(—{ — PG

Cray C and C++ Reference Manual

S-2179-83

© 1996-2000, 2002-2014 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in
any form unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: Cray and
design, Sonexion, Urika, and YarcData. The following are trademarks of Cray Inc.: ACE, Apprentice2, Chapel,
Cluster Connect, CrayDoc, CrayPat, CrayPort, ECOPhlex, LibSci, NodeK ARE, Threadstorm. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark Linux is used pursuant to a sublicense from LM, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of
their respective owners.

Intel, Aries and Gemini are trademarks of Intel Corporation in the United States and/or other countries. CUDA,
Kepler, OpenACC and NVIDIA are trademarks of NVIDIA Corporation. Google is atrademark of Google. 1SO
isatrademark of International Organization for Standardization (Organisation Internationale de Normalisation).
OpenMP is atrademark of OpenMP architecture Review Board. O2 is atrademark of Silicon Graphics, Inc. Opteron
isatrademark of Advanced Micro Devices, Inc. PGl is atrademark of The Portland Group Compiler Technology,
STMicroelectronics, Inc. Platform is atrademark of Platform Computing Corporation. TotalView is a trademark

of Rogue Wave Software, Inc. UNIX, the “X device” X Window System, and X/Open are trademarks of The

Open Group.

Portions of this document were copied by permission of OpenM P Architecture Review Board from OpenMP C and
C++ Application Program Interface, Version 2.0, March 2002, Copyright © 1997-2002, OpenMP Architecture
Review Board.

RECORD OF REVISION

S-2179-83 Published June 2014 Supports the Cray C and C++ compilers running on Cray XE, Cray XK, and
X C30 compute nodes.

S-2179-82 Published September 2013 Supports the Cray C and C++ compilers running on Cray XE, Cray XK,
and X C30 compute nodes.

S-2179-81 Published September 2012 Supports the Cray C and C++ compilers running on Cray XE and Cray XK
compute nodes.

S-2179-80 Published December 2011 Supports the Cray C and C++ compilers running on Cray XE and Cray XK
compute nodes.

S-2179-74 Published June 2011 Supports the Cray C and C++ compilers running on Cray XT and Cray XE compute
nodes.

S-2179-73 Published December 2010 Supports the Cray C and C++ compilers running on Cray XT and Cray XE
compute nodes.

7.2 Published February 2010 Supports the Cray C and C++ compilers running on Cray XT compute nodes.

7.1 Published June 2009 Supports the Cray C and C++ compilers running on Cray XT compute nodes.

7.0 Published December 2008 Supports the Cray C and (Deferred implementation) C++ compilers running on
Cray XT compute nodes.

6.0 Published September 2007 Supports the Cray C and Cray C++ 6.0 release running on Cray X1 series and
Cray X2 systems.

5.6 Published March 2007 Supports Cray C++ 5.6 and Cray C 8.6 releases running on Cray X1 series systems.

5.5 Published December 2005 Supports Cray C++ 5.5 and Cray C 8.5 releases running on UNICOS/mp 3.0 or
later operating systems.

5.4 Published March 2005 Supports Cray C++ 5.4 and Cray C 8.4 releases running on UNICOS/mp 3.0 or later
operating systems.

5.3 Published November 2004 Supports Cray C++ 5.3 and Cray C 8.3 releases running on UNICOS/mp 2.5 or
later operating systems.

5.2 Published April 2004 Supports Cray C++ 5.2 and Cray C 8.2 releases running on UNICOS/mp 2.3 or later
operating systems.

5.1 Published October 2003 Supports Cray C++ 5.1 and Cray C 8.1 releases running on UNICOS/mp 2.2 or later
operating systems.

5.0 Published June 2003 Supports Cray C++ 5.0 and Cray C 8.0 releases running on UNICOS/mp 2.1 or later
operating systems.

4.3 Published March 31, 2003 Draft version to support Cray C 7.3 and Cray C++ 4.3 releases running on
UNICOS/mp operating systems.

4.2 Published December 20, 2002 Draft version to support Cray C 7.2 and Cray C++ 4.2 releases running on
UNICOS/mp operating systems.

4.1 Published August 20, 2002 Draft version to support Cray C 7.1 and Cray C++ 4.1 releases running on
UNICOS/mp operating systems.

3.6 Published June 2002 This para supports the Cray Standard C 6.6 and Cray Standard C++ 3.6 releases running on
UNICOS and UNICOS/mk operating systems.

3.4 Published October 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and
UNICOS/mk operating systems. This para supports anew inlining level, inline4.

3.4 Published August 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and
UNICOS/mk operating systems. It includes updates to para 3.3.

3.3 Published July 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.3, which is supported on the Cray SV 1, Cray C90, Cray J90, and Cray T90 systems running
UNICOS 10.0.0.5 and later, and Cray T3E systems running UNICOS/mk 2.0.4 and later. On all supported Cray
systems, the C++ compiler is Cray C++ 3.3 and the C compiler is Cray C 6.3.

3.2 Published January 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.2, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.2 and the C compiler is Cray C 6.2.

3.1 Published August 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.1, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.1 and the C compiler is Cray C 6.1.

3.0.2 Published March 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.0.2, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.0.2 and the C compiler is Cray C 6.0.2.

3.0 Published May 1997 This rewrite supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 3.0, which is supported on all systems except the Cray T3D system. On all supported Cray
systems, the C++ compiler is Cray C++ 3.0 and the C compiler is Cray C 6.0.

2.0 Published January 1996 Origina Printing. This manual supports the C and C++ compilers contained in the Cray
C++ Programming Environment release 2.0. On all Cray systems, the C++ compiler is Cray C++ 2.0. On Cray
systems with |EEE floating-point hardware, the C compiler is Cray Standard C 5.0. On Cray systems without |EEE
floating-point hardware, the C compiler is Cray Standard C 4.0.

Changes to this Document

Cray C and C++ Reference Manual S-2179-83

S-2179-83
Added information:

* - hdevel op selects compiler optimization levels to balance compile time against application execution
time. Use this option during application development, when quick turnaround is desired. It minimizes
compile time at the cost of execution time performance. See- h devel op on page 53.

e -h flex_np=strict providesalevel repeatability of between the conservati ve and
i ntol erant levels. See-h fl ex_np=level on page 37.

« -h concurrent isequivalent to adding a CONCURRENT directive (pr agna) before every loop in the
file, including loops created from array syntax. See- h concurr ent on page 45 and concur r ent
Directive on page 85.

* The- W, arg option can be used to pass command line arguments to the PTX assembler for OpenACC
applications. See - Wphase, " opt ..." on page 57.

* The- W, arg option can be used to pass command line arguments to the CUDA linker for OpenACC
applications. See - Wphase, " opt ..." on page 57.

e Thenewcray_upc_sheap_i nfo() cal provides symmetric heap usage information to UPC
applications. Seethecray_upc_sheap_i nf o(3c) manpage.

e Thenew cray_upc_shared_cast () cal creates a pointer-to-shared from a pointer-to-local,
providing the inverse functionality to upc_cast . Seethecr ay_upc_shar ed_cast (3c) man page.

¢ Seenew CRAY_OWVP_CHECK AFFI NI TY Environment Variable on page 106.

e Added descriptionsfor __sync_val _conpare_and_swap,and __sync_| ock_test _and_set.
See Local Atomic Memory Operations on page 217.

Changed information:

e The-h accnodel =f ast _addr performance option is how safe for all OpenACC applications and
is enabled by default.

e Correction to macro name. Seethe RELEASE MAJCOR macro in Macros Based on the Compiler on
page 161.

* -h nokeep_frame_poi nter isnotanoption. See-h keep_frane_poi nt er on page 65.

S-2179-82

Added information:

This release supports OpenACC Application Programming Interface, Version 2.0 standard devel oped
by PGI, Cray Inc., NVIDIA, with support from CAPS entreprise. See Chapter 5, Using OpenACC on
page 115.

This release offers support for the UPC 1.3 draft specification. See C/C++ Standard Compatibility on
page 22. Cray extensionsto UPC that are not part of the UPC Language Specification 1.3 are listed here.
See Cray Extensions on page 128.

This release introduces Coarray C++, atemplate library that implements the coarray concept in C++.
See Chapter 8, Using Coarray C++ on page 133.

Intel™ Xeon™ processor E5-2600 v2 product family, code named |vy Bridge cpu target support. See
- h cpu=target_system on page 64.

Object filescreated in a pre-8.2 environment should be recompiled if they need to be relinked in the CCE
8.2 compiler environment. See Binary Compatibility on page 22.

New compilation option for C++ applications that link with PGAS code. See- h [no] pgas_runti ne
on page 62.

Added [no] vect or Directive on page 90.
Added i vdep Directive on page 86.

Added details regarding the printing of 128-bit floating point types. See 128-Bit Floating Point and
256-Bit Complex Predefined Types on page 189.

Added more detailed description of pointer arithmetic. Arrays and Pointers on page 189.

Cloning directives are recognized at - O pa levels> 1. Revised description of IPA levelsin Table 4.
Added note. See- h [no] conf or m(CC, cc), - h[no] st dc (cc) on page 28.

Updated predefined macros for UPC 1.3. See Predefined Macros on page 126.

Changed information:

DWAREF is generated by default. See- h nodwar f on page 53.

Updated supported platforms. This release supports the Cray XE, Cray XK, or Cray XC30 systems.
See Chapter 1, Introduction.

- hpgas_runti nme is now default, changed from - hnopgas_runti ne. See-h
[no] pgas_runti e on page 62.

Numeric values replace alphabetic values in the level specification of the - Glevel option. - Q0 replaces

- G, - Gl replaces - G, - Q2 replaces- &, and - G3 replaces - Gf ast . The usage of alphabetic values
resultsin aWARNING message and support will be removed in afuture release. See Debugging Options
and Compiler Debugging Options on page 166 .

More specific guidance regarding the use of - K t r ap=opt[, opt] ... on page 67.

Deleted information:

» Directivesshort| oop, short| oopl128 are deprecated. | oop_i nfo m n_trips(1)
max_tri ps(64) replacesshort!l oopandl oop_info mn_trips(1l) max_trips(128)
replacesshort | oopl28.

* Remove references to compile option - h mat her r or =method deprecated.

Contents

Introduction [1]
1.1 General Compiler Description
1.1.1 Cray C Compiler
1.1.2 Cray C++ Compiler
1.2 C/C++ Standard Compatibility
1.3 Binary Compatibility
1.4 Related Publications

Invoking the C and C++ Compilers|[2]

2.1 CC Command

2.2 cc Command

2.3 Command Line Options

2.4 Standard Language Conformance Options
24.1-h[no]c99 (cc)

24.2-h[no] conform(CC,cc),-h[no] stdc (cc)

243-h cfront (CC .o
24.4-h [no] parse_t enpl at es (CC
24.5-h[no] dep_nane (CC
24.6-h[no] excepti ons (CO
24.7- h[no] anachr oni sns (CC)
24.8-h [no]lnew for _init (CO
249-h[no]tol erant (cc) :
24.10-h[no]const _string_literal s(CC)
24.11-h[no] gnu

2.5 Virtual Function Options
25.1-h forcevthl (CC)
25.2-h suppressvt bl (CC)

2.6 General Language Options
26.1-h keep=file(CC
26.2-hrestrict=args

S-2179-83

Page

21
21
21
21
22
22
23

25
26
26
27
28
28
28
29
29
29
29
29
30
30
30
31
33
33
33
33
34
34

Cray C and C++ Reference Manual

26.3-h[no]cal chars
2.6.4-h[no]signedshifts
2.7 General Optimization Options
271-h[no] add_paren
2.7.2-h[no] aggr ess
2.7.3-h [no] aut oprefetch
2.7.4-h [no] aut ot hr ead
2.75-h displ ay_opt
276-h fl ex_np=leve
2.7.7-h fusionn
27.8-h [no]intrinsics
279-hli st
2.7.10- h [no] nsgs
2.7.11- h [no] negnsgs
27.12-h[no]onp_trace
27.13-h[no] func_trace
2.7.14- h[no] overi ndex
27.15-h[no] pattern
2.7.16- h pl =program library
2717-h profil e_generate
2.7.18-h threadn
27.19-h unrolln
2.720-h wp
2.7.21- Olevel
2.8 Automatic Cache Management Options
28.1-h cachen
2.9 Vector Optimization Options
29.1-h concurrent
29.2-h vectorn
2.10 Interprocedural Analysis (IPA) Optimization Options
2.10.1 Inlining
2.10.2 Cloning
2.10.3-h i pan .
2.10.4- h i paf r om=source] :source]
2.11 Scalar Optimization Options
2111-h[no]i nt erchange
211.2-h scal arn

10

Page

35
35
36
36
36
36
36
36
37
37
38
38
39
39
39
40
40
40
40
41
41

&R REEESER

45
45
46
46
47
47
48
48
49
49

S-2179-83

Contents

Page

2113-h[no]Jzeroinc Lo 49
2.12 Math Options e e e s 50
2.121-h fpn s, 50
213 Debugging Options Lo 51
2.13.1- Glevel and - g s 52
2132-h[no]bounds(cc) L 52
2.13.3-h devel op C e s 53
2134-h dir_check e e e e s 53
2.135-h nodwar f C e s e 53
2.13.6-h gasp[=opt[:opt]] C e 53
2137-h zero L 54
2.14 Compiler Message Options
2.14.1-h negl evel _n C e s 54
2142-h [no] message=n[:n...] 55
2143-h report=argso 55
2144-h[nolJabort L 55
2145-h errorlimt C e s 56
2.15 Compilation PhaseOptions 56
2151-E e e e e e e e 56
2152-P e e e e e e e 56
2153-h feonly L Lo 56
2154-S e e e e 57
2155-c e e e e 57
215.6-#,- ##,and - #H#H# L L L Lo 57
2.15.7 - Wphase, " opt ..." C e 57
2158-Y phase, dirname L. L 58
2.16 Preprocessing Options e e e e 59
2161-C e e e e 59
2.16.2- D macro[=def] C e s 59
2.16.3- h [no] pragnma=nameg : name .. .] Ce e 59
216.4-1 incldir L 60
2.165-M e e e e e e e 61
2166-nostdinc L L L L L L 61
2.16.7- U e e e e 62
2.17 Linker Options e e s 62
2171-h [systenjdefault]_alloc 62
217.2-h [no] pgas_runti me C e 62

g

S-2179-83 11

Cray C and C++ Reference Manual

Page

2.17.3- | libname e e 62
2.17.4-L Idir e e 63
2175-0 outfile Lo 63
218 Miscellaneous Optionso 63
2181-h [no] acc
2.18.2- h cpu=target_system
2183-h [no]fp_trap
2.18.4-h i dent =name
2185-h keepfiles C e 65
2.18.6-h keep_frane_pointer Ce e 65
218.7-h loop_trips=[tiny|small |medi um|l arge |huge] Coe e 65
2188-h nmpin oL 65
2189-h network=nic 65
2.18.10- h [no] onmp C e s e 66
2.1811-h [no] onp_acc C e 66
21812-h pic,-h PIC Lo 66
2.1813-h prototype_intrinsics e 66
21814-h [no]threadsafe 66
2.18.15- h upc (cc) s e 67
21816-K trap=opt[, opt] L. 67
21817-V . L L e e e e e e e e 68
21818-X NPES 68
2.19 Command Line Examples e e 68

GRER

2.20 Compile Time Environment Variables 69
2.21 Run Time Environment Variables C e e e 71
2.22 OpenMP Environment Variables Ce e e e 71

Using #pr agnma Directives [3] 73
3.1 Protecting Directiveso 74
3.2 Directivesin Cray C++ C e e s 74
3.3 Loop Directives e e s e 74
3.4 Alternative Directive Form: _Pragma. 75
3.5 General Directives C e e 75
3.5.1[no] aut ot hr ead Directive C e 76
3.5.2[no] bounds Directive L L 76
3.5.3cache Directive e e 77
35.4cache_nt Directive L Lo 77
3.5.5dupl i cat e Directive e 78

12 S-2179-83

Contents

3.5.6i dent Directive
3.5.7message Directive
3.5.8[no] opt Directive
3.5.9pr ef et ch Directive
3.5.10 Probability Directives
3.5.11 weak Directive
3.6 Vectorization Directives
3.6.1concurrent Directive
3.6.2hand_t uned Directive
3.6.3i vdep Directive
3.6.41 oop_i nf o Directive Ce e
3.651 oop_i nfo prefer_thread,prefer_not hr ead Directives
3.6.6 nopat t er n Directive
3.6.7[no] vect or Directive
3.6.8 per mut at i on Directive
3.6.9[no] pi pel i ne Directive
3.6.10 pr ef er vect or Directive
3.6.11pgo | oop_i nf o Directive
3.6.12saf e_addr ess Directive
3.6.13saf e_condi ti onal Directive
3.7 Scalar Directives .
3.7.1bl ockabl e Directive
3.7.2bl ocki ngsi ze Directive
3.7.3nobl ocki ng Directive .
3.7.4col | apse andnocol | apse Directives
3.75[no] i nt er change Directive
3.7.6suppr ess Directive
3.7.7[no] unrol | Directive
3.7.8nof i ssi on Directive
3.7.9[no] f usi on Directive
3.8 Inlining and Cloning Directives
38.1inline_enabl e,inline_disabl e andinline_reset Directives
3.8.2i nl i ne_al ways andi nl i ne_never Directives
3.8.3cl one_enabl e, cl one_di sabl e, cl one_r eset Directives
3.8.4cl one_al ways andcl one_never Directives
3.9 PGAS Directive
3.9.1def er _sync Directive

S-2179-83

Page

80
80
80
81
83
84
85
85
86
86
87
89
89
90
90
91
92
92
92
94
94
95
95
96
96
97
97
98
100
100
100
100
102
102
103
103
103

13

Cray C and C++ Reference Manual

Using the OpenM P C/C++ API [4]
4.1 Standard Support
4.2 Cray Enhancements
421cray_onp_set _wait_policy()
4.2.2 CRAY_OWVP_CHECK_AFFI NI TY Environment Variable
4.3 Compiling
4.4 Executing
4.5 Debugging
4.6 Cray Implementation Defined Behaviors
4.6.1 Directives and Clauses
4.6.1.1at om c Directive
4.6.1.2f or Directive
4.6.1.3par al | el Directive
4.6.141t hr eadpr i vat e Directive
46.15pri vat e Clause
4.6.2 Library Routines
4.6.21onp_get _max_active_| evel s()
4.6.2.2onp_set _dynami c()
4.6.2.3onp_set _schedul e()
4.6.240np_set _max_active_l evel s()
4.6.250np_set _nested()
4.6.26 onp_set _num t hreads()
4.6.3 OpenM P Environment Variables
46310W_DYNAMC
4.6.3.2 OVP_MAX_ACTI VE_LEVELS
4.6.3.3 OVP_NESTED
4.6.3.4 OMP_NUM_THREADS
4.6.3.5 OVP_SCHEDULE
4.6.3.6 OVP_STACKSI ZE
46370V _THREAD LIMT
46.380vP_WAI T_POLI CY
4.7 Limitations
4.8 OpenMP Accelerator Support

Using OpenACC [5]

5.1 OpenACC Execution Model

5.2 OpenACC Memory Model

5.3 Mapping the OpenACC Programming Model onto Accelerator Components

14

Page

105
105
105
105
106
106
106
107
107
110
110
110
111
111
111
111
111
111
112
112
112
112
112
112
112
112
112
113
113
113
113
113
114

115
115
116
116

S-2179-83

Contents

5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) cores

5.3.2 Memory
5.4 Mixed Model Support
5.5 Compiling
5.6 Module Support
5.7 Debugging
5.8 OpenACC Directives
5.9 Runtime Routines
5.9.1 Cray Specific Runtime Library Routines
5.9.2 CRAY_ACC DEBUG Output Routines
5.10 Environment Variables
5.10.1 Cray Specific
5.10.2 Standard
5.11 OpenACC Examples

Using Cray Unified Parallel C (UPC) [6]

6.1 Implementation
6.1.1 Predefined Macros
6.1.2 False Sharing
6.2 Compiling and Linking UPC Code
6.3 Launching a UPC Application
6.4 Cray Extensions
6.4.1 Team Collectives
6.4.2 Node Affinity
6.4.2.1upc_nodeof ()
6.4.2.2 NODES
6.4.2.3 MYNODE

Using Cray C++ Libraries[7]
7.1 Unsupported Standard C++ Library Features

Using Coarray C++ [§]
8.1 Compiling Coarray C++
8.2 Declaring and Accessing Coarrays
8.2.1 Basic Types
8.2.2 Arrays
8.2.3 Pointers
8.2.4 Structs, Unions, and Classes
8.3 Type System

S-2179-83

Page

117
117
117
118
119
119
120
120
121
121
122
122
122
123

125
126
126
126
127
128
128
129
129
129
129
130

131
131

133
134
135
135
137
138
138
140

15

Cray C and C++ Reference Manual

8.3.1 Coreferences
8.3.2 Copointers
8.3.3shape_cast
8.4 Control Flow and Synchronization
8.4.1 Writing SPMD Code
8.4.2 Barriers
8.4.3 Function Calls
84.3.1coatonic
8.4.3.2coevent
8.4.3.3conut ex
8.5 Collectives
8.5.1cobr oadcast
8.5.2cor educe
8.6 Exceptions
8.7 Memory Consistency Model
8.7.1atom c_i mage_fence()
8.7.2 Accesses within a Single Image
8.7.3 Accesses to Other Images
8.7.3.1 Multi-byte Accesses
8.7.3.2 From Different Images
8.7.3.3 From the Same Image
8.8 Blocking Versus Non-blocking Accesses
8.8.1 Writes (Puts)
8.8.2 Reads (Gets)
8.8.3 Cofutures
8.9 Code Patterns
8.9.1 Coobjects
8.9.2 Hoistingacopt r

Using Cray C Extensions [9]

9.1 Complex Data Extensions

9.2f ortran Keyword

9.3 Hexadecimal Floating-point Constants

Using Predefined M acros [10]

10.1 Macros Required by the C and C++ Standards
10.2 Macros Based on the Host Machine

10.3 Macros Based on the Target Machine

16

Page

140
141
142
144
144
144
145
145
145
146
146
146
147
148
148
148
148
149
149
149
149
150
150
151
151
152
152
153

155
155
155
156

159
159
160
160

S-2179-83

Contents

10.4 Macros Based on the Compiler
10.5 UPC Predefined Macros

Running C and C++ Applications [11]

Debugging Cray C and C++ Code [12]
12.1 Total View Debugger
12.2 Compiler Debugging Options

Using I nterlanguage Communication [13]
13.1 Calls Between C and C++ Functions
13.2 Calling Fortran Functions and Subroutines from C or C++
13.2.1 Requirements
13.2.2 Argument Passing
13.2.3 Array Storage
13.2.4 Logical and Character Data
13.2.5 Accessing Named Common from C and C++
13.2.6 Accessing Blank Common from C or C++
13.2.7 Cray C and Fortran Example
13.2.8 Calling a Fortran Program from Cray C++
13.3 Calling a C or C++ Function from Fortran
13.3.1 Portabl e Interoperability Mechanism
13.3.2 Standard Fortran/C Interoperability

I mplementation-defined Behavior [14]
14.1 Messages
14.2 Environment
14.2.1 Identifiers
14.2.2 Types
14.2.3 Characters
14.2.4 Wide Characters
14.2.5 Integers
14.2.6 128-Bit Floating Point and 256-Bit Complex Predefined Types
14.2.7 Arrays and Pointers
14.2.8 Registers
14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields
14.2.10 Qualifiers
14.2.11 Declarators
14.2.12 Statements

S-2179-83

Page

161
161

163

165
166
166

169
169
170
171
171
172
173
173
175
177
179
180
180
183

185
185
185
186
186
187
188
188
189
189
190
190
191
191
191

17

Cray C and C++ Reference Manual

14.2.13 Exceptions
14.2.14 System Function Calls
14.3 Preprocessing

Appendix A Using Librariesand the Linker
A.1Cray C and C++ Libraries
A.2 Linker

Appendix B Using Cray C and C++ Dialects
B.1 C++ Language Conformance
B.1.1 Supported C++ Language Features
B.2 C++ Anachronisms Accepted
B.3 Extensions Accepted in Norma C++ Mode
B.4 Extensions Accepted in C or C++ Mode
B.5 C++ Extensions Accepted in cf r ont Compatibility Mode

Appendix C Using the Compiler Message System
C.1 Expanding Messages with the expl ai n Command
C.2 Controlling the Use of Messages
C.2.1 Command Line Options
C.2.2 Environment Options for Messages
C.23 ORI G_CVD_NAME Environment Variable
C.3 Message Severity
C.4 Common System Messages

Appendix D Using Intrinsic Functions
D.1 Atomic Memory Operations
D.1.1 Loca Atomic Memory Operations
D.1.2 Global Atomic Memory Operations
D.2 Bit Operations
D.3 Mask Operations

D.4 Miscellaneous Operations

Tables

Tablel. GCC C Language Extensions
Table2. GCC C++ Language Extensions
Table3. CacheLevels

Table4. 1PA Level

Table5. File Types

Table6. Floating-point Optimization Levels

18

Page

191
191
191

193
193
193

195
195
195
198
199
200
202

209
209
209
210
210
211
211
212

215
216
217
218
220
221
221

31
33
45
47
48
51

S-2179-83

Contents

Table7. - Glevel Definitions

Table8. - W phase Definitions

Table9. -Y phase Definitions

Table10. - h pragma Directive Processing

Table11l. DataType Mapping

Table12. Packed Characters

Table13. Unrecognizable Escape Sequences

Examples

Examplel. CC -X8 -h nyprog.C

Example2. CC -h conform nyprog. C

Example3. cc -c -h ipal myprog.c subprog.c
Example4. cc -1. disc.c vend.c

Example5. cc -P -D DEBUG newprog. c

Example6. cc -c -h report=s mnydatal.c
Example7. CC -h ipab,report=if nyfile.C
Example8. Trip counts

Example 9. Unrolling outer loops

Example 10. Illegal unrolling of outer loops e
Example11. Usingthei nl i ne_enabl e,i nl i ne_di sabl e,andi nl i ne_r eset directives
Example12. Usinginline_reset

Example 13. Usingdef er _sync

Example 14. Calling a C function from Fortran

S-2179-83

Page

52
57
59
60
186
187
187

68
68
68
69
69
69
69
88
99
99
101
101
104
181

19

Introduction [1]

The Cray Compiling Environment (CCE) contains both the Cray C and C++
compilers.

Log in either to alogin node or a standalone application development system and use
the Cray XE, Cray XK, or Cray XC series Programming Environment, and related
products to create an application which executes on compute nodes. For further
information about login nodes and the user environment, see the Cray Programming
Environment User's Guide.

Throughout this manual, the differences between the Cray C and C++ compilers
are noted when appropriate. When there is no difference, the phrase the compiler
refers to both compilers. All compiler command options apply to Cray C and C++
unless noted.

1.1 General Compiler Description

Both the Cray C and C++ compilers are contained within the Cray Compiling
Environment (CCE). If compiling code written in C, use the cc command to compile
source files. If you are compiling code written in C++, use the CC command.

1.1.1 Cray C Compiler

The Cray C compiler consists of a preprocessor, alanguage parser, an optimizer, and
acode generator. Invoke the Cray C compiler with the cc compiler driver command.
The cc command is described in cc Command on page 26. This command and

its options are also described in the cr aycc(1) man page. See Command Line
Examples on page 68.

1.1.2 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, alanguage parser, an optimizer,
and a code generator. Invoke the Cray C++ compiler with the CC compiler driver
command. The CC command is described in CC Command on page 26 and the

cr ay CC(1) man page. See Command Line Examples on page 68.

S-2179-83 21

Cray C and C++ Reference Manual

1.2 C/C++ Standard Compatibility

The Cray C compiler conforms to the International Organization of Standards (1SO)
standard 1SO/IEC 9899:1999 (C99).

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882: 2003 standard, with some exceptions. The exceptions are noted in Appendix
B, Using Cray C and C++ Dialects on page 195.

This release offers preliminary support for the UPC 1.3 draft specification.
The proposed UPC 1.3 standard is discussed on the UPC specification website,
http://code.google.com/p/upc-specification.

1.3 Binary Compatibility

22

UPC 1.3 requires a non-backwards compatible APl change to the UPC runtime
library. PGAS files compiled with CCE 8.2 are not binary compatible with those
compiled with earlier versions of CCE. Attempting to link a pre-CCE 8.2 object
filein the 8.2 CCE runtime environment will result in aruntime error message
containing the text . . . source file compiled with compiler expecting PGAS runtime
APl version 1.1, but linked with PGAS runtime using API version 2.0. . . ". If you
see this error, recompile the indicated source file/swith CCE 8.2 and relink your
application.

S-2179-83

http://code.google.com/p/upc-specification/

Introduction [1]

1.4 Related Publications

S-2179-83

The following documents contain additional information that may be helpful:

cc (1) compiler driver man page for al C compilers
cr aycc (1) man page for the Cray C compiler

CC(1) compiler driver man page for al C++ compilers
cr ay CC(1) man page for the Cray C++ compiler

i ntro_directives(7) man page

i nt ro_openacc(7)

i ntro_pgas(7)

f t n(1) compiler driver man page for Fortran compilers
crayf t n(1) man page for the Cray Fortran compiler
apr un(1) man page

Cray Fortran Reference Manual

Cray Programming Environments Installation Guide
Cray Programming Environment User's Guide

Using Cray Performance Measurement and Analysis Tools

23

Cray C and C++ Reference Manual

24 S-2179-83

Invoking the C and C++ Compilers [2]

S-2179-83

This chapter describes the compiler driver commands that used to launch the Cray C
and C++ compilers. The following commands invoke the compilers:

¢ CC, which invokes the Cray C++ compiler.
e cc, which invokes the Cray C compiler.

e cpp, the C language preprocessor, is not part of the Cray Compilation
Environment (CCE). The cpp command resolves to the GNU cpp command
and does not predefine any Cray compiler-specific macros (Chapter 10,

Using Predefined Macros on page 159). If the predefinition of the Cray
compiler-specific macros is required, then use the cc or CC command to do the
source preprocessing using the - E or - P option.

A successful compilation creates an executable, named a. out by default, that
reflectsthe contents of the source code and any referenced library functions. Use the
apr un command to run the executable on the compute nodes.

For example, the following command sequence compilesfilenysour ce. ¢ and
launches the resulting executable program on 64 compute nodes:

% cc mysource.c
% aprun -n 64 ./a.out

With the use of appropriate options, it is possible to direct the compiler to generate
intermediate tranglations, including rel ocatable object files (- ¢ option), assembly
source expansions (- S option), or the output of the preprocessor phase of the
compiler (- P or - E option). In generd, it is possible to save the intermediate filesand
reference them later on a CC or cc command, with other filesor libraries included

as necessary.

By default, the CC and cc commands automatically call the linker, which creates an
executablefile. If only one source fileis specified, the object file (*. 0) isdeleted. If
more than one source fileis specified, the object filesare retained.

For example, the following command creates and retains object filesfi | el. o,
file2.0,andfil e3. 0, and creates the executablefilea. out :

%cc filel.c file2.c file3.c

The following command createsfi | e. o anda. out ;fi |l e. o isnot retained.

%cc file.c

25

Cray C and C++ Reference Manual

2.1 CCCommand

The CC command invokes the Cray C++ compiler. The CC command accepts C++
source fileswith the following suffixes:

.C
.C
i

. C++
. C++
. cC
. CXX
. Cxx
. XX
. CC

The. i filesare created when the preprocessing compiler command option (- P) is
used. The CC command also accepts abject fileswith the . o suffix, library fileswith
the . a suffix, and assembler source fileswith the . s suffix.

The CC command format is as follows:

CC[-c] [-C [-D macro[=def]] [-E] [-g] [-G levd] [-h arg] [-| incldir]
[-K trap=opt[,opt]...] [-I| libfile] [-L Idir] [-M [-nostdinc] [-o0 outfilg]
[-Olevel] [-P] [-S] [-U macro] [-V] [-Wbhase "opt..."]
[-Xnpes] [-Yphase dirname] [-#] [-##] [-###] files ...

For an explanation of the command line options, see Command Line Options on
page 27.

2.2 cc Command

26

The cc command invokes the Cray C compiler. The cc command accepts C source
filesthat havethe. c and. i suffixes; object fileswith the. o suffix; library fileswith
the . a suffix; and assembler source fileswith the . s suffix.

The cc command format is as follows;

cc [-c] [-C [-D macro[=def]] [-E] [-g] [-G levd] [-h arg] [-] incldir]
[-K trap=opt[,opt]...] [-I| libfile] [-L Idir] [-M [-nostdinc] [-o0 outfilg]
[-Oleve] [-P] [-S] [-U macro] [-V] [-Wphase "opt..."]
[-Xnpes] [-Y phase dirname] [-#] [-##] [-###] files...

For an explanation of the command line options, see Command Line Options on
page 27.

S-2179-83

Invoking the C and C++ Compilers [2]

2.3 Command Line Options

S-2179-83

The following subsections describe options for the CC and cc commands. These
options are grouped according to the following functions:

» Standard conformance options (Standard L anguage Conformance Options on
page 28)

e Virtual function options (Virtual Function Options on page 33)

* General language options (General Language Options on page 33)

» Genera optimization options (General Optimization Options on page 36)
e Automatic cache management options (- h cachen on page 44)

» Vector optimization options (Vector Optimization Options on page 45)

e Inlining options (Interprocedural Analysis (IPA) Optimization Options on
page 46)

e Scalar optimization options (Scalar Optimization Options on page 48)
e Math options (Math Options on page 50)

» Debugging options (Debugging Options on page 51)

e Compiler message options (Compiler Message Options on page 54)

» Compilation phase options (Compilation Phase Options on page 56)

» Preprocessing options (Preprocessing Options on page 59)

» Linker options (Linker Options on page 62)

* Miscellaneous options (Miscellaneous Options on page 63)

e Command line examples (Command Line Examples on page 68)
Options other than those described in this manual are passed to the linker.

There are many options that start with - h. Specify multiple - h options using

commas to separate the arguments. For example, the- h par se_t enpl at es and
- h f p0O command line options can be specifiedas- h par se_t enpl at es, f pO.

If you specify conflicting options, the option specified last on the command line
overrides the previously specified option. Exceptions to this rule are noted in the
individual descriptions of the options.

27

Cray C and C++ Reference Manual

The following examplesillustrate the use of conflicting options:
e Inthisexample, - h f pO overrides-h fpl:
%cc -h fpl,fp0 nyfile.c

e Inthisexample, - h vect or 2 overrides the earlier vector optimization level
3 implied by the - O3 option:

% CC - -h vector2 nyfile.C

Most #pr agna directives override corresponding command line options. Exceptions
to thisrule are noted in descriptions of options or #pr agna directives.

2.4 Standard Language Conformance Options

This section describes standard conformance language options. Each subsection
heading shows in parentheses the compiler with which the option can be used.

2.4.1 -h[no]c99 (cc)

Defaullt; -h ¢c99

This option enables or disables language features new to the C99 standard and Cray C
compiler, while providing support for features that were previously defined as Cray
extensions. If the previous implementation of the Cray extension differed from the
C99 standard, both implementations will be available when the- h ¢99 option
isenabled. The-h ¢99 option is aso required for C99 features not previously
supported as extensions.

When - h noc99 isused, C99 language features such as variable-length arrays
(VLAS) and restricted pointers that were available as extensions previously to
adoption of the C99 standard remain available to you.

2.4.2 -h[no] conform(CC, cc),-h[no]stdc (cc)

28

Default; -h noconform-h nostdc

The-h conformand-h stdc options specify strict conformance to the 1SO
C standard or the ISO C++ standard. The- h noconf or mand - h nost dc
options specify partial conformance to the standard. The- h excepti ons, -h
dep_nane,-h parse_tenplates,and-h const_string literals
options are enabled by the - h conf or moption in Cray C++.

Note: By default, the compiler calls the Cray mathlib versions of intrinsic
functions (abs, cos, exp, for example) which do not set er r no and do not raise
|EEE-754 underflow exceptions. If - hconf or mis specified, the compiler callsthe
stdc gl i bc versionsof the runtime intrinsic functions.

S-2179-83

Invoking the C and C++ Compilers [2]

2.4.3 -h cfront (CO

The-h cf ront option causesthe Cray C++ compiler to accept or reject constructs
that were accepted by previous cf r ont -based compilers (such as Cray C++ 1.0) but
which are not accepted in the C++ standard. The- h anachr oni sns optionis
implied when - h cfront is specified.

2.4.4 -h[no] parse_tenpl at es (CC)
Default: -h noparse_tenpl at es

This option allows existing code that definestemplates using previous versions of the
Cray Standard Template Library (STL) (before Programming Environment 3.6) to
compile successfully with the - h conf or moption. Consequently, this allows you
to compile existing code without having to use the Cray C++ STL. To do this, use the
nopar se_t enpl at es option. Also, the compiler defaults to this mode when the
-h dep_name option isused. To have the compiler verify that your code uses the
Cray C++ STL properly, usethe par se_t enpl at es option.

2.4.5 -h[no] dep_nane (CC
Default: -h nodep_nane

This option enables or disables dependent name processing (that is, the separate
lookup of names in templates when the template is parsed and when it isinstantiated).
The-h dep_name option cannot be used with the- h nopar se_t enpl at es
option.

2.4.6 -h[no] exceptions (CC

Default: The default is - h excepti ons; however, if the
CRAYOLDCPPLI B environment variable is set to a nonzero
value, the default is- h noexcepti ons.

The-h excepti ons option enables support for exception handling. The

-h noexcepti ons option issues an error whenever an exception construct, at ry
block, at hr owexpression, or at hr ow specification on a function declaration is
encountered. The- h excepti ons optionisenabled by - h conf orm

2.4.7 - h [no] anachr oni sns (CC)
Default: -h noanachroni sis

The- h [no] anachr oni sns option disables or enables anachronismsin Cray
C++. Thisoptionisoverridden by - h conf orm

S-2179-83 29

Cray C and C++ Reference Manual

24.8 -h [no] new for_init (CC

Defaullt: -h new for _init

The-h new for_init option enablesthe new scoping rules for a declaration

in a for-init-statement. This means that the new standard-conforming rules are in
effect; theentire f or statement iswrapped in its own implicitly generated scope. The
-h new_for_init optionisimplied by the- h conf or moption.

Thisisthe result of the scoping rule:
{
for (int i =0; i <n; i++) {

} I/ scope of i ends here for -h new for_init

} I/ scope of i ends here for -h nonew for_init

249 -h[no]tol erant (cc)

Default; -h not ol er ant

The-h tol erant option alows older, less standard C constructs, thereby making
it easier to port code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler generates
casts so that the types agree. With - h not ol er ant , the compiler is intolerant

of the older constructs.

The-h tol erant option causesthe compiler to tolerate accessing an object with
one type through a pointer to an entirely different type. For example, a pointer to a

| ong might be used to access an object declared with type doubl e. Such references
violate the C standard and should be eliminated if possible. They can reduce the
effectiveness of aias analysis and inhibit optimization.

2.4.10 -h[no]const _string literals (CC

30

Default: -h noconst_string_literals

The-h[no] const_string_literal s optioncontrolswhether string literals
areconst (asrequired by the standard) or non-const (aswastruein earlier
versions of the C++ language).

S-2179-83

Invoking the C and C++ Compilers [2]

2.4.11 -h [no] gnu

Default: -h nognu

The-h gnu option enables the compiler to recognize the subset of the GCC version
4.4.4 extensionsto C listed in Table 1. Table 2 lists the extensions that apply only to
C++.

For detailed descriptions of the GCC C and C++ language extensions, see
http://gcc.gnu.org/onlinedocy.

