.

• Dollar sign ($) characters can be accepted in identifiers by using the
-h calchars command line option. This is not allowed by default.

• Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one
token that is not valid. If the -h conform option is specified, the pp-number
syntax is used.

• Assignment and pointer differences are allowed between pointers to types that
are interchangeable but not identical, for example, unsigned char * and
char *. This includes pointers to integral types of the same size (for example,
int * and long *). Assignment of a string constant to a pointer to any kind of
character is allowed without a warning.

S–2179–83 201

Cray C and C++ Reference Manual

• Assignment of pointer types is allowed in cases where the destination type has
added type qualifiers that are not at the top level (for example, int ** to
const int **). Comparisons and pointer difference of such pairs of pointer
types are also allowed.

• In operations on pointers, a pointer to void is always implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these are
allowed by some operators, and not by others (generally, where it does not make
sense).

• Pointers to different function types may be assigned or compared for equality
(==) or inequality (!=) without an explicit type cast. This extension is not
allowed in C++ mode.

• A pointer to void can be implicitly converted to or from a pointer to a function
type.

• External entities declared in other scopes are visible:

void f1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */ }

• In C mode, end-of-line comments (//) are supported.

• A non-lvalue array expression is converted to a pointer to the first element of the
array when it is subscripted or similarly used.

• The fortran keyword. For more information, see fortran Keyword on
page 155.

• Cray hexadecimal floating point constants. For more information, see
Hexadecimal Floating-point Constants on page 156.

B.5 C++ Extensions Accepted in cfront Compatibility Mode
The cfront compatibility mode is enabled by the -h cfront command-line
option. The following extensions are accepted in cfront compatibility mode:

• Type qualifiers on the this parameter are dropped in contexts such as in the
following example:

struct A {
void f() const;

};
void (A::*fp)() = &A::f;

This is a safe operation. A pointer to a const function can be put into a pointer
to non-const, because a call using the pointer is permitted to modify the object
and the function pointed to will not modify the object. The opposite assignment
would not be safe.

202 S–2179–83

Using Cray C and C++ Dialects [B]

• Conversion operators that specify a conversion to void are allowed.

• A nonstandard friend declaration can introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default mode,
however, in cfront mode the declaration can also introduce a new type name.
An example follows:

struct A {
friend B;

};

• The third operator of the ? operator is a conditional expression instead of an
assignment expression.

• A reference to a pointer type may be initialized from a pointer value without use
of a temporary even when the reference pointer type has additional type qualifiers
above those present in the pointer value. For example:

int *p;
const int *&r = p; // No temporary used

• A reference can be initialized to NULL.

• Because cfront does not check the accessibility of types, access errors for types
are issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable with a
value of 0 is not considered to be a null pointer constant. In general, in overload
resolution, a null pointer constant must be entered as "0” to be considered a null
pointer constant (e.g., '\0' is not considered a null pointer constant).

• An alternate form of declaring pointer-to-member-function variables is supported,
as shown in the following example:

struct A {
void f(int);
static void sf(int);
typedef void A::T3(int); // nonstd typedef decl
typedef void T2(int); // std typedef

};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

In this example, T is construed to name a function type for a nonstatic member
function of class A that takes an int argument and returns void; the use of
such types is restricted to nonstandard pointer-to-member declarations. The
declarations of T and pmf in combination are equivalent to the following single
standard pointer-to-member declaration:

void (A::* pmf)(int) = &A::f;

S–2179–83 203

Cray C and C++ Reference Manual

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A::T3, this feature changes the meaning of a valid
declaration. cfront version 2.1 accepts declarations, such as T, even when A
is an incomplete type; so this case is also accepted.

• Protected member access checking is not done when the address of a protected
member is taken. For example:

class B { protected: int i; };
class D : public B { void mf()};

void D::mf() {
int B::* pmi1 = &B::i; // error, OK in cfront mode
int D::* pmi2 = &D::i; // OK

}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

• The destructor of a derived class can implicitly call the private destructor of a base
class. In default mode, this is an error but in cfront mode it is reduced to a
warning. For example:

class A {
~A();

};
class B : public A {

~B();
};
B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword
(identifier ...) is treated as an argument. For example:

class A { A(); };
double d;
A x(int(d));
A(x2);

By default, int(d) is interpreted as a parameter declaration (with redundant
parentheses), and so x is a function; but in cfront compatibility mode int(d)
is an argument and x is a variable.

The declaration A(x2) is also misinterpreted by cfront. It should be
interpreted as the declaration of an object named x2, but in cfront mode it is
interpreted as a function style cast of x2 to the type A.

204 S–2179–83

Using Cray C and C++ Dialects [B]

Similarly, the following declaration declares a function named xzy, that takes
a parameter of type function taking no arguments and returning an int. In
cfront mode, this is interpreted as a declaration of an object that is initialized
with the value int(), which evaluates to 0.

int xyz(int());

• A named bit field can have a size of 0. The declaration is treated as though no
name had been declared.

• Plain bit fields (such as bit fields declared with a type of int) are always signed.

