

## CFD computations for Common Research Model using the code HIFUN

Ravindra K., Nikhil Vijay Shende, N. Balakrishnan Computational Aerodynamics Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012

Fourth AIAA Drag Prediction Workshop, San Antonio, TX June 21–22, 2009

Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



## Outline

### 1 Introduction

2 Typical grids

### 3 Results

### 4 Conclusions

Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



## Outline

### 1 Introduction

2 Typical grids



### 4 Conclusions

Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



### Introduction

### Tools employed

- Grid generation for Common Research Model (CRM) is carried out using GAMBIT and TGRID, commercial softwares from Fluent available at Supercomputer Education and Research Centre (SERC), IISc.
- Flow computations for CRM are performed using the code HIFUN, a commercial software from Simulation and Innovation Engineering Solutions (SandI) available at CAd Lab, Department of Aerospace Engineering, IISc.
- Postprocessing is carried out using TECPLOT available at SERC, IISc.



## Features of code HIFUN

HIFUN: HIgh Resolution Flow Solver on UNstructured Meshes

### Algorithmic features

- Unstructured cell centre finite volume methodology.
- Higher order accuracy: linear reconstruction procedure.
- Flux limiting: Venkatakrishnan Limiter.
- Inviscid flux computation: Roe scheme.
- Convergence acceleration: matrix free symmetric Gauss Seidel relaxation procedure.
- The viscous flux discretization: Green–Gauss theorem based diamond path reconstruction.
- Eddy viscosity computation: Spalart Allmaras TM.
- Parallelization: MPI.



## Outline



### 2 Typical grids



### 4 Conclusions

Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



### Tail 0 configuration: Surface grids





### Tail 0 configuration: Cut section Cut section at 40 % of wing span



| Coarse                           | Medium | Fine |
|----------------------------------|--------|------|
| BL Cells: 21                     | 31     | 41   |
| Average $y^+$ : 0.50             | 0.40   | 0.27 |
| Max <i>y</i> <sup>+</sup> : 0.89 | 0.74   | 0.52 |



### Tail 0 configuration: Surface grids



Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



## Tail 0 configuration: Grid details

### Grid details

| Grid Type                     | Coarse   | Medium   | Fine     |  |
|-------------------------------|----------|----------|----------|--|
| Field Nodes                   | 2152435  | 7442279  | 19028150 |  |
| Field Cells                   | 6244147  | 21288317 | 58076968 |  |
| Boundary Nodes                | 89994    | 213560   | 390969   |  |
| Boundary Faces                | 171374   | 407710   | 748150   |  |
| BL 1 <sup>st</sup> -Cell (in) | 0.001478 | 0.000985 | 0.000657 |  |
| BL Max-Growth                 | 1.5      | 1.32     | 1.24     |  |
| BL Cells                      | 21       | 31       | 41       |  |

#### Note

Boundary layer is grown using aspect ratio based algorithm.



### Computational details

Tail 0 configuration: Fine grid with about 58 million field cells

#### Resource details

- Computer Platform: IBM Blue Gene
- Number of processors: 1024
- Operating system: Unix
- Compiler: XL FORTRAN 90
- Run time Wall clock: 38 hours
- Memory requirement of HIFUN: 51 MB per processor (Approximately)



## Outline



2 Typical grids



### 4 Conclusions

Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



## Outline

### 3 Results

- Case 1.1: Grid convergence
- Case 1.2: Downwash study
- Case 3 (optional): Reynolds number study

(日) (四) (日) (日) (日)



# Tail 0 configuration: Pressure distribution $M_{\infty} = 0.85, Re_{\infty} = 5.00$ million, $CL = 0.5 \pm 0.001$



Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



## Tail 0 configuration: Cp distribution $M_{\infty} = 0.85, Re_{\infty} = 5.00$ million, $CL = 0.5 \pm 0.001$





## Tail 0 configuration: Drag convergence $M_{\infty} = 0.85, Re_{\infty} = 5.00$ million, $CL = 0.5 \pm 0.001$



#### Comments

For  $CD_o$  and  $CD_{pr}$ ,  $\Delta y = 2$  drag counts and for  $CD_{fr}$ ,  $\Delta y = 1$  drag count.

Drag curves do not asymptote on fine grid.



## Separation bubble: wing fuselage junction $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million, $CL = 0.5 \pm 0.001$



Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



## Separation bubble location in inches $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million, $CL = 0.5 \pm 0.001$

| GRID   | FS_BUB   | В        | L_BUB    | B WL_BUB |          |       |
|--------|----------|----------|----------|----------|----------|-------|
| Coarse | 1451.82  | 125.608  |          | 144.788  |          |       |
| Medium | 1433.68  | 130.730  |          | 148.378  |          |       |
| Fine   | 1410.47  | 132.632  |          | 149.274  |          |       |
| GRID   | FS_EYE_V | V BL_EYE |          | E_W      | WL.      | EYE_W |
| Coarse | 1457.52  |          | 123.633  |          | 141.705  |       |
| Medium | 1453.34  |          | 125.337  |          | 143.211  |       |
| Fine   | 1451.59  |          | 126.387  |          | 143.868  |       |
| GRID   | FS_EYE_B |          | BL_EYE_B |          | WL_EYE_B |       |
| Coarse | 1456.81  |          | 120.308  |          | 143.101  |       |
| Medium | 1454.67  |          | 120.297  |          | 145.377  |       |
| Fine   | 1452.47  |          | 120.267  |          | 146.     | 384   |

#### Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



# Separation line near wing trailing edge $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million, $CL = 0.5 \pm 0.001$



Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



## Outline



- Case 1.1: Grid convergence
- Case 1.2: Downwash study
- Case 3 (optional): Reynolds number study

(日) (四) (日) (日) (日)



## Comparison of integrated coefficients $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million





# Comparison of integrated coefficients $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million





# Trim drag and downwash calculations $M_{\infty} = 0.85, Re_{\infty} = 5.0$ million





## Outline



- Case 1.1: Grid convergence
- Case 1.2: Downwash study
- Case 3 (optional): Reynolds number study



### Reynolds number study Tail 0, $CL = 0.5 \pm 0.001$ , Mach = 0.85, Medium grid

| Re     | Field  | d cells B |                  | BL-first spacing (in) |                |                   | Average $y^+$ |     |    |
|--------|--------|-----------|------------------|-----------------------|----------------|-------------------|---------------|-----|----|
| 5.0E6  | 21288  | 8317 0.00 |                  | .000985               |                |                   | 0.4           | 40  |    |
| 20.0E6 | 22802  | 2687      | 0.00             | 0273                  | 273            |                   |               | 0.2 | 29 |
| Re     | α      | CL        | Г                | CD                    | ) <sub>T</sub> | CMT               |               |     |    |
| 5.0E6  | 2.31   | 0.4       | 0.4997           |                       | 2765           | -0.0414           |               | 41  |    |
| 20.0E6 | 2.07   | 0.4       | ).4991           |                       | 0.02264        |                   | )45           | 92  |    |
| Re     | $CD_P$ |           | CD <sub>SF</sub> |                       | CD-            | $\frac{CL^2}{PA}$ |               |     |    |
| 5.0E6  | 0.016  | 95        | 0.010            | 69                    | 0.018          | 818               |               |     |    |
| 20.0E6 | 0.014  | 34        | 0.008            | 29                    | 0.013          | 829               |               |     |    |

Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN

(日) (四) (日) (日) (日)



# Comparison of separation bubbles Tail 0, $CL = 0.5 \pm 0.001$ , Mach = 0.85, Medium grid



Re = 5.0E6

#### Note

 Smaller separation bubble at Wing Body junction for Re = 20.0E6.

• No separation near wing trailing edge for Re = 20.0E6.

Re = 20.0E6



## Comparison of convergence histories Tail 0, $CL = 0.5 \pm 0.001$ , Mach = 0.85



Ravindra et.al. — DPW4: CFD computations for CRM using HIFUN



## Outline



2 Typical grids



### 4 Conclusions

Ravindra et.al. - DPW4: CFD computations for CRM using HIFUN



### Concluding remarks

#### Conclusions

- In the present work, results of RANS computations for Common Research Model using the code HIFUN are presented.
- Unstructured hybrid grids for various configurations are generated using GAMBIT and TGRID.
- During grid generation, except for the number of field cells and number of trailing edge points, the guidelines provided by DPW4 committee are followed.



## Concluding remarks

### Conclusions continued

- With grid refinement, total drag shows reduction by 4–8 drag counts. However, the drag curves do not asymptote on fine grid. Hence any conclusion about the grid convergence of drag can be drawn only after obtaining results on extra-fine grid.
- Separation bubble is seen at wing-fuselage junction and with grid refinement it becomes more pronounced.
- Separation line is seen near the trailing edge on the wing upper surface. The location and spanwise extent of the separation line does not change with grid refinement.
- For all the grids, no separation is observed on the tail.



### Concluding remarks

#### Conclusions continued

- We await the experimental results for validation of downwash and trim drag calculations.
- For Re = 20.0E6, separation bubble seen at the wing-fuselage junction is smaller in size compared to the one seen for Re = 5.0E6.
- For *Re* = 20.0*E*6, no separation is observed near wing trailing edge.



### Acknowledgments

Authors wish to thank Prof. Govindarajan, Chairman, Supercomputer Education and Research Centre (SERC), IISc for permitting them to use IBM Blue Gene facility on a preferential queue and Mr. Kiran, System Administrator, IBM Blue Gene, for his help in the execution; but for this support these computations wouldn't have been possible.

Authors also wish to thank Dr. Joseph Morrison for kindly agreeing to make this presentation.



## Thank you

### Thank you

Thank you

### Contact

- Ravindra K.: ravindra.k@sandi.co.in
- Nikhil Vijay Shende: nikvijay@aero.iisc.ernet.in
- N. Balakrishnan: nbalak@aero.iisc.ernet.in