Table 1. GCC C Language Extensions

GCC C Language Extension Description

Typeof t ypeof : referring to the type of an expression
Lvalues Using ?:, and castsin Ivalues

Conditionals Omitting the middle operand of a?: expression

Long Long Double-word integers—1 ong | ong i nt

Complex Data types for complex numbers

Statement Exprs Putting statements and declarations inside expressions
Zero Length Zero-length arrays

Variable Length Arrays whose length is computed at run time

Empty Structures
Variadic Macros
Escaped Newlines
Multiline strings
Initializers
Compound Literals
Designated Inits
Cast to Union

Case Ranges
Mixed Declarations
Attribute Syntax
Function Prototypes

C++ Comments
Dollar Signs
Character Escapes

Alignment

S-2179-83

Structures with no members; appliesto C but not C++
Macros with a variable number of arguments

Slightly looser rules for escaped newlines

String literals with embedded newlines

Non-constant initializers

Compound literals give structures, unions or arrays as values
Labeling elements of initializers

Casting to union type from any member of the union
‘case 1 ... 9" andsuch

Mixing declarations and code

Formal syntax for attributes

Prototype declarations and old-style definitions; appliesto C
but not C++

C++ comments are recognized
Dollar signis allowed in identifiers
\ e stands for the character <ESC>

Inquiring about the alignment of atype or variable

31

http://gcc.gnu.org/onlinedocs/

Cray C and C++ Reference Manual

GCC C Language Extension

Description

Inline

Alternate Keywords
Incomplete Enums
Function Names
Return Address
Unnamed Fields

Function Attributes: nothrow; format,

format_arg; deprecated; used; unused;

dias; weak

Variable Attributes: alias; deprecated;

unused; used; transparent_union; weak;

Type Attributes: deprecated; unused;
used; transparent_union

Asm Labels

Other Builtins:
__builtin_types_conpati bl e_p,
__builtin_choose_expr,
__builtin_constant _p,
__builtin_huge_val,
__builtin_huge_valf,
__builtin_huge_vall,
__builtin_inf, builtin_inff,
__builtin_infl,
__builtin_nan, builtin_nanf,
__builtin_nanl,
__builtin_nans,
__builtin_nansf,
__builtin_nansl

__const__,

Defining inline functions (as fast as macros)

asm__, and so on, for header files
enum f 0o; , with details to follow

Printable strings which are the name of the current function
Getting the return or frame address of afunction

Unnamed struct/union fieldswithin structs/unions

Declaring that functions have no side effects, or that they can
never return
Specifying attributes of variables

Specifying attributes of types

Specifying the assembler name to use for a C symbol

Other built-in functions

Specid filessuch as/ dev/ nul | may be used as source files.

The supported subset of the GCC version 4.4.4 extensionsto C++ arelisted in Table

2.

32

S-2179-83

Invoking the C and C++ Compilers [2]

Table 2. GCC C++ Language Extensions

GCC C++ Extensions Description

Min and Max C++ minimum and maximum operators

Restricted Pointers C99 restricted pointers and references

Backwards Compatibility Compatibilities with earlier definitionsof C++

Strong Using A usi ng directivewith __attri bute ((strong))
Explicit template specializations Attributes may be used on explicit template specializations

2.5 Virtual Function Options

This section describes general language options.

25.1 -h forcevtbl (CC)

The-h forcevtbl option forcesthe definition of virtual function tablesin cases
where the heuristic methods used by the compiler to decide on definition of virtual
function tables provide no guidance. The virtual function table for a classis defined
in a compilation if the compilation contains a definition of the first non-inline,
non-pure virtual function of the class. For classes that contain no such function, the
default behavior isto definethe virtual function table (but to defineit asalocal static
entity). The- h forcevt bl option differs from the default behavior in that it does
not force the definition to be local.

2.5.2 -h suppressvt bl (CC)

The-h suppressvt bl option suppresses the definition of virtual function tables
in cases where the heuristic methods used by the compiler to decide on definition of
virtual function tables provide no guidance.

2.6 General Language Options

This section describes general language options. Each subsection heading showsin
parentheses the compiler with which the option can be used.

S-2179-83 33

Cray C and C++ Reference Manual

2.6.1 -h keep=file(CO

26.2 -hrestri

34

When the - h keep=fileoption is specified, the static constructor/destructor object

(. o) fileisretained asfile. This option is useful when linking . o fileson a system
that does not have a C++ compiler. The use of this option requires that the mai n
function must be compiled by C++ and the static constructor/destructor function must
be included in the link. With these precautions, mixed object files (fileswith . o
suffixes) from C and C++ compilations can be linked into executables by using the
linker command instead of the CC command.

ct =args

The-hrestri ct =argsoption globaly tells the compiler to treat certain classes
of pointers as restricted pointers. Use this option to enhance optimizations (this
includes vectorization).

Classes of affected pointers are determined by the value contained in args, as follows:

args Description

a All pointers to object and incomplete types are considered
restricted pointers, regardless of where they appear in the
source code. Thisincludes pointersincl ass, st ruct, and
uni on declarations, type casts, function prototypes, and so
on.

Caution: Do not specify restri ct =a if, during

A execution of any function, an object is modified and that
object is referenced through either two different pointers
or through the declared name of the object and a pointer.
Undefined behavior may result.

f All function parameters that are pointers to objects or
incomplete types can be treated as restricted pointers.

Caution: Do not specify restri ct =f if, during

A execution of any function, an object is modified and that
object is referenced through either two different pointer
function parameters or through the declared name of
the object and a pointer function parameter. Undefined
behavior may result.

t All parameters that aret hi s pointers can be treated as
restricted pointers (Cray C++ only).

Caution: Do not specify restri ct =t if, during

A execution of any function, an object is modified and that
object is referenced through the declared name of the object
and at hi s pointer. Undefined behavior may result.

S-2179-83

Invoking the C and C++ Compilers [2]

The args arguments tell the compiler to assume that, in the current compilation unit,
each pointer (=a), each pointer that is a function parameter (=f), or eacht hi s
pointer (=t) points to a unique object. This assumption eliminates those pointers
as sources of potential aliasing, and may allow additional vectorization or other
optimizations. These options cause only data dependencies from pointer aliasing to
be ignored, rather than all data dependencies.

Caution: The arguments make assertions about your program that, if incorrect,
can introduce undefined behavior. Donotuse- h restri ct =a if, during the
execution of any function, an object is modified and that object is referenced
through either of the following:

e Two different pointers
* The declared name of the object and a pointer

The-h restrict=f and-h restrict=t options are subject to the
analogous restriction, with "function parameter pointer” replacing "pointer."

2.6.3 -h[no]cal chars

AN

2.6.4 -h[no]si

S-2179-83

Default: -h nocal chars

The- h cal char s option allows the use of the $ character in identifier names. This
option is useful for porting code containing identifiersthat include this character.
With - h nocal char s, this character is not alowed in identifier names.

Caution: Use this option with extreme care, because identifierswith this character
are within CNL name space and are included in many library identifiers, internal
compiler labels, objects, and functions. Prevent conflicts between identifierswithin
CNL name space and your code; any such conflictis an error.

gnedshifts
Default: -h nosi gnedshifts

The - h [no] si gnedshi ft s option affects the result of the right shift
operator. For the expression €1 >> e2, where el has a signed type, when

-h si gnedshi ft s isin effect, the vacated bits are filled with the sign bit of el.
When - h nosi ghedshi f t s isin effect, the vacated bits are filled with zeros,
identical to the behavior when el has an unsigned type.

Also, see Integers on page 188 about the effects of this option when shifting integers.

35

Cray C and C++ Reference Manual

2.7 General Optimization Options

2.7.1 -h[no]add_paren
Default: -h noadd_paren

The-h [no] add_par en option automatically adds parenthesis to select
associative operations (+,- ,*) to encourage left to right evaluation of floating point
and complex expressions. The default is- h noadd_par en. For more information,
seethe crayf t n(1) man page.

Left to right evaluation is not required by the language standards, but some
applications may expect it.

2.7.2 -h [no] aggress
Default: -h noaggress

The-h aggr ess option provides greater opportunity to optimize loops that would
otherwise by inhibited from optimization due to an internal compiler size limitation.
-h noaggr ess leavesthis size limitation in effect.

With - h aggr ess, internal compiler tables are expanded to accommodate larger
loop bodies. This option can increase the compilation's time and memory size.

2.7.3 -h [no]autoprefetch
Default: -h autoprefetch

The-h [no] aut opr ef et ch option controls automatic prefetch optimization.
Does not affect thel oop_i nf o [no] pr ef et ch directive.

2.7.4 -h [no] aut ot hr ead
Default: - h noaut ot hr ead

The-h [no] aut ot hr ead option enables or disables automatic threading.
2.7.5 -h display_opt

The-h di spl ay_opt option displays the current optimization settings for this
compilation.

36 S-2179-83

Invoking the C and C++ Compilers [2]

2.7.6 -h fl ex_np=leve
Default: -h fl ex_np=defaul t

The-h fl ex_np=level option controls the aggressiveness of optimizations which
may affect floating point and complex repeatability when application requirements
require identical results when varying the number of ranks or threads.

The values for level are;

level Description

i ntol erant Has the highest probability of repeatable results, but also the highest
performance penalty.

strict Uses some safe optimizations and yields higher performance than
i nt ol er ant, with ahigh probability of repeatable results.

conservative Uses more aggressive optimization and yields higher performance
thanstri ct, but results may not be sufficiently repeatable for some
applications.

def aul t Uses more aggressive optimization and yields higher performance than

conservati ve, but results may not be sufficiently repeatable for
some applications.

t ol erant Uses most aggressive optimization and yields highest performance, but
results may not be sufficiently repeatable for some applications.

2.7.7 -h fusionn
Default; -h fusion2

The—h fusi on noption controls loop fusion and changes the assertiveness of
thef usi on pragma. Loop fusion can improve the performance of loops, athough
in rare cases it may degrade performance. The n argument allows you to turn loop
fusion on or off and determine where fusion should occur.

Note: Loop fusion is disabled when the scalar level is set to 0.
Default: -h fusion2

The values for n are:

0 No fusion (ignore al f usi on pragmas and do not attempt to fuse
other loops)

1 Attempt to fuse loops that are marked by the f usi on pragma.

2 Attempt to fuse all loops (includes array syntax implied loops),

except those marked with the nof usi on pragma.

S-2179-83 37

Cray C and C++ Reference Manual

278 -h [no]intrinsics
Default: -h intrinsics

The-h intrinsics option alowsthe use of intrinsic hardware functions, which
alow direct access to some hardware instructions or generate inline code for some
functions. This option has no effect on specially handled library functions.

Intrinsic functions are described in Appendix D, Using Intrinsic Functions on
page 215.

279 -hlist

The-h 1i st =opt option allows you to create listings and control their formats. The
listings are written to source file_name without_suffix. | st .

The values for opt are:

a Use dl list options; source file_name_without_suffix. | st includes a
summary report, an options report, and the source listing.

d Decompiles (trandates) the intermediate representation of the
compiler into listings that resemble the format of the source code.
Thisis performed twice, resulting in two output files, at different
points during the optimization process. You can use these filesto
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to
your source code to improve its performance.

The compiler produces two decompilation listing fileswith these
extensions per specified source file: . opt and. cg. The compiler
generatesthe . opt fileafter applying most high-level loop nest
transformations to the code. The code structure of this listing most
resembles your source code and is readable by most users. In some
cases, because of optimizations, the structure of the loops and
conditionals will be significantly different than the structure in your
source file.

The. cg file contains a much lower level of decompilation. It is
quite close to what will be produced as assembly output. This version
displays the intermediate text after all vector translation and other
optimizations have been performed. An intimate knowledge of the
hardware architecture of the system is helpful to understanding this
listing.

38 S-2179-83

Invoking the C and C++ Compilers [2]

The. opt and. cg filesare intended as atool for performance
analysis and are not valid source code. The format and contents of
the files can be expected to change from release to release.

e Expand include files.

Note: Using this option may result in avery large listing file. All
system include files are also expanded.

[Intersperse optimization messages within the source listing rather
than at the end.

m Create loopmark listing; source file_name without_suffix. | st
includes summary report and source listing.

s Create a complete source listing (include files not expanded).

Using- h | i st =mcreatesaloopmark listing. Thee, i , s, and w options provide
additional listing features. Using- h 1 i st =a combines all options.

2.7.10 - h [no] negs
Default: -h nomsgs

The-h nsgs option causes the compiler to write optimization messages to
stderr.

Whenthe- h nsgs option isin effect, you may request that a listing be produced
so that you can see the optimization messages in the listing. For information about
obtaining listings, see- h | i st on page 38.

2.7.11 - h [no] negnsgs
Default: -h nonegnsgs

The-h negnsgs option causes the compiler to generate messagesto st der r that
indicate why optimizations such as vectorization, inlining, or cloning did not occur
in a given instance.

The-h negnsgs option enablesthe- h nsgs option. The-h | i st =a option
enablesthe - h negnsgs option.

2.7.12 -h[no]onp_trace
Default: -h noonp_trace (tracing is off)

The-h [no] onp_t r ace option turnsthe insertion of the CrayPat OpenMP tracing
cals on or off.

S-2179-83 39

Cray C and C++ Reference Manual

2.7.13 -h[no]func_trace

The-h func_trace option isfor use only with CrayPat. If this option is
specified, the compiler inserts CrayPat trace entry points into each function in the
compiled source file. The names of the trace entry points are:

e _ pat_tp_func_entry
e _ pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the

pat _bui | d command. When the instrumented program is executed and it
encounters either of these trace entry points, CrayPat captures the address of the
current function and its return address.

2.7.14 -h [no]overi ndex

Default: -h nooveri ndex

The-h overi ndex option declares that there are array subscripts that index
adimension of an array that is outside the declared bounds of that array. The

-h nooveri ndex option declares that there are no array subscripts that index a
dimension of an array that is outside the declared bounds of that array.

2.7.15 -h [no] pattern

Default: -h pattern
The- h [no] pat t er n option globally enables or disables pattern matching.

When the compiler recognizes certain patterns in the source code, it replaces the
construct with a call to an optimized library routine. A loop or statement that has
been pattern matched and replaced with a call to alibrary routine is indicated with an
Ain the loopmark listing.

Note: Pattern matching is not always worthwhile. If there is a small amount of
work in the pattern-matched construct, the call overhead may outweigh the time
saved by using the optimized library routine. When compiling using the default
optimization settings, the compiler attempts to determine whether each given
candidate for pattern matching will in fact yield improved performance.

2.7.16 -h pl =program library

40

Create and use a persistent repository of compiler information specified by
program library. When used with - hwp, this option provides application-wide,
cross-file, automatic inlining. See- h wp on page 43.

S-2179-83

Invoking the C and C++ Compilers [2]

The program_library repository is implemented as a directory and the information
contained in program library is built up with each compiler invocation. Any
compilation that does not have the - hpl option will not add information to this
repository.

Because of the persistence of program library, it is the user's responsibility to
manage it. For example, rm -r program library might be added to the nake
cl ean target in an application makefile. Because program library is a directory,
userm -r toremoveit.

If an application makef i | e works by creating filesin multiple directories during
asingle build, the program_library should be an absolute path, otherwise multiple
and incomplete program library repositories will be created. For example, avoid
-hpl =./PL. 1 anduse- hpl =/ ful | pat h/ bui | ddi r/ PL. 1 instead.

2.7.17 -h profile_generate

The-h profil e_gener at e option directs that the source code be instrumented
for gathering profileinformation. The compiler inserts calls and data-gathering
instructions to allow CrayPat to gather information about the loopsin a compilation
unit. If you use this option, you must run CrayPat on the resulting executable so the
CrayPat data-gathering routines are linked in. For information about CrayPat and
profile information, see the Using Cray Performance Measurement and Analysis
Tools guide.

2.7.18 -h threadn
Default: —h thread2

The- h t hr eadn options control the optimization of both OpenMP and automatic
threading.

S-2179-83 41

Cray C and C++ Reference Manual

The values of n are:

0

2.7.19 -h unrolln

42

Defaullt;

No autothreading or OMP threading. Thet hr eadO option is similar
to-h noonp, but- h noonp disables OpenMP only and does not
affect autothreading.

Specifies strict compliance with the OpenM P standard for directive
compilation. Strict compliance is defined as no extra optimizationsin
or around OpenMP constructs. In other words, the compiler performs
only the requested optimizations.

OpenMP parallel regions are subjected to some optimizations;
that is, some paralel region expansion. Parallel region expansion
is an optimization that merges two adjacent parallel regionsin a
compilation unit into asingle parallel region.

Full optimization: loop restructuring, including modifying iteration
space for static schedules (breaking standard compliance). Reduction
results may not be repeatable.

—h unroll 2

The - h unrol I noption globally controls loop unrolling and changes the
assertiveness of theunr ol | pragma. By default, the compiler attempts to unroll all
loops, unlessthe nounr ol | pragmais specified for aloop. Generaly, unrolling
loops increases single processor performance at the cost of increased compile time

and code size.

The n argument allows you to turn loop unrolling on or off and specify where
unrolling should occur. It also affects the assertiveness of theunr ol | pragma.

The values for n are:

0

No unralling (ignore al unr ol | pragmas and do not attempt to
unroll other loops).

Attempt to unroll loops that are marked by theunr ol | pragma.

Unroll loops when performance is expected to improve. Loops
marked with theunr ol | or nounr ol | pragma override automatic
unrolling.

Note: Loop unrolling is disabled when the scalar level is set to 0.

S-2179-83

Invoking the C and C++ Compilers [2]

2.7.20 -h wp

2.7.21 - Oleve

S-2179-83

Enables the whole program mode. This option causes the compiler backend (1PA,
optimizer, codegenerator) to be invoked at application link time, enabling whole
program automatic inlining/cloning and future whole program interprocedural
analysis (IPA) optimizations. Since the - hwp option provides automatic
application-wide inlining, the - G paf r omoption is no longer needed for cross-file
inlining and using these two options together is not permitted. Requires that

pl =program library isalso specified. See- h pl =program library on page 40.

The options - hpl =program library and - hwp should be specified on all compiler
invocations and on the compiler link invocation. Since - hwp delays the compiler
optimization step until link time, - ¢ compiles will take less time and the link step
will take longer. Normally, thisis just atime shift from one build phase to another
with roughly the same overall compile time. In some cases increased inlining may
cause an increase in overall compiletime. Using - hwp allows the compiler backend
to be invoked in parallel during a build. Setting the environment variable NPROC
controls the number of concurrent compiler backend invocations and this parallelism
may reduce overall compile time.

The-0 0,-0 1,-0 2,and- O 3 options allow you to specify a general level of
optimization that includes vectorization, scalar optimization, and inlining. Generally,
as the optimization level increases, compilation time increases and execution time
decreases.

The-0O 1,- 0O 2,and - O 3 specificationsdo not directly correspond to the numeric
optimization levels for scalar optimization, vectorization, and inlining. For example,
specifying - O 3 does not necessarily enablevect or 3. Cray reservestheright to
ater the specific optimizations performed at these levels from release to release. You
canusethe- h di spl ay_opt option to display the optimization options used
during compilation.

The - On option performs general optimization at these levels: 0 (none), 1
(conservative), 2 (moderate, default), and 3 (aggressive).

e The- O 0 option disables al optimizations including floating point
optimizations. Implies- h f p0. This option's characteristics include low compile
time, small compile size, and no global scalar optimization.

Most array syntax statements are vectorized, but all other vectorizations are
disabled.

e The- O 1 option specifies conservative optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, and loop
nest restructuring. Results may differ from the results obtained when - O 0 is
specified because of operator reassociation. No optimizations will be performed
that might create fal se exceptions.

43

Cray C and C++ Reference Manual

Only array syntax statements and inner loops are vectorized and the system
does not perform some vector reductions. User tasking is enabled, so OpenMP
directives are recognized.

e The- O 2 option specifies moderate optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, pattern
matching, and loop nest restructuring.

Results may differ from results obtained when - O 1 is specified because of
vector reductions. The - O 2 option enables automatic vectorization of array
syntax and entire loop nests.

Thisisthe default level of optimization.

» The- O 3 option specifiesaggressive optimization. This option's characteristics
include a potentially larger compile time and size, global scalar optimizations,
possible loop nest restructuring, and pattern matching. The optimizations
performed might create false exceptionsin rare instances.

Results may differ from results obtained when - O 1 is specified because of
vector reductions.

Table 3 shows the equivalent level of automatic cache optimization for the - h option.

2.8 Automatic Cache Management Options

This section describes the automatic cache management options. Automatic
cache management can be overridden by the use of the cache directives (cache,
cache_nt,and| oop_i nf 0).

2.8.1 -h cachen

44

Default: -h cache?2

The-h cachen option specifiesthe levels of automatic cache management to
perform. The defaultis- h cache2.

The values for n are:

0 Cache blocking (including directive-based blocking) is turned off.
This level is compatible with all scalar and vector optimization
levels.

1 Conservative automatic cache management. Characteristics include

moderate compile time. Symbols are placed in the cache when the
possibility of cache reuse exists and the predicted cache footprint of
the symbol in isolation is small enough to experience the reuse.

S-2179-83

Invoking the C and C++ Compilers [2]

2 Moderately aggressive automatic cache management. Characteristics
include moderate compile time. Symbols are placed in the cache
when the possibility of cache reuse exists and the predicted state of
the cache model is such that the symbol will experience the reuse.

3 Aggressive automatic cache management. Characteristicsinclude
potentially high compile time. Symbols are placed in the cache when
the possibility of cache reuse exists and the allocation of the symbol
to the cacheis predicted to increase the number of cache hits.

Table 3. Cache Levels

- OOption Cache Leve
-Q0 -h cacheO
-01 -h cachel
-2 -h cache2
-3 -h cache2

2.9 Vector Optimization Options

This section describes vector optimization options. Each subsection heading showsin
parentheses the compiler command with which the option can be used.

2.9.1 -h concurrent

Indicates that no data dependence exists between array references of the same
loop, for every loop in thefile. This can be useful for vectorization optimizations.
Equivalent to adding a CONCURRENT pr agma before every loop in the file,
including loops created from array syntax. See concur r ent Directive on page 85.

2.9.2 -h vectorn
Default: -h vector?2

The - h vect or n option specifiesthe level of automatic vectorizing to be
performed. Vectorization results in significant performance improvements with a
small increase in abject code size. Vectorization directives are unaffected by this
option.

S-2179-83 45

Cray C and C++ Reference Manual

The values of n are:

(o]

Description

0 No automatic vectorization. Characteristics include low compile time
and small compile size. This option is compatible with all scalar
optimization levels.

1 Specifies conservative vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured. No
vectorizations that might create false exceptions are performed.
Results may differ slightly from results obtained when - h
vect or 0 is specified because of vector reductions.

The-h vect or 1 option is compatible with- h scal ar 1,
-h scalar2,and-h scal ar 3.

2 Specifies moderate vectorization. Characteristics include moderate
compile time and size. Loop nests are restructured.

The-h vect or 2 option is compatible with- h scal ar 2 and
-h scal ar 3.

3 Specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may
be performed.

For further information, see Vectorization Directives on page 85.

2.10 Interprocedural Analysis (IPA) Optimization Options

2.10.1 Inlining

46

Inlining and cloning transform code in ways that increase the opportunity for
interprocedural (1PA) optimizations.

The user controlsinlining and cloning through the use of command line options alone
or command line options in combination with directives placed within the code. By
default, the compiler will attempt inline optimizations where appropriate, but not
cloning. Inlining and cloning may increase object code size.

Also see Inlining and Cloning Directives on page 100.

Inlining is the process of replacing a user procedure call with the procedure definition
itself. This can improve performance by saving the expense of the call overhead. It
also increases the possibility of additional code optimization of the inlined code. If all
callswithin aloop are inlined, the loop becomes a candidate for parallelization.

S-2179-83

Invoking the C and C++ Compilers [2]

2.10.2 Cloning

The compiler supports the following inlining modes through the indicated options:

e Automatic inlining allows the compiler to automatically select which functions to
inline. This occurswith the- h i pa2 or greater option. When - h i panisused
alone, the candidates for expansion are all those functions that are present in the
input fileto the compile step. See- h i pan on page 47.

« Explicit inlining allows you to explicitly indicate which procedures the compiler
should attempt to inline and occurs with the - h i paf r omesource| : source]
option alone asdescribed in- h i paf r om=source| :source] ... onpage48.

« Combined inlining allows you to specify potential targets for inline expansion,
while applying the selected level of inlining heuristics. If - h i panisusedin
conjunction with - h i paf r omesource] : source] , the candidates for expansion
are those functions present in sourceand - h i pan selects level of heuristics.

Cloning replaces a call to a procedure with a call to a modified version of that same
procedure (clone) in which the parametersin the original procedure are replaced with
the constant actual parameters present at the call site.

Automatic cloning is enabled at - G pa5. The compiler first attemptstoinline a
call site. If inlining the call site fails, the compiler attempts to clone the procedure
for the specific call site.

2.10.3 -h i pan

Default: -h ipa3

The- h i pan option controls the level of automatic inlining and cloning. Table 4
explains what type of |PA optimization is performed at each level.

Table 4. IPA Level

IPA level Description

0 All interprocedural analysis and optimizations disabled. All inlining and cloning
compiler directives are ignored.

1 Directive IPA. Inlining/cloning is attempted for call sites and routines that are under
the control of a compiler directive. See Inlining and Cloning Directives on page 100.

2 Inlining. Inline a call site to an arbitrary depth as long as the expansion does not

S-2179-83

exceed some compiler-determined threshold. The call site must flatten for any
expansion to occur. The call siteis said to "flatten" when there are no calls present in
the expanded code. The call site must reside within the body of aloop and the entire
loop body must flatten. A loop body is said to "flatten” when all call sites within the
body of the loop are flattened. Includes level 1.

47

Cray C and C++ Reference Manual

IPA level

Description

3

Constant actual argument inlining and tiny routine inlining. Default level for inlining.
Thisincludes levels 1 and 2, plus any call site that contains a constant actual
argument. Additionally, any call nest (regardless of location) that is below some small
compiler-determined threshold will be inlined provided that call nest completely
flattens. Cloning directives are recognized.

Aggressive inlining. Thisincludeslevels1, 2, and 3, plus acall site does not haveto
residein aloop body to inline nor does the call site have to necessarily flatten.

Cloning. Includeslevels 1, 2, 3, 4, plusroutine cloning is attempted if inlining fails
at agiven call site.

2.10.4 - h i pafr omesource :source]

The-h i paf romesource[: source] option alows you to explicitly indicate the
procedures to consider for inline expansion or cloning. The source arguments identify
each fileor directory that contains the routines to consider for inlining or cloning.

Note: Spaces are not allowed on either side of the equal sign.

All inlining directives are recognized at - O i pa levels> 1. For information about
inlining directives, see Inlining and Cloning Directives on page 100.

Note: The routinesin source are not actually linked with the final program. They
are simply templates for theinliner. To have aroutine contained in source linked
with the program, you must include it in an input file to the compilation.

Use one or more of the following file types in the source argument.

Table 5. File Types

C or C++ sourcefiles Theroutinesin C or C++ source files are candidates
for expansion and must contain error-free code.

Source filesthat are acceptable are filesthat have
one of the following extensions: . C, . c++, . C++,
. CC, . CXX, . Cxx,.CXX, or. CC.

dir A directory that contains any of the filetypes
described in this table.

2.11 Scalar Optimization Options

48

This section describes scalar optimization options. Each subsection heading shows in
parentheses the compiler command with which the option can be used.

S-2179-83

Invoking the C and C++ Compilers [2]

2.11.1 -h[no]interchange

Default: -h interchange

The-h interchange option allows the compiler to attempt to interchange all
loops, atechnique that is used to gain performance by having the compiler swap

an inner loop with an outer loop. The compiler attempts the interchange only if the
interchange will increase performance. Loop interchange is performed only at scalar
optimization level 2 or higher.

The-h noi nt er change option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individualy, use the
#pragnma _CRlI noi nt er change directive.

2.11.2 -h scal arn

Default: -h scal ar2

The-h scal ar n option specifiesthe level of automatic scalar optimization to be
performed. Scalar optimization directives are unaffected by this option (see Scalar
Directives on page 94).

The values for n are:

0 Minimal automatic scalar optimization. The- h zer oi nc optionis
impliedby - h scal arO.

1 Conservative automatic scalar optimization. This level implies
-h nozeroi nc.

2 Aggressive automatic scalar optimization. The scalar optimizations
that provide the best application performance are used, with some
limitations imposed to allow for faster compilation times.

3 Very aggressive optimization; compilation times may increase
significantly.

2.11.3 -h [no] zeroi nc

S-2179-83

Default: -h nozeroi nc

The-h nozer oi nc option improves run time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The-h zer oi nc option causes the compiler to assume that some constant
increment variables (CIVs) in loops might be incremented by O for each pass through
the loop, preventing generation of optimized code.

49

Cray C and C++ Reference Manual

For example, in aloop with index i, the expression expr in the statement i +=expr
can evaluate to 0. Thisrarely happensin actual code. - h zer oi nc isthe safer
and slower option. This option is affected by the- h scal ar noption (see- h
scal ar n on page 49).

2.12 Math Options

2.12.1 -h fpn

50

This section describes compiler options pertaining to math functions. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

Default: -h fp2

The-h f p option alows you to control the level of floating-point and complex
arithmetic optimizations. The n argument controls the level of allowable
optimization; O gives the compiler minimum freedom to optimize floating-point
operations, while 4 givesit maximum freedom. The higher the level, the lesser the
floating-point operations conform to the IEEE standard.

Generadlly, thisisthe behavior and usage for each - h f p level:

« The-h f pO0 causesyour program's executable code to conform more closely
to the |EEE floating-point standard than the default mode (- h f p2). When
you specify thislevel, many identity optimizations are disabled, vectorization of
floating-point and complex reductions are disabled, executable code is slower than
higher floating-point optimization levels. Usethe- h f pO option only when
your code pushes the limits of |EEE accuracy or requires strong | EEE standard
conformance.

e The-h fpl option performs various generally safe, non-conforming |EEE
optimizations, such asfoldinga == atotr ue, wherea isafloating point
object. At thislevel, ascaled complex divide mechanism is enabled that increases
the range of complex values that can be handled without producing an underflow,
and rewrite of division into multiplication by reciprocal isinhibited. You should
never usethe- h f pl option except when your code pushes the limits of IEEE
accuracy or requires strong |EEE standard conformance.

e The-h fp2 optionincludes optimizationsof - h f pl.

e« The-h fp3 optionincludes optimizationsof - h f p2. You should use the - h
f p3 option when performance is more critical than the level of |EEE standard
conformance provided by - h f p2. The- h f p3 option is an acceptable level
of optimization for many applications.

e The-h fp4 optionincludesoptimizationsof - h f p3. You should only use- h
f p4 if your application uses algorithms which are tolerant of reduced precision.

S-2179-83

Invoking the C and C++ Compilers [2]

Table 6 compares the various optimization levels of the- h f p option. Thetable lists
some of the optimizations performed; the compiler may perform other optimizations

not listed.

Table 6. Floating-point Optimization Levels

Optimization Type f pO fpl f p2 (default) fp3 fpd

Saf ety Maximum High High Moderate Low

Complex divisions Accurateand Accurateand Fastl Fastl Fastl
slower slower

Exponentiation None None When Always? 3 Always? 3

rewrite beneficial2

Strength reduction None None Fast Fast Fast

Rewrite division as None None Yes Aggressive Aggressive

reciprocal equivalent 4

Floating point Slow Fast Fast Fast Fast

reductions

Expression factoring ~ None Yes Yes Yes Yes

Expression tree None None Yes Yes Yes

balancing

Inline 32-bit No No No Yes Yes

operations ®

Fused multiply-add® No Yes Yes Yes Yes

2.13 Debugging Options

This section describes compiler options used for debugging. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

1 Algebraically correct but may lack precision in boundary cases.
Rewriting values raised to a constant power into an algebraically equivalent series of multiplications

and/or square roots.

3 Rewriting exponentiations (a°) not previously optimized into the algebraically equivalent form exp(b

* In(a)).

4 For example, x/ y istransformedtox * 1.0/y.
5 32-hit division, square root, and reciprocal square root use very fast but less precise code sequences.
6 Uses fused multiply-add instructions on architectures that support it.

S-2179-83

51

Cray C and C++ Reference Manual

2.13.1 -Glevel and - g

The - Glevel options enable the generation of debugging information used by
symbolic debuggers. These options allow debugging with breakpoints. Table 7
describes the values for the - G option.

Table 7. - Glevel Definitions

Breakpoints Execution
level Optimization Allowed On Debugging Speed
-Q0 Full Function entry and Limited Best

exit
-Gl Partial Block boundaries Better Better
- None Every executable Best Limited

statement
-G&3 Full Every executable Best: Best
statement requires
fast-track
debugger

Better debugging information comes at the cost of inhibiting certain optimization
techniques, so choose the option that best fitsthe debugging needs of any particular
source filein an application.

The- g optionisequivalent to - G0. The - g option isincluded for compatibility with
earlier versions of the compiler and many other UNIX systems; the - Goption isthe
preferred specification.

The - g and - Q0 options recognize OpenM P directives and disable all optimizations.
They imply - ht hr eadl - honp - hf p0.

The debugging options take precedence over any conflicting options that appear on
the command line. If more than one debugging option appears, the last one specified
overrides the others.

Debugging is described in more detail in Chapter 12, Debugging Cray C and C++
Code on page 165.

2.13.2 - h [no] bounds (cc)

52

Default; -h nobounds

The-h bounds option provides checking of pointer and array referencesto ensure
that they are within acceptable boundaries. The - h nobounds option disables
these checks.

S-2179-83

Invoking the C and C++ Compilers [2]

For each dimension, the checks verify that the subscript is greater than or equal to 0
and less than the upper bound. For pointers, the upper bound is computed based

on the amount of the memory on the node. This amount is scaled at runtime by the
number of UPC threads in the job for UPC pointers-to-shared with definite blocksize.
For arrays, the declared (possibly implicit) upper bound of the dimension is used.

If the dimension is the THREADS-scaled dimension of a UPC shared array with
definite blocksize, the upper bound for the check is computed at runtime based on
the number of UPC threadsin the job.

2.13.3 -h devel op

Default: of f

Reduce compile time at the expense of optimization. This option isintended to be
used when a program is under development and compiled frequently. This option

is different from and independent of the - O option. For example, - Q0 disables all
optimizations, but sometimes can increase compile time because certain optimizations
reduce code size, which allow other phases of the compiler to deal with less code.

2.13.4 -h dir_check

Default: of f

The-h dir_check option enables directive checking at run time. Errors detected
at compile time are reported during compilation and so are not reported at run time.
The following directives are checked: col | apse, and thel oop_i nf o clauses
min_trips and max_trips. Violation of arun time check results in an immediate fatal
error diagnostic.

Warning: Optimization of enclosing and adjacent loops is degraded when run
time directive checking is enabled. This capability, though useful for debugging, is
not recommended for production runs.

2.13.5 -h nodwar f

The-h nodwar f option disables DWARF generation during compilation. By
default, DWARF source line information is generated to support traceback analysis.
- hdwar f is deprecated. This option has no affect if - g or - G dbg_opt is
specified.

2.13.6 -h gasp[=opt[:opt]]

S-2179-83

Default: di sabl ed

53

Cray C and C++ Reference Manual

Request GASP (Global Address Space Performance Analysis) instrumentation.
Requests instrumentation of events generated by shared local accesses. Instrumenting
these events can add runtime overhead to the application. #pr agnma pupc

[on| of f] hasno effect in the current GASP implementation. Possible values for
opt :

| ocal

Requests instrumentation of events generated by shared local accesses.
Instrumenting these events can add runtime overhead to the application

« functions

Enables function instrumentation. Sets- hi pa0. See- h i pan on page 47.

2.13.7 -h zero

The-h zer o option causes stack-allocated memory to be initialized to all zeros.

2.14 Compiler Message Options

This section describes compiler options that affect messages. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

2.14.1 -h nsgl evel _n
Default: -h nsgl evel _3

The-h nsgl evel _noption specifiesthe lowest level of severity of messagesto be
issued. Messages at the specified level and above are issued. Valuesfor n are:

0 Comment
1 Note

2 Caution

3 Warning
4 Error

54 S-2179-83

Invoking the C and C++ Compilers [2]

2.14.2 -h [no] nessage=n[:n...]
Default: Determined by - h nmsgl evel _n

The-h[no] message=n[:n...] option enables or disables specified compiler
messages, where n is the number of a message to be enabled or disabled. You can
specify more than one message number; multiple numbers must be separated by a
colon with no intervening spaces. For example, to disable messages CC- 174 and
CC- 9, specify:

-h nomessage=174:9

The- h [no] nessage=n option overrides- h nsgl evel _n for the specified
messages. If nis not avalid message number, it isignored. Any compiler message
except ERROR, | NTERNAL, and LI M T messages can be disabled; attempts to
disable these messages by using the- h nonmessage=n option are ignored.

2.14.3 -h report=args

The-h report =argsoption generates report messages specified in args and lets
you direct the specified messages to afile. The args field can be any combination
of the following options:

f Writes specified messages to file. V, where fileis the source file
specified on the command line. If the f option is not specified,
messages are written to st derr .

[Generates inlining optimization messages.
s Generates scalar optimization messages.
% Generates vector optimization messages.

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example printsinlining and scalar optimization messages for
nyfile.c:

%cc -h report=is nyfile.c

The-h nsgs option also provides optimization messages.

2.14.4 -h [no] abort
Default: -h noabort

The- h [no] abort option controls whether a compilation abortsif an error is
detected.

S-2179-83 55

Cray C and C++ Reference Manual

2145 -h errorlimt

Default: -h errorlimt=100

The-h errorlinit[=n] option specifiesthe maximum number of error
messages the compiler prints before it exits, where n is a positive integer. Specifying
-h errorlimt=0 disables exiting on the basis of the number of errors.
Specifying-h errorlint withno qualifieristhe sameassettingnto 1.

2.15 Compilation Phase Options

2151 -E

2152 -P

This section describes compiler options that affect compilation phases. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

The - E option directs the compiler to execute only the preprocessor phase of the
compiler. The - E and - P options are equivalent, except that - E directs output to
st dout and inserts appropriate #1 i ne linenumber preprocessing directives. The
- E option takes precedence over the- h feonl y, - S, and - ¢ options.

When both the - E and - P options are specified, the last one specified takes
precedence.

The - P option directs the compiler to execute only the preprocessor phase of the
compiler for each source file specified. The preprocessed output for each source file
iswritten to a filewith a name that corresponds to the name of the source file and
hasa. i suffix substituted for the suffix of the source file. The - P option is similar
to the - E option, except that #1 i ne linenumber directives are suppressed, and the
preprocessed source does not go to st dout . This option takes precedence over

-h feonly,-S,and-c.

When both the - P and - E options are specified, the last one specified takes
precedence.

2.15.3 -h feonly

56

The-h feonly option limits the compiler to syntax checking. The optimizer and
code generator are not executed. This option takes precedence over - Sand - c.

S-2179-83

Invoking the C and C++ Compilers [2]

2154 -S
The - S option compiles the named source filesand leaves their assembly language
output in the corresponding files suffixedwith a. s. If this option is used with - Gor
- g, debugging information is not generated. This option takes precedence over - c.
2.155 -c

The - ¢ option creates arelocatable object filefor each named source file but does not
link the object files. The relocatable object file name corresponds to the name of the
sourcefile. The . o suffix is substituted for the suffix of the sourcefile.

2.15.6 - #, - ##, and - ###

The - # option produces output indicating each phase of the compilation asitis
executed. Each succeeding output line overwrites the previous line.

The - ## option produces output indicating each phase of the compilation asit is
executed.

The - ### option isthe same as - ##, except the compilation phases are not executed.

2.15.7 - Wphase, " opt ..."