• The name given in an elaborated type specifier can be a typedef name that is
the synonym for a class name. For example:

typedef class A T;
class T *pa; // No error in cfront mode

• No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront mode

• Virtual function table pointer-update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions
might be overridden in a further derived class. For example:

struct A {
virtual void f() {}
A() {}
~A() {}

};
struct B : public A {

B() {}
~B() {f();} // Should call A::f according to ARM 12.7

};
struct C : public B {

void f() {}
} c;

In cfront compatibility mode, B::~B calls C::f.

• An extra comma is allowed after the last argument in an argument list. For
example:

f(1, 2,);

• A constant pointer-to-member function can be cast to a pointer-to-function, as in
the following example. A warning is issued.

struct A {int f();};
main () {

int (*p)();
p = (int (*)())A::f; // Okay, with warning

}

• Arguments of class types that allow bitwise copy construction but also have

S–2179–83 205

Cray C and C++ Reference Manual

destructors are passed by value like C structures, and the destructor is not called
on the copy. In normal mode, the class object is copied into a temporary, the
address of the temporary is passed as the argument, and the destructor is called
on the temporary after the call returns. Because the argument is passed by
value instead of by address, code like this compiled in cfront mode is not
calling-sequence compatible with the same code compiled in normal mode. In
practice, this is not much of a problem, since classes that allow bitwise copying
usually do not have destructors.

• A union member may be declared to have the type of a class for which the user
has defined an assignment operator (as long as the class has no constructor or
destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef name
may appear as the class name in an elaborated type specifier. For example:

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types when one
is static and the other is nonstatic with a function qualifier. For example:

class A {
void f(int) const;
static void f(int); // No error in cfront mode

};

• The scope of a variable declared in the for-init-statement is the scope
to which the for statement belongs. For example:

int f(int i) {
for (int j = 0; j < i; ++j) { /* ... */ }
return j; // No error in cfront mode

}

• Function types differing only in that one is declared extern "C" and the other
extern "C++" can be treated as identical:

typedef void (*PF)();
extern "C" typedef void (*PCF)();
void f(PF);
void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible types;
PF is a pointer to an extern "C++" function whereas PCF is a pointer to an
extern "C" function; and the two declarations of f create an overload set.

• Functions declared inline have internal linkage.

• enum types are regarded as integral types.

206 S–2179–83

Using Cray C and C++ Dialects [B]

• An uninitialized const object of non-POD class type is allowed even if its default
constructor is implicitly declared as in the following example:

struct A { virtual void f(); int i; };
const A a;

• A function parameter type is allowed to involve a pointer or reference to array of
unknown bounds.

• If the user declares an operator= function in a class, but not one that can serve
as the default operator=, and bitwise assignment could be done on the class,
a default operator= is not generated. Only the user-written operator=
functions are considered for assignments, so bitwise assignment is not done.

S–2179–83 207

Cray C and C++ Reference Manual

208 S–2179–83

Using the Compiler Message System [C]

This appendix describes how to use the message system to control and use messages
issued by the compiler. Explanatory texts for messages can be displayed online
through the use of the explain command.

C.1 Expanding Messages with the explain Command
You can use the explain command to display an explanation of any message issued
by the compiler. The command takes as an argument, the message number, including
the number's prefix. The prefix for Cray C and C++ is CC.

In the following sample dialog, the cc command invokes the compiler on source
file bug.c. Message CC-24 is displayed. The explain command displays the
expanded explanation for this message.

% cc bug.c
CC-24 cc: ERROR File = bug.c, Line = 1

An invalid octal constant is used.

int i = 018;
^

1 error detected in the compilation of "bug.c".
% explain CC-24

An invalid octal constant is used.

Each digit of an octal constant must be between 0 and 7, inclusive. One or
more digits in the indicated octal constant are outside of this range.
Change each digit in the octal constant to be within the valid range.

C.2 Controlling the Use of Messages
This section summarizes the command line options that affect the issuing of messages
from the compiler.

S–2179–83 209

Cray C and C++ Reference Manual

C.2.1 Command Line Options

Option Description

-h errorlimit[=n] Specifies the maximum number of
error messages the compiler prints
before it exits.

-h [no]message=n[:...] Enables or disables the specified
compiler messages, overriding
-h msglevel.

-h msglevel_n Specifies the lowest severity level of
messages to be issued.

-h [no]msgs Enables or disables the writing of
optimization messages to stderr.

h [no]negmsgs Enables or disables the writing
of messages to stderr that
indicate why optimizations such as
vectorization, inlining, or cloning did
not occur in a given instance.

-h report=args Generates optimization report
messages.

C.2.2 Environment Options for Messages

The following are used by the message system.

Variable Description

NLSPATH Specifies the default value of the message system
search path environment variable.

LANG Identifies your requirements for native language,
local customs, and coded character set with regard to
the message system.

MSG_FORMAT Controls the format in which you receive error
messages.