The - W phase option passes arguments directly to a phase of the compiling system.
Table 8 shows the system phases that phase can indicate.

Table 8. - W phase Definitions

Phase System Phase Command
0 (zero) Compiler CCandcc
a Assembler as

c CUDA linker nvl i nk

I Linker | d

X PTX Assembler pt xas

S-2179-83 57

Cray C and C++ Reference Manual

Arguments to be passed to system phases can be entered in either of two styles. If

spaces appear within a string to be passed, the string is enclosed in double quotes.

When double quotes are not used, spaces cannot appear in the string. Commas can
appear wherever spaces normally appear; an option and its argument can be either

separated by a comma or not separated. If acommais part of an argument, it must
be preceded by the\ character. For example, any of the following command lines
would send - e name and - s to the linker:

%cc -W,"-e nane -s" file.c

%cc -W,-e, nane,-s file.c

%cc -W,"-enane",-s file.c

Because the preprocessor is built into the compiler, - Wh and - W) are equivalent.

The- W, - r pat h Idir option changes the runtime library search algorithm to look
for filesin directory Idir. To request more than one library directory, specify multiple
- r pat h options. Note that alibrary may be found at link time with a- L option, but
may not be found at run time if a corresponding - r pat h option was not supplied.
Also note that the compiler driver does not passthe - r pat h option to the linker. You
must explicitly specify - W when using this option.

Atlink time, al | di r arguments are added to the executable. The dynamic
linker will search these paths first for shared dynamic libraries at runtime,

with one exception. The Linux environment variable LD LI BRARY_PATH
precedes all other search paths for shared dynamically linked libraries. The use of
LD LI BRARY_PATH s discouraged.

f Caution: Caution should be used when setting LD_L1 BRARY_PATH. Doing so
will change the shared dynamically linked library search paths for all executable
filesin your environment.

The - Wk, arg option can be used to pass command line arguments to the PTX
assembler for OpenACC applications.

The - W, arg option can be used to pass command line arguments to the CUDA
linker for OpenACC applications.

2.15.8 - Y phase, dirname

The-Y phase, dirname option specifiesanew directory (dirname) from which the
designated phase should be executed. The values of phase are Table 9.

58 S-2179-83

Invoking the C and C++ Compilers [2]

Table 9. - Y phase Definitions

Phase System Phase Command
0 (zero) Compiler CC, cc

a Assembler as

I Linker I d

Because there is no separate preprocessor, - Yp and - YO are equivalent.

2.16 Preprocessing Options

2.16.1 -C

This section describes compiler options that affect preprocessing. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

The - C option retains all comments in the preprocessed source code, except those on
preprocessor directive lines. By default, the preprocessor phase strips comments from
the source code. This option is useful in combination with the - P or - E option.

2.16.2 - D macro| =def]

The - Dmacro[=def] option defines macro asif it were defined by a#def i ne
directive. If no =def argument is specified, macro is definedas 1.

Predefined macros also exist; these are described in Chapter 10, Using Predefined
Macros on page 159. Any predefined macro except those required by the standard
(see Macros Required by the C and C++ Standards on page 159) can be redefined by
the - D option. The - U option overrides the - D option when the same macro nameis
specified, regardless of the order of options on the command line.

2.16.3 - h [no] pragma=name| : name . . .]

S-2179-83

Default: -h pragma (no pragmas disabled)

The[no] pragma=name[: name. . .] option enables or disables the processing of
specified directives in the source code, where name can be the name of a directive or
aword shown in Table 10 to specify a group of directives. Maore than one name can
be specified. Multiple names must be separated by a colon and have no intervening
spaces.

59

Cray C and C++ Reference Manual

Table 10. - h pragnma Directive Processing

Name Group Directives Affected
al | All All directives
allinline Inlining i nli ne_enabl e,

i nline_disable,
i nline_reset,

i nli ne_al ways,
i nl i ne_never

al | scal ar Scalar optimization bl ockabl e, bl ocki ngsi ze,
nobl ocki ng,
noi nt er change, suppr ess,
unrol I / nounrol |

al | vect or Vectorization concurrent, novect or,
| oop_i nf o, hand_t uned,
i vdep, nopattern,
novect or, pernut ati on,
pi pel i ne/ nopi pel i ne,
prefervector,
saf e_addr ess,
saf e_condi ti onal

onp OpenMP All OpenMP directives
acc OpenACC All OpenACC directives

When using this option to enable or disable individual directives, note that some
directives must occur in pairs. For these directives, you must disable both directivesif
you want to disable either; otherwise, the disabling of one of the directives may cause
errors when the other directiveis (or is not) present in the compilation unit.

2.16.4 -1 incldir

The- | incldir option specifiesadirectory for filesnamed in #i ncl ude directives
when the #i ncl ude file names do not have a specified path. Each directory
specified must be specified by a separate - | option.

The order in which directories are searched for filesnamed on #i ncl ude directives
is determined by enclosing the file name in either quotation marks (" ") or angle
brackets (< and >).

60 S-2179-83

Invoking the C and C++ Compilers [2]

2.16.5 -M

Directoriesfor #i ncl ude "file" are searched in the following order:
1. Directory of the input file.

2. Directoriesnamed in - | options, in command-line order.

3. Site-specific and compiler rel ease-specific include files directories.
4. Directory / usr /i ncl ude.

Directoriesfor #i ncl ude <file> are searched in the following order:
1. Directoriesnamed in- | options, in command-line order.

2. Site-specific and compiler rel ease-specific include files directories.
3. Directory / usr/i ncl ude.

If the - | option specifiesa directory name that does not begin with aslash (/), the
directory isinterpreted as relative to the current working directory and not relative to
the directory of the input file (if different from the current working directory).

For example:

%cc -1. -1 yourdir mydir/b.c

The preceding command line produces the following search order:

mydi r (#i ncl ude "file" only).

Current working directory, specifiedby - | .

yourdir (relative to the current working directory), specifiedby - | yourdir.

Site-specific and compiler rel ease-specific include files directories.

o » w NP

Directory / usr /i ncl ude.

The - Moption provides information about recompilation dependencies that the source
fileinvokes on #i ncl ude filesand other source files. Thisinformation is printed in
the form expected by make. Such dependencies are introduced by the #i ncl ude
directive. The output is directed to st dout .

2.16.6 - nost di nc

S-2179-83

The - nost di nc option stops the preprocessor from searching for include
filesin the standard directories (/ usr /i ncl ude and for Cray C++ also
{usr/include/ c++).

61

Cray C and C++ Reference Manual

2.16.7 -U

The - U option removes any initial definition of macro. Any predefined macro except
those required by the standard (see Macros Required by the C and C++ Standards
on page 159) can be undefined by the - U option. The - U option overridesthe - D
option when the same macro name is specified, regardless of the order of options on
the command line.

Predefined macros are described in Chapter 10, Using Predefined Macros on
page 159. Macros defined in the system headers are not predefined macros and are
not affected by the - U option.

2.17 Linker Options

This section describes compiler options that affect linker tasks.

2.17.1 -h [systen]default]_alloc
Default: -h default_all oc

By default, the compiler uses a modified mal | oc implementation that offers
better support for memory needs. The-h syst em al | oc option directs the
compiler to link in the native mal | oc provided by the OS instead of the modified
implementation.

2.17.2 -h [no] pgas_runtine
Default: -h pgas_runtinme

The- h pgas_r unt i me option directs the compiler driver to link with the runtime
libraries required when linking programs that use UPC, or coarrays, which is default.
In general, apr un must be used to launch the resulting executable.

The- hnopgas_r unt i e option prevents this runtime library environment from
being added to the link line. Usethe- hnopgas_r unt i me option when you have
aprogram, that does not use UPC or coarrays, and you wish to execute it outside of
theapr un/ al ps job launch context. For example, you may wish to test a serial
program which does not contain any UPC or coarray code on alogin or service node,
or fork/exec an executable on a compute node. Also, compile non-coarray Fortran
using the - hnocaf option.

2.17.3 -1 libname

The- | libname option directs the compiler driver to search for the specified object
library file when linking an executable file. To request more than one library file,
specify multiple - | options.

62 S-2179-83

Invoking the C and C++ Compilers [2]

When statically linking, the compiler driver searches for libraries by prepending

Idir/ | i b onthe front of libname and appending . a on the end of it, for each Idir that
has been specified by using the - L option. It uses thefirst fileit finds. See also the

- L option (- L Idir on page 63).

When dynamically linking, the library search processis similar to the static case, with
afew differences. The compiler driver searches for libraries by prepending Idir/ | i b
on the front of libname and appending . so on the end of it, for each Idir that has
been specified by using the - L option. If amatching . so is not found, the compiler
driver replaces. so with . a and repeats the process from the beginning. It uses the
first fileit finds. See also the - L option (- L Idir on page 63).

There is no search order dependency for libraries.

If you specify personal libraries by using the - | command line option, asin the
following example, those libraries are added before the default CCE library list. (The
-1 option is passed to the linker.)

cc -1 nylib target.c

When the previous command line isissued, the linker looks for alibrary named
i brryl i b. a (following the naming convention) and adds it to the top of the list
of default libraries.

2.17.4 -L Idir

The- L Idir option changesthe- | option search algorithm to look for library filesin
directory Idir during link time. To request more than one library directory, specify
multiple - L options.

Thelinker searchesfor library filesin the compiler rel ease-specific directories.

Note: Multiple - L options are treated cumulatively as if all Idir arguments
appeared on one - L option preceding al - | options. Therefore, do not attempt
to link functions of the same name from different libraries through the use of
aternating - L and - | options.

2.17.5 - o outfile

The- o ouitfile option produces an absolute binary file named outfile. A file named
a. out isproduced by default. When this option is used in conjunction with the - ¢
option and a single source file, arelocatable object file named outfileis produced.

2.18 Miscellaneous Options

This section describes compiler options that affect general tasks. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

S-2179-83 63

Cray C and C++ Reference Manual

2.18.1 -h [no] acc

Default: -h acc

The-h [no] acc option enables or disables compiler recognition of OpenACC
pragmas.

2.18.2 - h cpu=target_system

The-h cpu=target_system option specifiesthe Cray system on which the absolute
binary fileis to be executed, where target_system can be either x86- 64 or opt er on
(single or dual-core), bar cel ona or shanghai (quad-core), i st anbul (6-core),
nt8 (8-core), ntl12 (12-core), i nt er | agos (16-core), i nt er | agos- cu
(8-compute unit), abudhabi (16-core) , abudhabi - cu (8-compute unit),

i vybri dge, sandybri dge, or haswel | .

Thei nt er | agos and abudhabi processors contain up to 8 compute units, each
of which contains two integer cores and a shared FPU. These targets assume that
the user intends to run with one thread per core (up to 16 per processor), while the
Cpu- cu target assumes that the user intends to run with one thread per compute unit
(up to 8 per processor or one thread per FPU).

Rather than setting this option directly, users should load one of the targeting modules
(craype-ntl2 orcraype-interl agos- cu, for example). The targeting
modules set CRAY_CPU_TARGET and define paths to the corresponding libraries.
The compiler driver script trandates CRAY_CPU_TARGET to the corresponding
cpu=target_system option when calling the compiler.

If the target_systemis set during compilation of any source file, it must also be set to
that same target during linking and loading.

If a user wishes to override the current target_system value set by the module
environment (via the CRAY_CPU_TARGET definition), they should do so by
specifying - hcpu=target_system on the compiler command line.

See Compile Time Environment Variables on page 69. For more information, see the
Cray Application Developer's Environment User's Guide.

2183 -h [no]fp_trap

64

Controls whether the compiler generates code that is compatible with floating-point
traps.

Default: f p_t rap, if traps are enabled using the - K t r ap option, or if
-Op[0, 1] isin effect. Otherwise, the default isnof p_trap. See- K
t r ap=opt[, opt] ... on page 67.

S-2179-83

Invoking the C and C++ Compilers [2]

2.18.4 -h
2.185 -h
2.18.6 - h
2.18.7 -h
2.18.8 - h
2.18.9 -h

S-2179-83

I dent =name

Default: File name specified on the command line

The- h i dent =name option changesthei dent nameto name. Thisnameis used
as the module name in the object file (. 0 suffix) and assembler file(. s suffix).
Regardless of whether the name is specified or the default name is used, the following
transformations are performed on name:

e All. charactersinthei dent name are changed to $.

» If thei dent name starts with anumber, a$ is added to the beginning of the
i dent name.

keepfil es

The-h keepfil es option prevents the removal of the object (. 0) and temporary
assembly (. s) files after an executable is created. Normally, the compiler
automatically removes these files after linking them to create an executable. Since the
original object filesare required to instrument a program for performance analysis, if
you plan to use CrayPat to conduct performance analysis experiments, you can use
this option to preserve the object files.

keep_frame_poi nter

Retain call stack information back to main entry point for CrayPat performance
sampling. Prevents call stack frame from being optimized out of a function so
CrayPat performance sampling is able to trace call stack back to entry point.

Default; of f

| oop_trips=[tiny]|small | medi um|!| arge | huge]

Specifies runtime loop trip counts for all loops in a compiled source file. This
information is used to optimize the runtime characteristics of the application.

Enables or disables optimization of MPI operations. - h npi 1 enables this option.
Default: mpi O

net wor k=nic

The-h net wor k=nic option specifiesthe target machine's system interconnection
network. Currently, supported values for nicaregem ni andari es.

65

Cray C and C++ Reference Manual

2.18.10 -h [no] onp

Default: -h onp (if - OL or higher isimplied or specified)

The-h [no] onp option enables or disables compiler recognition of OpenMP
pragmas. If - Q0 is specified, then- h noonp isimplied. For details, see Chapter 4,
Using the OpenMP C/C++ API on page 105.

2.18.11 - h [no] onp_acc

Default: -h onmp_acc

The-h [no] onp_acc option enables or disables compiler recognition of OpenMP
acc pragmas.

2.18.12 -h pic,-h PIC

Generate position independent code (PIC), which allows a virtual address change
from one process to another, asis necessary in the case of shared, dynamically linked
objects. The virtual addresses of the instructions and datain PIC code are not known
until dynamic link time. For the Cray implementation, the pi ¢ and Pl C options have
the same effect and should be used to compile codes using more than 2GB of static
memory, or for creating dynamically linked libraries.

2.18.13 -h prototype_intrinsics

The-h prototype_intrinsics option simulates the effect of including

i ntrinsics. h atthe beginning of a compilation. Use this option if the source
code does not include thei ntri nsi cs. h statement and you cannot modify the
code. Thisoption is off by default. For details, see Appendix D, Using Intrinsic
Functions on page 215.

2.18.14 -h [no]threadsafe

66

Default: -h threadsaf e

The-h [no]threadsaf e option enables or disables the generation of threadsafe
code. Code that is threadsafe can be used with pthreads and OpenMP. Thisoptionis
not binary-compatible with code generated by Cray C 8.1 or Cray C++ 5.1 and earlier
compilers. Users who need binary compatibility with previously compiled code can
use- h not hr eadsaf e, which causes the compiler to be compatible with Cray C
8.1 or Cray C++ 5.1 and earlier compilers at the expense of not being threadsafe.

C or C++ code compiled with - h t hr eadsaf e (the default) cannot be linked with
C or C++ code compiled with - h not hr eadsaf e or with code compiled with a
Cray C 8.1, Cray C++ 5.1, or earlier compiler.

S-2179-83

Invoking the C and C++ Compilers [2]

2.18.15 - h upc (cc)

Default: of f

The-h upc option enables compilation of Unified Parallel C (UPC) code. UPCisa
C language extension for parallel program development that allows you to explicitly
specify parallel programming through language syntax rather than through library
functions such as are used in MPI or SHMEM.

The Cray implementation of UPC is discussed in Chapter 6, Using Cray Unified
Parallel C (UPC) on page 125.

2.18.16 - K trap=opt[, opt] ...

S-2179-83

Enable traps for the specified exceptions. By default, no exceptions are trapped.
Enabling traps by using this option also has the effect of setting-h fp_tr ap.

If the specified options contradict each other, the last option predominates. For
example, - K trap=none, f p isequivaentto- K t rap=f p.

This option does not affect compile time optimizations; it detects runtime exceptions.
This option is processed only at link time and affects the entire program; it is not
processed when compiling subprograms. Therefore, traps may be set using this
command line option at the beginning of execution of the main program only. The
program may subsequently change these settings by calling intrinsic or library
procedures. Use of this option may require the specification of - hf p_t r ap when
compiling other files of the application.

See-h [no] fp_trap on page 64.

opt Exceptions

denorm Trap on denormalized operands.

divz Trap on divide-by-zero.

fp Trapondi vz,inv,or ovf exceptions.

i nexact Trap on inexact result (i.e., rounded result). Enabling traps for

inexact results is not recommended.

i nv Trap on invalid operation.

none Disables al traps (default).

ovf Trap on overflow (i.e., the result of an operation is too large to be
represented).

unf Trap on underflow (i.e., the result of an operation is too small to be
represented).

67

Cray C and C++ Reference Manual

2.18.17 -V

2.18.18 - X npes

The - V option displays compiler version information. If the command line specifies
no source file, no compilation occurs.

Version information consists of the product name, the version number, and the current
date and time, as shown in the following example:
% CC -V

[opt/cray/ xt-asyncpe/2.5/bin/CC. INFO native target is being used
Cray C++ : Version 7.1.0.129 Thu May 21, 2009 12:59:44

The - X npes option specifiesthe number of processing elements (PEs) that will be
specified through apr un at job launch. The value for npes ranges from 1 through
2**31 - linclusive.

Ensure that you compile all object fileswith the same - X npes value and run the
resulting executable with that number of PEs. If you use mixed - X npes values or
if the number of PES provided at run time differs from the - X npes value, you will
receive arun time error.

You cannot change the number of PEsto use at link or run time. You must recompile
the program with a different value for npes to change the number of PEs.

For further information about running applications, see the Cray Application
Developer's Environment User's Guide or the apr un(1) man page.

2.19 Command Line Examples

68

The following examplesiillustrate a variety of command lines for the C and C++
compiler commands:

Example 1. CC - X8 -h nyprog.C

This example compiles nypr og. Cand fixesthe number of processing elementsto 8.
% CC - X8 nyprog. C

Example 2. CC -h conform nmyprog. C

This example compiles nypr og. C. The- h conf or moption specifies strict
conformance to the 1SO C++ standard.

% CC -h conform nmyprog. C

Example 3. cc -¢c -h ipal myprog.c subprog.c

This example compiles input filesrmy pr og. ¢ and subpr og. c. The- ¢ option

S-2179-83

Invoking the C and C++ Compilers [2]

tells the compiler to create object filesmy pr og. o and subpr og. o but not call
the linker. Option - h i pal tellsthe compiler to inline function calls marked with
thei nl i ne_al ways pragma.

%cc -c -h ipal nmyprog.c subprog.c
Example 4. cc -1. disc.c vend.c

This example specifiesthat the compiler search the current working directory,
represented by a period (.), for #i ncl ude files before searching the default
#i ncl ude filelocations.

%cc -1. disc.c vend.c

Example 5. cc - P - D DEBUG newpr og. c

This example specifiesthat source file newpr 0g. ¢ be preprocessed only.
Compilation and linking are suppressed. In addition, the macro DEBUG s defined.

% cc -P -D DEBUG newprog. c

Example 6. cc -c -h report=s nydatal.c

This example compilesnydat al. c, creates abject filenmydat al. o, and produces
a scalar optimization report to st dout .

%cc -c -h report=s nydatal.c

Example 7. CC -h ipab,report=if nyfile.C

This example compilesmyf i | e. Cand tellsthe compiler to attempt to aggressively
inline calls to functions defined within myf i | e. C. Aninlining report is directed to
nyfile.V.

% CC -h ipab,report=if myfile.C

2.20 Compile Time Environment Variables

S-2179-83

The following environment variables are used during compilation.
Variable Description
CRAYOLDCPPLI B

When set to a nonzero value, enables C++ code to use the following
nonstandard Cray C++ headers files:

e common. h

e conplex.h
 fstreamh

e generic.h

e iomanip.h

* jostreamh

« stdiostreamh

69

Cray C and C++ Reference Manual

e« streamh
e strstreamh
e vector.h

If you want to use the standard header files, your code may require
modification to compile successfully. For more information, see
Appendix B, Using Cray C and C++ Dialects on page 195.

Note: Setting the CRAYOLDCPPLI B environment variable
disables exception handling, unless you compile with the - h
excepti ons option.

CRI _CC_OPTI ONS
CRl _cc_OPTI ONS

70

Specifiescommand line options that are applied to all compilations.
Options specified by this environment variable are added following
the options specified directly on the command line. Thisis especially
useful for adding options to compilations done with build tools.

Identifies your requirements for native language, local customs, and
coded character set with regard to compiler messages.

Controls the format in which you receive compiler messages.
Specifiesthe message system catal ogs that should be used.

Specifies the number of processes used for simultaneous
compilations The default is 1. When more than one source fileis
specified on the command line, compilations may be multiprocessed
by setting the environment variable NPROC to a value greater than 1.
You can set NPROC to any value; however, large values can overload
the system.

S-2179-83

Invoking the C and C++ Compilers [2]

2.21 Run Time Environment Variables
CRAY_MALLOPT OFF

If set, then the system default nal | opt parameters are used, instead
of the compiler default parameters. For most programs, run time
performance is improved by using the compiler defaults, but more
memory may be used.

MALLOC_MVAP_NVAX

Specifies the maximum number of memory chunks to allocate with
nmrap. The compiler default valueis 0. For most programs, run time
performance is improved by using the compiler default, but more
memory may be used.

MALLOC_TRI M_THRESHOLD

Specifies the minimum size of the unused memory region at the top
of the heap before the region is returned to the operating system. The
compiler default value is 536870912 bytes. For most programs, run
time performance is improved by using the compiler default, but
more memory may be used.

PGAS_ERROR FI LE

Specifiesthe location towhich | i bpgas (the library which provides
an interface to the internal system network) error messages are
written. Thedefaultisst derr . If st dout isspecified, errors will
be written to standard output.

2.22 OpenMP Environment Variables

For Cray-specific information about OpenMP environment variables, see Chapter 4,
Using the OpenM P C/C++ APl on page 105. For documentation of standard OpenMP
environment variables, see the OpenMP Application Program Interface Version 3.1
July 2011 standard (http://openmp.org/wp/openmp-specifications/).

S-2179-83 71

http://openmp.org/wp/openmp-specifications/

Cray C and C++ Reference Manual

72 S-2179-83

Using #pr agma Directives [3]

S-2179-83

The#pr agma directives are used within the source program to request certain kinds
of special processing. The directives are part of the C and C++ languages, but the
meaning of any #pr agma directive is defined by the implementation. #pr agnma
directives are expressed in the following form:

#pragma [_CRI] identifier [arguments)

The _CRI specificationis optional; it ensures that the compiler will issue a message
concerning any directives that it does not recognize. Diagnostics are not generated for
directives that do not contain the _CRI specification.

These directives are classified according to the following types:

* Genera (General Directives on page 75)

» Vectorization (Vectorization Directives on page 85)

e Scalar (Scalar Directives on page 94)

e Inlining (Inlining and Cloning Directives on page 100)

Macro expansion occurs on the directive line after the directive name. That is, macro
expansion is applied only to arguments.

Note: OpenMP #pr agma directives are described in Chapter 4, Using the
OpenMP C/C++ API on page 105.

At the beginning of each section that describes a directive, information isincluded
about the compilers that allow the use of the directive and the scope of the directive.
Unless otherwise noted, the following default information applies to each directive:

Compiler: Cray C and Cray C++
Scope: Local and global

The scoping list may also indicate that a directive has alexical block scope. A lexical
block is the scope within which adirective is on or off and is bounded by the opening
curly brace just before the directive was declared and the corresponding closing curly
brace. Only applicable executable statements within the lexical block are affected

as indicated by the directive. The lexical block does not include the statements
contained within a procedure that is called from the lexical block.

73

Cray C and C++ Reference Manual

This example code fragment shows the lexical block for theupc strict andupc
r el axed directives:

voi d Exanpl e(voi d)

{
#pragma _CRl upc strict // UPC strict state is on

// UPC strict state is still on
#pragma _CRI upc relaxed // UPC strict state is now off

}

/1 UPC strict state is back on

}

3.1 Protecting Directives

To ensure that your directives are interpreted only by the Cray C and C++ compilers,
use the following coding technique in which directive is the name of the directive:

#if _CRAYC
#pragma _CRI directive
#endi f

This ensures that other compilers used to compile this code will not interpret the
directive. Some compilers diagnose any directives that they do not recognize. The
Cray C and C++ compilers diagnose directives that are not recognized only if the
_CRI specification is used.

3.2 Directives in Cray C++

C++ prohibits referencing undeclared objects or functions. Objects and functions
must be declared prior to using them in a#pr agma directive. Thisis not always the
case with C.

Some #pr agna directives take function names as arguments (for example:
#pragnma _CRI weak, #pragma _CRI suppress,and#pragma _CRI

i nline_always name[, name ...]). Member functions and qualified names
are allowed for these directives.

3.3 Loop Directives

Many directives apply to groups. Unless otherwise noted, these directives must
appear beforeaf or, whi | e, or do whi | e loop. These directives may also appear
beforealabel fori f. .. got o loops. If aloop directive appears before alabel that is
not thetop of ani f. . . got o loop, it isignored.

74 S-2179-83

Using #pr agnma Directives [3]

3.4 Alternative Directive Form: _Pragma

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier")

This form has the same effect as using the #pr agma form, except that everything
that appeared on the line following the #pr agma must now appear inside the double
guotation marks and parentheses. The expression inside the parentheses must be a
single string literal; it cannot be a macro that expandsinto a string literal. _Pr agnma
is an extension to the C and C++ standards.

The following is an example using the #pr agna form:

#pragma _CRl concurrent

The following is the same example using the alternative form:

_Pragma("_CRI concurrent")

In the following example, the loop automatically vectorizes wherever the macro is
used:

#define _str(_X) # X
B

#define COPY(_A _ N

{
int i;
_Pragma("_CRI concurrent")
_Pragma(_str(_CRI loop_info cache_nt(_B)))
for (i =0; i <_N i++) {
_AT] = B[]
}
}

voi d
copy_data(int *a, int *b, int n)

COPY(a, b, n);
}

Macros are expanded in the string literal argument for _Pr agna in an identical
fashion to the general specification of a#pr agma directive.

3.5 General Directives

General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections describe
general directives.

S-2179-83 75

Cray C and C++ Reference Manual

3.5.1 [no] aut ot hr ead Directive

Scope: Local

Theaut ot hr ead and noaut ot hr ead directives turn autothreading on and off for
selected blocks of code.

The format of these directivesis as follows:

#pragma _CRI aut ot hread
#pragnma _CRl noaut ot hr ead

3.5.2 [no] bounds Directive

76

Thebounds directive specifiesthat pointer and array references are to be checked.
The nobounds directive specifiesthat this checking is to be disabled.

For each dimension, the checks verify that the subscript is greater than or equal to 0
and less than the upper bound. For pointers, the upper bound is computed based

on the amount of the memory on the node. This amount is scaled at runtime by the
number of UPC threads in the job for UPC pointers-to-shared with definite blocksize.
For arrays, the (possibly implicit) declared upper bound of the dimension is used.

If the dimension is the THREADS-scaled dimension of a UPC shared array with
definite blocksize, the upper bound for the check is computed at runtime based on
the number of UPC threadsin the job.

Both directives may be used only within function bodies. They apply until the end
of the function body or until another bounds/nobounds directive appears. They
ignore block boundaries.

These directives have the following format:

#pragnma _CRl bounds
#pragnma _CRI nobounds

The following example illustrates the use of the bounds directive:

int a[30];
#pragma _CRl bounds
voi d f(void)
{ .
int x;
x = a[30];

S-2179-83

Using #pr agnma Directives [3]

3.5.3 cache Directive

The cache directive asserts that all memory operations with the specified symbols
as the base are to be alocated in cache. Thisis an advisory directive. Thecache
directive is meaningful for storesin that it allows the user to override a decision made
by the automatic cache management. This directive may be locally overridden by the
use of a#pragma | oop_i nf o directive. This directive overrides automatic cache
management decisions (see- h cachen).

To use the directive, you must place it only in the specification part, before any
executable statement.

The format of the cache directiveis:

#pragnma _CRI cache base_name [, base name ..]

base_name The base name of the object that should be placed into the cache.
This can be the base name of any object such as an array, scalar
structure, and so on, without member references like C[10] . If you
specify apointer in the list, only the references, not the pointer itself,
are cached.

3.5.4 cache_nt Directive

Thecache_nt directiveis an advisory directive that specifies objects that should
use non-temporal reads and writes. Use this directive to identify objects that should
not be placed in cache.

The format of thecache_nt directiveis:

#pragma _CRl cache_nt base name [, base name . . .]

base_name The base name of the object that should use non-temporal reads and
writes. This can be the base name of any object such as an array,
scalar structure, and so on, without member references like C[10] .
If you specify a pointer in the list, only the references, not the pointer
itself, have the cache non-temporal property.

This directive overrides the automatic cache management level that was specified
using the- h cachen option on the compiler command line. This directive may be
overridden locally by use of al oop_i nf o directive.

S-2179-83 77

Cray C and C++ Reference Manual

3.5.5 dupl i cat e Directive

78

Scope: Global

Thedupl i cat e directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using a
directive with one of the following forms:

#pragnma _CRI duplicate actual as dupname. ..
#pragma _CRI duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate names will
be assigned. The dupname list contains the duplicate names that will be assigned to
the actual function. The dupname list may be optionally parenthesized. The word as
must appear as shown between the actual argument and the comma-separated list

of dupname arguments.

Thedupl i cat e directive can appear anywhere in the source fileand it must appear
in global scope. The actual name specified on the directive line must be defined
somewhere in the source as an externally accessible function; the actual function
cannot have a static storage class.

The following example illustrates the use of the dupl i cat e directive:

#i ncl ude <conpl ex. h>

extern void maxhits(void);

#pragma _CRI duplicate maxhits as count, quantity /* OK */
voi d maxhits(void)

{

#pragnma _CRl duplicate maxhits as tenpcount
[* Error: #pragma _CRl duplicate can't appear in |ocal scope */

}

doubl e _Conpl ex minhits;

#pragma _CRI duplicate minhits as lower_limt
/* Error: mnhits is not declared as a function */

extern void derivspeed(void);

#pragnma _CRI duplicate derivspeed as accel
[* Error: derivspeed is not defined */

static void endtine(void)

{
}

#pragma _CRl duplicate endtine as limt
/* Error: endtinme is defined as a static function */

S-2179-83

Using #pr agnma Directives [3]

S-2179-83

Because duplicate names are simply additional hames for functions and are not
functions themselves, they cannot be declared or defined anywhere in the compilation
unit. To avoid aliasing problems, duplicate names may not be referenced anywhere
within the source file, including appearances on other directives. In other words,
duplicate names may only be referenced from outside the compilation unit in which
they are defined.

The following example references duplicate names:

voi d converter(void)

{
}

structured(void);

#pragma _CRI duplicate converter as factor, nultiplier /* OK */

voi d remai nder (voi d)

{
}

#pragnma _CRI duplicate renmainder as factor, structured
/* Error: factor and structured are referenced in this file */

Duplicate names can be used to provide alternate external names for functions, as
shown in the following examples.

nmai n. c:

extern void fctn(void), FCTN(void);

mai n()

{
fctn();

FCTN() ;
}

fctn.c:

#i ncl ude <stdi o. h>

voi d fctn(void)

{
printf("Hello world\n");

}

#pragma _CRI duplicate fctn as FCIN

Filesmai n. ¢ and f ct n. ¢ are compiled and linked using the following command
line:

% cc main.c fctn.c

When the executable filea. out isrun, the program generates the following outpuit:

Hello world
Hello world

79

Cray C and C++ Reference Manual

3.5.6 |1 dent Directive

Thei dent pragma directs the compiler to store the string indicated by text into
the object (. 0) file. This can be used to place a source identification string into an
object file.

The format of this directive is as follows:

#pragnma _CRI ident text

3.5.7 nessage Directive

The message directive directs the compiler to write the message defined by text to
st derr asawarning message. Unlikethe er r or directive, the compiler continues
after processing anessage directive. The format of thisdirectiveis asfollows:

#pragma _CRl nessage "text"
The following example illustrates the use of the message compiler directive:

#define FLAG 1

#i f def FLAG

#pragma _CRl nessage "FLAG is Set"

#el se

#pragnma _CRI nessage "FLAG is NOT Set"
#endi f

3.5.8 [no] opt Directive

80

Scope: Global

Thenoopt directive disables all automatic optimizations and causes optimization
directives to be ignored in the source code that follows the directive. Disabling
optimization removes various sources of potential confusion in debugging. The opt
directive restores the state specified on the command line for automatic optimization
and directive recognition. These directives have global scope and override related
command line options.

The format of these directivesis as follows:

#pragma _CRl opt
#pragma _CRI noopt

S-2179-83

Using #pr agnma Directives [3]

The following example illustrates the use of the opt and noopt compiler directives:

#i ncl ude <stdio. h>

voi d subl(void)
{

}

printf("lIn subl, default optimzation\n");

#pragma _CRl noopt
voi d sub2(voi d)
{

}
#pragma _CRl opt

printf("ln sub2, optimnization disabled\n");

voi d sub3(voi d)

{ printf("ln sub3, optimzation enabled\n");
}
mai n()
{
printf("Start main\n");
subi();
sub2();
sub3();
}

3.5.9 prefetch Directive

S-2179-83

The genera pr ef et ch directive instructs the compiler to generate explicit

pr ef et ch instructions which load data from memory into cache prior to read or
write access. The memory location to be prefetched is defined by var, which specifies
any valid variable, member, or array element reference. The format of this directive
isasfollows:

#pragma _CRI prefetch [([lines(num)][, level (num] [,
wite]l[, nt])] va[, var]...

The pr ef et ch directive supports the following options:

i nes(num) Specifiesthe number of cache lines to be prefetched. numisan
expression that evaluates to an integer constant at compilation time.
By default, the number of cache lines prefetched is 1.

| evel (num) Specifiesthe level of cache into which dataisloaded. numisan
expression that evaluates to an integer constant at compilation time.
The cache level defaultsto 1, the level closest to the processing unit.
This level specification has little effect for current x86 targets.

wite Specifiesthat the pr ef et ch isfor datato be written. When data
isto be written, apr ef et ch instruction can move a block into

81

Cray C and C++ Reference Manual

82

the cache so that the expected store will be to the cache. Prefetch
for write generally brings the data into the cache in an exclusive or
modified state. By default, the pr ef et ch isfor datato be read. If
the target architecture does not support pr ef et ch for write, the
pr ef et ch will automatically become apr ef et ch for read.

nt Specifiesthat the prefetch is for non-temporal data. By defaullt,
the prefetch is for temporal data. Data with temporal locality
(persistence), is expected to be accessed multiple times.

The following example illustrates the use of the pr ef et ch compiler directive:

voi d
add(long * restrict a, long * restrict b, const int n)

{

int i;

#pragma _CRl prefetch (lines(2)) b[O0]

for (i =0; i <n; i++) {
#pragma _CRI prefetch b[i+16]
afi] += b[i];
}
return;

}

The compiler issues the prefetch instruction when it encounters the pr ef et ch
directive. The directive allows the user to influence almost every aspect of

pr ef et ch behavior. The default behavior prefetches one cacheline, into L1 cache,
for read access, and assumes temporal locality.

The pr ef et ch directive can be used inside and outside of loops, in aloop preamble,
or before a function call to reduce cache-miss memory latency.

The compiler will attempt to avoid multiple prefetches to the same cache line, which
can be created as a result of optimization.

All variables specified on the same pr ef et ch directive line share the same
behavior. If different behavior is needed for different variables, use multiple
pr ef et ch directive lines.

The genera pr ef et ch directive supersedes the effects of any relevant | oop_i nf o
[no] pr ef et ch directivesand the- h [no] aut opr ef et ch command line
option.

The Cray Fortran compiler command line option - X pr ef et ch can be used to
disable all general pr ef et ch directives in Fortran source code. The Cray C and
C++ compiler command line option - h nopr agma=pr ef et ch can be used to
disable all general pr ef et ch directivesin C and C++ source code.

S-2179-83

Using #pr agnma Directives [3]

3.5.10 Probability Directives

The probabi lity, probability_al nost_al ways, and
probability_al nost never directives specify information used by
interprocedure analysis (IPA) and the optimizer to produce faster code sequences.
The specified probability is a hint, rather than a statement of fact. You can also
specify al nost _never and al nost _al ways by using the values 0.0 and 1.0,
respectively.

These directives have the following format:

#pragnma probability const
#pragma probability_al nost _al ways
#pragnma probability_al nost_never

const is an expression that evaluates to a floating point constant at compilation time.
(0.0 <= const <= 1.0.)

These directives can appear anywhere executable code is legal.

Each directive applies to the block of code where it appears. It isimportant to realize
that the directive should not be applied to a conditional test directly; rather, it should
be used to indicate the relative probability of at hen or el se branch being executed.

Example:

if (a[i] >b[i]) {
#pragma probability 0.3
ali] = b[i];
}
This example states that the probability of entering the block of code with the
assignment statement is 0.3 or 30%. Thisalso meansthat a[i | is expected to be
greater than b[i] 30% of the time.

Note that the pr obabi | i t'y directive appears within the conditional block of code,
rather than before it. This removes some of the ambiguity that has plagued other
implementations that tie the directive directly to the conditional code.

This information is used to guide inlining decisions, branch elimination
optimizations, branch hint marking, and the choice of the optimal algorithmic
approach to the vectorization of conditional code.

The following GCC-style intrinsic is also accepted when it appears in a conditional
test:

__builtin_expect(expr, const)

S-2179-83 83

Cray C and C++ Reference Manual

The following example:

if (__builtin_expect(a[i] > b[i], 0)) {
ali] = b[i];

}

is roughly equivaent to:

if (a[i] > b[i]) {
#pragnma _CRI probability_al nost_never
a[i] = b[i];
}

3.5.11 weak Directive

84

Scope: Global

When statically linking, the weak directive specifiesan external identifier that may
remain unresolved throughout the compilation. This directive has no effect when
dynamically linking. A weak external reference can be areference to a function or
to adata object. A weak external does not increase the total memory requirements
of your program.

Declaring an object as aweak external directs the linker to do one of these tasks:

e Link the object only if it isalready linked (that is, if a strong reference exists);
otherwise, leaveit is as an unsatisfied external. The linker does not display an
unsatisfied external message if weak references are not resolved.

« |f astrong reference is specified in the weak directive, resolve all weak
referencesto it.

Note: The linker treats weak externals as unsatisfied externals, so they remain
silently unresolved if no strong reference occurs during compilation. Thus, it is
your responsibility to ensure that run time references to weak external names do
not occur unless the linker (using some "strong” reference el sawhere) has actually
linked the entry point in question.

These are the forms of the weak directive:

#pragm _CRl weak var
#pragnm _CRlI weak syml = sym?2

var The name of an external

syml Definesan externally visible weak symbol

sym2 Defines an externally visible strong symbol defined in the current
compilation.

The first form alows you to declare one or more weak references on one line. The
second form allows you to assign a strong reference to aweak reference.

Theweak directive must appear at global scope.

S-2179-83

Using #pr agnma Directives [3]

The attributes that weak externals must have depend on the form of the weak directive
that you use:

* First form, weak externals must be declared, but not defined or initiaized, in the
source file.

» Second form, weak externals may be declared, but not defined or initialized, in
the source file.

« Either form, weak externals cannot be declared with ast at i ¢ storage class.

The following example illustrates these restrictions:

extern long x;

#pragma _CRI weak x /* x is a weak external data object */
extern void f(void);

#pragma _CRI weak f /* f is a weak external function */

extern void g(void);
#pragma _CRI weak g=fun; /* g is a weak external function
with a strong reference to fun */

long y = 4;
#pragnma _CRI weak y /* ERROR - y is actually defined */

static long z;
#pragnma _CRI weak z /* ERROR - z is declared static */

voi d fctn(void)

{
#pragna _CRI weak a /* ERROR - directive nust be at gl obal scope */

}

3.6 Vectorization Directives

Because vector operations cannot be expressed directly in Cray C and C++, the
compilers must be capable of vectorization, which means transforming scalar
operations into equivalent vector operations. The candidates for vectorization are
operations in loops and assignments of structures.

The subsections that follow describe the compiler directives used to control
vectorization.

3.6.1 concurrent Directive

S-2179-83

Scope: Local

Theconcurr ent directive indicates that no data dependence exists between array
references in different iterations of the loop. This directive affects the loop that
immediately followsit. This can be useful for vectorization optimizations.

85

Cray C and C++ Reference Manual

The format of the concur r ent directiveis as follows:

#pragma _CRI concurrent [safe_di stance=n]

n An integer that represents the number of additional consecutive loop
iterations that can be executed in parallel without danger of data
conflict. n must be an integer constant > 0.

If SAFE_DI STANCE=n is not specified, the distance is assumed to
be infinite, and the compiler ignores all cross-iteration dependencies.

Theconcurrent directiveisignored if thesaf e_di st ance
clause is used and vectorization is requested on the command line.

In the following example, the concur r ent directive indicates that the relationship
k>3 istrue. The compiler will safely load all the array references x[i - K] ,
X[i-k+1] ,x[i-k+2],and X[i - k+3] during loop iterationi .

#pragnma _CRI concurrent safe_di stance=3

for (i

x[i]

k +1; i <n;ji++) {
a[i] + x[i-Kk];

}

3.6.2 hand_t uned Directive

The format of this directiveis;

#pragma _CRl hand_t uned

This directive asserts that the code in the loop nest has been arranged by hand for
maximum performance, and the compiler should restrict some of the more aggressive
automatic expression rewrites. The compiler should still fully optimize and vectorize
the loop within the constraints of the directive.

The hand_t uned directive applies to the next loop in the same manner as the
concurrent andsaf e_addr ess directives.

Warning: Use of thisdirective may severely impede performance. Use carefully
and evaluate before and after performance.

3.6.3 i vdep Directive

86

When the i vdep directive appears before aloop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize the loop.

i vdep appliesto thefirstf or loop or whi | e loop that follows the directive. The
directive applies to only the first loop that appears after the directive within the same
program unit.

S-2179-83

Using #pr agnma Directives [3]

Whether or not i vdep is used, conditions other than vector dependencies can inhibit
vectorization. The format of this directive is as follows:

#pragma _CRI ivdep [SAFEVL=vien | | NFI NI TEVL]

vien Specifiesa vector length in which no dependency will occur. vien
must be an integer between 1 and 1024 inclusive.

I NFI NI TEVL Specifiesan infinite safe vector length. That is, no dependency will
occur at any vector length.

If no vector length is specified, the vector length used isinfinity.

If aloop with ani vdep directive is enclosed within another loop with ani vdep
directive, the i vdep directive on the outer loop is ignored.

When the Cray compiler vectorizes aloop, it may reorder the statementsin the source
code to remove vector dependencies. When i vdep is specified, the statementsin the
loop or array syntax statement are assumed to contain no dependencies as written,
and the Cray compiler does not reorder loop statements.

3.6.4 | oop_i nf o Directive
Scope: Loca

Thel oop_i nf o directive allows additional information to be specified about
the behavior of aloop, including run time trip count and hints on cache allocation

strategy.

| oop_i nf o directive provides information to the optimizer and can produce faster
code sequences. | oop_i nf o isused immediately before af or loop to indicate

minimum, maximum, or estimated trip count. The compiler will diagnose misuse at
compile time (when able) or when option- h di r _check isspecifiedat run time.

For cache allocation hints, thel oop_i nf o directive can be used to override default
settings, cache or cache_nt directives, or override automatic cache management
decisions. The cache hints are local and apply only to the specified loop nest.

S-2179-83 87

Cray C and C++ Reference Manual

88

The format of this directiveis;

#pragma _CRI loop_info
[mMn_trips(c)] [est_trips(c)] [max_trips(c)][cache(

symbol[, symbol

...])l[cache_nt (symbol[,symbol ...])

][prefetch] [noprefetch]

C

mn_trips
est_trips
max_trips

cache

cache_nt

prefetch

nopr ef et ch

symbol

An expression that evaluates to an integer constant at compilation
time.

Specifies guaranteed minimum number of trips.
Specifies estimated or average number of trips.
Specifies guaranteed maximum number of trips.

Specifiesthat symbol is to be alocated in cache; thisisthe default if
no hint is specified and the cache_nt directiveis not specified.

Specifiesthat symbal is to use hon-temporal reads and writes.

Specifiesa preference that prefetches be performed for the following
loop.

Specifies a preference that no prefetches be performed for the
following loop.

The base name of the object that should not be placed into the cache.
This can be the base name of any object (such as an array or scalar
structure) without member references like C[10] . If you specify
apointer in the list, only the references, not the pointer itself, have
the no cache alocate property.

Example 8. Trip counts

In the following example, the minimum trip count is 1 and the maximum trip count

is 1000:

voi d

| oop_i nfo(double *restrict a, double *restrict b, double sl1, int n)

{

int i;

#pragma _CRI loop_info mn_trips(1l) max_trips(1000), cache_nt(hb)

for (i = 0;

i<n; i++) {

if(a[i] '=0.0) {
a[i] = a[i] + b[i]*sl;

S-2179-83

Using #pr agnma Directives [3]

3.6.5 loop_info prefer_thread, prefer_not hread Directives

Scope: Local

Use these directives to indicate a preference for turning threading on or off for
selected loops. Usethel oop_i nfo prefer _thread directive to indicate your
preference that the loop following the directive be threaded. Thel oop_i nf o

pr ef er _not hr ead indicates your preference that the loop following the directive
should not be threaded.

The format of these directivesis:

#pragma _CRI loop_info prefer_thread
#pragma _CRI | oop_info prefer_nothread

3.6.6 nopattern Directive

S-2179-83

Scope: Loca

The nopat t er n directive disables pattern matching for the loop immediately
following the directive.

The format of this directiveis as follows;

#pragma _CRl nopattern

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library functions. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with very
low trip counts. In such a case, you can use the nopat t er n directive to disable
pattern matching and cause the compiler to generate inline code.

In the following example, placing the nopat t er n directive in front of the outer loop
of anested loop turns off pattern matching for the matrix multiply that takes place
inside the inner loop:

doubl e a[100][100], b[100][100], c[100][100];

voi d nopat (i nt n)

{
int i, j, k;

#pragma _CRl nopattern
for (i=0; i <n; ++i) {
for (j =0; j <n; ++) {
for (k = 0; k <n; ++k) {
clillji] +=ali][k] * b[kI[jl;

89

Cray C and C++ Reference Manual

3.6.7 [no] vect or Directive

[no] vect or controls vectorization of f or loops. It may affect specific

optimizations.

#pragma _CRl vector [clause[, clause]...]

#pragma _CRl

novect or

Thenovect or directive suppresses compiler attempts to vectorize loops and array
syntax statements. It overrides any other vectorization-related directives, aswell as
the-h vector and- O vect or n command line options. These directives are
ignored if vectorization or scalar optimization has been disabled.

In C/C++, thenovect or directive applies only to the following loop. When applied
to an outer loop in anest, the directive also appliesto all inner loops.

After avect or directiveis specified, automatic vectorization is enabled for all loop

nests.

Thevect or directive supports the following optional clauses:

al ways

al i gned

unal i gned

Vectorize the loop that immediately follows the directive. This
directive states a vectorization preference and does not guarantee that
the loop has no memory-dependence hazard. This directive has the
same effect asthe pr ef er vect or (7) directive.

Directs the compiler to generate aligned data movement instructions
for array references when vectorizing. For current INTEL processors,
data alignment is necessary for efficient vectorization. Use with care
to improve performance. If some of the access patterns are actually
unaligned, using the ALIGNED clause may generate incorrect code.
This directive a so directs the compiler to ignore explicit and implicit
vector dependencies.

Directs the compiler to generate unaligned data movement
instructions for all array references when vectorizing.

The following example illustrates the use of thenovect or compiler directive:

#pragma _CRl

for (i =0;

novect or
< h; i++) { /* Loop not vectorized */

afi] =b[i] + c[i];

}

3.6.8 pernmut ati on Directive

Theper mut at i on directive specifiesthat an integer array has no repeated val ues.
This directive is useful when the integer array is used as a subscript for another array
(vector-valued subscript). This directive may improve code performance.

This directive has the following format:

#pragma _CRl

90

pernutati on symbol [, symbol]

S-2179-83

Using #pr agnma Directives [3]

In a sequence of array accesses that read array element values from the specified
symbols with no intervening accesses that modify the array element values, each of
the accessed elements will have a distinct value.

When an array with a vector-valued subscript appears on the left side of the equal
sign in aloop, many-to-one assignment is possible. Many-to-one assignment occurs if
any repeated elements exist in the subscripting array. If it is known that the integer
array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case, an
integer array is used to select only the desired elements, and no repeated elements
exist in the integer array, as in the following example:
int *ipnt;
#pragma permutation ipnt
" tor (i =0 i <N i++) {
afipnt[i]] = b[i] + c[i];
}

The permutation directive does not apply to the array a. Rather, it appliesto the
pointer used to index intoit, i pnt . By knowing that i pnt isa permutation, the
compiler can safely generate an unordered scatter for the write to a.

3.6.9 [no] pi pel i ne Directive

S-2179-83

Software-based vector pipelining (software vector pipelining) provides additional
optimization beyond the normal hardware-based vector pipelining. In software vector
pipelining, the compiler analyzes all vector loops and automatically attempts to
pipeline aloop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler either does not pipeline aloop that could be pipelined or
pipelines aloop without producing performance gains. In these situations, you can
usethe pi pel i ne or nopi pel i ne directive to advise the compiler to pipeline or
not pipeline the loop immediately following the directive.

Software vector pipelining isvalid only for the innermost loop of aloop nest.

The pi pel i ne and nopi pel i ne directives are advisory only. While you can
use the nopi pel i ne directive to inhibit automatic pipelining, and you can use the
pi pel i ne directive to attempt to override the compiler's decision not to pipeline a
loop, you cannot force the compiler to pipeline aloop that cannot be pipelined.

L oops that have been pipelined are so noted in loopmark listing messages.

The formats of the pipelining directives are as follows:

#pragma _CRlI pipeline
#pragma _CRl nopi pel i ne

91

Cray C and C++ Reference Manual

3.6.10 prefervector Directive
Scope: Local

Thepr ef er vect or pragmadirects the compiler to vectorize the loop immediately
following the directive if the loop contains more than one loop in the nest that can be
vectorized. The directive states a vectorization preference and does not guarantee that
the loop has no memory-dependence hazard.

The format of this directiveis:

#pragnma _CRl prefervector

The following example illustrates the use of the pr ef er vect or directive:

float a[1000], b[100][1000];

voi d
f(int m int n)
int i, j;
#pragma _CRl prefervector
for (i =0; i <n; i++) {
for (j =0,] <m j++) {
} ali] += b[j][i];

}
}

In this example, both loops can be vectorized, but the directive directs the compiler to
vectorize the outer f or loop. Without the directive and without any knowledge of
n and m the compiler would vectorize the inner loop.

3.6.11 pgo | oop_i nf o Directive
Scope: Local
The format of this directiveis as follows:
#pragma _CRI pgo | oop_info

Thepgo | oop_i nf o directive enables profile-guided optimizations by tagging
loopmark information as having come from profiling. For information about CrayPat
and profileinformation, see the Using Cray Performance Measurement and Analysis
Tools guide.

3.6.12 saf e_addr ess Directive
Scope: Local

The format of this directive is as follows:

#pragnma _CRl safe_address

92 S-2179-83

Using #pr agnma Directives [3]

S-2179-83

Thesaf e_addr ess directive specifiesthat it is safe to speculatively execute
memory references within all conditional branches of aloop. In other words, you
know that these memory references can be safely executed in each iteration of the
loop.

For most code, the saf e_addr ess directive can improve performance significantly
by preloading vector expressions. However, most loops do not require this directive
to have preloading performed. The directiveis required only when the safety of the
operation cannot be determined or index expressions are very complicated.

Thesaf e_addr ess directiveis an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on aloop and the compiler determines that it would
benefit from the directive, it issues a message indicating such. The message is similar
to this:

CC-6375 cc: VECTOR File = ctest.c, Line = 6
A |l oop woul d benefit from "#pragna safe_address".

If you use the directive on aloop and the compiler determines that it does not benefit
from the directive, it issues a message that states the directive is superfluous and
can be removed.

To see the messages, you must usethe- h report=v or-h nsgs option.

Caution: Incorrect use of the directive can result in segmentation faults, bus errors,
or excessive page faulting. However, it should not result in incorrect answers.
Incorrect usage can result in very severe performance degradations or program
aborts.

In the example below, the compiler will not preload vector expressions, because the
value of j isunknown. However, if you know that referencestob[i][]] issafe
to evaluate for all iterations of the loop, regardliess of the condition, you can use the
saf e_addr ess directive for this loop as shown below:

voi d x3(double a[restrict 1000], int j)
{ . .
int i;
#pragnma _CRl safe_address
for (i =0; i <1000; i++) {
if (afi] '=0.0) {
b{j][i] = 0.0;

}

With the directive, the compiler can safely load b[i] [j] asavector, merge0. O
where the condition istrue, and store the resulting vector safely.

93

Cray C and C++ Reference Manual

3.6.13 saf e_condi ti onal Directive

Thesaf e_condi ti onal directive specifiesthat it is safe to execute all references
and operations within all conditional branches of aloop. In other words, you know
that these memory references can be safely executed in each iteration of the loop.
This directive specifiesthat memory and arithmetic operations are safe.

This directive applies to scalar and vector loop nests. It can improve performance by
allowing the hoisting of invariant expressions from conditional code and by allowing
prefetching of memory references.

Thesaf e_condi ti onal directiveisan advisory directive. That is, the compiler
may override the directiveif it determines the directive is not beneficial.

Caution: Incorrect use of the directive can result in segmentation faults, bus errors,

A excessive page faulting, or arithmetic aborts. However, it should not result in
incorrect answers. Incorrect usage can result in severe performance degradations
or program aborts.

Thesaf e_condi ti onal directive has the following format:

#pragma _CRl safe_conditional

In the following example, without the saf e_condi t i onal directive, the compiler
cannot precompute the invariant expression s 1* s2 because their values are unknown
and may cause an arithmetic trap if executed unconditionally. However, if you know
that the condition istrue at least once, then s1* s2 is safe to speculatively execute.
Thesaf e_condi ti onal compiler directive can be used to imply the safety of the
operation. With the directive, the compiler evaluates s1* s2 outside of the loop,
rather than under control of the conditional code. In addition, all control flowis
removed from the body of the vector loop, because s1* s2 no longer poses a safety
risk.

voi d

saf e_cond(double a[restrict 1000], double s1, double s2)

{

int i;
#pragma _CRI safe_conditional
for (i = 0; i< 1000; i++) {
if(a[i] '=0.0) {
a[i] = a[i] + sl*s2;
}
}

3.7 Scalar Directives

This section describes the scalar optimization directives, which control aspects of
code generation, register storage, and other scalar operations.

94 S-2179-83

Using #pr agnma Directives [3]

3.7.1 bl ockabl e Directive

The bl ockabl e directive specifiesthat it islegal to cache block the subsequent
loops.

The format of this directive is as follows:

#pragma _CRI bl ockabl e (nest-depth)
where nest-depth specifiesthe depth of the loop nest to be blocked.

This directive instructs the compiler to perform a cache blocking rewrite in which
the following nest-depth loops participate. The nest to be transformed must be
afully-permutable, perfect, rectangular nest. A fully-permutable nest is a nest

that may be legally interchanged in any order. To be perfect, a nest must have no
statements between the participating loops. Rectangular means that the lower and
upper bounds (and stride) of each loop must be independent of the value of the
loop control variables of al enclosing member loops in the rewrite set. Though the
compiler will catch some misuse of this directive, it will not detect all misuses. The
bl ocki ngsi ze directive may be used to control the size and shape of the cache
block, otherwise known as atile.

3.7.2 bl ocki ngsi ze Directive

When aloop is annotated with abl ocki ngsi ze directive, and thisloop isto be
cache blocked automatically or by bl ockabl e directive, the indicated blocking
factors are employed. In the absence of abl ocki ngsi ze directive, the compiler
will select blocking factors.

The compiler attempts to include thisloop within cache, but it cannot guarantee this.
The formats of this directive is as follows:
#pragma _CRI bl ockingsize (nl,[,n2])

where nl and n2 are integer constants that indicate the block size, with 0 <=nl <=
n2 <= 2**30.

Note: The Cray compiler only blocks one level of cache — the secondary cache,
which is specified by n2. If asingleisblock size is specified, it isinterpreted as the
blocking factor for the secondary cache.

A loop with bl ocki ngsi ze n> 1isstrip mined to length n as shown:

i =1, trips, n
i =ii, mn(ii +n- 1, trips)

S-2179-83 95

Cray C and C++ Reference Manual

To fully understand the interaction of blockingsizes, it is helpful to examine the two
steps employed by the compiler:

1. Stripminebl ockabl e nest members according to bl ocki ngsi ze
e if n>1, strip mine by n, creating loop_outer and loop_inner.

e if n=0, do not strip mine, treat loop asloop_inner. Full tripcount. The entire
loop is inside the block.

* if n=1, do not strip mine, treat loop as loop_outer.

2. Interchange the loops resulting from previous step so all "outer" loops are outside
the "inner" loops and the relative order within each subset is preserved.

3.7.3 nobl ocki ng Directive

The nobl ocki ng directive asserts that the loop following the directive should
not be cache blocked for the primary or secondary cache. It is an error to place a
nobl ocki ng directive before aloop that is part of abl ockabl e collection.

The format of this directive is as follows:

#pragma _CRI nobl ocki ng

3.7.4 col | apse and nocol | apse Directives

96

Scope: Local
The loop collapse directives control collapse of the immediately following loop nest.

The formats of these directives are as follows:

#pragma _CRI col | apse(loop-numberl, loop-number2[, loop-number3] . ..)
#pragnma _CRl nocol | apse

When the col | apse directiveis applied to aloop nest, the loop numbers of the
participating loops must be listed in order of increasing access stride. Loop numbers
range from 1 to the nesting level of the most deeply nested loop. The directive
enables the compiler to assume appropriate conformity between trip counts. The
compiler diagnoses misuse at compile time (when able); or, if - h di r _check

is specified, at run time.

Thenocol | apse directive disqualifiesthe immediately following loop from
collapsing with any other loop. Collapse is ailmost aways desirable, so use this
directive sparingly.

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate values of
original loop control variables. The rediscovery cost, which generally involves integer
division, is quite high. Therefore, coalesceisrarely suitable for vectorization. It may
be beneficial for multithreading.

S-2179-83

Using #pr agnma Directives [3]

By definition, loop collapse occurs when loop coalesce may be done without the
rediscovery overhead. To meet this requirement, all memory accesses must have
uniform stride.

3.7.5 [no] i nt erchange Directive

Scope: Local

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the
loops that they immediately precede.

The formats of these directives are as follows:

#pragma _CRI interchange(loop_numberl, loop_number2[, loop number3d] ...)
#pragma _CRl noi nt er change

The first format specifiestwo or more loop numbers. Loop numbers range from 1 to
nesting depth of the most deeply nested loop. They can be specified in any order, and
the compiler reorders the loops. The loops must be perfectly nested. If the loops are
not perfectly nested, you may receive unexpected results. The compiler reorders the
loops such that the loop with loop-number 1 is outermost, then loop-number2, then
loop-number 3.

The second format inhibits loop interchange on the loop that immediately follows
the directive.

In the following example, thei nt er change directive reorders the loops; the k loop
becomes the outermost and thei loop the innermost:

#define N 100
AN [N [N
voi d
f(int n)
{

int i, j, k;

#pragma _CRl interchange(2, 3, 1)

for (i=0; i <n; i++) {
for (k=0; k < n; k++) {
for (j =0; j <n; j++) {
}A[k][J'][i] =1.0;

3.7.6 suppr ess Directive

S-2179-83

Thesuppr ess directive suppresses optimization in two ways, determined by its use
with either global or local scope.

97

Cray C and C++ Reference Manual

The global scope suppr ess directive specifiesthat all associated local variables are
to be written to memory before a call to the specified function. This ensures that the
value of the variables will always be current.

The global suppr ess directive takes the following form:

#pragma _CRl suppress func. ..

The local scope suppr ess directive stores current values of the specified variables
in memory. If the directive lists no variables, al variables are stored to memory.
This directive causes the values of these variables to be reloaded from memory at the
first reference following the directive.

Thelocal suppr ess directive has the following format:

#pragma _CRl suppress [var] ...

The net effect of the local suppr ess directiveis similar to declaring the affected
variables to be volatile except that the vol at i | e qualifier affects the entire
program, whereas the local suppr ess directive affects only the block of code

in which it resides.

3.7.7 [no] unrol | Directive

98

Scope: Local

Theunr ol | directive allows the user to control unrolling for individual loops or to
specify no unrolling of aloop. Loop unrolling can improve program performance by
revealing cross-iteration memory optimization opportunities such as read-after-write
and read-after-read. The effects of loop unrolling aso include:

* Improved loop scheduling by increasing basic block size
* Reduced loop overhead
* Improved chances for cache hits

The formats for these compiler directives are:

#pragma _CRI unroll n
#pragma _CRl nounrol |

Thenounr ol | directive disablesloop unrolling for the next loop. The nounr ol |
directiveisfunctionally equivalent totheunrol | O andunrol | 1 directives.

The n argument applies only to theunr ol | directive and specifiesno loop unrolling
(n=0o0r 1) or the total number of loop body copies to be generated (2 < n < 63).

If you do not specify avalue for n, the compiler will determine the number of copies
to generate based on the number of statements in the loop nest.

Note: The compiler cannot always safely unroll non-innermost |oops due to data
dependencies. In these cases, the directive isignored (see Example 10).

S-2179-83

Using #pr agnma Directives [3]

S-2179-83

Theunr ol | directive can be used only on loops with iteration counts that can be
calculated before entering the loop. If unr ol | is specified on aloop that is not the
innermost loop in aloop nest, the inner loops must be nested perfectly. That is, all
loops in the nest can contain only one loop, and the innermost loop can contain work.

Example 9. Unrolling outer loops

In the following example, assume that the outer loop of the following nest will be
unrolled by 2:

#pragma _CRl unroll 2
for (i =0; i <10; i++) {
for (j =0; j <100; j++) {
ali][j] =blil[i] + 1L

}

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent:

for (i =0; i <10; i +=2) {
for (j =0; j < 100; j++) {
ali][j] =blil[i] + 1L;

for (j =0; j < 100; j++) {
a[i+1][j] = b[i+1][j] + 1;
}
}

The compiler then jams, or fuses, the inner two loop bodies, producing the following
nest:

for (i =0; i <10; i +=2) {
for (j =0; j < 100; j++) {
ali][j] =blil[i] + 1;
ali+1][j] = b[i+1][j] + 1L;
}
}

Example 10. lllegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the
semantics of the original program. For example, unrolling the following loop nest

on the outer loop would change the program semantics because of the dependency
betweena[i][...] anda[i+1][...]:

/* directive will cause incorrect code due to dependencies! */
#pragma _CRl unroll 2
for (i =0; i <10; i++) {
for (j =1; j < 100; j++) {
a[illj] = a[i+1][j-1] + 1;
}
}

99

Cray C and C++ Reference Manual

3.7.8 nof i ssi on Directive

Scope: Local

Thenof i ssi on directive instructs the compiler not to split statementsin a given
loop into distinct loops. Fission is prevented only for the loop specified; loops nested
within the indicated |oop remain fission candidates unless likewise annotated.

3.7.9 [no] f usi on Directive

Scope: Local

The nof usi on directive instructs the compiler to not attempt loop fusion on the
following loop even when the- h f usi on option was specified on the compiler
command line. Thef usi on directive instructs the compiler to attempt loop
fusion on the following loop unless - h nof usi on was specified on the compiler
command line.

The formats for these compiler directives are:

#pragnma _CRlI fusion
#pragma _CRl nof usi on

3.8 Inlining and Cloning Directives

Inlining and cloning directives can only appear in local scope — inside a function
definition.

Inlining directives always take precedence over the command line settings with the
exception of - h i pa0, which instructs the compiler to ignore inlining directives.

Cloning directives are enabled with - h i pa5.

3.8.1inline_enable,inline _disable,andinline_reset Directives

100

Thei nl i ne_enabl e pragma directs the compiler to attempt to inline functions at
call sites. It has the following format:

#pragma _CRl inline_enable

Thei nl i ne_di sabl e directive tells the compiler to not inline functions at call
sites. It has the following format:

#pragma _CRI inline_disable

Thei nl i ne_reset directivereturnsthe inlining state to the state specified on the
command line (- h i pan). It has the following format:

#pragma _CRlI inline_reset

The following example illustrates the use of these directives.

S-2179-83

Using #pr agnma Directives [3]

Example 11. Using thei nli ne_enabl e,i nli ne_di sabl e,andinline_reset
directives

The following code fragment shows how the i nl i ne_enabl e,
i nline_disable, andinline_reset directiveswould affect code compiled
withthe-h i pa4 option:

voi d qux(int x)

{

voi d bar(void);

int a=1;
X = atatatatatatatatatata+ta;
bar () ;

}

voi d foo(voi d)

{
int j = 1;

/* enable inlining at all call sites here forward */
#pragma _CRl inline_enable

qux(j);

qux(j);
/* disable inlining at all call sites here forward */
#pragma _CRI inline_disable

qux(j);
/* reset control to the command |ine -hipad */
#pragma _CRlI inline_reset

qux(j);
}

Example 12. Using i nl i ne_r eset

The following code fragment shows how the#pragma _CRI i nl i ne_reset
directive would affect code compiled with the- h i pa3 option:

voi d f1()
{

#pragnma _CRI inline_disable /* No inlining will be done in f1;
}

void f2()
{

[* turn off all inlining to the end of the routine or another directive is encountered. */
#pragma _CRI inline_disable

/* The inlining state is -h ipa3 for the remainder of f2 */
#pragma _CRlI inline_reset

}

S-2179-83 101

Cray C and C++ Reference Manual

3.8.2 inline_always andi nline_never Directives

Thei nl i ne_al ways directive specifiesfunctions that the compiler should always
attempt to inline. If the directive is placed in the definition of the function, inlining
is attempted at every call site to name in the entire input file being compiled. If the
directive is placed in a function other than the definition, inlining is attempted at
every call site to name within the specific function containing the directive.

Theformat of thei nl i ne_al ways directiveis as follows:

#pragma _CRl inline_always name[,name]| ...

Thei nl i ne_never directive specifiesfunctions that are never to be inlined. If the
directive is placed in the definition of the function, inlining is never attempted at any
call siteto namein the entire input file being compiled. If the directiveisplaced in a
function other than the definition, inlining is never attempted at any call site to name
within the specific function containing the directive.

Theformat of thei nl i ne_never directiveisasfollows:

#pragma _CRl inline_never name[,name] ...
The name argument is the name of a function.

When applied to afunction template specialization, the inlining directive will apply
to al instantiations of the template, not just the specialization. For example, in the
following case, both f oo<doubl e> and f oo<f | oat > will be affected by the

i nl i ne_al ways directive:

t enpl at e<t ypenane T>
int foo(T i, int j) {
return j;

}

tenpl ate <>

int foo(double f, int i) {

#pragma _CRI inline_always foo
returni + 5;

}

int bar(float f,int i) {
return foo(f,i);

}

int main(void) {
foo(1.0,7);
bar(1.0,7);
return O;

}

3.8.3 cl one_enabl e, cl one_di sabl e, cl one_r eset Directives

102

Thecl one_enabl e and cl one_di sabl e directives control whether cloning is
attempted over arange of code.

S-2179-83

Using #pr agnma Directives [3]

If cl one_enabl e isin effect, cloning is attempted at call sites. If
cl one_di sabl e isin effect, cloning is not attempted at cal sites.

Thecl one_r eset directive resets cloning to the state specified on the compiler
command line.
These directives have the following formats:

#pragnma _CRI cl one_enabl e
#pragnma _CRl cl one_di sabl e
#pragma _CRI cl one_reset

One of these directives remains in effect until the opposite directive is encountered,
until the end of the program unit, or until the cl one_r eset directiveis
encountered.

3.8.4 cl one_al ways and cl one_never Directives

Thecl one_al ways and cl one_never directives specify functions or procedures
that the compiler should always/never attempt to clone. If the directiveis placed in
the definition of the function, cloning is always/never attempted at every call site to
name in the entire input file being compiled. If the directive is placed in afunction
other the definition, cloning is always/never attempted at every call to name within
the specific function containing the directive.

Thecl one_al ways, cl one_never directives control cloning of a procedure for
the compilation of the whole input file.

Use compile options - hi paN or - G paN where N is equal to 5 to enable cloning
directives.

These directives have the following formats:

#pragnma _CRl cl one_al ways name[, name .. .]
#pragnma _CRl cl one_never name[, hame ...]

! DI R$ CLONEALWAYS name[, name .. .]
! DI R$ CLONENEVER name [, name . . .]

The name argument is the name of a function.

3.9 PGAS Directive

3.9.1 def er _sync Directive

Thedef er _sync directive defers the synchronization of PGAS data until the next
synchronization.

S-2179-83 103

Cray C and C++ Reference Manual

Normally the compiler synchronizes the references in a statement as late as possible
without violating program semantics. The purpose of thedef er _sync directiveis
to synchronize the references even later, beyond where the compiler can determine it
is safe. PGAS data references made by the single statement immediately following
the pgas def er _sync directive are not synchronized until the next fence
instruction.

Use this directive to force all references in the next statement to be non-blocking.
This helps for cases where the compiler cannot prove that it is safe. For example,
if there is aremote-memory access (RMA) put near the end of a subroutine, the
compiler must guard against the put value being read back immediately after
the subroutine returns, so the put is synchronized just before returning. The
programmer, however, may know that the value is not read back and can insert a
pgas def er_sync directive.

The format is as follows:

#pragma pgas defer_sync

Example 13. Using def er _sync

void ny_put(shared int* x, int thread, int value) {

#pragma pgas defer_sync
x[thread] = val ue;

104 S-2179-83

Using the OpenMP C/C++ API [4]

OpenMP is aparallel programming model that is portable across shared memory
architectures from Cray and other vendors.

The OpenMP C/C++ specification is accessible at
http://openmp.org/wp/openmp-specifications/.

4.1 Standard Support

This compiler supports the OpenMP API, Version 3.1 (OpenMP Application Program
Interface Version 3.1 July 2011 Copyright © 1997-2011 OpenMP Architecture
Review Board), with afew exceptions. See Limitations on page 113.

4.2 Cray Enhancements

This section describes features not described by the API specification which are
included in Cray's implementation of OpenMP.

4.2.1 cray_onp_set _wait_policy()

This routine alows dynamic modification of thewai t - pol i cy- var ICV value,
which corresponds to the OMP_WAI T_PQLI CY environment variable. The policy
argument provides a hint to the OpenM P runtime library environment about the
desired behavior of waiting threads; acceptable values are ACTI VE or PASSI VE
(caseinsensitive). It isan error to call thisroutine in an active parallel region.

The OpenMP runtime library supports a "wait policy" and a"contention policy", both
of which can be set with the following environment variables:

OVP_WAI T_POLI CY=(ACTI VE| PASSI VE)
CRAY_QOVP_CONTENTI ON_POLI CY=(Aut ormat i c| St andar d| Moni t or Maai t | | nt eger Di vi si on)

S-2179-83 105

http://openmp.org/wp/openmp-specifications/

Cray C and C++ Reference Manual

These environment variables allow the policies to be set once at program launch for
the entire execution. However, in some circumstances it would be useful for the
programmer to explicitly change the policy at various points during a program's
execution. This cray-specific routine allows the programmer to dynamically change
the wait policy (and potentially the contention policy). This addresses the situation
when an application needs OpenMP for the first part of program execution, but
there is a clear point after which OpenMP is no longer used. Unfortunately, the

idle OpenMP threads still consume resources since they are waiting for more work,
resulting in performance degradation for the remainder of the application. A
passive-waiting policy might eliminate the performance degradation after OpenMP is
no longer needed, but the developer may still want an active-waiting policy for the
openmp-intensive region of the application. This routine notifiesall threads of the
policy change at the same time, regardless of whether they are idle or active (to avoid
deadlock from waiting and signaling threads using different policies).

4.2.2 CRAY_OVP_CHECK AFFI NI TY Environment Variable

4.3 Compiling

4.4 Executing

106

Setting this environment variable to TRUE at execution time causes the CCE OpenMP
runtime environment to display affinity binding for each OpenMP thread. The
messages contain hostname, process identifier, OS thread identifier, OpenMP thread
identifier, and affinity binding.

By default, the CCE compiler recognizes OpenMP directives. These Cray C and C++
Compiler options affect OpenM P applications:

e -h [no]onp (-h [no] onp on page 66)
e -h threadn(-h threadnonpage4l)

For OpenM P applications, use both the OVIP_NUM_THREADS environment variable
to specify the number of threads and the apr un -d depth option to specify

the number of CPUs hosting the threads. The number of threads specified by
OVP_NUM_THREADS should not exceed the number of coresin the CPU.

If neither the OMP_NUM_THREADS environment variable nor the
onp_set_num t hreads() cal isused to set the number of OpenMP threads,
the system defaults to 1 thread.

For further information, including example OpenMP programs, see the Cray
Application Developer's Environment User's Guide.

S-2179-83

Using the OpenMP C/C++ API [4]

4.5 Debugging

The - g option provides debugging support for OpenM P directives. The - g option
provides debugging support identical to specifying the - G0 option. This level of
debugging implies - honp (most optimizations disabled but OpenMP directives are
recognized) and - h f pO.

If you want to debug without OpenMP, use- g - xonp or-g - hnoonp, which will
disable OpenMP and turn on debugging.

4.6 Cray Implementation Defined Behaviors

The OpenMP Application Program Interface Specification, Appendix E presentsalist
of implementation defined behaviors. This section presents a corresponding list of
Cray specific behavior:

S-2179-83

Task scheduling points in untied task regions
There are no untied tasks in Cray's implementation of OpenMP.
Atomicity of memory access by multiple threads

When multiple threads access the same shared memory location and at least one
thread is a write, threads should be ordered by explicit synchronization to avoid

data race conditions and the potentia for non-deterministic results. Always use

explicit synchronization for any access smaller than one byte.

Initial values of internal control variables

nthreads-var 1
dyn-var TRUE
run-sched-var static, O
stacksize-var 128 MB
wait-policy-var ACTIVE
thread-limit-var 64
max-active-levels-var 1
def-sched-var static, O

Dynamic adjustment of threads

dyn-var is supported and enabled by default. It behaves according to Algorithm
2-1 (See Section 2.4.1 of the OpenMP specifications). Threads may be
dynamically created up to an upper limit which is 4 times the number of
cores/node. It is up to the programmer to try to limit oversubscription.

107

Cray C and C++ Reference Manual

108

| oop directive

The integer type or kind used to compute the iteration count of a collapsed loop
are signed 64-bit integers, regardless of how the original induction variables and
loop bounds are defined.

If the schedule specified by the runtime schedul e clause is specified and
run-sched-var isaut o, then the Cray implementation generates a static schedule.

sect i ons directive

Multiple structured blocks within asingle sect i ons construct are scheduled in
lexical order and an individual block is assigned to the first thread that reachesiit.
It is possible for a different thread to execute each section block, or for asingle
thread to execute multiple section blocks. There is not a guaranteed order of
execution of structured blocks within a section.

si ngl e directive

A single block is assigned to the first thread in the team to reach the block; this
thread may or may not be the master thread.

at om c directive

Different optimization levels produce different behavior. At thread-level 1

and lower (- ht hr ead1), the atomic construct is transformed into a critical
section with a shared lock between al atomic regions. This approach enforces
mutual exclusion with respect to all atomic constructs. At thread-level 2 and
above (- ht hr ead?2), the compiler will use hardware atomic instructions when
available, which allows atomic constructs that access independent memory
locations to execute in parallel. Datatypes larger than 64-bits are not supported
by hardware atomic instructions; in these cases an atomic construct is transformed
into a critical section with a shared lock between all atomic regions, regardless of
the optimization level.

Note: For all datatypes that are 64-bits or less, we use hardware atomic
instructions. In Fortran we can have 128-bit floats and 64-bit complex (128-bits
of total data), and for those types we fall back to a critical section.

onp_set _num_t hr eads routine

Sets nthreads-var to a positive integer. If the argument is < 1, then set
nthreads-var to 1.

onp_set _schedul e routine

Sets the schedule type as defined by the current specification. There are no
implementation defined schedule types.

onp_set _nax_active_| evel s routine

Sets the max-active-levels-var ICV. Defaultsto 1. If argument is< 1, then set to 1.

S-2179-83

Using the OpenMP C/C++ API [4]

S-2179-83

onp_get _nax_active_| evel s routine

There is a single max-active-levels-var ICV for the entire runtime system. Thus, a
cal toonp_get _max_acti ve_l evel s will bind to all threads, regardiess
of which thread callsit.

OVP_SCHEDULE environment variable

If the value of the variable does not conform to the specified format then print a
warning and default to st at i ¢ with chunk 1 (each thread isa singleiteration).

OVP_NUM THREADS environment variable

aprun -d depth has no effect on OVP_NUM_ THREADS, but the programmer
should usually set them to be equal. OVP_NUM_THREADS determines the
number of threads that the program should create, while apr un -d depth
determines the number of hardware cores that are available for the program to
run on. Setting OMP_NUM_THREADS lower than depth will likely result in
under-utilization of the allocated cores, while setting OVP_NUM_THREADS
higher than depth will likely result in over-utilization of the allocated cores.

OVP_DYNAM C environment variable

If the value is neither t r ue nor f al se, print awarning and set to default
(true).

OVP_NESTED environment variable

If the value is neither t r ue nor f al se, print awarning and set to default
(true).

OWP_STACKSI ZE
OVP_WAI T_PQOLI CY environment variable

acti ve causesidle threads to use a spin-wait loop, consuming compute
resources. passi ve causesidle threads to enter a blocked wait state, which does
not consume compute resources but has a higher wake-up latency.

OVP_MAX_ACTI VE_LEVELS

If thevalueislessthan 1, itisset to 1. Thereis no explicit upper limit on the
maximum number of active levels of parallelism; rather, the limit is determined
by the maximum number of threads and the available memory. Additional levels
of parallelism may be created after the thread limit is reached, but they will run
with only one thread.

OVP_THREAD LIM T

Max number of threadsis 1024. No warning if try to exceed that. If <1,
4* (cores/node) (default)

109

Cray C and C++ Reference Manual

Fortran only implementation specific behavior:

t hr eadpri vat e directive

If the conditions for values of datain thet hr eadpr i vat e objects of threads
(other than the initial thread) to persist between two consecutive active parallel
regions do not all hold, the allocation status of an allocatable array in the second
region is implementation defined (see Section 2.9.2 on page 81). If a number

of threads remain which is less than the allocated number, and if the number of
threads increase, then new threads will allocate data.

shar ed clause

Passing a shared variable to a non-intrinsic procedure may result in the value of
the shared variable being copied into temporary storage before the procedure
reference, and back out of the temporary storage into the actual argument storage
after the procedure reference. Situations where this occurs other than those
specified are implementation defined (see Section 2.9.3.2 on page 88). Copies are
used only where required by the Fortran spec. Put interface block in place.