210 S–2179–83

Using the Compiler Message System [C]

C.2.3 ORIG_CMD_NAME Environment Variable

You can override the command name printed in the message. If the environment
variable ORIG_CMD_NAME is set, the value of ORIG_CMD_NAME is used as the
command name in the message. This functionality is provided for use with shell
scripts that invoke the compiler. By setting ORIG_CMD_NAME to the name of the
script, any message printed by the compiler appears as though it was generated by the
script. For example, the following C shell script is named newcc:

#
setenv ORIG_CMD_NAME 'basename $0'
cc $*

A message generated by invoking newcc resembles the following:

CC-8 newcc: ERROR File = x.c, Line = 1
A new-line character appears inside a string literal.

Because the environment variable ORIG_CMD_NAME is set to newcc, this appears
as the command name instead of cc in this message.

!
Caution: The ORIG_CMD_NAME environment variable is not part of the message
system. It is supported by the Cray C and C++ compilers as an aid to programmers.
Other products, such as the Fortran compiler and the linker, may support this
variable. However, you should not rely on support for this variable in any other
product.

You must be careful when setting the environment variable ORIG_CMD_NAME. If
you set ORIG_CMD_NAME inadvertently, the compiler may generate messages with
an incorrect command name. This may be particularly confusing if, for example,
ORIG_CMD_NAME is set to newcc when the Fortran compiler prints a message. The
Fortran message will look as though it came from newcc.

C.3 Message Severity
Each message issued by the compiler falls into one of the following categories of
messages, depending on the severity of the error condition encountered or the type
of information being reported.

Category Meaning

COMMENT Inefficient programming practices.

NOTE Unusual programming style or the use of
outmoded statements.

CAUTION Possible user error. Cautions are issued when the
compiler detects a condition that may cause the
program to abort or behave unpredictably.

S–2179–83 211

Cray C and C++ Reference Manual

Category Meaning

WARNING Probable user error. Indicates that the program
will probably abort or behave unpredictably.

ERROR Fatal error; that is, a serious error in the source
code. No binary output is produced.

INTERNAL Problems in the compilation process. Please report
internal errors immediately to the system support
staff, so that a bug report can be filed.

LIMIT Compiler limits have been exceeded. Normally
you can modify the source code or environment
to avoid these errors. If limit errors cannot be
resolved by such modifications, please report these
errors to the system support staff, so that bug
report can be filed.

INFO Useful additional information about the compiled
program.

INLINE Information about inline code expansion
performed on the compiled code.

SCALAR Information about scalar optimizations performed
on the compiled code.

VECTOR Information about vectorization optimizations
performed on the compiled code.

OPTIMIZATION Information about general optimizations.

IPA_INFO Information about interprocedural optimizations.

C.4 Common System Messages
The errors in the following list can occur during the execution of a user program. The
operating system detects them and issues the appropriate message. These errors are
not detected by the compiler and are not unique to C and C++ programs; they may
occur in any application program written in any language.

• Operand Range Error

An operand range error occurs when a program attempts to load or store in an
area of memory that is not part of the user's area. This usually occurs when an
invalid pointer is dereferenced.

• Program Range Error

A program range error occurs when a program attempts to jump into an area of
memory that is not part of the user's area. This may occur, for example, when a
function in the program mistakenly overwrites the internal program stack. When

212 S–2179–83

Using the Compiler Message System [C]

this happens, the address of the function from which the function was called
is lost. When the function attempts to return to the calling function, it jumps
elsewhere instead.

• Error Exit

An error exit occurs when a program attempts to execute an invalid instruction.
This error usually occurs when the program's code area has been mistakenly
overwritten with words of data (for example, when the program stores in a
location pointed to by an invalid pointer).

S–2179–83 213

Cray C and C++ Reference Manual

214 S–2179–83

Using Intrinsic Functions [D]

The C and C++ intrinsic functions either allow for direct access to some hardware
instructions or result in generation of inline code to perform some specialized
functions. These intrinsic functions are processed completely by the compiler. In
many cases, the generated code is one or two instructions. These are called functions
because they are invoked with the syntax of function calls.

To get access to most of the intrinsic functions, the Cray C++ compiler requires
that either the intrinsics.h file be included or that the intrinsic functions
that you want to call be explicitly declared. If the source code does not have
an intrinsics.h statement and you cannot modify the code, you can use
the -h prototype_intrinsics option instead. If you explicitly declare
an intrinsic function, the declaration must agree with the documentation or the
compiler treats the call as a call to a normal function, not the intrinsic function. The
-h nointrinsics command line option causes the compiler to treat these calls as
regular function calls and not as intrinsic function calls.

There are built-in atomic memory intrinsic functions of the form __sync_* that do
not require an include file nor any explicit declaration.

The types of the arguments to intrinsic functions are checked by the compiler, and if
any of the arguments do not have the correct type, a warning message is issued and
the call is treated as a normal call to an external function. If your intention was to call
an external function with the same name as an intrinsic function, you should change
the external function name. The names used for the Cray C intrinsic functions are in
the name space reserved for the implementation.

Note: Several of these intrinsic functions have both a vector and a scalar version. If
a vector version of an intrinsic function exists and the intrinsic is called within a
vectorized loop, the compiler uses the vector version of the intrinsic. For details on
whether it has a vector version, refer to the appropriate intrinsic function man page.