Runtime library definitions

It isimplementation defined whether the include fileonp_I i b. h or the module
onp_I i b (or both) is provided. It isimplementation defined whether any

of the OpenMP runtime library routines that take an argument are extended

with a generic interface so arguments of different KIND type can be Fortran
accommodated (see Section 3.1 on page 108). Both onp_I i b. h and the module
onp_| i b are provided. Cray Fortran uses generic interfaces for routines.

4.6.1 Directives and Clauses

4.6.1.1 at om c Directive

Theat om c directiveisreplaced withacri ti cal section that encloses the
Statement.

4.6.1.2 for Directive

For the schedul e(gui ded, chunk) clause, the size of the initial chunk for the
master thread and other team members is approximately equal to the trip count
divided by the number of threads.

For theschedul e(runti ne) clause, the schedule type and chunk size can be
chosen at run time by setting the OVP_SCHEDULE environment variable. If this
environment variable is not set, the schedule type and chunk size default tost ati ¢
and 0, respectively.

110

S-2179-83

Using the OpenMP C/C++ API [4]

In the absence of the schedul e clause, the default schedul e isst ati ¢ and the
default chunk size is approximately the number of iterations divided by the number of
threads.

4.6.1.3 par al | el Directive

If aparalléel region is encountered while dynamic adjustment of the number of threads
is disabled, and the number of threads specified for the parallel region exceeds the
number that the runtime system can supply, the program terminates.

The number of physical processors actually hosting the threads at any given timeis
fixed at program startup and is specified by theaprun -d depth option.

The OVP_NESTED environment variable and the onp_set _nest ed() call
control nested parallelism. To enable nesting, set OVP_NESTEDtot r ue or use the
onp_set _nest ed() call. Nesting is disabled by default.

4.6.1.4 t hr eadpri vat e Directive

Thet hr eadpri vat e directive specifiesthat variables are replicated, with each
thread having its own copy. If the dynamic threads mechanism is enabled, the
definition and association status of athread's copy of the variable is undefined, and
the allocation status of an alocatable array is undefined.

4.6.1.5 privat e Clause

If avariableisdeclared aspr i vat e, the variable is referenced in the definition of
a statement function, and the statement function is used within the lexical extent of
the directive construct, then the statement function referencesthe pri vat e version
of the variable.

4.6.2 Library Routines

4.6.2.1 onp_get _max_active_l evel s()

Theonp_get _max_acti ve_| evel s() routine returns the maximum number of
nested parallel levels currently allowed.

4.6.2.2 onp_set _dynami c()

Theonp_set _dynami c() routine enables or disables dynamic adjustment of the
number of threads available for the execution of subsequent parallel regions by setting
the value of the dyn-var ICV. The default is on.

S-2179-83 111

Cray C and C++ Reference Manual

4.6.2.3 onp_set _schedul e()

Theonp_set _schedul e() routine affects the schedule that is applied when
runt i me isused as schedule kind, by setting the value of the run-sched-var ICV.
The default ison.

4.6.2.4 onp_set _max_active_l evel s()

Theonp_set _nmax_acti ve_l evel s() routine limits the depth of nested
paralelism. The number specified controls the maximum number of nested parallel
levels with more than one thread. The default valueis 1 (nesting disabled).

4.6.2.5 onp_set _nested()
Theonp_set nest ed() routine enables or disables nested parallelism, by setting
the nest-var internal control variable (ICV). The defaultisf al se.

4.6.2.6 onp_set _num t hr eads()

If dynamic adjustment of the number of threads is disabled, the
nunber _of _t hr eads_expr argument sets the number of threads for all
subsequent parallel regions until this procedure is called again with a different value.

4.6.3 OpenMP Environment Variables

4.6.3.1 OVW_DYNAM C

The default valueist r ue.

4.6.3.2 OVWP_MAX _ACTI VE_LEVELS
The default valueis 1.

4.6.3.3 OVP_NESTED

The default value isf al se.

4.6.3.4 OVP_NUM_THREADS

If this environment variable is not set and you do not use the
onp_set _num_t hreads() routine to set the number of OpenMP
threads, the default is 1 thread.

112 S-2179-83

Using the OpenMP C/C++ API [4]

The maximum number of threads per compute node is 4 times the number of
alocated processors. If the requested value of OVP_NUM_THREADS is more

than the number of threads an implementation can support, the behavior of the
program depends on the value of the OVP_DYNAM C environment variable. If
OVP_DYNAM Cisf al se, the program terminates. If OVP_DYNAM Cist r ue,

it uses up to 4 times the number of allocated processors. For example, on a 8-core
Cray XE system, this means the program can use up to 32 threads per compute node.

4.6.3.5 OVP_SCHEDULE

The default values for this environment variable are st at i ¢ for type and O for
chunk.

4.6.3.6 OVWP_STACKSI ZE

The default value for this environment variable is 128 MB.

4.6.3.7 OWP_THREAD LIM T

Sets the number of OpenMP threads to use for the entire OpenM P program by setting
the thread-limit-var ICV. The Cray implementation defaults to 4 times the number
of available processors.

4.6.3.8 OVP_\WAI T_POLI CY

Provides a hint to an OpenM P implementation about the desired behavior of waiting
threads by setting the wait-policy-var ICV. A compliant OpenM P implementation
may or may not abide by the setting of the environment variable. The default value
for this environment variableisact i ve.

4.7 Limitations

S-2179-83

The following OpenM P features are not currently supported by the Cray C and Cray
C++ compilers.

e Orphaned task constructs may have an implicit t askwai t directive added to
the end of the routine. Thisis not required by the specification but is currently
required by the Cray implementation. This limits the amount of parallelism that
may be seen.

e Task switching is not implemented. The thread that starts executing atask isthe
thread that finishesthe task.

e Support for OpenMP Random Access Iterators (RAIS) in the C++ Standard
Template Library (STL) is deferred.

113

Cray C and C++ Reference Manual

4.8 OpenMP Accelerator Support

The OpenMP accelerator directives are deprecated. Please use the OpenACC
accelerator directives instead.

114 S-2179-83

Using OpenACC [5]

OpenACC isaparalel programming model which facilitates the use of an accelerator
device attached to a host CPU. The OpenACC API allows the programmer to
supplement information available to the compilersin order to offload code from a
host CPU to an attached accelerator device.

This rel ease supports the OpenACC Application Programming Interface, Viersion 2.0
standard developed by PGI, Cray Inc., NVIDIA, with support from CAPS entreprise.

Refer to the OpenACC home page at http://www.openacc-standard.org. Under the
Downloads link, select the OpenACC 2.0 Specification.

For the most current information regarding the Cray implementation of OpenACC,
seethei nt r o_openacc(7) man page.

5.1 OpenACC Execution Model

The CPU host offloads compute intensive regions to the accelerator device. The
accelerator executes parallel regions, which contain work sharing loops executed as
kernels on the accelerator. The CPU host manages execution on the accelerator by
alocating memory on the accelerator, initiating data transfer, sending code, passing
arguments to the region, waiting for completion, transferring accelerator results back
to the CPU host and releasing memory.

The accelerator supports multiple levels of parallelism. The accelerator executes a
kernel composed of parallel threads or vectors. Vectors (threads) are grouped into
sets called workers. Threads in a set of workers are scheduled together and execute
together. Workers are grouped into larger sets called gangs. One or more gangs may
comprise akernel. To summarize, akernel is executed as a set of gangs of workers
of vectors.

S-2179-83 115

http://www.openacc-standard.org

Cray C and C++ Reference Manual

The compiler determines the number of gangs/workers/vectors based on the problem
and then maps the vectors, workers, and gangs onto the accelerator architecture.
Specifying the number of gangs, workers, or vectors is optional but may permit
tuning to a particular target architecture. The way that the compiler maps a particular
problem onto a constellation of gangs, workers, and vectors which are then mapped
onto the accelerator architecture is implementation defined. See Mapping the
OpenACC Programming Model onto Accelerator Components on page 116 for more
information on this topic.

Note: OpenACC terminology is situated in the context of the PGAS programming
model. In the PGAS model, there may be one or more Processing Elements
(PES) per node. Each PE is multi-threaded and each thread can execute vector
instructions. The PGAS thread concept is not the same as the OpenACC thread
concept.

5.2 OpenACC Memory Model

The memory on the accelerator is separate from host memory. Accelerator device
memory is hot mapped onto the host's virtual memory space. All data movement
between host and accelerator memory isinitiated by the host through the library
functions that move data. Also, it is not assumed that the accelerator can access host
memory, though it is supported by some devices. In this model, data movement
between memories is managed by the compiler according to OpenACC directives.
The programmer needs to be aware of device memory size, as well as memory
bandwidth between host and device in order to effectively accelerate aregion of code.

Current accelerators implement a weak memory model; they do not support
memory coherence between operations executed by different execution units — an
execution unit is a hardware abstraction which can execute one or more gangs. If an
operation updates amemory location and another reads from the same location, or
two operations store a value to the same location, the hardware may not guarantee
repeatable results. Some potential errors of this type are prevented by the compiler,
but it is possible to write an accelerator parallel region that produces inconsistent
results. Memory coherence is guaranteed when memory operations referencing the
same |ocation are separated by an explicit barrier.

5.3 Mapping the OpenACC Programming Model onto
Accelerator Components

116

The compiler maps the OpenACC execution model (kernels, gangs, workers, vectors)
onto the accelerator architecture as described in the following sections.

S-2179-83

Using OpenACC [5]

5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) cores

The accelerator architecture is comprised of two main components — globa memory
and some number of streaming multiprocessors (SM). Each SM contains multiple
scalar processor (SP) cores, schedulers, special-function units, and memory which

is shared among all the SP cores. An SP core contains floating point, integer, logic,
branching, and move and compare units. Each thread/vector is executed by a core.
The SM manages thread execution.

The OpenACC execution model maps to the NVIDIA GPU hardware as follows
(GPU terms are in parenthesis): One or more OpenACC kernels may execute

on an GPU. The compiler divides a kernel into one or more gangs (blocks) of
vectors (threads). Several concurrent gangs (blocks) of threads may execute on

one SM depending on several factors, including memory requirements, compiler
optimizations, or user directives. A single block (gang) does not span SMs and will
remain on one SM until completion. When the SM encounters a block (gang), each
gang (block) is further broken up into workers (warps) which are groups of threads
to execute in parallel. Scheduling occurs at the granularity of the worker (warp).
Individual threads within a warp start together and execute one common instruction
at atime. If conditional branching occurs within aworker (warp), the warp serialy
executes each branch path taken causing some threads to wait until threads converge
back to the same instruction. Data dependent conditional code within awarp usually
has negative performance impact. Worker (warp) threads also fetch data from
memory together and when accessing global memory, the accesses of the threads
within awarp are grouped to minimize transactions. Each thread in aworker (warp)
is executed on a different SP core.

There may be up to 32 threads in aworker (warp) — alimit defined by the hardware.

Seethei nt r o_openacc(7) man page for more detail on Partition Mapping.

5.3.2 Memory

There is a hierarchy of memory spaces used by OpenACC threads. Each thread has
its own private local memory. Each gang of workers of threads has shared memory
visible to al threads of the gang. All OpenACC threads running on a GPU have
access to the same global memory. Global memory on the accelerator is accessible to
the host CPU.

5.4 Mixed Model Support

OpenMP directives may appear inside of OpenACC data or host data regions only.
OpenMP directives are not allowed inside of any other OpenACC directives.

S-2179-83 117

Cray C and C++ Reference Manual

5.5 Compiling

118

For example, the following is permitted:

#pragnma acc data

{

#pragnma onp parall el
{a = 10}

}

OpenACC may not appear inside OpenMP directives. If you wish to have OpenACC
directives nested inside of OpenMP constructs, place them in calls that are not
inlined.

The CCE compiler recognizes OpenACC directives, by default. Use either thef t n or
cc command to compile.

The CCE compiler does not produce CUDA code. It generates PTX (Parallel Thread
Execution) instructions which are then translated into assembly.

Note the following interactions between directives and command line options.
e -h [no]acc
-h noacc disables OpenACC directives.
e -h [no] pragma
See-h [no] pragma=name] : name . ..] onpage59.
* -h acc_nodel =option[: option]

Explicitly controls the execution and memory model utilized by the
accelerator support system. The option arguments identify the type of
behavior desired. There are three option sets. Only one member of a set
may be used at atime; however, all three sets may be used together. Default:
aut o_async_kernel : fast _addr: no_deep_copy

option Set 1:
aut o_async_none

Execute kernels and updates synchronously, unless there is an
async clause present on the kernels or update directive.

aut o_async_ker nel

Execute all kernels asynchronously ensuring program order is
maintai ned.

aut o_async_al |

Execute all kernels and data transfers asynchronously, ensuring
program order is maintained.

S-2179-83

Using OpenACC [5]

option Set 2:

no_fast addr

fast _addr

option Set 3:

Use default types for addressing.

(Default) Attempt to use 32 hit integersin all addressing to
improve performance. Base addresses remain as 64 bit. The
performance is improved by potentially using fewer registers

and faster arithmetic for offset calculations. This optimization
may result in incorrect behavior for codes that make use within
accelerator regions of any of the following: very large arrays
(offsets would require greater than 32 bits); very large array lower
bounds (max offset plus lower bound is greater than 32 hits);
bitfields/other bit operations.

no_deep_copy

deep_copy

5.6 Module Support

Do not look inside of an object type to transfer sub-objects.
Allocatable members of derived type objects will not be allocated
on the device.

(Fortran only) Look inside of derived type objects and recreate
the derived type on the accelerator recursively. A derived type
object that contains an allocatable member will have memory
allocated on the device for the member.

To compile, ensure that Pr gEnv- cr ay moduleisloaded and that it includes CCE
8.2 or later. Then, either load the cr aype- accel - nvi di a20 module for Fermi
support or thecr aype- accel - nvi di a35 module for Kepler support.

Thecr aype- accel - host module supports compiling and running an OpenACC
application on the host X86 processor. This provides source code portability between
systems with and without an accelerator. The accelerator directives are automatically
converted at compile time to OpenMP equivalent directives.

Use either thef t n or cc command to compile.

5.7 Debugging

Use either Alinea DDT or Rogue Wave Total View.

S-2179-83

119

Cray C and C++ Reference Manual

The following apply to al debuggers:
* To enable debugging, compile using the - g option.

When compiling with the debug option (- g), CCE may require additional
memory from the accelerator heap, exceeding the 8VIB default. In this case,
there will be mal | oc failures during compilation. The environment variable
CRAY_ACC_MALLOC HEAPSI ZE specifiesthe accelerator heap size in bytes.
It may be necessary to increase the accelerator heap size to 32MB (33554432),
64MB (67108864), or greater by setting CRAY_ACC_MALLOC_HEAPSI ZE
accordingly. The accelerator heap size defaults to 8MB.

» Debug one rank/image/thread/PE per node.

e CCE does not generate CUDA code, but generates PTX code. Debuggers will
not display CUDA intermediate code.

« To enter an OpenACC region using a debugger, breakpoints may be set inside the
OpenACC region. It isnot possible to do asingle st ep into the region from the
code immediately prior to the start of an OpenACC directive.

5.8 OpenACC Directives

For information on the OpenACC directives, see the OpenACC 2.0 Specification
available at at http://www.openacc-standard.org.

For the most current information regarding the Cray implementation of OpenACC,
seethei nt r o_openacc(7) man page. See the QpenACC. EXAMPLES(7) man
page for example OpenACC codes.

5.9 Runtime Routines

Runtime routines defined by the standard specification are supported unless otherwise
noted inthei nt r o_openacc(7) man page.

120 S-2179-83

http://www.openacc-standard.org

Using OpenACC [5]

5.9.1 Cray Specific Runtime Library Routines

The following routines are currently Cray specific. These interfaces are subject to
change and their usage may result in non-portable code.

e void cray_acc_nencpy_to_host _async(voi d* host_destination,
const voi d* device source, si ze_t size, int async id);

Asynchronously copies size bytes from the accelerator source address to the
host destination address; returns destination address. See async clause for
explanation of async id.

e void cray_acc_nencpy_to_devi ce_async(voi d*
host_destination, const voi d* device source, si ze t size, int
async _id) ;

Asynchronously copies size bytes from the accelerator source address to the
host destination address; returns destination address. See async clause for
explanation of async _id.

 bool cray_acc_get_async_info(int async_id, voi d*
async_info) ;

Returns true if the async_id was found to have any architecture specific async
information available. The user is responsible for ensuring that the async_info
pointer points to a async structure from the underlying architecture. For an
NVIDIA target thiswould be a CUDA Stream (CUstream).

5.9.2 CRAY_ACC DEBUGOutput Routines

S-2179-83

When the runtime environment variable CRAY_ACC_DEBUGIissetto 1, 2, or 3,
CCE writes runtime commentary of accelerator activity to STDERR for debugging
purposes; every accelerator action on every PE generates output prefixed with "ACC:".
This may produce a large volume of output and it may be difficult to associate
messages with certain routines and/or certain PES.

With this set of APl calls, the programmer can enable or disable output at certain
points in the code, and modify the string that is used as the debug message prefix.

Thecray_acc_set _debug_* prefix(void) routines define

a string that is used as the prefix, with the default being "ACC:. ". The
cray_acc_get _debug_* prefix(void) routinesare provided so that the
previous setting can be restored.

Output from the library is printed with aformat string starting with "ACC: %s %s",
where the global prefix is printed for the first % (if not NULL), and the thread
prefix is printed for the second %s . The global prefix is shared by al host threadsin
the application, and the thread prefix is set per-thread. By default, strings used in
the s fieldsare empty.

121

Cray C and C++ Reference Manual

The C interface is provided by onp. h:

e char *cray_acc_get _debug_gl obal _prefix(void)
e void cray_acc_set _debug_gl obal _prefix(char *)
e char *cray_acc_get _debug thread prefix(void)
e void cray_acc_set_debug_thread_prefix(char *)

To enable debug output, set level from 1 to 3, with 3 being the most verbose. Setting a
level less than or equal to O disables the debug output. The get version is provided

so the previous setting can be restored. The thread level is an optional override of

the global level.

e int cray_acc_get_debug gl obal | evel (void)
e void cray_acc_set _debug_gl obal _level (int level)
e int cray_acc_get _debug thread | evel (void)

e void cray_acc_set_debug_thread_level (int leve)

5.10 Environment Variables

5.10.1 Cray Specific
« CRAY_ACC MALLOC_HEAPSI ZE

Specifiesthe accelerator heap size in bytes. The accelerator heap size defaultsto
8MB. When compiling with the debug option (- g), CCE may require additional
memory from the accelerator heap, exceeding the 8MIB default. In this case, there
will bemal | oc failures during compilation. It may be necessary to increase the
accelerator heap size to 32MB (33554432), 64MB (67108864), or greater.

« CRAY_ACC DEBUG

When set to 1, 2, or 3 (most verbose), writes runtime commentary of accelerator
activity to STDERR for debugging purposes. Thereis aso an APl which allows
the programmer to enabl e/disable debug output and set the output message prefix
from within the application. See CRAY_ACC_DEBUG Output Routines.

5.10.2 Standard

The following are environment variables are defined by the API specification:
* ACC_DEVI CE_NUM
* ACC_DEVI CE_TYPE

122 S-2179-83

Using OpenACC [5]

5.11 OpenACC Examples
See the OpenACC. EXAMPLES(7) man page for examples.

S-2179-83 123

Cray C and C++ Reference Manual

124 S-2179-83

Using Cray Unified Parallel C (UPC) [6]

S-2179-83

Unified Parallel C (UPC) isa C language extension for parallel program development.
UPC supports a Partitioned Global Address Space (PGAS) programming model.

This release supports the UPC Language Specification, Version 1.3. The
proposed UPC 1.3 standard is discussed on the UPC specification website,
http://code.google.com/p/upc-specification.

This chapter describes the Cray specific UPC functionality available in CCE,
and features of the specification which are implementation defined. Also see
i nt ro_pgas(7), or refer to the appropriate UPC man page.

You should be familiar with UPC and understand the differences between the
published UPC Introduction and Language Specification paper and the current UPC
specification. If you are not familiar with UPC, refer to the UPC home page at

htt p://upc. gwmi. edu/ . Under the Publications link, select the Introduction to
UPC and Language Specification paper. This paper is slightly outdated but contains
valuable information about understanding and using UPC. The UPC home page aso
contains, under the Documentation link, the UPC Language Specification 1.2 paper.

UPC alows you to explicitly specify parallel programming through language syntax
rather than library functions such as those used in MPl and SHMEM by alowing you
to read and write memory of other processes with simple assignment statements.
Program synchronization occurs only when explicitly programmed; there is no
implied synchronization.

Note: UPC isadialect of the C language. It is not available in C++.

UPC alows you to maintain aview of your program as a collection of threads
operating in a common global address space without burdening you with details of
how parallelism isimplemented on the machine (for example, as shared memory or as
acollection of physically distributed memories).

UPC data objects are private to a single thread or shared among all threads of
execution. Each thread has a unique memory space that holds its private data objects,
and access to a globally-shared memory space that is distributed across the threads.
Thus, every part of a shared data object has an affinity to a single thread.

125

http://code.google.com/p/upc-specification/
http://upc.gwu.edu/

Cray C and C++ Reference Manual

Cray UPC is compatible with MPI and SHMEM.

Note: UPC 1.3 supports a parallel 1/0 model which provides control over file
synchronization. However, if you continue to use the regular C I/O routines, you
must supply the controls as needed to remove race conditions. File I/O under UPC
is very smilar to standard C because one thread opens a file and shares the file
handle, and multiple threads may read or write to the samefile.

Cray UPC supports GASP instrumentation. GASP instrumentation enables the use
of external performance tools, such as the Parallel Performance Wizard (PPW)
from the University of Florida. For more information on GASP and PPW, see
http://gasp.hcs.ufl.eduhttp://ppw.hcs.ufl.edu. To instrument for GASP, refer to the
command line option - h gasp[=opt [: opt]] on page 53.

For a description of UPC related command line options, see Compiling and Linking
UPC Code on page 127.

6.1 Implementation

6.1.1 Predefined Macros

The following UPC 1.3 preprocessor macros are supported and defined as follows:

UPC:1
__UPC_VERSION__: 201309 (corresponds to the date that 1.3 spec is published)
UPC_MAX_BLOCK_SIZE: 1073741823

__UPC DYNAMIC_THREADS : 1 (if compiling for dynamic threads,
otherwise undefined)

__UPC_STATIC_THREADS__: 1 (if compiling for static threads, otherwise
undefined)

__UPC_COLLECTIVE_: 1
__UPC_TICK_: 1
__UPC_CASTABLE_: 1
_UPC |0 _:1
UPCNB:1

6.1.2 False Sharing

There is afalse sharing hazard when referencing shared char and short integers.

126

S-2179-83

http://gasp.hcs.ufl.edu
http://ppw.hcs.ufl.edu

Using Cray Unified Parallel C (UPC) [6]

If two PEs storeachar or short to the same 64-bit word in memory without
synchronization, incorrect results can occur. It is possible for one PE's store to be
lost. Thisis because these stores are implemented by reading the entire 64-bit word,
inserting thechar or short value and writing the entire word back to memory.

The following output is a result of two PEs writing two different charactersinto the
same word in memory without synchronization:

Regi st er Mernor y
Initial Value 0x0000
PE 0 Reads 0x0000 0x0000
PE 1 Reads 0x0000 0x0000
PE O Inserts 3 0x3000 0x0000
PE 1 Inserts 7 0x0700 0x0000
PE 0 Wites 0x3000 0x3000
PE 1 Wites 0x0700 0x0700

Notice that the value stored by PE 0 has been lost. The final value intended was
0x3700. Thissituation is referred to as false sharing. It isthe result of supporting
data types that are smaller than the smallest type that can be individually read or
written by the hardware. UPC programmers must take care when storing to shared
char and short datathat this situation does not occur.

6.2 Compiling and Linking UPC Code

S-2179-83

Compiling a PGAS application (UPC, Fortran 2008) requires the Pr gEnv- cr ay
module to be loaded.

The - hupc option is required to enable recognition of UPC syntax becauseit is not
part of the standard C language.

The - X npes option can optionally be used to define the number of threads to use
and statically set the value of the THREADS constant. See - X npes on page 68 for
requirements regarding the use of the - X npes option.

The following command creates an executable file:

% cc -hupc hello.c -0 hello

An executable can be created by linking together various object filesthat were
generated from source code written in standard C, UPC, and Fortran. Either cc or
f t n can be used to link the object files:

% cc -hupc x.o0y.0 z.0
%ftn x.0 y.0 z.0

For dynamic linking, add the - dynami ¢ option. For information about linking
PGAS applications to use huge pages, seethei nt r o_hugepages (1) man page.

The Cray implementation of UPC supports adding GASP instrumentation to
UPC codes. To instrument for GASP, refer to the command line option - h

gasp[=opt [: opt]] onpage53.

127

Cray C and C++ Reference Manual

6.3 Launching a UPC Application

After compiling the UPC code, you run the program using the apr un command.

Launch the application using 128 PEs:

% aprun -n 128 ./hello

If you use the —X npes compiler option, you must specify the same number of
threads in the apr un command. The processing elements specified by npes are
compute node cores/PEs.

By default, each PE reserves 64 MB of symmetric heap space. To increase or
decrease this amount, set the XT_SYMVETRI C_HEAP_SI ZE environment variable
to the desired number of bytes. The suffixesK, M and G are permitted to simplify
requests for large values:

% export XT_SYMMVETRI C_HEAP_SI ZE=512M
% aprun -n 128 ./hello

The UPC run time system uses GNI and DMAPP (low level libraries) to implement
alogically shared, distributed memory programming model. The symmetric heapis
mapped onto hugepages by DMAPRP. It is advisable to also map the static data
and/or private heap onto huge pages. Seethei nt r o_hugepages(1) man page.

6.4 Cray Extensions

128

Cray extensions to UPC that are not part of the UPC Language Specification 1.3
are listed here.

Note: A number of former extensions to UPC 1.2 have been standardized in
UPC 1.3, including non-blocking bulk copies (upc_nb. h), privatizability
(upc_cast abl e. h) and timing (upc_t i ck. h) interfaces. These interfaces
have been removed from the upc_cr ay. h header and moved into new headers
asrequired by the UPC 1.3 specification. Additionally, some of the semantics and
interfaces have been changed dlightly, so existing users of these interfaces may
need to update their applications.

S-2179-83

Using Cray Unified Parallel C (UPC) [6]

6.4.1 Team Collectives

6.4.2 Node Affinity

The following interfaces, declared in upc_col | ecti ve_cray. h, provide
common collective operations on a subset (team) of threads. These are loosely based
on the UPC Caollectives Library 2.0 proposal, with changes to argument ordering to
better match existing practice in UPC and no explicit initialization.

CRAY_UPC TEAM ALL
CRAY_UPC_TEAM NCDE
cray_upc_op_creat e(3c)
cray_upc_op_free(3c)
cray_upc_type_si ze(3c)
cray_upc_t eam r ank(3c)
cray_upc_t eam si ze(3c)
cray_upc_team split(3c)
cray_upc_t eam free(3c)
cray_upc_t eam barri er (3c)
cray_upc_team al |l reduce(3c)

cray_upc_t eam reduce(3c)

Include upc_cr ay. h to use these extensions.

6.4.2.1 upc_nodeof ()

6.4.2.2 NODES

S-2179-83

Returns the index of the node of the thread that has affinity to the shared object
pointed to by ptr. Similar toupc_t hr eadof ().

NODES is an expression with avalue of type int; it specifiesthe number of nodes and
has the same value on every thread in the job.

Similar to THREADS, but evaluates to the number of nodes used by the application,
equal to the ceiling of theapr un - n value divided by the - N value.

129

Cray C and C++ Reference Manual

6.4.2.3 MYNCDE

MYNODE is an expression with avalue of type int; it specifiesthe unique node index
associated with the current thread and has the same value on all threads that are
located on the same node.

Similar to MYTHREAD, but evaluates to a node number in the range 0 to NOCDES -
1, inclusive.

130 S-2179-83

Using Cray C++ Libraries [7]

Most of the standard C++ features are supported, except for the few mentioned in
Unsupported Standard C++ Library Features.

For information about C++ language conformance and exceptions, see Appendix B,
Using Cray C and C++ Dialects on page 195.

7.1 Unsupported Standard C++ Library Features

The Cray C++ compiler supports the C++ standard except for wide characters and
multiple locales as follows:

e String classes using basic string class templates with wide character types or that
usethewst ri ng standard template class

» 1/O streams using wide character objects

* File-based streams using file streams with wide character types (Wf i | ebuf ,
wi f st ream wof st ream and Wf st r eam

e Multiplelocalization libraries; Cray C++ supports only one locale

Note: The C++ standard provides a standard naming convention for library
routines. Therefore, classes or routines that use wide characters are named
appropriately. For example, thef scanf andspri nt f functions do not use wide
characters, but thef wscanf and swpri nt f function do.

S-2179-83 131

Cray C and C++ Reference Manual

132 S-2179-83

Using Coarray C++ [8]

S-2179-83

This release introduces Coarray C++, atemplate library that implements the coarray
concept for Partitioned Global Address Space (PGAS) programming in C++. The
template library specifications are contained on aset of *. ht M pages that the
CCE installation copiesto/ opt / cr ay/ cce/ version/ doc/ ht m / on the Cray
platform; they may be copied to any location which provides HTML web content for
your site, or any location that can be accessed by site local web browsers.

The coarray concept used in Coarray C++ isintentionally very similar to Fortran
(ISO/EC 1539-1:2010) coarrays. Users familiar with Fortran coarrays will notice
that terminology and even function names are identical, although the syntax follows
C++ conventions.

A coarray adds an additional dimension, called a codimension, to a normal scalar or
array type. The codimension spans instances of a Single-Program Multiple-Data
(SPMD) application, called images, such that each image contains a dlice of the
coarray equivalent in shape to the original scalar or array type. Each image has
immediate access via processor |oads and stores to its own slice of the coarray, which
residesin that image's local partition of the global address space. By specifying an
image number in the cosubscript of the codimension, each image also has access to
the dlices residing in other images' partitions.

Images are an orthogonal concept to threads, such as those provided by C++11 or
OpenMP. Threads are used for shared memory programming where each thread

has immediate access to the address space of a single process and possibly some
thread-local storage to which only it has access. Images are a broader concept
intended to provide communication among cooperating processes that each have their
own address space. The mechanism for this cooperation varies by implementation.
Typically it involves network communication between processes that have arranged
to have identical virtual memory layouts. This communication is one-sided such
that a programmer can have an image read or write data that belongs to a different
image without writing any code for the second image. Note that images and threads
may coexist in the same application; alarge networked system with multicore nodes
could use coarrays to communicate among hodes but use threads within each node to
exploit the multicore parallelism.

133

Cray C and C++ Reference Manual

In Coarray C++, acoarray is presented as a class template that collectively allocates
an object of a specified type within the address space of each image. The coarray
object is responsible for managing storage for the object that it allocates. When used
in an expression context, the coarray object automatically converts to its managed
object so that an image can access its own slice of the coarray without using special
syntax. Accessing a dlice that belongs to a different image requires specifying the
image number as a cosubscript in parenthesis immediately following the coarray
object, before any array subscripts. Therefore, the codimension is the slowest-running
array dimension, just like Fortran.

Note: The subscript order is backwards from Fortran because in Fortran the
slowest-running dimension is rightmost whereas in C++ it is leftmost.

In addition to providing the fundamental ability to allocate and access a coarray,
Coarray C++ provides image synchronization, atomic operations, and collectives.

Although this chapter presents Cray's implementation, Coarray C++ is designed to
allow portable applications to be written for a variety of computing platformsin the
sense that the template library interface is platform independent and can be compiled
by any C++03 (1SO/IEC 14882:2003) or C++11 (ISO/IEC 14882:2011) compliant
compiler. The implementation of the template library is likely to differ for each
platform due to different transport layers (e.g., shared memory or various networks)
for communicating data between images.

8.1 Compiling Coarray C++

The following program is the Coarray C++ equivaent of the classic "Hello World"
program. The header filecoar r ay_cpp. h provides al Coarray C++ declarations
within namespace coar r ay_cpp. Normally a program imports all of the
declarations into its namespace with ausing directive, but having the namespace gives
the programmer flexibility to deal with name conflicts.

#i ncl ude <i ostreanr

#i ncl ude <coarray_cpp. h>

usi ng namespace coarray_cpp;

int main(int argc, char* argv[])

{
std::cout << "Hello frominmge " << this_inmge()
<< " of " << num.images() << std::endl;
return O;

134 S-2179-83

Using Coarray C++ [8]

The program is compiled with the Cray compiler and executed using four images as
follows:

> nodul e | oad PrgEnv-cray
> CC -0 hello hello.cpp

> aprun -n4 ./hello

Hello frominage 0 of
Hello frominmage 1 of
Hello frominage 2 of
Hello frominage 3 of

B N)

8.2 Declaring and Accessing Coarrays

The general form of a coarray declaration is:

coarray<T> nane;

where T is the type of the object that will be alocated in the address space of each
image.

A coarray declaration may appear anywhere that a C++ object can be declared.
Therefore, acoarray may be declared as a global variable, local variable, static local
variable, or as part of astruct or class. It may be allocated statically or dynamically.
The only restriction is that a coarray allocation must be executed collectively by all
images. The C++ language ensures that this restriction is met for global and static
local coarray declarations, but the programmer is responsible for ensuring that local
and dynamically-allocated coarrays are declared collectively. For example:

coarray<int> x; // gl obal
voi d
foo(void)
{
static coarray<int>y; // static |local
coarray<int> z; // local
coarray<int>* p = new coarray<int>; // dynamcally allocated
del ete p;
} /1 z is automatically destroyed here

8.2.1 Basic Types

S-2179-83

A coarray of abasic C++ typeisthe simplest kind of coarray. Each image has an
instance of the basic type that is managed by its coarray object. A coarray of type
int is declared as:

coarray<int> x;

135

Cray C and C++ Reference Manual

The declaration may pass an initia value to the constructor. Different images may
pass different initial values:

coarray<int> x(2);

The initializer syntax below is not supported. If it were permitted, then automatic
conversion from int to coarray<int> would be allowed, which would loosen type
checking and lead to unexpected collective allocations:

coarray<int> x = 2;

This coarray object will behave as if it were the int that it manages. Assigning to the
coarray object will assign avalue to the int that is managed by the coarray object:

X = 42;

Likewise, using the coarray object in any expression where an int is expected shall
read the value of the managed int:

int y=x+1;

If the coarray object needs to be used in an expression where no particular typeis
expected, then the managed object can be accessed explicitly via empty parenthesis:

[l prints the address of the coarray object

std::cout << & << std::endl;

[l prints the address of the int managed by the coarray object
std::cout << &() << std::endl;

Accessing an int that is managed by another image requires specifying the image
number within the parenthesis:

x(5) = 42; /1 set x = 42 within the address space of image 5
int y =x(2); // obtain the value of x fromthe address space of inage 2

Finally, consider an enhanced version of the Hello World program. In this program,
al images write their image number to their local object and then call sync_al | (),
which synchronizes control flow across all images. After thesync_al | (), each
image computes the image number of itsleft and right neighbors in the image space
and prints the values that were written by its neighbors.

#i ncl ude <i ostrean
#i ncl ude <coarray_cpp. h>
usi ng namespace coarray_cpp;
int main(int argc, char* argv[])
{
coarray<int> x;
x = this_imge();
sync_all ();
const int left = (this_imge() - 1) % num.inmages();
const int right = (this_imge() + 1) % num.i mages();
std::cout << "Hello fromimge " << x << "
where x(left) =" << x(left) << " and x(right) ="
<< x(right) << std::endl;

136 S-2179-83

Using Coarray C++ [8]

8.2.2 Arrays

S-2179-83

return 0;}

> CC -0 hello2 hello2.cpp

> aprun -n4 ./hello2

Hello frominmage 0 where x(left)
Hello frominmage 3 where x(left)
Hello frominage 2 where x(left)
Hello frominmage 1 where x(left)

and x(right)
and x(right)
and x(right)
and x(right)

Imnmmnn
OFrLr NW
nmmn
N WOoR

A coarray of an array type gives every image an array of the same shape. An example
of astatically-sized coarray is below. The complete array type, including all extents,
is provided as the coarray template's type argument:

/1 Declares a coarray of an array of 10 arrays of 20 ints
coarray<int[10][20] > x;

Note: The following declaration is very different:

/1 Declares an array of 10 arrays of 20 coarrays
/1 of type int. Legal, but very inefficient!
coarray<int> bad[10][20] ;

A coarray of amultidimensional array typeis not achieved via nested coarray
types. Although such declarations are legal, they are strange and not particularly
useful:

/1 Declares a coarray of an array of 10 coarrays of arrays of 20 ints
coarray< coarray<int[20]>[10] > weird,;

In adynamically-sized coarray declaration, the extent of the leading dimension is | eft
unbounded. The size of this extent cannot be part of the template type because it is
not known at compile time. Instead, the size is passed as a constructor argument:

coarray<int[][20]> y(n); // each image nust pass the same val ue

Later, the extent of the leading dimension can be extracted from the coarray object
viathe ext ent () member function:

size_t y_extent = y.extent();

Anindividual element of the local array managed by the coarray object is accessed
by applying subscripts directly to the coarray object. When accessing part of the
coarray managed by another image, the cosubscript appears in parenthesis before
the subscripts:

x[4] [5] 1, /] set x[4][5]

= 1 within this inage's address space
y(3)[6][7] = 2; /] set y[6][7]

2 within the address space of inmmge 3

137

Cray C and C++ Reference Manual

8.2.3 Pointers

A coarray of pointersistypically used to implement a"ragged array” where different
images need to alocate a different amount of memory as part of the same coarray.
An example of acoarray of pointersis:

coarray<int*> x;

Each image allocates additional memory independently from the collective alocation
of the coarray object itself:

X =newint[n]; // n usually varies per inmage

Due to the independent allocations, the allocated memory might not be located at
the same address within every image's address space. Therefore, accessing the data
requires an additional read of the pointer from the target image before a normal read
or write can occur. This additional read happens automatically as part of the usual
syntax for accessing the data:

X(i1)[3] =4; /] set x[3] =4 within the address space of image i

Note: The address stored within the pointer may be valid only on the alocating
image, unless the program is careful to target the pointer at only symmetric virtual
addresses. Great care should be taken with the following code pattern:

x(i); /! get an address frominage i

int* p =
= 4; /1 and dereference it on this inage

p[3]
Finally, the program must ensure prior to performing any accesses that other images
have alocated their memory:
coarray<int*> x;x = new int[n];

sync_all ();
x(1)[3] =4

8.2.4 Structs, Unions, and Classes

138

A coarray of astruct, union, or class behaves like a coarray of a basic type when the
entire object is accessed, however specia syntax is required for member access due to
limitations of C++ operator overloading:

struct Point { int x, y; };

coar ray<Poi nt > pt;
Poi nt p;

pt = p; /1 set pt
pt(2) = p; /! set pt

p in this inmage' s address space
p within the address space of inmage

2pt - >x
pt(). x

0; // set pt.x =0 in this imge's address space
0; // alternate syntax

/1 set pt.x =1 within address space of image i
pt(i).menber(&Point::x) = 1;

S-2179-83

Using Coarray C++ [8]

Calling a member function of an object that resides in the address space of another
image (i.e., aremote procedure call) is not supported. By default, when a struct,
union, or classis copied between images, it is treated as a Plain Old Data (POD)
type such that a bitwise copy occurs. This behavior is not appropriate if the type
contains pointers to allocated data. The default behavior can be changed by creating
aspecialization of coarray_traits whereis_trivially_gettableis
false. C++ requires that the specialization be placed in the same namespace as the
general template:

struct my_string {
char* data;
size_t length;

b

nanespace coarray_cpp {
tenplate < >
struct coarray_traits<ny_string> {
static const bool is_trivially_ gettable
static const bool is_trivially_puttable

fal se;
fal se;

}

Whenis_trivially_gettabl eisfasefor atype, Coarray C++ expectsthe
type to have a special constructor and a special assignment operator to facilitate
reading an object from a remote image:

struct my_string {
char* data;
size_t |ength;

/] renmote constructor

my_string(const_coref<my_string> ref);

/1 renote assignnent operator

nmy_string& operator = (const_coref<my_string> ref);

b

Therole of the remote constructor or remote assignment operator is to read the POD
parts of the object from the other image, use that data to cal culate how much memory
needs to be allocated, allocate the memory, then read the rest of the object into the
newly allocated memory. See Section 8.3.1 for an explanation of the parameters

of these functions.