The following sections groups the C and C++ intrinsics according to function and
provides a brief description of each intrinsic in that group. For more information,
see the corresponding man page.

S–2179–83 215

Cray C and C++ Reference Manual

D.1 Atomic Memory Operations
Atomic memory operations (AMOs), unlike other functions, cannot be interrupted by
the system and can allow multiple threads to safely modify the same variable under
certain conditions. The AMO intrinsics allow you to add, subtract, AND, NAND, OR,
and XOR values together, or compare and swap values.

Local AMOs operate on variables in the processor's local memory (cache domain);
they do not use the network interface to access memory. Multiple threads using local
atomic memory operations to access the same variable need to be running within the
same processor cache domain, which implies that they must be running on the same
node. Local AMOs are atomic with respect to each other. The compiler issues an
error message if a user tries to apply a local AMO intrinsic to a Unified Parallel C or
shared variable or Fortran coarray that is not local to the current thread.

Global AMOs use the network interface to access variables in memory. The variables
may or may not be in the processor's local cache domain. Global AMOs are atomic
with respect to each other. Global AMOs are used to modify a Unified Parallel C
(UPC) shared variable or Fortran coarray and are available only when compiling UPC
(-hupc) or coarray Fortran (-hcaf).

A global AMO uses a different mechanism for achieving atomicity than a local AMO,
so local and global AMOs are not atomic with respect to each other. Global and
local AMOs should not be used concurrently on the same memory location, without
synchronization.

It is possible to safely modify a variable using both atomic and non-atomic operations
within a single UPC thread or Fortran image; however, if a thread or image modifies
a variable with an atomic operation and a different thread or image concurrently
modifies the same variable with a non-atomic operation, the result is indeterminate.

216 S–2179–83

Using Intrinsic Functions [D]

D.1.1 Local Atomic Memory Operations

The following functions, defined in intrinsics.h, perform various local atomic
memory operations:

__builtin_ia32_lfence

(Load fence) Insures that all memory loads issued before this
intrinsic are visible in memory before any future loads are executed.

__builtin_ia32_sfence

(Store fence) Insures that all memory stores issued before this
intrinsic are visible in memory before any future stores are executed.

__builtin_ia32_mfence

(Memory fence) Insures that all memory stores and loads issued
before this intrinsic are visible in memory before any future stores or
loads are executed.

Functions built into the compiler do not require an include file, nor a specific
compilation option for use. The following local atomic, built-in functions return the
value of the object before the named operation occurs:

Note: In this discussion, an object is an entity that is referred to by a pointer. A
value is an actual number, bit mask, etc. that is not referred to by a pointer. The
allowed object and value types are signed and unsigned integer types of 1, 2, 4, or
8 bytes.

• The __sync_fetch_and_add function fetches the object pointed to by ptr,
adds value, places the result into the object pointed to by ptr, and returns the
old value of the object pointed to by ptr.

• The __sync_fetch_and_sub function fetches the object pointed to by ptr,
subtracts value, places the result into the object pointed to by ptr, and returns
the old value of the object pointed to by ptr.

• The __sync_fetch_and_or function fetches the object pointed to by ptr,
ORs value, places the result into the object pointed to by ptr, and returns the
old value of the object pointed to by ptr.

• The __sync_fetch_and_and function fetches the object pointed to by ptr,
ANDs value, places the result into the object pointed to by ptr, and returns the
old value of the object pointed to by ptr.

• The __sync_fetch_and_xor function fetches the object pointed to by
*ptr, XORs value, places the result into the object pointed to by ptr, and
returns the old value of the object pointed to by ptr.

S–2179–83 217

Cray C and C++ Reference Manual

• The __sync_fetch_and_nand function fetches the object pointed to by
ptr, NANDs value, places the result into the object pointed to by ptr, and
returns the old value of the object pointed to by ptr.

The following local atomic, built-in functions return the value of the object after the
named operation occurs:

• The __sync_add_and_fetch function adds value to the object pointed to
by ptr and returns the new value of the object pointed to by ptr.

• The __sync_sub_and_fetch function subtracts value from the object
pointed to by ptr and returns the new value of the object pointed to by ptr.

• The __sync_or_and_fetch function ORs value with the object pointed to
by ptr and returns the new value of the object pointed to by ptr.

• The __sync_and_and_fetch function ANDs value with the object pointed
to by ptr and returns the new value of the object pointed to by ptr.

• The __sync_xor_and_fetch function XORs value with the object pointed
to by ptr and returns the new value of the object pointed to by ptr.

• The __sync_nand_and_fetch function NANDs value with the current
value of ptr and returns the new contents of ptr.

• The __sync_val_compare_and_swap function performs an atomic
compare and swap. If the current value of *ptr is compareValue, then write
replacementValue into *ptr and return the contents of *ptr before the
operation.

• The __sync_lock_test_and_set function writes value into *ptr, and
returns the previous contents of *ptr.

D.1.2 Global Atomic Memory Operations

Global atomic memory operations (global AMO) are typically used to atomically
modify a Unified Parallel C (UPC) shared variable or Fortran coarray.

The target of a global AMO can be located in a different cache domain, so a global
AMO is not atomic with respect to memory operations performed locally within the
target's cache domain. Therefore, the application must use synchronization to ensure
that global AMOs and local memory operations are not used concurrently on the
same memory location.

The following intrinsics are defined in intrinsics.h. Functions without the
_upc suffix accept both shared and non-shared pointers as the first argument.
Functions with the _upc suffix accept only shared pointers as the first argument.

Note: In this discussion, an object is an entity that is referred to by a pointer. A
value is an actual number, bit mask, etc. that is not referred to by a pointer.

218 S–2179–83

Using Intrinsic Functions [D]

• The _amo_aadd and _amo_aadd_upc functions (atomic add) add value to
the object pointed to by ptr.

• The _amo_aaddf and _amo_aaddf functions (atomic add and fetch) add
value to the object pointed to by ptr and return the new value.

• The _amo_afadd and _amo_afadd_upc functions (atomic fetch and add)
add value to the object pointed to by ptr and return the old value of the object.

• The _amo_aax and _amo_aax_upc functions (atomic AND and XOR) AND
the object pointed to by ptr with andMask, XOR the result with xorMask, and
place the result into the object.

• The _amo_afax and _amo_afax_upc functions (atomic fetch and AND and
XOR) AND the object pointed to by ptr with andMask, XOR the result with
xorMask, place the result into the object, and return the old value of the object.

• The _amo_aandf and _amo_aandf_upc functions (atomic AND and fetch)
AND the object pointed to by ptr with value, place the result into the object,
and return the new value of the object.

• The _amo_afand and _amo_afand_upc functions (atomic fetch and AND)
AND the object pointed to by ptr with value, place the result into the object,
and return the old value of the object.

• The _amo_anandf and _amo_anandf_upc functions (atomic NAND and
fetch) NAND the object pointed to by ptr with value, place the result into the
object, and return the new value of the object.

• The _amo_afnand and _amo_afnand_upc functions (atomic fetch and
NAND) NAND the object pointed to by ptr with value, place the result into the
object, and return the old value of the object.

• The _amo_aorf and _amo_aorf_upc functions (atomic OR and fetch) OR
the object pointed to by ptr with value, place the result into the object, and
return the new value of the object.

• The _amo_afor and _amo_afor_upc functions (atomic fetch and OR) OR
the object pointed to by ptr with value, place the result into the object, and
return the old value of the object.

• The _amo_axorf and _amo_axorf_upc functions (atomic XOR and fetch)
XOR the object pointed to by ptr with value, place the result into the object,
and return the new value of the object.

• The _amo_afxor and _amo_afxor_upc functions (atomic fetch and XOR)
XOR the object pointed to by ptr with value, place the result into the object,
and returns the old value of the object.

• The _amo_acswap and _amo_acswap_upc functions (atomic compare and

S–2179–83 219

Cray C and C++ Reference Manual

swap) compare and swap a value by replacing the contents of the object pointed to
by ptr with replacementValue if compareValue is equal to the object
pointed to by ptr and return the old value of the object.

• The _amo_aswap and _amo_aswap_upc functions (atomic swap) swap
a value by replacing the contents of the object pointed to by ptr with
replacementValue. This function always returns the old value.

• The _amo_aflush and _amo_aflush_upc functions (atomic flush) force
*ptr to be written to memory.

For more information, see the amo(3i) man page.

D.2 Bit Operations
The following intrinsic functions copy, count, or shift bits or computes the parity bit:

_dshiftl Move the left most n bits of an integer into the right side of another
integer, and return that integer.

_dshiftr Move the right most n bits of an integer into the left side of another
integer and return that integer.

_pbit Copies the rightmost bit of a word to the nth bit, from the right, of
another word.

_pbits Copies the rightmost m bits of a word to another word beginning
at bit n.

_poppar Computes the parity bit for a variable.

_popcnt
_popcnt32
_popcnt64 Counts the number of set bits in 32-bit and 64-bit integer words.

_leadz
_leadz32
_leadz64 Counts the number of leading 0 bits in 32-bit and 64-bit integer

words.

_gbit _gbit returns the value of the nth bit from the right.

_gbits Returns a value consisting of m bits extracted from a variable,
beginning at nth bit from the right.

220 S–2179–83

Using Intrinsic Functions [D]

D.3 Mask Operations
The following intrinsic functions create bit masks:

_mask Creates a left-justified or right-justified bit mask with all bits set to 1.

_maskl Returns a left-justified bit mask with i bits set to 1.

_maskr Returns a right-justified bit mask with i bits set to 1.

D.4 Miscellaneous Operations
The following intrinsic functions perform various functions:

_int_mult_upper

Multiplies integers and returns the uppermost bits. For more
information, see the int_mult_upper(3i) man page.

_ranf Computes a pseudo-random floating-point number ranging from 0.0
through 1.0.

_rtc Return a real-time clock value expressed in clock ticks.