Typicaly, if is_trivially_gettabl e isfase for atype,
thenis_trivially_puttabl e should aso be fase. When

is_trivially_ puttableisfaseforatype, acompiletime error will occur the
program attempts to copy an instance of the type to another image.

S-2179-83 139

Cray C and C++ Reference Manual

8.3 Type System

The Coarray C++ type system is modeled closely on the C++ type system. In addition
to the coarray type that extends the C++ array concept across images, there are
coreferences and copointers that extend the C++ concepts of references and pointers
to refer to objects on other images.

8.3.1 Coreferences

140

A coreference is returned when a cosubscript is applied to a coarray. Like a C++
reference, a coreference is always associated with an object, called its referent,
can never be rebound to a different object, and can never be null. Typically a
coreference is either immediately converted to its referent or subscripted, such that
it is not necessary to declare a coreference and its fleeting presence can be ignored.
Nevertheless, explicit coreferences are useful in some situations. Suppose that a
function needs to have access to an object in another image's address space, but does
not need to know anything about the coarray containing the object. For example:
void foo(coref<int>);
int main(int argc, char* argv[]){

coarray<int> x;

coarray<i nt[10]> vy;

foo(x(2));
foo(y(3)[4]):

return O;

}

In the above code, function foo can access an int that is part of either x or y even
though x and y have different shapes. If foo were to require a coarray parameter
instead, then it could accept either x or y but not both because the coarrays have
different types. Furthermore, foo's coreference parameter makes it clear to someone
reading the code that the function's effect is narrow, limited to one object instead of
an entire coarray. Two other uses of coreferences are to operate on coarray slices that
are larger than a single object and to move datain bulk between images. To make
these techniques more useful, coreferences can be created for local objects:
int main(int argc, char* argv[]){

coarray<int[5][10] > x;

int local[10];
coref<int[10] > | ocal _ref(local);

/1 local [0...9] = x(2)[1][0...9]
local _ref = x(2)[1];

/1 x(3)[4][0...9] = local[O...9]
x(3)[4] = local _ref;
.réiurn 0;

S-2179-83

Using Coarray C++ [8]

For convenience, the make_cor ef and make_const _cor ef functions create
coreferences for local objects without requiring the programmer to write the type
of the local object:

int main(int argc, char* argv[])

{
coarray<int[5][10] > x;
int local[10];
}}.Iocal[o...Q] = x(2)[1][0...9]
make_coref(local) = x(2)[1];
}}.X(3)[4][0...9] = local[0...9]
x(3)[4] = make_const_coref(local);
.réiurn 0;

}

A const _cor ef behaves exactly likeacor ef except that it cannot be used to
modify its referent.

8.3.2 Copointers

S-2179-83

A coreference can be converted to a copointer by calling its address function; the
address-of operator is not overloaded. Local pointers are automatically convertible

to copointers. Unlike coreferences, a copointer can be reassociated and can be
unassaciated or null. Arithmetic on a copointer changes the address to which it points
but never changes the image to which it points. Comparisons between two copointers
are allowed provided that both copointers point to the same image. Copointers can be
used as iterators with standard C++ function templates. For example, the following
code will not assert:

i nt
mai n(int argc, char* argv[])
{
coarray<int[10] > x;
const size_t left = (this_image() - 1) % num.images();
const size_t right = (this_imge() + 1) % num.inages();
coptr<int> begin = x(right)[0].address();
/1 Apply a standard algorithm using a coptr as an iterator.
coptr<int> end = x(right)[10].address();
std::fill(begin, end, image);
sync_all ();
for (int i =0; i <10; ++i) {
assert(x[i] == left);
}
return O;
}

They can be used to form linked lists spanning images. The list even can include links
that point to local data:

#i ncl ude <i ostreanr
#i ncl ude <coarray_cpp. h>

141

Cray C and C++ Reference Manual

usi ng nanespace coarray_cpp;

tenplate < typenane T >
struct Link {

T data;

coptr< Link<T> > next;

b
coarray< Link<int> > global _|inks;

int main(int argc, char* argv[])

{

Li nk<i nt> |l ocal _Ii nk;
gl obal _links->data = 2 * this_inmage();
gl obal _li nks->next = & ocal _|ink;
local _link.data = 2 * this_inmage() + 1;
if (this_imge() < num.images() - 1) {
local _Iink.next = global _links(this_inage() + 1).address();
}
el se {
I ocal _Ii nk. next = 0;

}

sync_all(); // ensure every inmage has setup the data

if (this_inmage() == 0) {
for (coptr< Link<int> > p = global _|inks(0).address();
p !'= NULL; p = p->nmenber(&Link<int>::next)) {
std::cout << p->nenber(&Link<int>::data) << std::endl;
}
}

/1 ensure local _link is not destroyed before it's read by image 0
sync_all ();
return O;

}

Compiling and executing the above program:

> CC-o0 list list.cpp
> aprun -n4 ./list

A const _coptr behaves exactly likeacopt r except that it cannot be used to
modify its target.

8.3.3 shape_cast

142

Various different array types have the same number of elements even though

they have a different shape. For example, i nt [100],int[2] [50],
andint[2][2][25] al have 100 elements. A reference or pointer to a

coarray of one of these types can be reinterpreted as a coarray of any of the
othersviaa shape_cast , which has the same syntax as the standard C++
static_cast,dynam c_cast,reinterpret_cast,andconst _cast.
A shape_cast converts between coarray types of the same ultimate type that
have different shapes. For example, ashape_cast cannot be used to reinterpret a
coarray<int[100] >&asacoar ray<f| oat [100] >&; that conversion will
throw ast d: : bad_cast exception. A shape_cast can be used to convert to a
smaller shape but not to a larger shape. For example, acoar r ay<i nt [100] >&

S-2179-83

Using Coarray C++ [8]

may be converted to acoar r ay<i nt [50] >&, in which case the new coarray
can access only the first 50 elements of the original, but it may not be converted
toacoar ray<i nt [200] >& because that requires more storage and will throw
astd: : bad_cast exception. The example code below shows various legal
shape_cast s:

#i ncl ude <cassert>
#i ncl ude <i ostreanp
#i ncl ude <coarray_cpp. h>

usi ng namespace coarray_cpp;

void foo(const coarray<int[]>& y) { }
voi d fool0(const coarray<int[10]>&y) { }
voi d foo5(const coarray<int[][5]>& Yy) { }
voi d fool0_5(const coarray<int[10][5]>& Yy) { }
voi d foo50(const coarray<int[50]>&y) { }

i nt

mai n(int argc, char* argv[])

{
int extent = 10;
coarray<int[10] > x_10_s;
coarray<int[]> x_10_d(extent);

coarray<int[10][5]> x_10_5_s;
coarray<int[][5]> x_10_5 d(extent);
coarray<int > y;

/1 Performall valid conbinations of passing the coarrays to the functions,
/1 using shape_cast when necessary.
foo(x_10_s);
foo(x_10_d);
foo(shape_cast<int[]>(x_10_5 s));
foo(shape_cast<int[]>(x_10_5_d));
fo0l0(x_10_s);
fool0(x_10_d);
foo5(shape_cast<int[2][5]>(x_10_s));
foo5(shape_cast<int[][5]>(x_10_d));

foo5(x_10_5_s);

foo5(x_10 5 d);

f00l10_5(x_10 5 s);

fo0010_5(x_10_5 d);

f 0050(shape_cast<int[50]>(x_10 5 s));
f 0050(shape_cast<int[50]>(x_10 5 d));

o o

/1 Trivial reshape to same shape.
shape_cast<int>(y):

/'l shape_cast from scalar to array.
shape_cast<int[1]>(y);

/'l shape_cast fromarray to scal ar.
shape_cast<int>(x_10_s);

/1 shape_cast to snaller array.
shape_cast<int[5]>(x_10_s);

S-2179-83 143

Cray C and C++ Reference Manual

/1 shape_cast to larger array.
bool passed = fal se;

try {

shape_cast<int[25]>(x_10_s);
} catch (std::bad_cast& e){
passed = true;

}

assert(passed);

return O;

8.4 Control Flow and Synchronization

8.4.1 Writing SPMD Code

8.4.2 Barriers

144

Coarray C++ follows the Single-Program Multiple-Data model where all images
begin executing the same main program but may operate on different data.
Conditional code is used to restrict execution to certain images:

#i ncl ude <i ostreanr
#i ncl ude <coarray_cpp. h>

usi ng namespace coarray_cpp;

int main(int argc, char* argv[])

{
if (this_image() %2 == 0){
std::cout << "Hello fromeven i mage "
<< this_imge() << std::endl;
}
el se {
std::cout << "Hello from odd imge "
<< this_imge() << std::endl;
}
return O;
}

> aprun -n4 ./a.out

Hello from odd i nage 3
Hello fromeven i mage 0
Hell o from even i mage 2
Hello fromodd i nage 1

A sync_al | () ensuresthat all images must executeasync_al | () beforeany
image may proceed beyond thesync_al | () which it executed. It is not required
that all images execute exactly the samesync_al | () inthe source code, just that
they must execute somesync_al | () . Failure of all images to participate will cause
deadlock.

S-2179-83

Using Coarray C++ [8]

8.4.3 Function Calls

8.4.3.1 coatom c

8.4.3.2 coevent

S-2179-83

A coarray may be passed to a function via a reference or a pointer, but may not be
passed by value. If acoarray could be passed by value, the call would have to be
collective. There would be a collective allocation of atemporary coarray, the data
within the original coarray would need to be copied into the temporary coarray, and
eventually the temporary coarray would need to be collectively destroyed. Pass

by value is expensive and there are better alternatives, like passing a coarray as a
const reference, so it is acompile-time error. No matter how a coarray parameter is
declared, the type of the actual argument must agree. Automatic conversions are
provided between bounded and unbounded arrays; a conversion from unbounded to
bounded performs a run-time check to ensure that the extents match and may throw a
m smat ched_ext ent _error exception.

The coatomic template is similar to the C++11 st d: : at omi ¢ template, but
provides operations that are atomic with respect to images rather than threads.
Specializations exist for all basic types and the same operations are supported
asfor the C++11 st d: : at omi ¢ template. Similar convenience typedefs are
provided as well so that, for example, coat omi ¢_| ong can be used in place of
coat om c<l ong>.

coarray< coatom c<long> > x; // or coarray<coatom c_| ong>
x(i) ~=3; // atomic update x = x ~ 3 on inage i
long old_value = x(i)++; // atonmic increment, saving the old val ue

| ong new value = ++x(i); // atomc increnment, saving the new val ue

A coevent permits point-to-point synchronization between images. It wraps a
coatomic_long that acts as a counter and provides two operations, post and wait. Post
atomically increments the counter and wait blocks execution of the calling image
until it can atomically decrement the counter to a non-negative value.

coarray<coevent> X;

if (this_imge() == 0) {
/1 do sonething, then notify image 1
x(1).post();

else if (this_image() == 1) {

/1 wait for notification from another inage
x().wait(); /1 then do sonething

145

Cray C and C++ Reference Manual

8.4.3.3 conut ex

A comutex provides mutual exclusion. The lock function blocks until the mutex
can be acquired and the unlock function releases the mutex. The try_lock function
attempts to acquire the lock and returns a true upon success.

coarray<conut ex> m

n(i). lock();
/1 critical section, typically guarding access to data on inmage i
n(i).unlock();

8.5 Collectives

Coarray C++ provides broadcast and reduction collectives.

8.5.1 cobr oadcast

cobr oadcast replicates the value of a coarray on one image across al other
images.

#i ncl ude <cassert>
#i ncl ude <i ostreanr
#i ncl ude <coarray_cpp. h>

usi ng namespace coarray_cpp;

i nt
mai n(int argc, char* argv[])
{
coarray<int> x;
size_t image = this_inage();
size_t n = num.i mages();
if (imge == 0) {
X = 42;
sync_all ();
/1 Make x on every inage equal the x on image O.
cobroadcast(x, 0);
sync_all ();
assert(x == 42);
return O;
}

146 S-2179-83

Using Coarray C++ [8]

8.5.2 coreduce

cor educe applies a function across the coarray values of al images. For
convenience, template specializations of cor educe are provided for the addition,
min, and max operations from the C++ functional header. Implementations are likely
to provide optimized versions of at least these reductions.

#i ncl ude <cassert>
#i ncl ude <i ostreanr
#i ncl ude <coarray_cpp. h>
usi ng nanespace coarray_cpp;
i nt
mai n(int argc, char* argv[])
{
coarray<int> sum

coarray<i nt> mn;

coarray<i nt> max;

size_t image this_i mage();

size_t n num_ i mages() ;
sum = i nmage;
mn = inmage;
mex = image;

sync_all ();

cosum(sum); // equivalent to coreduce(sum std::plus<int>)
comin(min); // equivalent to coreduce(mn, std::less<int>)
comax(max); // equivalent to coreduce(max, std::greater<int>)

sync_all ();

assert(sum == n*(n-121)/72));
assert(min == 0);

assert(max == (n- 1));

return O;

S-2179-83 147

Cray C and C++ Reference Manual

8.6 Exceptions

Coarray C++ throws standard C++ exceptions, like st d: : bad_cast , but aso
throws some special exceptions for coarray-specific errors.

e invalid_imge_error

This exception is thrown whenever a cosubscript isinvalid. For example, given
acoarray X in aprogram executed with 4 images, x(4) triggers an exception
because the only valid image numbers are 0, 1, 2, and 3.

e invalid_put_error

This exception is thrown whenever a user-defined type is copied to a different
image, but that type hascoarray_trai t s that specify that it is not trivialy
puttable.

e msnmatched_extent _error

This exception is thrown when two arrays in an array assignment have a different
shape.

e msnmatched_i nage_error

This exception is thrown when two copointers are compared or subtracted, but the
copointers point to objects on different images.

8.7 Memory Consistency Model

8.7.1 atom c_i mage_fence()

Theat om c_i nage_fence() functionisthe Coarray C++ equivalent of the
C++1lstd::atom c_thread _fence() function. It has the sasme behavior
with respect toimagesasst d: : at omi c_t hr ead_f ence() haswith respect to
threads. Typically, it isused to ensure that all memory accesses made by the calling
image are visible to all images before performing subsequent memory accesses.

8.7.2 Accesses within a Single Image

148

The effect of two memory accesses made by an image to its own address space is
governed by the C++ memory consistency model. The C++ memory consistency
model depends on which version of the C++ standard is implemented by the
compiler. In general, a C++03 compiler assumes that an image is single-threaded and
offers no memory consistency guarantees if multiple threads perform the accesses,
whereas a C++11 compiler provides a detailed memory consistency model that can be
used to reason about the effect of memory accesses within a multithreaded image.

S-2179-83

Using Coarray C++ [8]

8.7.3 Accesses to Other Images

8.7.3.1 Multi-byte Accesses

A memory access of an object of size N bytes shall be treated asif it was performed
as N arbitrarily ordered single-byte memory accesses. For example, the target image
of awrite shall not rely on the Nth byte being written last to detect whether the full
object has been written.

8.7.3.2 From Different Images

The execution of a program contains a datarace if it contains two conflicting actions
in different images, at least one of which is not atomic, and neither happens before
the other. Any such data race results in undefined behavior. For example, if two
images both write to the same object without any synchronization:
if (this_imge() == 0) {

x(i) 0;
lelse if this_image() == 1) {

x(i) 1;

=l

}

then the final value of the object is undefined. Various forms of synchronization can
impose a specific order, such as in this example:

if (this_imge() == 0) {
x(i) = 0;

}

sync_all ();

if (this_imge() == 1)

{ x(i) =1,

}

where the assignment by image 0 happens before the assignment by image 1 because
of thesync_al |l ().

Two atomic operations issued by different images to the same coatomic object have
the same ordering relationship as two C++11 threads that perform the same atomic
operations on the same abject.

8.7.3.3 From the Same Image

Two memory accesses issued by the same image to non-conflicting memory addresses
are unordered.

S-2179-83 149

Cray C and C++ Reference Manual

Two memory accesses issued by the same image to conflicting memory addresses
within the address space of a single, different image shall have the same order as
if they were made within the issuing image's address space. For example, in the
following code:

x(i) = 1;int y = x(i);

the value of y will be 1 provided that there are no data races. Therefore, a Coarray
C++ implementation for a shared memory system could inline x(i) as a direct
memory access, allowing the compiler to make the following optimization (forward
substitution):

x(i) =1;int y = 1;

Note: For distributed memory systems, providing this ordering guarantee is
unfortunately somewhat onerous, but it is consistent with ordering guarantees of
other PGAS languages, namely UPC and Fortran. Two memory accesses issued
by an image to the same distant memory location typically will pass through the
issuing processor's memory system, a high-speed communication network, and
finally the target processor's memory system. Each hardware component is likely
to contain multiple data pathways to increase bandwidth and resiliency, such that
two memory accesses traveling on different pathways could bypass each other.
Providing the ordering guarantee may require constraining two memory accesses
to the same target location to always take the same hardware path to prevent
bypass. Alternatively, software can track outstanding memory accesses and defer
issuing an access if there is a conflict; however, software ordering adds overhead
to each memory access to check for conflictsas well as storage overhead to track
the accesses

8.8 Blocking Versus Non-blocking Accesses

When an image makes a blocking read or write access, it does not proceed to execute
its next operation until the access fully completes. By contrast, a non-blocking read
or write access permits an image to proceed to execute its hext operation before the
access fully completes and provides some mechanism for ensuring that the operation
has completed later.

8.8.1 Writes (Puts)

150

Neither the target image nor any other image besides the issuing image is required

to be able to observe the effects of awrite until some form of image synchronization
occurs. Therefore, an implementation is permitted to issue non-blocking writes for
al writes provided that it can ensure that conflicting accesses issued by the same
image occur in program order. Whether this guarantee is provided by software or
hardware depends on the implementation. To explicitly issue and manage completion
of a non-blocking write, see Cofutures on page 151.

S-2179-83

Using Coarray C++ [8]

8.8.2 Reads (Gets)

8.8.3 Cofutures

S-2179-83

A Coarray C++ read access is blocking in order to provide a value for usein an
arbitrary expression context:

coarray<int> x;
|nt y =x(i) +1; // read of x(i) shall block
A non-blocking read is performed via an explicit get () member function of coref:

int y;x(i).get(&);
/1 some code that does not access y
atom c_i mage_fence();
++y;

The get () member function issues a non-blocking read that is not guaranteed

to complete until the next fence. Theat om ¢_i mage_f ence() ensures
completion of all previously issued memory accesses. Theget () plusfence solution
IS appropriate in many cases, but it may be too broad if the fence would force
completion of other accesses on which the issuing image does not yet need to wait.
To explicitly issue and manage completion of a non-blocking read, see Cofutures

on page 151.

Coarray C++ provides explicit completion management of a non-blocking access
viaacof ut ur e, whichismodeled on C++11'sst d: : f ut ur e. A coref playsa
similar roleto C++11'sst d: : pr omi se, providing member functions that create
acof ut ur e. Hereisan example of a non-blocking read where the storage for the
value is contained within the cof ut ur e. The value cannot be accidentally used
before the operation has completed, but existing storage cannot be used as the target
of the read:

coarray<int> x;
cofuture<int> f = x(i).get_cofuture(); // or just x(i)
int z=f +1;, // using f waits then inplicitly returns the val ue

For convenience, a coref can automatically convert to a cof ut ur e so that the

get _cof ut ure() cal can be omitted. Here is an example of a non-blocking read
where the storage for the value is external to the cof ut ur e. Care must be taken to
not access the storage until wai t () has been caled:

coarray<int[100] > x;

int y[100];

cofuture<void> f = x(i).get_cofuture(y);

/1 code that does not read or wite y

fowait();
/1 code that reads or wites y

Note that the cof ut ur e's parameter type is void because it does not store any value.

151

Cray C and C++ Reference Manual

Here is an example of a non-blocking write. Care must be taken to not overwrite the
source of the write until wai t () has been called.

coarray<int> x;
int y;

cofuture<void> f = x(i).put_cofuture(y);
.. /1 code that does not wite y
f.wait(); // ensure that the x(i) =y assignnment conpleted

Note that the cof ut ur e's parameter type is void because acof ut ur e for awrite
never stores a value.

8.9 Code Patterns

8.9.1 Coobjects

152

When a coarray isincluded as a member of aclass, it can be allocated with the class
object or it can be allocated later:

/1 An X nust be allocated and destroyed
/1 collectively because it contains a coarray.
class X {

coarray<int> x;

I
/1l But a Y defers its "collectiveness" until
/1 it needs to allocate the coarray.

class Y {
coarray<i nt>* vy;

}s

These two options provide flexibility for implementing collective abjects, or
coobjects, which can encapsulate coarray data movement.

S-2179-83

Using Coarray C++ [8]

8.9.2 Hoisting acoptr

S-2179-83

When a coarray of pointer type is accessed within aloop, there may be unnecessary
reads of the pointer from the target image if the same image is accessed repeatedly:

coarray<int*> x;

for (int i =0; i <n; ++i) {
int ' y =x(1)[i]; // reads pointer x(1) each tine

}

A coptr orconst _coptr canbe used to hoist the read of the pointer:
coarray<int*> x;

;:;)lnst_coptr<i nt>p = x(1)[0].address(); // reads pointer x(1l) once

for (int i =0; i <n; ++H) {
inty=p[i];

153

Cray C and C++ Reference Manual

154 S-2179-83

Using Cray C Extensions [9]

9.1 Complex Data Extensions

Cray C extends the complex data facilities defined by standard C with these
extensions:

e Imaginary constants
e Incrementing or decrementing _Conpl ex data

The Cray C compiler supports the Cray imaginary constant extension and is defined
inthe <conpl ex. h> header file. Thisimaginary constant has the following form:

Ri

Ris either afloating constant or an integer constant; no space or other character
can appear between Rand i . If you are compiling in strict conformance mode
(- h conf or n, the Cray imaginary constants are not available.

The following example illustrates imaginary constants:

#i ncl ude <conpl ex. h>
doubl e conplex z1 = 1.2 + 3.4i;
doubl e conpl ex z2 = 5i;

The other extension to the complex data facility allows the prefix—and postfix-
increment and decrement operators to be applied to the _Conpl ex datatype. The
operations affect only the real portion of a complex humber.

9.2 fortran Keyword

S-2179-83

In extended mode, the identifier f or t r an istreated as a keyword. It specifiesa
storage class that can be used to declare a Fortran-coded external function. The use of
thef or t r an keyword when declaring a function causes the compiler to verify that
the arguments used in each call to the function are pass by addresses; any arguments
that are not addresses are converted to addresses.

Asin any function declaration, an optional type-specifier declares the type returned,
if any. Typei nt isthe default; typevoi d can be used if no valueisreturned (by a
Fortran subroutine). Thef or t r an storage class causes conversion of lowercase
function names to uppercase, and, if the function name ends with an underscore
character, the trailing underscore character is stripped from the function name.
(Stripping the trailing underscore character isin keeping with UNIX practice.)

155

Cray C and C++ Reference Manual

Functions specified with af or t r an storage class must not be declared elsewhere
inthefilewith ast at i ¢ storage class.

Note: Thef ortran keyword is not alowed in Cray C++.

An example using thef or t r an keyword is shown in Cray C and Fortran Example
on page 177.

9.3 Hexadecimal Floating-point Constants

156

The Cray C compiler supports the standard hexadecimal floating constant notations
and the Cray hexadecimal floating constant notation. The standard hexadecimal
floating constants are portable and have sizes that are dependent upon the hardware.
The remainder of this section discusses the Cray hexadecimal floating constant.

The Cray hexadecimal floating constant feature is not portable, because identical
hexadecimal floating constants can have different meanings on different systems. It
can be used whenever traditional floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by hexadecimal
characters. The optional floating suffix has the same form as for normal floating
constants: f or F (for float), | or L (for long), optionally followed by an i

(imaginary).

The constant must represent the same number of bits asits type, which is determined
by the suffix (or the default of double). The constant's bit length is four times the
number of hexadecimal digits, including leading zeros.

The following example illustrates hexadecimal constant representation:
OX7f7fffff.f

32-bit float
0x0123456789012345.

64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the specified
floating type. This uses an unsigned integral type of the same size as the floating
type, regardless of whether an object can be explicitly declared with such atype. No
conversion or range checking is performed. The resulting floating value is defined in
the same way as the result of accessing a member of floating type in aunion after a
value has been stored in a different member of integral type.

S-2179-83

Using Cray C Extensions [9]

The following example illustrates hexadecimal floating-point constant representation
that use Cray floating-point format:

i nt mai n(void)
{
float f1, f2;
doubl e g1, g2

f1 = 0x3ec00000. f;
f2 = 0x3fc00000. f;
gl = 0x40fa400100000000.
g2 = 0x40fa400200000000.
printf("fl1 = 98.8g\n", f1);
printf("f2 = 98.8g\n", f2);
printf("gl = %6.16g\n", gl);
printf("g2 = %46.16g\n", g2);
return 1;

}

Thisis the output for the previous example:

fi = 0.375

f2 = 1.5

gl = 107520. 0625

g2 = 107520. 125

S-2179-83 157

Cray C and C++ Reference Manual

158 S-2179-83

Using Predefined Macros [10]

The macros listed in this chapter are the Cray-specific predefined macros. To see the
entire list of predefined macros, add - Wb, - 1i st _fi nal _nmacros toyour cc
command line. For example, if you havethefilec. c, specify:

%cc -W, -list_final _macros c.c > out

Predefined macros can be divided into the following categories:

Macros required by the C and C++ standards (Macros Required by the C and
C++ Standards on page 159)

Macros based on the host machine (Macros Based on the Host Machine on
page 160)

Macros based on the target machine (Macros Based on the Target Machine on
page 160)

Macros based on the compiler (Macros Based on the Compiler on page 161)
UPC macros (UPC Predefined Macros on page 161)

Predefined macros provide information about the compilation environment. In this
chapter, only those macros that begin with the underscore (_) character are defined
when running in strict-conformance mode.

Note: Any of the predefined macros except those required by the standard (see
Macros Required by the C and C++ Standards on page 159) can be undefined by
using the - U command line option; they can also be redefined by using the - D
command line option.

A large set of macrosis also defined in the standard header files.

10.1 Macros Required by the C and C++ Standards

The following macros are required by the C and C++ standards:

S-2179-83

Macro Description

__TIME Time of tranglation of the sourcefile.

__DATE _ Date of trandation of the sourcefile.

__LINE Line number of the current line in your sourcefile.

159

Cray C and C++ Reference Manual

Macro Description
__FILE Name of the source file being compiled.
__STDC__ Defined as the decimal constant 1 if compilation

isin strict conformance mode; defined as the
decimal constant 2 if the compilation isin extended
mode. This macro is defined for Cray C and C++
compilations.

__cpl uspl us Defined as 1 when the compiling Cray C++ code
and undefined when compiling Cray C code. The
__cpl uspl us macro isrequired by the ISO C++
standard, but not the SO C standard.

10.2 Macros Based on the Host Machine

The following macros provide information about the environment running on the

host machine:
Macro Description
__linux Defined as 1.
__linux__ Defined as 1.
l'i nux Defined as 1.
__gnu_linux__ Defined as 1.

10.3 Macros Based on the Target Machine

The following macros provide information about the characteristics of the target

machine:

Macro x86 AVX

_ADDR64 Defined as 1 if the targeted CPU has 64-bit address registers; if the
targeted CPU does not have 64-bit address registers, the macro is not
defined.

__LITTLE_ENDI AN__ Defined as 1.

_LI TTLE_ENDI AN Defined as 1.

_MAXVL_8 Defined as 16, the number of Defined as 32, the number of 8-bit
8-bit elementsthat fitinan XMM elements that fitin aYMM register
register ("vector length"). ("vector length").

_MAXVL_16 Defined as 8. Defined as 16.

160 S-2179-83

Using Predefined Macros [10]

Macro x86 AVX

_MAXVL_32 Defined as 4. Defined as 8.
_MAXVL_64 Defined as 2. Defined as 4.
_MAXVL_128 Defined as 0. Defined as 2.

10.4 Macros Based on the Compiler

The following macros provide information about compiler features:

Macro Description
_RELEASE MAJOR Defined as the major release level of the compiler.
_RELEASE M NOR Defined as the minor release level of the compiler.

_RELEASE _STRI NG Defined as astring that describes the version of the
compiler.

_CRAYC Defined as 1 to identify the Cray C and C++
compilers.

10.5 UPC Predefined Macros

The following macros provide information about UPC functions:

Macro Description

__UPC The integer constant 1, indicating a
conforming implementation.

__UPC DYNAM C _THREADS The integer constant 1 in the dynamic
THREADS trand ation environment.

__UPC_STATI C_THREADS The integer constant 1 in the static

THREADS trand ation environment.

S-2179-83 161

Cray C and C++ Reference Manual

162 S-2179-83

Running C and C++ Applications [11]

To run applications, log in to alogin node and set up your user environment. See the
Cray Application Developer's Environment User's Guide for details on setting up
your environment. In your working directory, load the appropriate modules, compile
your programs, and launch them using the apr un command.

To use the Cray C compiler, load the Pr gEnv- cr ay module. Use the modul e

| i st command to get alist of currently loaded modules. If another Programming
Environment module is loaded, use the nodul e swap command. For example, if
Pr gEnv- pgi isloaded, use this command:

% nodul e swap PrgEnv-pgi PrgEnv-cray

Thenusethecc -V command to verify that the Cray C compiler is available.
Compile your application.

%cc -o sinple sinple.c

Move your application to a mount point on the Cray system to execute.

% aprun -n 4 ./sinple | sort

Application 1024906 resources: utime 0, stine O
hello frompe 0 of 4

hello frompe 1 of 4

hello frompe 2 of 4

hello frompe 3 of 4

If you specified the - X option on the cc command line, then the apr un - n option
must specify the same number of processing elements (npes). Otherwise, you will
receive arun time error.

For additional information, see the Cray Programming Environment User's Guide.

S-2179-83 163

Cray C and C++ Reference Manual

164 S-2179-83

Debugging Cray C and C++ Code [12]

The Total View symbolic debugger is available to help you debug C and C++ codes.
In addition, the Cray C and C++ compilers provide the following features to help
you in debugging codes:

S-2179-83

The - Gand - g compiler options provide symbol information about your source
code for use by the Tota View debugger. For more information about these
compiler options, see - Glevel and - g on page 52.

The - h [no] bounds option and the #pragma _CRI [no] bounds
directive let you check pointer and array references. The - h [no] bounds
option is described in - h [no] bounds (cc) on page 52. The
#pragma _CRI [no] bounds directive is described in [no] bounds
Directive on page 76.

The - G3 option optimizes code for use with Cray fast-track debugging and
requires use of a debugger that supports fast-track debugging. For more
information, see the | gdb(1) man page.

The#pragma _CRlI nessage directive lets you add warning messages to
sections of code where you suspect problems. The#pragnma _CRlI nessage
directive is described in message Directive on page 80.

The#pragma _CRI [no] opt directive letsyou selectively isolate portions of
your code to optimize, or to toggle optimization on and off in selected portions of
your code. The#pragma _CRI [no] opt directiveisdescribedin[no] opt
Directive on page 80.

165

Cray C and C++ Reference Manual

12.1 TotalView Debugger

Some of the functions available in the Total View debugger allow you to perform the
following actions:

Set and clear breakpoints, which can be conditional, at both the source code level
and the assembly code level

Examine core files

Step through a program, including across function calls
Reattach to the executable file after editing and recompiling
Edit values of variables and memory locations

Evaluate code fragments

12.2 Compiler Debugging Options

Compiler options control the trade-offs between ease of debugging and compiler
optimizations. The compiler produces internal debugger information (DWARF) at
al times. The DWARF data provides function and line information to debuggers
for tracebacks and breakpoints, as well as type and location information about data
variables.

These options are specified as follows:

166

- G3 This option permits both full code optimization and the greatest flexibility
in setting breakpoints, but requires use of the Cray fast-track debugger. For more
information, see the | gdb(1) man page.

-2

With no DWAREF, the executable is optimized and as small as possible, but cannot
be easily debugged. Only assembly instructions will be visible and only glabal
symbols will be available.

-Gl

With partial DWARF and at least some optimization, tracebacks and limited
breakpoints are available in the debugger. The source code will be visible and
many more symbols will be available. The executable will be somewhat slower
and larger in exchange for increased debugger functionality.

-gor-Q&0

With full DWARF and no optimizations, full debugging will be available, but at
the cost of a slower and larger executable.

Note: The- g or - Goptions may be specified on a per file basis so that only
part of an application incurs the overhead of improved debugging.

S-2179-83

Debugging Cray C and C++ Code [12]

However, consider the following cases in which optimization is affected by the - G1
and - & debugging options:

» Vectorization can be inhibited if alabel exists within the vectorizable loop.

» Vectorization can be inhibited if the loop contains a nested block and the - GL
option is specified.

* Whenthe- Gl option is specified, setting a breakpoint at the first statement in a
vectorized loop alows you to stop and display at each vector iteration. However,
setting a breakpoint at the first statement in an unrolled loop may not allow you to
stop at each vector iteration.

S-2179-83 167

Cray C and C++ Reference Manual

168 S-2179-83

Using Interlanguage Communication [13]

The C and C++ compilers provide mechanisms for declaring external functions
written in other languages. This enables you to write portions of an application in C,
C++, Fortran, or assembly language, which can be useful in cases where the other
languages provide performance advantages or utilities not availablein C or C++. The
calling sequence is described in detail on the cal | seq(3) man page.

13.1 Calls Between C and C++ Functions

The following requirements apply when making calls between functions writtenin C
and C++:

In Cray C++, theext ern " C" linkageis required when declaring an external
function that iswritten in Cray C or when declaring a Cray C++ function that isto
be called from Cray C. Normally the compiler mangles function names to encode
information about the function's prototype in the external name; this prevents
direct access to these function names from a C function. Theextern "C'
keyword prevents the compiler from performing name mangling.

The program must be linked using the CC command.

The program's main routine must be C or C++ code compiled using the CC
command.

Objects can be shared between C and C++. There are some Cray C++ objects that
are not accessible to Cray C functions (such as classes). The following object types
can be shared directly:

S-2179-83

Integral and floating types.

Structures and unions that are declared identically in C and C++. In order for
structures and unions to be shared, they must be declared with identical members
in the identical order.

Arrays and pointers to the above types.

169

Cray C and C++ Reference Manual

In the following example, a Cray C function (C_add_f unc) iscalled by the Cray
C++ main program:

#i ncl ude <i ostream h>

extern "C'" int C add_func(int, int);
int global _int = 123;

mai n()
{
int res, i;
cout << "Start C++ main" << endl;
[* Call C function to add two integers and return result. */
cout << "Call C C add_func" << endl;
res = C_ add_func(10, 20);

cout << "Result of C add_func = " << res << endl;
cout << "End C++ mmin << endl;

}
The Cray C function (C_add_f unc) isasfollows:

#i ncl ude <stdio. h>
extern int global _int;

int C.add_func(int pl, int p2)

{
printf("\tStart C function C add_func.\n");
printf("\t\tpl = %\ n", pl);
printf("\t\tp2 = %d\n", p2);
printf("\t\tglobal _int = %\n", global _int);
return pl + p2;

}

The output from the execution of the calling sequence illustrated in the preceding
exampleis as follows:

Start C++ main
Call C C add func
Start C function C add _func.

pl = 10
p2 = 20
gl obal _int = 123

Result of C_add_func = 30

End C++ main

13.2 Calling Fortran Functions and Subroutines from C or C++

The following standard considerations apply when calling Fortran functions from C
or C++. In addition, new interoperability features are supported under the more recent
Fortran standards. These newer features are described in Calling a C or C++ Function
from Fortran on page 180.

170 S-2179-83

Using Interlanguage Communication [13]

13.2.1 Requirements

Fortran uses the call-by-address convention. C and C++ use the call-by-value
convention, which means that only pointers should be passed to Fortran
subprograms. For more information, see Argument Passing on page 171.

Fortran arrays are in column-mgjor order. C and C++ arrays are in row-major
order. Thisindicates which dimension isindicated by the first value in an array
element subscript. For more information, see Array Storage on page 172.

Single-dimension arrays of signed 32-bit integers and single-dimension arrays
of 32-bit floating-point numbers are the only aggregates that can be passed as
parameters without changing the arrays.

Fortran character pointers and character pointers from Cray C and C++ are
incompatible. For more information, see Logical and Character Data on page 173.

Fortran logical values and the Boolean values from C and C++ are not fully
compatible. For more information, see Logical and Character Data on page 173.

External C and C++ variables are stored in common blocks of the same name,
making them readily accessible from Fortran programsif the C or C++ variableis
in uppercase.

When declaring Fortran functions or objectsin C or C++, the name must be
specifiedin all uppercase letters, digits, or underscore characters and consist of
31 or fewer characters.

In Cray C, Fortran functions can be declared using the f or t r an keyword (see
f ort ran Keyword on page 155). Thef ort r an keyword is not availablein
Cray C++. Instead, Fortran functions must be declared by specifying ext er n
"C'.

13.2.2 Argument Passing

S-2179-83

Because Fortran subroutines expect arguments to be passed by pointers rather than
by value, C and C++ functions called from Fortran subroutines must pass pointers
rather than values.

All argument passing in Cray C is strictly by value. To prepare for afunction call
between two Cray C functions, a copy is made of each actual argument. A function
can change the values of its formal parameters, but these changes cannot affect the
values of the actual arguments. It is possible, however, to pass a pointer. (All array
arguments are passed by this method.) This capability is analogous to the Fortran
method of passing arguments.

In addition to passing by value, Cray C++ also provides passing by reference.

171

Cray C and C++ Reference Manual

13.2.3 Array Storage

172

C and C++ arrays are stored in memory in row-major order. Fortran arrays are stored
in memory in column-major order. For example, the C or C++ array declaration i nt
Al 3] [2] isstored in memory as:

A[0][0] Al 0] [1]
A[1][0] Al 1] 1]
A[2][0] Al 2] [1]

The previously defined array is viewed linearly in memory as:
A[O][O0] A[OI[1] A[1][O] AL1][1] AL2][0] A[2][1]
The Fortran array declaration | NTEGER A(3, 2) isstored in memory as:

A(1, 1) A(2, 1) A(3, 1)
A1, 2) A(2,2) A3, 2)

The previously defined array is viewed linearly in memory as:
A(1,1) A(2,1) A3,1) A(l,2) A272 A2

When an array is shared between Cray C, C++, and Fortran, its dimensions are
declared and referenced in C and C++ in the opposite order in which they are
declared and referenced in Fortran. Arrays are zero-based in C and C++ and are
one-based in Fortran, so in C and C++ you should subtract 1 from the array subscripts
that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example, the
equivaent declaration in C or C++ is:

int a[2][3];

The following list shows how to access elements of the array from Fortran and from C
or C++:

Fortran Cor C++
A(L, 1) AL0][0]
A(2,1) AL0][1]
A(3,1) AL0][2]

S-2179-83

Using Interlanguage Communication [13]

A(L,2) AL1][0]
A(2,2) AL1][1]
A3, 2) AL 1][2]

13.2.4 Logical and Character Data

Logical and character data need specia treatment for calls between C or C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C and C++. The techniques used to represent logical (Boolean) values also
differ between Cray C, C++, and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
fort ran. h header fileand conversion macros shown in the following list:

Macro Description
_btol Conversion utility that converts a 0 to a Fortran logical . FALSE.

and a nonzero value to a Fortran logical . TRUE.