S–2179–83 221

	Cray C and C++ Reference Manual
	Changes to this Document
	Introduction [1]
	1.1 General Compiler Description
	1.1.1 Cray C Compiler
	1.1.2 Cray C++ Compiler

	1.2 C/C++ Standard Compatibility
	1.3 Binary Compatibility
	1.4 Related Publications

	Invoking the C and C++ Compilers [2]
	2.1 CC Command
	2.2 cc Command
	2.3 Command Line Options
	2.4 Standard Language Conformance Options
	2.4.1 -h [no]c99 (cc)
	2.4.2 -h [no]conform (CC, cc), -h [no]stdc (cc)
	2.4.3 -h cfront (CC)
	2.4.4 -h [no]parse_templates (CC)
	2.4.5 -h [no]dep_name (CC)
	2.4.6 -h [no]exceptions (CC)
	2.4.7 -h [no]anachronisms (CC)
	2.4.8 -h [no]new_for_init (CC)
	2.4.9 -h [no]tolerant (cc)
	2.4.10 -h [no]const_string_literals (CC)
	2.4.11 -h [no]gnu

	2.5 Virtual Function Options
	2.5.1 -h forcevtbl (CC)
	2.5.2 -h suppressvtbl (CC)

	2.6 General Language Options
	2.6.1 -h keep=file (CC)
	2.6.2 -h restrict=args
	2.6.3 -h [no]calchars
	2.6.4 -h [no]signedshifts

	2.7 General Optimization Options
	2.7.1 -h [no]add_paren
	2.7.2 -h [no]aggress
	2.7.3 -h [no]autoprefetch
	2.7.4 -h [no]autothread
	2.7.5 -h display_opt
	2.7.6 -h flex_mp=level
	2.7.7 -h fusionn
	2.7.8 -h [no]intrinsics
	2.7.9 -h list
	2.7.10 -h [no]msgs
	2.7.11 -h [no]negmsgs
	2.7.12 -h [no]omp_trace
	2.7.13 -h [no]func_trace
	2.7.14 -h [no]overindex
	2.7.15 -h [no]pattern
	2.7.16 -h pl=program_library
	2.7.17 -h profile_generate
	2.7.18 -h threadn
	2.7.19 -h unrolln
	2.7.20 -h wp
	2.7.21 -O level

	2.8 Automatic Cache Management Options
	2.8.1 -h cachen

	2.9 Vector Optimization Options
	2.9.1 -h concurrent
	2.9.2 -h vectorn

	2.10 Interprocedural Analysis (IPA) Optimization Options
	2.10.1 Inlining
	2.10.2 Cloning
	2.10.3 -h ipan
	2.10.4 -h ipafrom=source[:source] ...

	2.11 Scalar Optimization Options
	2.11.1 -h [no]interchange
	2.11.2 -h scalarn
	2.11.3 -h [no]zeroinc

	2.12 Math Options
	2.12.1 -h fpn

	2.13 Debugging Options
	2.13.1 -G level and -g
	2.13.2 -h [no]bounds (cc)
	2.13.3 -h develop
	2.13.4 -h dir_check
	2.13.5 -h nodwarf
	2.13.6 -h gasp[=opt[:opt]]
	2.13.7 -h zero

	2.14 Compiler Message Options
	2.14.1 -h msglevel_n
	2.14.2 -h [no]message=n[:n...]
	2.14.3 -h report=args
	2.14.4 -h [no]abort
	2.14.5 -h errorlimit

	2.15 Compilation Phase Options
	2.15.1 -E
	2.15.2 -P
	2.15.3 -h feonly
	2.15.4 -S
	2.15.5 -c
	2.15.6 -#, -##, and -###
	2.15.7 -W phase,"opt ..."
	2.15.8 -Y phase,dirname

	2.16 Preprocessing Options
	2.16.1 -C
	2.16.2 -D macro[=def]
	2.16.3 -h [no]pragma=name[:name ...]
	2.16.4 -I incldir
	2.16.5 -M
	2.16.6 -nostdinc
	2.16.7 -U

	2.17 Linker Options
	2.17.1 -h [system|default]_alloc
	2.17.2 -h [no]pgas_runtime
	2.17.3 -l libname
	2.17.4 -L ldir
	2.17.5 -o outfile

	2.18 Miscellaneous Options
	2.18.1 -h [no]acc
	2.18.2 -h cpu=target_system
	2.18.3 -h [no]fp_trap
	2.18.4 -h ident=name
	2.18.5 -h keepfiles
	2.18.6 -h keep_frame_pointer
	2.18.7 -h loop_trips=[tiny | small | medium | large | huge]
	2.18.8 -h mpin
	2.18.9 -h network=nic
	2.18.10 -h [no]omp
	2.18.11 -h [no]omp_acc
	2.18.12 -h pic, -h PIC
	2.18.13 -h prototype_intrinsics
	2.18.14 -h [no]threadsafe
	2.18.15 -h upc (cc)
	2.18.16 -K trap=opt[,opt] ...
	2.18.17 -V
	2.18.18 -X npes

	2.19 Command Line Examples
	2.20 Compile Time Environment Variables
	2.21 Run Time Environment Variables
	2.22 OpenMP Environment Variables

	Using #pragma Directives [3]
	3.1 Protecting Directives
	3.2 Directives in Cray C++
	3.3 Loop Directives
	3.4 Alternative Directive Form: _Pragma
	3.5 General Directives
	3.5.1 [no]autothread Directive
	3.5.2 [no]bounds Directive
	3.5.3 cache Directive
	3.5.4 cache_nt Directive
	3.5.5 duplicate Directive
	3.5.6 ident Directive
	3.5.7 message Directive
	3.5.8 [no]opt Directive
	3.5.9 prefetch Directive
	3.5.10 Probability Directives
	3.5.11 weak Directive

	3.6 Vectorization Directives
	3.6.1 concurrent Directive
	3.6.2 hand_tuned Directive
	3.6.3 ivdep Directive
	3.6.4 loop_info Directive
	3.6.5 loop_info prefer_thread, prefer_nothread Directives
	3.6.6 nopattern Directive
	3.6.7 [no]vector Directive
	3.6.8 permutation Directive
	3.6.9 [no]pipeline Directive
	3.6.10 prefervector Directive
	3.6.11 pgo loop_info Directive
	3.6.12 safe_address Directive
	3.6.13 safe_conditional Directive

	3.7 Scalar Directives
	3.7.1 blockable Directive
	3.7.2 blockingsize Directive
	3.7.3 noblocking Directive
	3.7.4 collapse and nocollapse Directives
	3.7.5 [no]interchange Directive
	3.7.6 suppress Directive
	3.7.7 [no]unroll Directive
	3.7.8 nofission Directive
	3.7.9 [no]fusion Directive

	3.8 Inlining and Cloning Directives
	3.8.1 inline_enable, inline_disable, and inline_reset Directives
	3.8.2 inline_always and inline_never Directives
	3.8.3 clone_enable, clone_disable, clone_reset Directives
	3.8.4 clone_always and clone_never Directives

	3.9 PGAS Directive
	3.9.1 defer_sync Directive

	Using the OpenMP C/C++ API [4]
	4.1 Standard Support
	4.2 Cray Enhancements
	4.2.1 cray_omp_set_wait_policy()
	4.2.2 CRAY_OMP_CHECK_AFFINITY Environment Variable

	4.3 Compiling
	4.4 Executing
	4.5 Debugging
	4.6 Cray Implementation Defined Behaviors
	4.6.1 Directives and Clauses
	4.6.1.1 atomic Directive
	4.6.1.2 for Directive
	4.6.1.3 parallel Directive
	4.6.1.4 threadprivate Directive
	4.6.1.5 private Clause

	4.6.2 Library Routines
	4.6.2.1 omp_get_max_active_levels()
	4.6.2.2 omp_set_dynamic()
	4.6.2.3 omp_set_schedule()
	4.6.2.4 omp_set_max_active_levels()
	4.6.2.5 omp_set_nested()
	4.6.2.6 omp_set_num_threads()

	4.6.3 OpenMP Environment Variables
	4.6.3.1 OMP_DYNAMIC
	4.6.3.2 OMP_MAX_ACTIVE_LEVELS
	4.6.3.3 OMP_NESTED
	4.6.3.4 OMP_NUM_THREADS
	4.6.3.5 OMP_SCHEDULE
	4.6.3.6 OMP_STACKSIZE
	4.6.3.7 OMP_THREAD_LIMIT
	4.6.3.8 OMP_WAIT_POLICY

	4.7 Limitations
	4.8 OpenMP Accelerator Support

	Using OpenACC [5]
	5.1 OpenACC Execution Model
	5.2 OpenACC Memory Model
	5.3 Mapping the OpenACC Programming Model onto Accelerator Compon
	5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) co
	5.3.2 Memory

	5.4 Mixed Model Support
	5.5 Compiling
	5.6 Module Support
	5.7 Debugging
	5.8 OpenACC Directives
	5.9 Runtime Routines
	5.9.1 Cray Specific Runtime Library Routines
	5.9.2 CRAY_ACC_DEBUG Output Routines

	5.10 Environment Variables
	5.10.1 Cray Specific
	5.10.2 Standard

	5.11 OpenACC Examples

	Using Cray Unified Parallel C (UPC) [6]
	6.1 Implementation
	6.1.1 Predefined Macros
	6.1.2 False Sharing

	6.2 Compiling and Linking UPC Code
	6.3 Launching a UPC Application
	6.4 Cray Extensions
	6.4.1 Team Collectives
	6.4.2 Node Affinity
	6.4.2.1 upc_nodeof()
	6.4.2.2 NODES
	6.4.2.3 MYNODE

	Using Cray C++ Libraries [7]
	7.1 Unsupported Standard C++ Library Features

	Using Coarray C++ [8]
	8.1 Compiling Coarray C++
	8.2 Declaring and Accessing Coarrays
	8.2.1 Basic Types
	8.2.2 Arrays
	8.2.3 Pointers
	8.2.4 Structs, Unions, and Classes