_Itob Conversion utility that converts a Fortran logical . FALSE. toa0
and aFortran logical . TRUE. toal.

13.2.5 Accessing Named Common from C and C++

The following example demonstrates how external C and C++ variables are accessible
in Fortran named common blocks. It shows a C or C++ function calling a Fortran
subprogram, the associated Fortran subprogram, and the associated input and output.

In this example, the C or C++ structure _st is accessed in the Fortran subprogram
as common block ST. The Fortran common block ST will be converted to lower
case with atrailing underscore added.

The name of the structure and the converted Fortran common block name must
match. The C and C++ structure member names and the Fortran common block
member names do hot have to match, asis shown in this example.

S-2179-83 173

Cray C and C++ Reference Manual

The following Cray C main program calls the Fortran subprogram FCTN:

#i ncl ude <stdio. h>

struct
{
int i;
doubl e a[10];
| ong doubl e d;
}o_st;
mai n()
{ . .
int i;

/[* initialize struct _st */
_st.| = 12345;

for (i =0; i < 10; i++)
_st.a[i] =1i;

_st.d = 1234567890. 1234567890L,;

/* print out the menbers of struct _st */

printf("In C _st.i = 9%, _st.d = 9%20.10Lf\n",

printf("ln C _st.a =");

for (i =0; i < 10; i++)
printf("%t. 1f", _st.a[i]);

printf("\n\n");

/* call the fortran function */
FCTN() ;
}

_st.i, _st.d);

The following example is the Fortran subprogram FCTN called by the previous Cray

C main program:

C*********** Fortran Subprogram(ff) kkkkkkkkkkx

SUBROUTI NE FCTN

COWON / ST/ STI, STA(10), STD
| NTEGER STI

REAL STA

DOUBLE PRECI S| ON STD

| NTEGER |

WRI TE(6, 100) STI, STD

100 FORMAT (' IN FORTRAN: STI ="', 15, ', STD = ',
WRI TE(6, 200) (STA(1), | = 1,10)

200 FORMAT ('IN FORTRAN: STA =', 10F4.1)
END

174

D25. 20)

S-2179-83

Using Interlanguage Communication [13]

The previous Cray C and Fortran examples are executed by the following commands,
and they produce the output shown:

%cc -c c.C

%ftn -¢c f.f

%ftn c.o f.o

% ./ a.out

ST.i = 12345, ST.d = 1234567890. 1234567890

InC ST.a= 0.01.02.03.04.05.06.07.08.009.0

I'N FORTRAN: STI
I'N FORTRAN: STA

12345, STD = .12345678901234567889D+10
0.01.02.03.04.05.06.07.08.009.0

13.2.6 Accessing Blank Common from C or C++

S-2179-83

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named common
block has a name specified in names of variables or arrays stored in the block. A
blank common block, sometimes referred to as blank common, is declared in the same
way, but without a name.

There is no way to access blank common from C or C++ similar to accessing a named
common block. However, you can write a smple Fortran function to return the
address of the first word in blank common to the C or C++ program and then use that
as a pointer value to access blank common.

175

Cray C and C++ Reference Manual

The following example shows how Fortran blank common can be accessed using
C or C++ source code:

#i ncl ude <stdio. h>

struct st
{
float a;
float b[10];
} *sT,

#i fdef __cplusplus
extern "C' struct st *MYCOVWON(void);
extern "C'" void FCTN(voi d);

#el se
fortran struct st *MyYCOWON(void);
fortran void FCTN(voi d);

#endi f

mai n()

{

int i;

ST = MYCOVWON() ;
ST->a = 1.0;
for (i =0; i < 10; i++)
ST->b[i] =i +2;
printf("\n In C and C++\n");
printf(" a = 9%. 1f\n", ST->a);
printf(" b ");
for (i =0; i < 10; i++)
printf("9%.1f ", ST->b[i]);
printf("\n\n");

FCTN() ;
}

This Fortran source code accesses blank common and is accessed from the C or C++
source code in the preceding example:
SUBROUTI NE FCTN

COWON // STA, STB(10)
PRINT *, "IN FORTRAN'

PRINT *, " STA = ", STA
PRI NT *, " STB = ", STB
STOP
END

FUNCTI ON MYCOMMVON()
COMWON // A
MYCOMMON = LOC(A)
RETURN

END

Thisisthe output of the previous C or C++ source code:

1.0
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

a
b

176 S-2179-83

Using Interlanguage Communication [13]

Thisisthe output of the previous Fortran source code:

STA = 1.
STB = 2.

13.2.7 Cray C and Fortran Example

S-2179-83

Here is an example of a Cray C function that calls a Fortran subprogram. The Fortran
subprogram example follows the Cray C function example, and the input and output
from this sequence follows the Fortran subprogram example.

Note: This example assumes that the Cray Fortran function is compiled with
the-s def aul t 32 option enabled. The examples will not work if the - s
def aul t 64 option is enabled.

/* C program (main.c): */

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <fortran. h>

/* Declare prototype of the Fortran function. Note the last */
/* argunent passes the length of the first argunent. */
fortran double FTNFCTN (char *, int *, int);

doubl e FLOAT1 = 1. 6;
double FLOAT2; /* Initialized in FTNFCTN */

mai n()

{
int clogical, ftnlogical, cstringlen;
doubl e rtnval;
char *cstring = "C Character String";

/* Convert clogical to its Fortran equival ent */
clogical = 1;
ftnlogical = _btol (clogical);

/* Print values of variables before call to Fortran function */
printf(" I'n main: FLOAT1 = %g; FLOAT2 = %g\n",
FLOAT1, FLOAT2);
printf(" Calling FTNFCTN with argunents:\n");
printf(" string = \"%\"; logical = %\n\n", cstring, clogical);
cstringlen = strlen(cstring);
rtnval = FTNFCTN(cstring, & tnlogical, cstringlen);

/* Convert ftnlogical to its C equivalent */
clogical = _Itob(& tnlogical);

/* Print values of variables after call to Fortran function */
printf(" Back in main: FTNFCTN returned %g\n", rtnval);
printf(" and changed the two arguments:\n");
printf(" string =\"%*s\"; logical = %l\n",
cstringlen, cstring, clogical);

C Fortran subprogram (ftnfctn.f):

FUNCTI ON FTNFCTN(STR, LOG)

177

Cray C and C++ Reference Manual

178

C

REAL FTNFCTN
CHARACTER* (*) STR
LOG CAL LOG

COVMMON / FLOAT1/ FLOAT1

COMMON / FLOAT2/ FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT2/ 2. 4/ ! FLOAT1 INITIALIZED IN MAIN

PRI NT CURRENT STATE OF VARI ABLES

PRI NT*, ' I'N FTNFCTN: FLOAT1 = ', FLOAT1,
1 ', FLOAT2 = ', FLOAT2
PRI NT*, ' ARGUMENTS: STR="', STR '"; LOG ="

CHANGE THE VALUES FOR STR(I NG AND LOG(| CAL)
STR = 'New Fortran String'
LOG . FALSE.

FTNFCTN = 123. 4

PRI NT*, RETURNI NG FROM FTNFCTN W TH ', FTNFCTN
PRI NT*

RETURN

END

LOG

The previous Cray C function and Fortran subprogram are executed by the following
commands and produce the following output:

%cc -c main.c

%ftn -c ftnfctn.f

% ftn main.o ftnfctn.o

% ./ a.out

In main: FLOAT1 = 1.6; FLOAT2 = 2.4
Calling FTNFCTN wi t h argunents:

string = "C Character String"; |ogical

1}
H

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4
ARGUMENTS: STR = "C Character String"; LOG =T
RETURNI NG FROM FTNFCTN W TH 123. 4

Back in main: FTNFCTN returned 123.4

and changed the two argunents:

string = "New Fortran String"; logical =0

S-2179-83

Using Interlanguage Communication [13]

13.2.8 Calling a Fortran Program from Cray C++

The following example illustrates how a Fortran program can be called from a Cray
C++ program:

#i ncl ude <i ostrean
usi ng namespace std;
extern "C'" int fortran_add_ints_(int *argl, int &arg2);

mai n()
{
int nunl, nun?, res;
cout << "Start C++ main" << endl << endl;

/1 Call FORTRAN function to add two integers and return result.
/I Note that the second argunent is a reference paraneter so
/lit is not necessary to take the address of the

/lvariabl e nung.

1
nun = 2
cout << "Before Call to FORTRAN_ADD | NTS" << endl;
res = fortran_add_ints_(¨, nun);
cout << "Result of FORTRAN Add = " << res << endl << endl;
cout << "End C++ nmain" << endl;

The Fortran program that is called from the Cray C++ mai n function in the
preceding example is as follows:

| NTEGER FUNCTI ON FORTRAN ADD_| NTS(Argl, Arg2)
| NTEGER Argl, Arg2

PRINT *," FORTRAN ADD INTS, Argl,Arg2 =", Argl, Arg2
FORTRAN_ADD I NTS = Argl + Arg2
END

The output from the execution of the preceding exampleis as follows:

Start C++ main

Before Call to FORTRAN_ADD | NTS
FORTRAN_ADD | NTS, Argl, Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ nmain

S-2179-83 179

Cray C and C++ Reference Manual

13.3 Calling a C or C++ Function from Fortran

In addition to calling Fortran functions and subroutines from C or C++ programs,
C or C++ functions can be called from Fortran. Two methods can be used: either
the Standard Fortran/C Interoperability on page 183 or the Portable Interoperability
Mechanism on page 180, which provides a standard portable interoperability
mechanism for Fortran and C programs.

13.3.1 Portable Interoperability Mechanism

If you use the method documented in this section, keep in mind the information in
Calling Fortran Functions and Subroutines from C or C++ on page 170.

When calling a Cray C++ function from a Fortran program, observe the following
rules:

e TheCray C++ function must be declared withext ern " C" linkage.
e The program must be linked using the CC command.

e The program's main routine must be C or C++ code compiled using the CC
command.

The example that follows illustrates a Fortran program, mai n. f , that calls a Cray
C function, ct ct n. c. The Cray C function being called, the commands required,
and the associated input and output are also included.

Note: This example assumes that the Cray Fortran program is compiled with
the-s def aul t 32 option enabled, and will not work if the-s def aul t 64
option is enabled.

180 S-2179-83

Using Interlanguage Communication [13]

S-2179-83

Example 14. Calling a C function from Fortran

Fortran program mai n. f source code:

C Fortran program (main.f):
PROGRAM MAI N

REAL CFCTN

COMVON / FLOAT1/ FLOAT1

COVMON / FLOAT2/ FLOAT2

REAL FLOAT1, FLQAT2

DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn.c
LOG CAL LOG

CHARACTER* 24 STR

REAL RTNVAL

C INTIALI ZE VAR ABLES STR(I NG AND LOG | CAL)
STR = 'Fortran Character String'

LOG = . TRUE.

C PRINT VALUES OF VARI ABLES BEFORE CALL TO C FUNCTI ON
PRINT*, 'In main.f: FLOAT1 ="', FLOATL,
1 ', FLOAT2 = ', FLOAT2
PRINT*, '"Calling cfctn.c with these argunments: '
PRI NT*, 'LOG ="', LOG
PRINT*, 'STR ="', STR

RTNVAL = CFCTN(STR, LOG)

C PRINT VALUES OF VAR ABLES AFTER CALL TO C FUNCTI ON

PRI NT*, "Back in main.f:: cfctn.c returned ', RTNVAL

PRI NT*, 'and changed the two argunents to: '

PRINT*, 'LOG ="', LOG
PRI NT*, 'STR ="', STR
END PROGRAM

Compile mai n. f, creating mai n. o:

%ftn -c main.f

181

Cray C and C++ Reference Manual

C function cf ct n. ¢ source code:

/* C function (cfctn.c) */
#i ncl ude <fortran. h>

#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#incl ude <string. h>

fl oat FLOATI1; /* Initialized in MAIN */
float FLOAT2 = 2. 4;

/* The slen argunent passes the length of string in str */
float cfctn_(char * str, int *log, int slen)
{

int clog;

float rtnval;

char *cstring;

/* Convert |og passed fromFortran MAIN */
/* into its C equivalent */
cstring = mall oc(sl en+l);
strncpy(cstring, str, slen);
cstring[slen] = '\0";
clog = _Itob(log);

/* Print the current state of the variables */
printf(" In CFCTN. FLOAT1 = % 1f; FLOAT2 = % 1f\n",
FLOAT1, FLQOAT2);
printf(" Argunents: str ='%'; log = %\ n",
cstring, clog);

/* Change the values for str and log */
strncpy(str, "C Character String ", 24);
*log = O;

rtnval = 123. 4;
printf(" Returning fromCFCTN with % 1f\n\n", rtnval);
return(rtnval);

}

Compilecf ct n. c, creating cf ct n. o:

%cc -c cfctn.c

Link mai n. o and cf ct n. 0, creating executablei nt er | angl:

%ftn -o interlangl main.o cfctn.o

Run program i nt er | ang1:

% ./interl angl

182 S-2179-83

Using Interlanguage Communication [13]

Program output:

In main.f: FLOAT1 = 1.60000002 ; FLOAT2 = 2.4000001
Calling cfctn.c with these argunents:

LG = T

STR = Fortran Character String

In CFCTN. FLOAT1 = 1.6; FLOAT2 = 2.4

Argunents: str = 'Fortran Character String'; log =1
Returning from CFCTN with 123. 4

Back in main.f:: cfctn.c returned 123.400002
and changed the two argunents to:

LOG F

STR = C Character String

13.3.2 Standard Fortran/C Interoperability

S-2179-83

For more information about C interoperability, see the current Fortran standard.

Thel SO_C_BI NDI NG module provides interoperability between Fortran intrinsic
typesand C types. Thel SO_C_BI NDI NG module provides named constants which

can be used as KI ND type parameters, compatible with C types.

In addition to the named constants required by the Fortran 2003 standard, Cray
compiler provides, as an extension, definitionsfor 128-bit floating, and complex

types. C_FLOAT128 and C_FLOAT128_COWVPLEX correspond to C types
__floatl128and__fl oat 128 conpl ex.

183

Cray C and C++ Reference Manual

184 S-2179-83

Implementation-defined Behavior [14]

This chapter describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the behavior of
each particular implementation be documented, and define implementation-defined
behavior as behavior that is dependent on the characteristics of the implementation
for a correct program construct and correct data.

14.1 Messages

All diagnostic messages issued by the compilers are reported through the

Cray Linux Environment (CLE) message system. For information about messages
issued by the compilers and for information about the Cray Linux Environment
(CLE) message system, see Appendix C, Using the Compiler Message System on
page 209.

14.2 Environment

S-2179-83

When ar gc and ar gv are used as parameters to the mai n function, the array
members ar gv[O] through ar gv[ar gc- 1] contain pointers to strings that
are set by the command shell. The shell sets these arguments to the list of words
on the command line used to invoke the compiler (the argument list). For further
information about how the words in the argument list are formed, refer to the
documentation on the shell in which you are running. For information about
Cray Linux Environment (CLE) shells, see the sh(1) or csh(1) man page.

A third parameter, char ** envp, provides access to environment variables. The
value of the parameter is a pointer to the first element of an array of null-terminated
strings that matches the output of the env command. The array of pointersis
terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that st di n, st dout ,
andstderr (ci n,cout,andcerr inCray C++) refer to interactive devices and
buffer them accordingly.

185

Cray C and C++ Reference Manual

14.2.1 Identifiers

14.2.2 Types

186

The identifier (as defined by the standards) is merely a sequence of letters and digits.
Specific uses of identifiers are called names.

The Cray C compiler treats the first 255 characters of a name as significant, regardless
of whether it is an internal or external name. The case of names, including external
names, is significant. In Cray C++, all characters of a name are significant.

Table 11 summarizes Cray C and C++ types and the characteristics of each type.
Representation is the number of bits used to represent an object of that type. Memory
is the number of storage bits that an object of that type occupies.

In the Cray C and C++ compilers, size, in the context of the si zeof operator,
refers to the size allocated to store the operand in memory; it does not refer to
representation, as specifiedin Table 11. Thus, the si zeof operator will return asize
that is equal to the value in the Memory column of Table 11 divided by 8 (the number
of bitsin abyte).

Table 11. Data Type Mapping

Representation Size and Memory Storage

Type Size (bits)

bool (C++) 8

_Bool (C) 8

char 8

wchar t 32

short 16

i nt 32

| ong 64

l ong | ong 64

fl oat 32

doubl e 64

| ong doubl e 64

fl oat conpl ex 64 (each part is 32 hits)
doubl e conpl ex 128 (each part is 64 bits)
| ong doubl e conpl ex 128 (each part is 64 bits)
_float128 128

S-2179-83

Implementation-defined Behavior [14]

Representation Size and Memory Storage

Type Size (bits)
_float 128 conpl ex 256 (each part is 128 hits)
Pointers 64

Note: Vectorization of 8- and 16-bit data types is deferred.

14.2.3 Characters

S-2179-83

The full 8-bit ASCII code set can be used in source files. Characters not in the
character set defined in the standard are permitted only within character constants,
string literals, and comments. The - h [no] cal char s option allows the use of the
$ sign in identifier names. For more information about the - h [no] cal char s
option, see- h [no] cal char s on page 35.

A character consists of 8 bits. Up to 8 characters can be packed into a 64-bit word.
A plain char type (that is, one that is declared without asi gned or unsi gned
keyword) is treated as a signed type.

Character constants and string literals can contain any characters defined in the 8-bit
ASCII code set. The characters are represented in their full 8-bit form. A character
constant can contain up to 8 characters. The integer value of a character constant

is the value of the characters packed into aword from left to right, with the result
right-justified, as shown in the following table:

Table 12. Packed Characters

Character Constant Integer Value
"a' 0Ox61
" ab' 0x6162

In a character constant or string literal, if an escape sequence is not recognized, the
\ character that initiates the escape sequence is ignored, as shown in the following
table:

Table 13. Unrecognizable Escape Sequences

Character Constant Integer Value Explanation

"\a' 0ox7 Recognized asthe ASCII BEL character
"\ 8 0x38 Not recognized; ASCII value for 8
"\ [0x5b Not recognized; ASCII valuefor [
"\c' 0x63 Not recognized; ASCII valuefor ¢
187

Cray C and C++ Reference Manual

14.2.4 Wide Characters

14.2.5 Integers

188

Wide characters are treated as signed 64-bit integer types. Wide character constants
cannot contain more than one multibyte character. Multibyte characters in wide
character constants and wide string literals are converted to wide charactersin the
compiler by calling the mbt owc () function. The current locale in effect at the time
of compilation determines the method by which nbt owc () converts multibyte
characters to wide characters, and the shift states required for the encoding of
multibyte characters in the source code. If a wide character, as converted from a
multibyte character or as specified by an escape sequence, cannot be represented in
the extended execution character set, it is truncated.

All integral values are represented in atwo's complement format. For representation
and memory storage reguirements for integral types, see Table 11.

When an integer is converted to a shorter signed integer, and the value cannot be
represented, the result is the truncated representation treated as a signed quantity.
When an unsigned integer is converted to a signed integer of equal length, and the
value cannot be represented, the result is the original representation treated as a
signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ", and |)
operate on signed integers in the same manner in which they operate on unsigned
integers. The result of el >> €2, where €l is a negative-valued signed integral
value, isthat el is right-shifted €2 bit positions; vacated bits are filled with 1s. This
behavior can be modified by using the- h nosi gnedshi fts option (see- h

[no] si gnedshi ft s on page 35). Bits higher than the sixth bit are not ignored.

Theresult of the/ operator isthe largest integer less than or equal to the algebraic
quotient when either operand is negative and the result is a nonnegative value. If

the result is a negative value, it is the smallest integer greater than or equal to the
algebraic quotient. The/ operator behaves the same way in C and C++ asin Fortran.

The sign of the result of the percent (%9 operator is the sign of the first operand.

Integer overflow isignored. Because some integer arithmetic uses the floating-point
instructions, floating-point overflow can occur during integer operations. Division by
0 and all floating-point exceptions, if not detected as an error by the compiler, can
cause a run time abort.

S-2179-83

Implementation-defined Behavior [14]

14.2.6 128-Bit Floating Point and 256-Bit Complex Predefined Types

The Cray C and C++ Compilers now support 128-hit floating point and 256-bit
complex predefined types using the X86-64 ABI definitionsfor type names and data
layout. These types are sometimes referred to as quad-precision. In C and C++, use
__float128,and__fl oat 128 _conpl ex. The header filequadmat h. h
definesthe 128-bit functions and the header fileconpl ex. h definesthe complex
functions.

The base type itself uses 128 hits of storage with a guaranteed minimum alignment on
a 128-bit boundary, little endian, has a 15-hit exponent, a 113-bit mantissa, and an
exponent bias of 16383, and is compatible with the gcc implementation.

In C and C++, | ong doubl e remainsidentical to doubl e — 64-bit IEEE, and
not 80-bit extended precision.

C forms of intrinsic math functions offer full support for quad-precision types.
Seethei ntro_quad_preci si on(3i) man page for a complete list of intrinsic
functions that support quad-precision.

There is no printf descriptor for __ float128. quadnmat h. h definesgnu functions
quadmat h_snprintf() andstrtoflt128() that convert __ fl oat 128
to strings:

extern __float128 strtoflt128 (const char *, char **);
extern int quadmath_snprintf (char *str, size_t size, const char *format, ...)

Alternatively, use a Fortran subroutine to print a 128-bit floating point number:

% cat printfl28main.c printf128.f

#i ncl ude <quadnat h. h>

#i ncl ude <mat h. h>

printf128 (__float128 *x);

voi d mai n(){
__float128 x=1.234567890123456789012345678901234567890Q
printf128 (&x);

}
subroutine printf128(qx)
real *16 gx
print "('gx:', f5.1, e45.35)", gx, qx
end

%c printfl28main.c printfl128.0 && ./a.out
gx: 1.2 0.12345678901234567890123456789012346E+01

14.2.7 Arrays and Pointers

S-2179-83

Anunsi gned | ong value can hold the maximum size of an array. The type
si ze_t isdefinedto beat ypedef namefor unsi gned | ong inthe headers:
mal | oc. h, stddef. h,stdio. h,stdlib.h,string.h,andtine. h. If
more than one of these headers isincluded, only the first definessi ze_t .

189

Cray C and C++ Reference Manual

A typel ong can hold the difference between two pointers to elements of the same
array. Thetypeptrdi ff _t isdefinedtobeat ypedef namefor| ong inthe
header st ddef . h.

If apointer type's value is cast to a signed or unsigned | ong i nt, and then
cast back to the original type's value, the two pointer values will compare equal.
Type-casting from pointer tol ong i nt enables pointer arithmetic. For example:

static void **Tabl e;

size_t offset = -BlockSize[nr];
Table = (void **) mall oc(MAXBLOCKS * sizeof (void *));
Table[i] = (void **) (((long) Table[i]) + offset);

Pointers on Cray Linux Environment (CLE) systems are byte pointers. Byte pointers
use the same internal representation as integers; a byte pointer counts the numbers
of bytes from the first address.

A pointer can be explicitly converted to any integral type large enough to hold it. The
result will have the same bit pattern as the original pointer. Similarly, any value of
integral type can be explicitly converted to a pointer. The resulting pointer will have
the same bit pattern as the original integral type.

14.2.8 Registers

Use of the register storage class in the declaration of an object has no effect on
whether the object is placed in aregister. The compiler performs register assignment
aggressively; that is, it automatically attempts to place as many variables as possible
into registers.

14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields

190

Accessing a member of aunion by using a member of a different type resultsin an
attempt to interpret, without conversion, the representation of the value of the member
as the representation of avalue in the different type.

Members of a class or structure are packed into words from left to right. Padding is
appended to a member to correctly align the following member, if necessary. Member
alignment is based on the size of the member:

« For amember bit field of any size, alignment is any bit position that allows the
member to fit entirely within a 64-bit word.

* For amember with a size less than 64 bits, alignment is the same as the size.
For example, achar has asize and alignment of 8 bits; af | oat hasasizeand
alignment of 32 bits.

e For amember with asize equal to or greater than 64 bits, alignment is 64 bits.

» For amember with array type, alignment is equal to the alignment of the element
type.

S-2179-83

Implementation-defined Behavior [14]

A plaini nt type bit fieldistreated asasi gned i nt bit field.

The values of an enumeration type are represented in thetype si gned i nt inC;
they are a separate type in C++.

14.2.10 Qualifiers

When an object that hasvol at i | e-qualified type is accessed, it issimply a
reference to the value of the object. If the value is not used, the reference need not
result in aload of the value from memory.

14.2.11 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to modify
an arithmetic, structure, or union type.

14.2.12 Statements

The compiler has no fixed limit on the maximum number of case values allowed
inaswi t ch statement.

The Cray C++ compiler parses asmstatements for correct syntax, but otherwise
ignores them.

14.2.13 Exceptions

In Cray C++, when an exception is thrown, the memory for the temporary copy of
the exception being thrown is allocated on the stack and a pointer to the allocated
space is returned.

14.2.14 System Function Calls

For adescription of the form of the unsuccessful termination status that is returned
from acal to exi t (3), seethe exi t (3) man page.

14.3 Preprocessing

The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution
character set. No such character constant has a negative value. For each, ' a' hasthe
same value in the two contexts:

#f 'a == 97

if ("a == 97)

The- | option and the method for locating included source filesis described in - |
incldir on page 60.

S-2179-83 191

Cray C and C++ Reference Manual

192

The source file character sequence in a#i ncl ude directive must be avalid or

Cray Linux Environment (CLE) filename or path name. A #i ncl ude directive may
specify afile name by means of a macro, provided the macro expands into a source
file character sequence delimited by double quotes or < and > delimiters, as follows:

#defi ne nyheader "./nyheader.h"
#i ncl ude nyheader

#define STDI O <stdi 0. h>
#i nclude STDI O

Themacros __ DATE ___and Tl ME__ contain the date and time of the beginning
of translation. For more information, refer to the description of the predefined macros
in Chapter 10, Using Predefined Macros on page 159.

The#pr agma directives are described in Chapter 3, Using #pr agna Directives on
page 73.

S-2179-83

Using Libraries and the Linker [A]

This appendix describes the libraries that are available with the Cray C and C++
compilers and the linker.

A.1 Cray C and C++ Libraries

A.2 Linker

S-2179-83

Libraries that support Cray C and C++ are automatically available when you use
the CC or cc command to compile your programs. These commands automatically
issue the appropriate directives to link the program with the appropriate functions. If
your program strictly conforms to the C or C++ standards, you do not need to know
library names and locations. If your program requires other libraries or if you want
direct control over the linking process, more knowledge of the linker and libraries
is necessary.

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data structures
of computer science. The STL isageneric library, meaning that its components are
heavily parameterized: almost every component in the STL is atemplate. Be sure you
have a complete understanding of templates and how they work before using them.

When you use the cc or CC command to invoke the compiler, and the program
compiles without errors, the linker is called. Specifying the - ¢ option on the
command line produces relocatable object files (*. o) without calling the linker.
These rel ocatabl e object files can then be used as input to the linker command by
specifying the file names on the appropriate linker command line.

For example, the following command line compiles afilecalled t ar get . ¢ and
produces the relocatable object filecalled t ar get . o in your current working
directory:

cc -c target.c

You can then use filet ar get . 0 asinput to the linker or save the fileto use with
other relocatable object filesto compile and create a linked executablefile (a. out by
default).

193

Cray C and C++ Reference Manual

Because of the special code needed to handle templates, constructors, destructors,
and other C++ language features, abject files generated by using the CC command
should be linked using the CC command.

194 S-2179-83

Using Cray C and C++ Dialects [B]

This appendix details the features of the C and C++ languages that are accepted by
the Cray C and C++ compilers, including certain language dial ects and anachronisms.
Users should be aware of these details, especially users who are porting codes from
other environments.

B.1 C++ Language Conformance

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882: 2003 standard, except for exported templates. C++ supports the 1SO 2003
Standard Template Library (STL) headers but abrogates support for pre-standard
template headers that have the . h extension.

Note: C++ codes that use the pre-standard template headers must be updated to
the 1ISO C++ standard.

The Cray C++ compiler dso hasacf r ont compatibility mode, which duplicates a
number of features and bugs of cf r ont . Complete compatibility is not guaranteed
or intended. The mode allows programmers who have used cf r ont features

to continue to compile their existing code (see General Directives on page 75).
Command line options are a so available to enable and disable anachronisms (see
C++ Anachronisms Accepted on page 198) and strict standard-conformance checking
(see Extensions Accepted in Norma C++ Mode on page 199, and Extensions
Accepted in C or C++ Mode on page 200). The command line options are described
in Chapter 2, Invoking the C and C++ Compilers on page 25.

B.1.1 Supported C++ Language Features

The following features, which are in the ISO/IEC 14882:2003 standard but not in
traditional C++1, are supported:

* The dependent statement of ani f, whi | e, do-whi | e, or f or is considered
to be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

* Theexpressiontested inani f, whi |l e, do-whi | e, or f or, asthefirst

1 Asdefinedin The Annotated C++ Reference Manual (ARM), by Ellis and Stroustrup, Addison Wesley,
1990.

S-2179-83 195

Cray C and C++ Reference Manual

196

operand of a? operator, or as an operand of the &&, | | , or ! operators
may have a pointer-to-member type or aclass type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

Qualified names are allowed in elaborated type specifiers.

A global-scope qualifier is allowed in member references of the form
X.::A:B and p->:: A B

The precedence of the third operand of the ? operator is changed.

If control reaches the end of the mai n(') routine, and the mai n() routine hasan
integral return type, it istreated asif ar et urn 0; statement was executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

A functional-notation cast of the form A() can be used even if Aisaclass
without a (nontrivial) constructor. The temporary that is created gets the same
default initialization to zero as a static object of the class type.

A cast can be used to select one out of a set of overloaded functions when taking
the address of a function.

Template friend declarations and definitions are permitted in class definitions
and class template definitions.

Type template parameters are permitted to have default arguments.
Function templates may have nontype template parameters.
A referencetoconst vol ati | e cannot be boundto anr val ue.

Qualification conversions such as conversion fromT** toT const * const
are dlowed.

Digraphs are recognized.

Operator keywords (for example, and or bi t and) are recognized.

Static data member declarations can be used to declare member constants.
bool isrecognized.

RTTI (run time type identification), including dynani ¢_cast andthet ypei d
operator, is implemented.

Declarations in tested conditions (withini f, swi t ch, f or, and whi | e
statements) are supported.

Array newand del et e areimplemented.

New-style casts (st ati ¢c_cast,rei nterpret _cast,andconst _cast)
are implemented.

S-2179-83

Using Cray C and C++ Dialects [B]

S-2179-83

Definition of a nested class outside its enclosing class is allowed.
nmut abl e is accepted on nonstatic data member declarations.

Namespaces are implemented, including using declarations and directives. Access
declarations are broadened to match the corresponding using declarations.

Thet ypenane keyword is recognized.
expl i cit isaccepted to declare nonconverting constructors.

The scope of avariable declared inthef or -i ni t - st at enent of af or loop
is the scope of the loop (not the surrounding scope).

Member templates are implemented.
The new speciaization syntax (usingt enpl at e <>) isimplemented.

Type qualifiers,const andvol ati | e referred to as cv-qualifiersare retained
onrval ues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented,
as has the distinction between process overlay directives (PODs) and non-PODs
with trivial constructors.

The linkage specification is treated as part of the function type (affecting function
overloading and implicit conversions).

At ypedef name can be used in an explicit destructor call.
Placement delete is supported.

An array alocated via a placement new can be deallocated via delete.
enumtypes are considered to be nonintegral types.

Partial specification of class templates isimplemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent
functions, not as “guiding declarations’ that are instances of the template.

It is possible to overload operators using functions that take enumtypes and no
class types.

Explicit specification of function template arguments is supported.
Unnamed template parameters are supported.

The new lookup rules for member references of theform x. A: : Band p- >A: : B
are supported.

Thenotation:: tenpl ate (and—>t enpl at e, etc.) is supported.

197

Cray C and C++ Reference Manual

e Inareference of theformf () - >g() , with g a static member function, f () is
evaluated. Likewise for asimilar reference to a static data member. The ARM
specifiesthat the left operand is not evaluated in such cases.

e enumtypes can contain values larger than can be contained inani nt .

» Default arguments of function templates and member functions of class templates
are instantiated only when the default argument isused in acall.

e String literals and wide string literals have const type.
¢ Argument-dependent (Koenig) lookup of function names is implemented.

e Class and function names declared only in unqualified friend declarations are not
visible except for functions found by argument-dependent lookup.

* A voi d expression can be specified on areturn statement in avoi d function.

e reinterpret_cast alowscasting apointer to a member of oneclassto a
pointer to a member of another class even when the classes are unrelated.

» Two-phase name binding in templates as described in the Working Paper is
implemented.

» Putting atry/ cat ch around the initializers and body of a constructor is
implemented.

« tenpl at e parameters are implemented.
* Universal character set escapes (e.g., \ uabcd) are implemented.
e extern inline functions are supported.

e Covariant return types on overriding virtual functions are supported.

B.2 C++ Anachronisms Accepted

198

C++ anachronisms are enabled by using the- h anachr oni snms command line
option (see- h [no] anachr oni sns (CC) on page 29). When anachronisms are
enabled, the following anachronisms are accepted:

« overl oad isalowed in function declarations. It is accepted and ignored.

» Definitionsare not required for static data members that can be initialized by
using the default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

* The number of elementsin an array can be specified in an array del ete operation.
The value is ignored.

A sdngleoperat or ++() and oper at or - - () function can be used to
overload both prefix and postfix operations.

S-2179-83

Using Cray C and C++ Dialects [B]

The base class name can be omitted in a base classinitiaizer if thereis only one
immediate base class.

Assignment to thet hi s pointer in constructors and destructorsis allowed. This
isonly alowed if anachronisms are enabled and theassi gnnent to this
configuration parameter is enabled.

A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to afunction.

A nested class name may be used as a non-nested class name if no other class of
that name has been declared. The anachronism is not applied to template classes.

A referenceto anon-const type may beinitialized from avalue of a different
type. A temporary is created, it isinitialized from the (converted) initial value,
and the reference is set to the temporary.

A referenceto anon-const classtype may beinitialized fromanr val ue of the
classtype or aderived class thereof. No (additional) temporary is used.

A function with old-style parameter declarationsis allowed and can participate in
function overloading as though it were prototyped. Default argument promotion is
not applied to parameter types of such functions when checking for compatibility,
therefore, the following statements declare the overloading of two functions
named f :

int f(int);
int f(x) char x; { return x; }

Note: In C, this code islegal, but has a different meaning. A tentative declaration
of f isfollowed by its definition.

B.3 Extensions Accepted in Normal C++ Mode

S-2179-83

The following C++ extensions are accepted (except when strict standard conformance
mode is enabled, in which case awarning or caution message may be issued):

A fri end declaration for a class can omit the cl ass keyword, as shown in
the following example:

cl ass B;
class A {
friend B; // Should be "friend class B"

}

Constants of scalar type can be defined within classes, as shown in the following
example:

class A {
const int size=10;
int a[size];

}s

199

Cray C and C++ Reference Manual

In the declaration of a class member, a qualified name can be used, as shown in
the following example:

struct A{
int A:f(); /1 Should be int f();

}

An assignment operator declared in a derived class with a parameter type
matching one of its base classesis treated as a “ default” assignment operator;
that is, such a declaration blocks the implicit generation of a copy assignment
operator. Thisiscf ront behavior that is known to be relied upon in at least one
widely used library. Hereis an example:

struct A{ };

struct B: public A {
B& oper at or =(A&) ;

b

By default, aswell asin cf r ont compatibility mode, there will be no implicit
declaration of B: : oper at or =(const B&), whereasin strict-ANS

mode, B: : oper at or =(A&) is not a copy assignment operator and

B: : operat or =(const B&) isimplicitly declared.

Implicit type conversion between a pointer to anext ern " C' function and
apointer to an ext ern " C++" function is permitted. The following isan
example:

extern "C' void f(); // f's type has extern "C' |inkage

void (*pf)() /1 pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion allowed

The ? operator, for which the second and third operands are string literals or wide
string literals, can be implicitly converted to one of the following:

char *
wchar t *

In C++ dtring literalsare const . There is a deprecated implicit conversion that
allows conversion of a string literal to char *, dropping the const . That
conversion, however, applies only to simple string literals. Allowing it for the
result of a? operation is an extension:

char *p = x ? "abc" : "def";

B.4 Extensions Accepted in C or C++ Mode

200

The following extensions are accepted in C or C++ mode except when strict standard
conformance modes is enabled, in which case a warning or caution message may
be issued.

The special | i nt comments/ * ARGSUSED* / , / * VARARGS*/ (with or without
acount of nonvarying arguments), and / * NOTREACHED* / are recognized.

S-2179-83

Using Cray C and C++ Dialects [B]

S-2179-83

A trandation unit (input file) can contain no declarations.
Comment text can appear at the ends of preprocessing directives.

Bit fields can have base types that are enumor integral typesin addition to
i nt andunsi gned i nt. Thiscorrespondsto A.6.5.8 in the ANSI Common
Extensions appendix.

enumtags can be incomplete as long as the tag name is defined and resolved by
specifying the brace-enclosed list later.

An extracommais allowed at the end of an enumlist.

The final semicolon preceding the closing of ast ruct or uni on type specifier
can be omitted.

A label definition can be immediately followed by aright brace (}). (Normally,
a statement must follow a label definition.)

An empty declaration (a semicolon preceded by nothing) is allowed.

Aninitializer expression that isa single value and is used to initialize an entire
static array, struct, or union does not need to be enclosed in braces. ANSI C
requires braces.

In aninitializer, a pointer constant value can be cast to an integral typeif the
integral type is large enough to contain it.

The address of a variable with register storage class may be taken.

In anintegral constant expression, an integer constant can be cast to a pointer
type and then back to an integral type.

In duplicate size and sign specifiers (for example, short short or
unsi gned unsi gned) the redundancy isignored.

Benign redeclarations of t ypedef namesare allowed. That is, at ypedef
name can be redeclared in the same scope with the same type.

Dollar sign ($) characters can be accepted in identifiers by using the
-h cal char s command line option. Thisis not allowed by default.

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one
token that is not valid. If the- h conf or moption is specified, the pp-number
syntax is used.

Assignment and pointer differences are allowed between pointers to types that
are interchangeabl e but not identical, for example, unsi gned char * and
char *. Thisincludes pointersto integral types of the same size (for example,
int *andl ong *). Assignment of astring constant to a pointer to any kind of
character is allowed without a warning.

201

Cray C and C++ Reference Manual

« Assignment of pointer typesis allowed in cases where the destination type has
added type qualifiersthat are not at the top level (for example, i nt ** to
const int **). Comparisons and pointer difference of such pairs of pointer
types are also allowed.

* In operations on pointers, a pointer to voi d is aways implicitly converted
to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these are
allowed by some operators, and not by others (generally, where it does not make
sense).

» Pointers to different function types may be assigned or compared for equality
(==) or inequality (! =) without an explicit type cast. This extension is not
alowed in C++ mode.

e A pointer tovoi d can beimplicitly converted to or from a pointer to a function
type.
« External entities declared in other scopes are visible:

void fi1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */ }

* In C mode, end-of-line comments (/ /) are supported.

* A non-lvalue array expression is converted to a pointer to the first element of the
array when it is subscripted or similarly used.

e Thefortran keyword. For more information, seef ort r an Keyword on
page 155.

» Cray hexadecimal floating point constants. For more information, see
Hexadecimal Floating-point Constants on page 156.

B.5 C++ Extensions Accepted in cf r ont Compatibility Mode

Thecf ront compatibility mode is enabled by the- h cf r ont command-line
option. The following extensions are accepted in cf r ont compatibility mode:

* Typequdifiersonthet hi s parameter are dropped in contexts such asin the
following example:

struct A {
void f() const;

1

void (A :*fp)() = &A: : f;

Thisis asafe operation. A pointer to aconst function can be put into a pointer
to non-const , because a call using the pointer is permitted to modify the object
and the function pointed to will not modify the object. The opposite assignment
would not be safe.

202 S-2179-83

Using Cray C and C++ Dialects [B]

S-2179-83

Conversion operators that specify a conversion to voi d are alowed.

A nonstandard f r i end declaration can introduce a new type. A fri end
declaration that omits the elaborated type specifier is allowed in default mode,
however, in cf r ont mode the declaration can aso introduce a new type name.
An example follows:

struct A {
friend B;

}

The third operator of the ? operator is a conditional expression instead of an
assignment expression.

A reference to a pointer type may be initialized from a pointer value without use
of atemporary even when the reference pointer type has additional type qualifiers
above those present in the pointer value. For example:

int *p;

const int *& = p; /1 No tenporary used

A reference can beinitialized to NULL.

Because cf r ont does not check the accessibility of types, access errors for types
are issued as warnings instead of errors.

When matching arguments of an overloaded function, aconst variable with a
value of 0 is not considered to be a null pointer constant. In general, in overload
resolution, anull pointer constant must be entered as"0” to be considered a null
pointer constant (e.g., \0' is not considered a null pointer constant).

An aternate form of declaring pointer-to-member-function variables is supported,
as shown in the following example:

struct A{

void f(int);

static void sf(int);

typedef void A :T3(int); // nonstd typedef decl

typedef void T2(int); /1 std typedef

i

typedef void A :T(int); /1 nonstd typedef decl

T* pnf = &A : f; /1 nonstd ptr-to-nmenber decl
A T2* pf = A :sf; /1 std ptr to static mem decl
A T3* pnf2 = &A: : f; /1 nonstd ptr-to-nmenber decl

In this example, T is construed to name a function type for a nonstatic member
function of class A that takesan i nt argument and returnsvoi d; the use of
such typesis restricted to nonstandard pointer-to-member declarations. The
declarations of T and pnf in combination are equivaent to the following single
standard pointer-to-member declaration:

void (A :* pnf)(int) = &A:: f;

203

Cray C and C++ Reference Manual

204

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A: : T3, this feature changes the meaning of a valid
declaration. cf r ont version 2.1 accepts declarations, such as T, even when A
is an incomplete type; so this case is also accepted.

Protected member access checking is not done when the address of a protected
member is taken. For example:

class B { protected: int i; };
class D: public B { void nf()};

void D:nf() {
int B::* pm1l
int D:* pm2
}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

&B::i; [/ error, K in cfront nopde
&D: :i; /1 XK

The destructor of a derived class can implicitly call the private destructor of a base
class. In default mode, thisis an error but in cf r ont mode it is reduced to a
warning. For example:

class A {
~A() ;

b

class B: public A {
~B():

B:: ~B(){} /1 Error except in cfront node

When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword
(identifier . ..) istreated asan argument. For example:

class A{ A(); };

doubl e d;

A x(int(d));

A(x2);

By default, i nt (d) isinterpreted as a parameter declaration (with redundant
parentheses), and so x isafunction; but in cf r ont compatibility modei nt (d)
isan argument and x is avariable.

The declaration A(x2) is also misinterpreted by cf r ont . It should be
interpreted as the declaration of an object named x2, but in cf r ont modeitis
interpreted as a function style cast of x2 to the type A.

S-2179-83

Using Cray C and C++ Dialects [B]

S-2179-83

Similarly, the following declaration declares a function named xzy, that takes
a parameter of type function taking no arguments and returning ani nt . In

cf ront mode, thisisinterpreted as a declaration of an object that isinitialized
with the valuei nt () , which evaluates to 0.

int xyz(int());

A named bit field can have a size of 0. The declaration is treated as though no
name had been declared.

Plain bit fields (such as bit fieldsdeclared with atype of i nt) are aways signed.

The name given in an elaborated type specifier can be at ypedef namethatis
the synonym for a class name. For example:

typedef class AT,
class T *pa; /1 No error in cfront node

No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront node

Virtual function table pointer-update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions
might be overridden in afurther derived class. For example:

struct A {
virtual void f() {}

A0 {}
}.-*A() {}
siruct B: public A {

B() {}
~B() {f();} /1 Should call A::f according to ARM 12.7

b
struct C: public B {
void f() {}

}oc
Incfront compatibility mode, B: : ~BcalsC: : f.

An extracomma is allowed after the last argument in an argument list. For
example:

f(1, 2,);
A constant pointer-to-member function can be cast to a pointer-to-function, asin
the following example. A warning is issued.

struct A{int f();};

main () {

int (*p)();

p={(int (*)(O))A:f; /1 Ckay, with warning
}

Arguments of class types that allow bitwise copy construction but also have

205

Cray C and C++ Reference Manual

206

destructors are passed by value like C structures, and the destructor is not called
on the copy. In norma mode, the class abject is copied into a temporary, the
address of the temporary is passed as the argument, and the destructor is called
on the temporary after the call returns. Because the argument is passed by
value instead of by address, code like this compiled in cf r ont mode is not
calling-sequence compatible with the same code compiled in norma mode. In
practice, thisis not much of a problem, since classes that allow bitwise copying
usually do not have destructors.

A union member may be declared to have the type of a class for which the user
has defined an assignment operator (as long as the class has no constructor or
destructor). A warning is issued.

When an unnamed class appearsin at ypedef declaration, thet ypedef name
may appear as the class namein an elaborated type specifier. For example:

typedef struct { int i, j; } S
struct S x; // No error in cfront node

Two member functions may be declared with the same parameter types when one
is static and the other is nonstatic with afunction qualifier. For example:

class A {
void f(int) const;
static void f(int); // No error in cfront node

}s

The scope of avariable declared inthef or - i ni t - st at enent isthe scope
towhich thef or statement belongs. For example:
int f(int i) {

for (int j =0; j <i; ++) {/* ... *}

return j; // No error in cfront node

}

Function types differing only in that one isdeclared ext ern " C' and the other
extern " C++" can betreated asidentical:

typedef void (*PF)();

extern "C' typedef void (*PCF)();
void f(PF);

void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible types;
PF isapointer to an ext ern " C++" function whereas PCF is a pointer to an
extern " C" function; and the two declarations of f create an overload set.

Functions declared i nl i ne have internal linkage.

enumtypes are regarded as integral types.

S-2179-83

Using Cray C and C++ Dialects [B]

S-2179-83

An uninitialized const object of non-POD class type is allowed even if its default
constructor isimplicitly declared as in the following example:

struct A { virtual void f(); int i; };
const A a;

A function parameter type is alowed to involve a pointer or reference to array of
unknown bounds.

If the user declaresan oper at or = function in a class, but not one that can serve
asthe default oper at or =, and bitwise assignment could be done on the class,
adefault oper at or = is not generated. Only the user-written oper at or =
functions are considered for assignments, so bitwise assignment is not done.

207

Cray C and C++ Reference Manual

208 S-2179-83

Using the Compiler Message System [C]

This appendix describes how to use the message system to control and use messages
issued by the compiler. Explanatory texts for messages can be displayed online
through the use of the expl ai n command.

C.1 Expanding Messages with the expl ai n Command

You can use the expl ai n command to display an explanation of any message issued
by the compiler. The command takes as an argument, the message number, including
the number's prefix. The prefix for Cray C and C++ is CC.

In the following sample dialog, the cc command invokes the compiler on source
filebug. c. Message CC- 24 isdisplayed. The expl ai n command displays the
expanded explanation for this message.

% cc bug. c
CC-24 cc: ERROR File = bug.c, Line =1
An invalid octal constant is used.

int i = 018;

N

1 error detected in the conpilation of "bug.c".
% expl ai n CC-24

An invalid octal constant is used.
Each digit of an octal constant nust be between 0 and 7, inclusive. One or

more digits in the indicated octal constant are outside of this range.
Change each digit in the octal constant to be within the valid range.

C.2 Controlling the Use of Messages

This section summarizes the command line options that affect the issuing of messages
from the compiler.

S-2179-83 209

Cray C and C++ Reference Manual

C.2.1 Command Line Options

Option

Description

-h errorlimt][=n]

Specifies the maximum number of
error messages the compiler prints
before it exits.

-h [no] message=n[:...] Enables or disables the specified

-h nsgl evel _n

-h [no] nsgs

h [no] negnsgs

-h report =args

compiler messages, overriding
-h nsgl evel .

Specifiesthe lowest severity level of
messages to be issued.

Enables or disables the writing of
optimization messagesto st derr .

Enables or disables the writing

of messages to st derr that
indicate why optimizations such as
vectorization, inlining, or cloning did
not occur in a given instance.

Generates optimization report
messages.

C.2.2 Environment Options for Messages

210

The following are used by the message system.

Variable Description

NLSPATH Specifiesthe default value of the message system
search path environment variable.

LANG Identifies your requirements for native language,
local customs, and coded character set with regard to
the message system.

VEG_FORNAT Controls the format in which you receive error

messages.

S-2179-83

Using the Compiler Message System [C]

C.2.3 ORI G_CVMD_NAME Environment Variable

You can override the command name printed in the message. If the environment
variable ORI G_CVD_NAME is set, the value of ORI G_CVD_NAME is used as the
command name in the message. This functionality is provided for use with shell
scripts that invoke the compiler. By setting ORI G_CVD_NAME to the name of the
script, any message printed by the compiler appears as though it was generated by the
script. For example, the following C shell script is named newcc:

#
set env ORI G_CVD_NAME ' basenane $0'
cc $*

A message generated by invoking newc ¢ resembles the following:

CC-8 newcc: ERROR File = x.c, Line =1
A new-line character appears inside a string literal.

Because the environment variable ORI G_CIVD_NAME is set to newcc, this appears
as the command name instead of cc in this message.

Caution: The ORI G_CVD_NANME environment variable is not part of the message
system. It is supported by the Cray C and C++ compilers as an aid to programmers.
Other products, such as the Fortran compiler and the linker, may support this
variable. However, you should not rely on support for this variable in any other
product.

You must be careful when setting the environment variable ORI G_CVD_NAME. If
you set ORI G_CIVD_NAME inadvertently, the compiler may generate messages with
an incorrect command name. This may be particularly confusing if, for example,

ORI G_CMVD_NAME is set to newcc when the Fortran compiler prints a message. The
Fortran message will look as though it came from newcc.

C.3 Message Severity

S-2179-83

Each message issued by the compiler falls into one of the following categories of
messages, depending on the severity of the error condition encountered or the type
of information being reported.

Category Meaning
COMVENT Inefficient programming practices.
NOTE Unusua programming style or the use of

outmoded statements.

CAUTI ON Possible user error. Cautions are issued when the
compiler detects a condition that may cause the
program to abort or behave unpredictably.

211

Cray C and C++ Reference Manual

Category

Meaning

WARNI NG

ERRCR

| NTERNAL

LIMT

I NFO

I NLI NE

SCALAR

VECTOR

OPTI M ZATI ON
| PA_I NFO

Probable user error. Indicates that the program
will probably abort or behave unpredictably.

Fatal error; that is, a serious error in the source
code. No binary output is produced.

Problems in the compilation process. Please report
internal errors immediately to the system support
staff, so that a bug report can be filed.

Compiler limits have been exceeded. Normally
you can modify the source code or environment

to avoid these errors. If limit errors cannot be
resolved by such modifications, please report these
errors to the system support staff, so that bug
report can be filed.

Useful additional information about the compiled
program.

Information about inline code expansion
performed on the compiled code.

Information about scalar optimizations performed
on the compiled code.

Information about vectorization optimizations
performed on the compiled code.

Information about general optimizations.

Information about interprocedural optimizations.

C.4 Common System Messages

212

The errorsin the following list can occur during the execution of a user program. The
operating system detects them and issues the appropriate message. These errors are
not detected by the compiler and are not unique to C and C++ programs; they may
occur in any application program written in any language.

Operand Range Error

An operand range error occurs when a program attemptsto load or storein an
area of memory that is not part of the user's area. This usually occurs when an
invalid pointer is dereferenced.

Progr am Range Error

A program range error occurs when a program attempts to jump into an area of
memory that is not part of the user's area. This may occur, for example, when a
function in the program mistakenly overwrites the internal program stack. When

S-2179-83

Using the Compiler Message System [C]

this happens, the address of the function from which the function was called
islost. When the function attempts to return to the calling function, it jumps
elsewhere instead.

e FError Exit

An error exit occurs when a program attempts to execute an invalid instruction.
This error usually occurs when the program's code area has been mistakenly
overwritten with words of data (for example, when the program storesin a
location pointed to by an invalid pointer).

S-2179-83 213

Cray C and C++ Reference Manual

214 S-2179-83

Using Intrinsic Functions [D]

The C and C++ intrinsic functions either alow for direct access to some hardware
instructions or result in generation of inline code to perform some specialized
functions. These intrinsic functions are processed completely by the compiler. In
many cases, the generated code is one or two instructions. These are called functions
because they are invoked with the syntax of function calls.

To get access to most of the intrinsic functions, the Cray C++ compiler requires

that either thei ntri nsi cs. h filebeincluded or that the intrinsic functions

that you want to call be explicitly declared. If the source code does not have
anintrinsics. h statement and you cannot modify the code, you can use

the-h prototype_intrinsics optioninstead. If you explicitly declare

an intrinsic function, the declaration must agree with the documentation or the
compiler treats the call asacall to anormal function, not the intrinsic function. The
-h noi ntrinsi cs command line option causes the compiler to treat these calls as
regular function calls and not as intrinsic function calls.

There are built-in atomic memory intrinsic functions of the form __sync_* that do
not require an include file nor any explicit declaration.

The types of the arguments to intrinsic functions are checked by the compiler, and if
any of the arguments do not have the correct type, awarning message is issued and
the call istreated as a normal call to an external function. If your intention wasto call
an external function with the same name as an intrinsic function, you should change
the external function name. The names used for the Cray C intrinsic functionsarein
the name space reserved for the implementation.

Note: Severa of these intrinsic functions have both a vector and a scalar version. If
avector version of an intrinsic function exists and the intrinsic is called within a

vectorized loop, the compiler uses the vector version of the intrinsic. For details on
whether it has a vector version, refer to the appropriate intrinsic function man page.

The following sections groups the C and C++ intrinsics according to function and
provides a brief description of each intrinsic in that group. For more information,
see the corresponding man page.

S-2179-83 215

Cray C and C++ Reference Manual

D.1 Atomic Memory Operations

216

Atomic memory operations (AMOs), unlike other functions, cannot be interrupted by
the system and can allow multiple threads to safely modify the same variable under
certain conditions. The AMO intrinsics allow you to add, subtract, AND, NAND, OR,
and XOR values together, or compare and swap values.

Local AMOs operate on variables in the processor's local memory (cache domain);
they do not use the network interface to access memory. Multiple threads using local
atomic memory operations to access the same variable need to be running within the
same processor cache domain, which implies that they must be running on the same
node. Local AMOs are atomic with respect to each other. The compiler issues an
error message if a user triesto apply alocal AMO intrinsic to a Unified Parallel C or
shared variable or Fortran coarray that is not local to the current thread.

Global AMOs use the network interface to access variablesin memory. The variables
may or may not bein the processor's local cache domain. Global AMOs are atomic
with respect to each other. Global AMOs are used to modify a Unified Parallel C
(UPC) shared variable or Fortran coarray and are available only when compiling UPC
(- hupc) or coarray Fortran (- hcaf).

A global AMO uses adifferent mechanism for achieving atomicity than alocal AMO,
so local and global AMOs are not atomic with respect to each other. Global and
local AMOs should not be used concurrently on the same memory location, without
synchronization.

It is possible to safely modify avariable using both atomic and non-atomic operations
within asingle UPC thread or Fortran image; however, if athread or image modifies
avariable with an atomic operation and a different thread or image concurrently
modifiesthe same variable with a non-atomic operation, the result is indeterminate.

S-2179-83

Using Intrinsic Functions [D]

D.1.1 Local Atomic Memory Operations

S-2179-83

The following functions, definedini ntri nsi cs. h, perform various local atomic
memory operations:

__builtin_ia32 | fence

(Load fence) Insures that all memory loads issued before this
intrinsic are visible in memory before any future loads are executed.

__builtin_ia32 sfence

(Store fence) Insures that all memory stores issued before this
intrinsic are visible in memory before any future stores are executed.

__builtin_ia32_nfence

(Memory fence) Insures that all memory stores and |oads issued
before thisintrinsic are visible in memory before any future stores or
loads are executed.

Functions built into the compiler do not reguire an include file, nor a specific
compilation option for use. The following local atomic, built-in functions return the
value of the object befor e the named operation occurs:

Note: In thisdiscussion, an object is an entity that is referred to by a pointer. A
value is an actual number, bit mask, etc. that is not referred to by a pointer. The
allowed object and value types are signed and unsigned integer types of 1, 2, 4, or
8 bytes.

e The__sync_fetch_and_add function fetches the object pointed to by pt r,
addsval ue, places the result into the object pointed to by pt r, and returns the
old value of the object pointed to by ptr .

e The__sync_fetch_and_sub function fetches the object pointed to by pt r,
subtractsval ue, places the result into the object pointed to by pt r, and returns
the old value of the object pointed to by pt r .

* The__sync_fetch_and_or function fetches the object pointed to by pt r,
ORsval ue, places the result into the object pointed to by pt r, and returns the
old value of the object pointed to by ptr .

e The__sync_fetch_and_and function fetches the object pointed to by pt r,
ANDsval ue, places the result into the object pointed to by pt r, and returns the
old value of the object pointed to by pt r .

e The__sync_fetch_and_xor function fetches the object pointed to by
*ptr, XCRsval ue, places the result into the object pointed to by pt r , and
returns the old value of the object pointed to by pt r .

217

Cray C and C++ Reference Manual

e The__sync_fetch_and_nand function fetches the object pointed to by
ptr, NANDs val ue, places the result into the object pointed to by pt r, and
returns the old value of the object pointed to by ptr .

The following local atomic, built-in functions return the value of the object after the
named operation occurs:

e The__sync_add_and_f et ch function addsval ue to the object pointed to
by pt r and returns the new value of the object pointedto by pt r .

e The__sync_sub_and_f et ch function subtracts val ue from the object
pointed to by pt r and returns the new value of the object pointedto by ptr.

e The__sync_or_and_f et ch function ORsval ue with the object pointed to
by pt r and returns the new value of the object pointedto by pt r .

e The__sync_and_and_f et ch function ANDsval ue with the object pointed
to by pt r and returns the new value of the object pointedto by ptr .

e The__sync_xor _and_f et ch function XORsval ue with the object pointed
to by pt r and returns the new value of the object pointedto by ptr.

e The__sync_nand_and_f et ch function NANDs val ue with the current
value of pt r and returns the new contents of pt r .

e The__sync_val _conpar e_and_swap function performs an atomic
compare and swap. If the current value of * pt r isconpar eVal ue, then write
repl acement Val ue into * pt r and return the contents of * pt r before the
operation.

e The__sync_l ock_test_and_set function writesvalueinto * pt r, and
returns the previous contents of *pt r .

D.1.2 Global Atomic Memory Operations

218

Global atomic memory operations (global AMO) are typically used to atomically
modify a Unified Parallel C (UPC) shared variable or Fortran coarray.

The target of aglobal AMO can be located in a different cache domain, so a global
AMO is not atomic with respect to memory operations performed locally within the
target's cache domain. Therefore, the application must use synchronization to ensure
that global AMOs and local memory operations are not used concurrently on the
same memory location.

The following intrinsics are defined ini nt ri nsi ¢s. h. Functions without the
_upc suffix accept both shared and non-shared pointers as the first argument.
Functions with the _upc suffix accept only shared pointers as the first argument.

Note: Inthisdiscussion, an object is an entity that is referred to by a pointer. A
valueis an actual number, bit mask, etc. that is not referred to by a pointer.

S-2179-83

Using Intrinsic Functions [D]

S-2179-83

The _ano_aadd and _ano_aadd_upc functions (atomic add) add val ue to
the object pointed to by pt r .

The _anp_aaddf and _anp_aaddf functions (atomic add and fetch) add
val ue to the object pointed to by pt r and return the new val ue.

The _ano_af add and _ano_af add_upc functions (atomic fetch and add)
add val ue to the object pointed to by pt r and return the old value of the object.

The _anp_aax and _anp_aax_upc functions (atomic AND and XOR) AND
the object pointed to by pt r with andMask, XOR the result with xor Mask, and
place the result into the object.

The _ano_af ax and _ano_af ax_upc functions (atomic fetch and AND and
XOR) AND the object pointed to by pt r with andMask, XOR the result with
xor Mask, place the result into the object, and return the old value of the object.

The _ano_aandf and _ano_aandf _upc functions (atomic AND and fetch)
AND the object pointed to by pt r with val ue, place the result into the object,
and return the new value of the object.

The _ano_af and and _ano_af and_upc functions (atomic fetch and AND)
AND the object pointed to by pt r with val ue, place the result into the object,
and return the old value of the object.

The _ano_anandf and _ano_anandf _upc functions (atomic NAND and
fetch) NAND the object pointed to by pt r with val ue, place the result into the
object, and return the new value of the object.

The _ano_af nand and _ano_af nand_upc functions (atomic fetch and
NAND) NAND the object pointed to by pt r with val ue, place the result into the
object, and return the old value of the object.

The _ano_aorf and _ano_aorf _upc functions (atomic OR and fetch) OR
the object pointed to by pt r with val ue, place the result into the object, and
return the new value of the object.

The _ano_af or and _ano_af or _upc functions (atomic fetch and OR) OR
the object pointed to by pt r with val ue, place the result into the object, and
return the old value of the object.

The _ano_axorf and_anmo_axor f _upc functions (atomic XOR and fetch)
XOR the object pointed to by pt r with val ue, place the result into the object,
and return the new value of the object.

The _ano_af xor and _ano_af xor _upc functions (atomic fetch and XOR)
XOR the object pointed to by pt r with val ue, place the result into the object,
and returns the old value of the object.

The _ano_acswap and _ano_acswap_upc functions (atomic compare and

219

Cray C and C++ Reference Manual

swap) compare and swap avalue by replacing the contents of the object pointed to
by pt r withr epl acenent Val ue if conpar eVal ue isequal to the object
pointed to by pt r and return the old value of the object.

e The_amp_aswap and _ano_aswap_upc functions (atomic swap) swap
a value by replacing the contents of the object pointed to by pt r with
r epl acement Val ue. Thisfunction aways returnsthe old val ue.

e The_ano_afl ushand _anmpo_af | ush_upc functions (atomic flush) force
*pt r to be written to memory.

For more information, see the ano(3i) man page.

D.2 Bit Operations

220

The following intrinsic functions copy, count, or shift bits or computes the parity bit:

_dshiftl Move the left most n bits of an integer into the right side of another
integer, and return that integer.

_dshiftr Move the right most n bits of an integer into the left side of another
integer and return that integer.

_pbit Copies the rightmost bit of aword to the nt" bit, from the right, of
another word.

_pbits Copies the rightmost m bits of aword to another word beginning
at bit n.

_poppar Computes the parity bit for a variable.

_popcnt

_popcnt 32

_popcnt 64 Counts the number of set bitsin 32-bit and 64-bit integer words.

_l eadz

_l eadz32

_l eadz64 Counts the number of leading 0 bits in 32-bit and 64-bit integer
words.

_gbit _gbi t returnsthe value of the n™ bit from the right.

_gbits Returns a value consisting of mbits extracted from a variable,

beginning at n'" bit from the right.

S-2179-83

Using Intrinsic Functions [D]

D.3 Mask Operations

The following intrinsic functions create bit masks:

_mask Creates aleft-justified or right-justified bit mask with al bits set to 1.
_maskl Returns a left-justified bit mask with i bits set to 1.
_maskr Returns aright-justified bit mask with i bits set to 1.

D.4 Miscellaneous Operations
The following intrinsic functions perform various functions:
_int_mult_upper

Multiplies integers and returns the uppermost bits. For more
information, seethei nt _rmul t _upper (3i) man page.

_ranf Computes a pseudo-random floating-point number ranging from 0.0
through 1.0.
_rtc Return areal-time clock value expressed in clock ticks.

S-2179-83 221

	Cray C and C++ Reference Manual
	Changes to this Document
	Introduction [1]
	1.1 General Compiler Description
	1.1.1 Cray C Compiler
	1.1.2 Cray C++ Compiler

	1.2 C/C++ Standard Compatibility
	1.3 Binary Compatibility
	1.4 Related Publications

	Invoking the C and C++ Compilers [2]
	2.1 CC Command
	2.2 cc Command
	2.3 Command Line Options
	2.4 Standard Language Conformance Options
	2.4.1 -h [no]c99 (cc)
	2.4.2 -h [no]conform (CC, cc), -h [no]stdc (cc)
	2.4.3 -h cfront (CC)
	2.4.4 -h [no]parse_templates (CC)
	2.4.5 -h [no]dep_name (CC)
	2.4.6 -h [no]exceptions (CC)
	2.4.7 -h [no]anachronisms (CC)
	2.4.8 -h [no]new_for_init (CC)
	2.4.9 -h [no]tolerant (cc)
	2.4.10 -h [no]const_string_literals (CC)
	2.4.11 -h [no]gnu

	2.5 Virtual Function Options
	2.5.1 -h forcevtbl (CC)
	2.5.2 -h suppressvtbl (CC)

	2.6 General Language Options
	2.6.1 -h keep=file (CC)
	2.6.2 -h restrict=args
	2.6.3 -h [no]calchars
	2.6.4 -h [no]signedshifts

	2.7 General Optimization Options
	2.7.1 -h [no]add_paren
	2.7.2 -h [no]aggress
	2.7.3 -h [no]autoprefetch
	2.7.4 -h [no]autothread
	2.7.5 -h display_opt
	2.7.6 -h flex_mp=level
	2.7.7 -h fusionn
	2.7.8 -h [no]intrinsics
	2.7.9 -h list
	2.7.10 -h [no]msgs
	2.7.11 -h [no]negmsgs
	2.7.12 -h [no]omp_trace
	2.7.13 -h [no]func_trace
	2.7.14 -h [no]overindex
	2.7.15 -h [no]pattern
	2.7.16 -h pl=program_library
	2.7.17 -h profile_generate
	2.7.18 -h threadn
	2.7.19 -h unrolln
	2.7.20 -h wp
	2.7.21 -O level

	2.8 Automatic Cache Management Options
	2.8.1 -h cachen

	2.9 Vector Optimization Options
	2.9.1 -h concurrent
	2.9.2 -h vectorn

	2.10 Interprocedural Analysis (IPA) Optimization Options
	2.10.1 Inlining
	2.10.2 Cloning
	2.10.3 -h ipan
	2.10.4 -h ipafrom=source[:source] ...

	2.11 Scalar Optimization Options
	2.11.1 -h [no]interchange
	2.11.2 -h scalarn
	2.11.3 -h [no]zeroinc

	2.12 Math Options
	2.12.1 -h fpn

	2.13 Debugging Options
	2.13.1 -G level and -g
	2.13.2 -h [no]bounds (cc)
	2.13.3 -h develop
	2.13.4 -h dir_check
	2.13.5 -h nodwarf
	2.13.6 -h gasp[=opt[:opt]]
	2.13.7 -h zero

	2.14 Compiler Message Options
	2.14.1 -h msglevel_n
	2.14.2 -h [no]message=n[:n...]
	2.14.3 -h report=args
	2.14.4 -h [no]abort
	2.14.5 -h errorlimit

	2.15 Compilation Phase Options
	2.15.1 -E
	2.15.2 -P
	2.15.3 -h feonly
	2.15.4 -S
	2.15.5 -c
	2.15.6 -#, -##, and -###
	2.15.7 -W phase,"opt ..."
	2.15.8 -Y phase,dirname

	2.16 Preprocessing Options
	2.16.1 -C
	2.16.2 -D macro[=def]
	2.16.3 -h [no]pragma=name[:name ...]
	2.16.4 -I incldir
	2.16.5 -M
	2.16.6 -nostdinc
	2.16.7 -U

	2.17 Linker Options
	2.17.1 -h [system|default]_alloc
	2.17.2 -h [no]pgas_runtime
	2.17.3 -l libname
	2.17.4 -L ldir
	2.17.5 -o outfile

	2.18 Miscellaneous Options
	2.18.1 -h [no]acc
	2.18.2 -h cpu=target_system
	2.18.3 -h [no]fp_trap
	2.18.4 -h ident=name
	2.18.5 -h keepfiles
	2.18.6 -h keep_frame_pointer
	2.18.7 -h loop_trips=[tiny | small | medium | large | huge]
	2.18.8 -h mpin
	2.18.9 -h network=nic
	2.18.10 -h [no]omp
	2.18.11 -h [no]omp_acc
	2.18.12 -h pic, -h PIC
	2.18.13 -h prototype_intrinsics
	2.18.14 -h [no]threadsafe
	2.18.15 -h upc (cc)
	2.18.16 -K trap=opt[,opt] ...
	2.18.17 -V
	2.18.18 -X npes

	2.19 Command Line Examples
	2.20 Compile Time Environment Variables
	2.21 Run Time Environment Variables
	2.22 OpenMP Environment Variables

	Using #pragma Directives [3]
	3.1 Protecting Directives
	3.2 Directives in Cray C++
	3.3 Loop Directives
	3.4 Alternative Directive Form: _Pragma
	3.5 General Directives
	3.5.1 [no]autothread Directive
	3.5.2 [no]bounds Directive
	3.5.3 cache Directive
	3.5.4 cache_nt Directive
	3.5.5 duplicate Directive
	3.5.6 ident Directive
	3.5.7 message Directive
	3.5.8 [no]opt Directive
	3.5.9 prefetch Directive
	3.5.10 Probability Directives
	3.5.11 weak Directive

	3.6 Vectorization Directives
	3.6.1 concurrent Directive
	3.6.2 hand_tuned Directive
	3.6.3 ivdep Directive
	3.6.4 loop_info Directive
	3.6.5 loop_info prefer_thread, prefer_nothread Directives
	3.6.6 nopattern Directive
	3.6.7 [no]vector Directive
	3.6.8 permutation Directive
	3.6.9 [no]pipeline Directive
	3.6.10 prefervector Directive
	3.6.11 pgo loop_info Directive
	3.6.12 safe_address Directive
	3.6.13 safe_conditional Directive

	3.7 Scalar Directives
	3.7.1 blockable Directive
	3.7.2 blockingsize Directive
	3.7.3 noblocking Directive
	3.7.4 collapse and nocollapse Directives
	3.7.5 [no]interchange Directive
	3.7.6 suppress Directive
	3.7.7 [no]unroll Directive
	3.7.8 nofission Directive
	3.7.9 [no]fusion Directive

	3.8 Inlining and Cloning Directives
	3.8.1 inline_enable, inline_disable, and inline_reset Directives
	3.8.2 inline_always and inline_never Directives
	3.8.3 clone_enable, clone_disable, clone_reset Directives
	3.8.4 clone_always and clone_never Directives

	3.9 PGAS Directive
	3.9.1 defer_sync Directive

	Using the OpenMP C/C++ API [4]
	4.1 Standard Support
	4.2 Cray Enhancements
	4.2.1 cray_omp_set_wait_policy()
	4.2.2 CRAY_OMP_CHECK_AFFINITY Environment Variable

	4.3 Compiling
	4.4 Executing
	4.5 Debugging
	4.6 Cray Implementation Defined Behaviors
	4.6.1 Directives and Clauses
	4.6.1.1 atomic Directive
	4.6.1.2 for Directive
	4.6.1.3 parallel Directive
	4.6.1.4 threadprivate Directive
	4.6.1.5 private Clause

	4.6.2 Library Routines
	4.6.2.1 omp_get_max_active_levels()
	4.6.2.2 omp_set_dynamic()
	4.6.2.3 omp_set_schedule()
	4.6.2.4 omp_set_max_active_levels()
	4.6.2.5 omp_set_nested()
	4.6.2.6 omp_set_num_threads()

	4.6.3 OpenMP Environment Variables
	4.6.3.1 OMP_DYNAMIC
	4.6.3.2 OMP_MAX_ACTIVE_LEVELS
	4.6.3.3 OMP_NESTED
	4.6.3.4 OMP_NUM_THREADS
	4.6.3.5 OMP_SCHEDULE
	4.6.3.6 OMP_STACKSIZE
	4.6.3.7 OMP_THREAD_LIMIT
	4.6.3.8 OMP_WAIT_POLICY

	4.7 Limitations
	4.8 OpenMP Accelerator Support

	Using OpenACC [5]
	5.1 OpenACC Execution Model
	5.2 OpenACC Memory Model
	5.3 Mapping the OpenACC Programming Model onto Accelerator Compon
	5.3.1 Streaming Multiprocessors (SM) and Scalar Processor (SP) co
	5.3.2 Memory

	5.4 Mixed Model Support
	5.5 Compiling
	5.6 Module Support
	5.7 Debugging
	5.8 OpenACC Directives
	5.9 Runtime Routines
	5.9.1 Cray Specific Runtime Library Routines
	5.9.2 CRAY_ACC_DEBUG Output Routines

	5.10 Environment Variables
	5.10.1 Cray Specific
	5.10.2 Standard

	5.11 OpenACC Examples

	Using Cray Unified Parallel C (UPC) [6]
	6.1 Implementation
	6.1.1 Predefined Macros
	6.1.2 False Sharing

	6.2 Compiling and Linking UPC Code
	6.3 Launching a UPC Application
	6.4 Cray Extensions
	6.4.1 Team Collectives
	6.4.2 Node Affinity
	6.4.2.1 upc_nodeof()
	6.4.2.2 NODES
	6.4.2.3 MYNODE

	Using Cray C++ Libraries [7]
	7.1 Unsupported Standard C++ Library Features

	Using Coarray C++ [8]
	8.1 Compiling Coarray C++
	8.2 Declaring and Accessing Coarrays
	8.2.1 Basic Types
	8.2.2 Arrays
	8.2.3 Pointers
	8.2.4 Structs, Unions, and Classes

	8.3 Type System
	8.3.1 Coreferences
	8.3.2 Copointers
	8.3.3 shape_cast

	8.4 Control Flow and Synchronization
	8.4.1 Writing SPMD Code
	8.4.2 Barriers
	8.4.3 Function Calls
	8.4.3.1 coatomic
	8.4.3.2 coevent
	8.4.3.3 comutex

	8.5 Collectives
	8.5.1 cobroadcast
	8.5.2 coreduce

	8.6 Exceptions
	8.7 Memory Consistency Model
	8.7.1 atomic_image_fence()
	8.7.2 Accesses within a Single Image
	8.7.3 Accesses to Other Images
	8.7.3.1 Multi-byte Accesses
	8.7.3.2 From Different Images
	8.7.3.3 From the Same Image

	8.8 Blocking Versus Non-blocking Accesses
	8.8.1 Writes (Puts)
	8.8.2 Reads (Gets)
	8.8.3 Cofutures

	8.9 Code Patterns
	8.9.1 Coobjects
	8.9.2 Hoisting a coptr

	Using Cray C Extensions [9]
	9.1 Complex Data Extensions
	9.2 fortran Keyword
	9.3 Hexadecimal Floating-point Constants

	Using Predefined Macros [10]
	10.1 Macros Required by the C and C++ Standards
	10.2 Macros Based on the Host Machine
	10.3 Macros Based on the Target Machine
	10.4 Macros Based on the Compiler
	10.5 UPC Predefined Macros

	Running C and C++ Applications [11]
	Debugging Cray C and C++ Code [12]
	12.1 TotalView Debugger
	12.2 Compiler Debugging Options

	Using Interlanguage Communication [13]
	13.1 Calls Between C and C++ Functions
	13.2 Calling Fortran Functions and Subroutines from C or C++
	13.2.1 Requirements
	13.2.2 Argument Passing
	13.2.3 Array Storage
	13.2.4 Logical and Character Data
	13.2.5 Accessing Named Common from C and C++
	13.2.6 Accessing Blank Common from C or C++
	13.2.7 Cray C and Fortran Example
	13.2.8 Calling a Fortran Program from Cray C++

	13.3 Calling a C or C++ Function from Fortran
	13.3.1 Portable Interoperability Mechanism
	13.3.2 Standard Fortran/C Interoperability

	Implementation-defined Behavior [14]
	14.1 Messages
	14.2 Environment
	14.2.1 Identifiers
	14.2.2 Types
	14.2.3 Characters
	14.2.4 Wide Characters
	14.2.5 Integers
	14.2.6128 -Bit Floating Point and 256-Bit Complex Predefined Type
	14.2.7 Arrays and Pointers
	14.2.8 Registers
	14.2.9 Classes, Structures, Unions, Enumerations, and Bit Fields
	14.2.10 Qualifiers
	14.2.11 Declarators
	14.2.12 Statements
	14.2.13 Exceptions
	14.2.14 System Function Calls

	14.3 Preprocessing

	Using Libraries and the Linker [A]
	A.1 Cray C and C++ Libraries
	A.2 Linker

	Using Cray C and C++ Dialects [B]
	B.1 C++ Language Conformance
	B.1.1 Supported C++ Language Features

	B.2 C++ Anachronisms Accepted
	B.3 Extensions Accepted in Normal C++ Mode
	B.4 Extensions Accepted in C or C++ Mode
	B.5 C++ Extensions Accepted in cfront Compatibility Mode

	Using the Compiler Message System [C]
	C.1 Expanding Messages with the explain Command
	C.2 Controlling the Use of Messages
	C.2.1 Command Line Options
	C.2.2 Environment Options for Messages
	C.2.3 ORIG_CMD_NAME Environment Variable

	C.3 Message Severity
	C.4 Common System Messages

	Using Intrinsic Functions [D]
	D.1 Atomic Memory Operations
	D.1.1 Local Atomic Memory Operations
	D.1.2 Global Atomic Memory Operations

	D.2 Bit Operations
	D.3 Mask Operations
	D.4 Miscellaneous Operations

	List of Examples
	Example 1. CC -X8 -h myprog.C
	Example 2. CC -h conform myprog.C
	Example 3. cc -c -h ipa1 myprog.c subprog.c
	Example 4. cc -I. disc.c vend.c
	Example 5. cc -P -D DEBUG newprog.c
	Example 6. cc -c -h report=s mydata1.c
	Example 7. CC -h ipa5,report=if myfile.C
	Example 8. Trip counts
	Example 9. Unrolling outer loops
	Example 10. Illegal unrolling of outer loops
	Example 11. Using the inline_enable, inline_disable, and inline_
	Example 12. Using inline_reset
	Example 13. Using defer_sync
	Example 14. Calling a C function from Fortran

	List of Tables
	Table 1. GCC C Language Extensions
	Table 2. GCC C++ Language Extensions
	Table 3. Cache Levels
	Table 4. IPA Level
	Table 5. File Types
	Table 6. Floating-point Optimization Levels
	Table 7. -G level Definitions
	Table 8. -W phase Definitions
	Table 9. -Y phase Definitions
	Table 10. -h pragma Directive Processing
	Table 11. Data Type Mapping
	Table 12. Packed Characters
	Table 13. Unrecognizable Escape Sequences