	8.3 Type System
	8.3.1 Coreferences
	8.3.2 Copointers
	8.3.3 shape_cast

	8.4 Control Flow and Synchronization
	8.4.1 Writing SPMD Code
	8.4.2 Barriers
	8.4.3 Function Calls
	8.4.3.1 coatomic
	8.4.3.2 coevent
	8.4.3.3 comutex

	8.5 Collectives
	8.5.1 cobroadcast
	8.5.2 coreduce

	8.6 Exceptions
	8.7 Memory Consistency Model
	8.7.1 atomic_image_fence()
	8.7.2 Accesses within a Single Image
	8.7.3 Accesses to Other Images
	8.7.3.1 Multi-byte Accesses
	8.7.3.2 From Different Images
	8.7.3.3 From the Same Image

	8.8 Blocking Versus Non-blocking Accesses
	8.8.1 Writes (Puts)
	8.8.2 Reads (Gets)
	8.8.3 Cofutures

	8.9 Code Patterns
	8.9.1 Coobjects
	8.9.2 Hoisting a coptr

	Using Cray C Extensions [9]
	9.1 Complex Data Extensions
	9.2 fortran Keyword
	9.3 Hexadecimal Floating-point Constants

	Using Predefined Macros [10]
	10.1 Macros Required by the C and C++ Standards
	10.2 Macros Based on the Host Machine
	10.3 Macros Based on the Target Machine
	10.4 Macros Based on the Compiler
	10.5 UPC Predefined Macros

	Running C and C++ Applications [11]
	Debugging Cray C and C++ Code [12]
	12.1 TotalView Debugger
	12.2 Compiler Debugging Options

	Using Interlanguage Communication [13]
	13.1 Calls Between C and C++ Functions
	13.2 Calling Fortran Functions and Subroutines from C or C++
	13.2.1 Requirements
	13.2.2 Argument Passing
	13.2.3 Array Storage
	13.2.4 Logical and Character Data
	13.2.5 Accessing Named Common from C and C++
	13.2.6 Accessing Blank Common from C or C++
	13.2.7 Cray C and Fortran Example
	13.2.8 Calling a Fortran Program from Cray C++

	13.3 Calling a C or C++ Function from Fortran
	13.3.1 Portable Interoperability Mechanism
	13.3.2 Standard Fortran/C Interoperability

	Implementation-defined Behavior [14]
	14.1 Messages
	14.2 Environment
	14.2.1 Identifiers
	14.2.2 Types
	14.2.3 Characters
	14.2.4 Wide Characters
	14.2.5 Integers
	14.2.6128 -Bit Floating Point and 256-Bit Complex Predefined Type
	14.2.7 Arrays and Pointers
	14.2.8 Registers
	14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields
	14.2.10 Qualifiers
	14.2.11 Declarators
	14.2.12 Statements
	14.2.13 Exceptions
	14.2.14 System Function Calls

	14.3 Preprocessing

	Using Libraries and the Linker [A]
	A.1 Cray C and C++ Libraries
	A.2 Linker

	Using Cray C and C++ Dialects [B]
	B.1 C++ Language Conformance
	B.1.1 Supported C++ Language Features

	B.2 C++ Anachronisms Accepted
	B.3 Extensions Accepted in Normal C++ Mode
	B.4 Extensions Accepted in C or C++ Mode
	B.5 C++ Extensions Accepted in cfront Compatibility Mode

	Using the Compiler Message System [C]
	C.1 Expanding Messages with the explain Command
	C.2 Controlling the Use of Messages
	C.2.1 Command Line Options
	C.2.2 Environment Options for Messages
	C.2.3 ORIG_CMD_NAME Environment Variable

	C.3 Message Severity
	C.4 Common System Messages

	Using Intrinsic Functions [D]
	D.1 Atomic Memory Operations
	D.1.1 Local Atomic Memory Operations
	D.1.2 Global Atomic Memory Operations

	D.2 Bit Operations
	D.3 Mask Operations
	D.4 Miscellaneous Operations

	List of Examples
	Example 1. CC -X8 -h myprog.C
	Example 2. CC -h conform myprog.C
	Example 3. cc -c -h ipa1 myprog.c subprog.c
	Example 4. cc -I. disc.c vend.c
	Example 5. cc -P -D DEBUG newprog.c
	Example 6. cc -c -h report=s mydata1.c
	Example 7. CC -h ipa5,report=if myfile.C
	Example 8. Trip counts
	Example 9. Unrolling outer loops
	Example 10. Illegal unrolling of outer loops
	Example 11. Using the inline_enable, inline_disable, and inline_
	Example 12. Using inline_reset
	Example 13. Using defer_sync
	Example 14. Calling a C function from Fortran

	List of Tables
	Table 1. GCC C Language Extensions
	Table 2. GCC C++ Language Extensions
	Table 3. Cache Levels
	Table 4. IPA Level
	Table 5. File Types
	Table 6. Floating-point Optimization Levels
	Table 7. -G level Definitions
	Table 8. -W phase Definitions
	Table 9. -Y phase Definitions
	Table 10. -h pragma Directive Processing
	Table 11. Data Type Mapping
	Table 12. Packed Characters
	Table 13. Unrecognizable Escape Sequences

