
1

Introduction to SahasraT

RAVITEJA K
Applications Analyst, Cray inc

E Mail : raviteja@cray.com

2

1. Introduction to SahasraT

2. Cray Software stack

3. Compile applications on XC

4. Run applications on XC

3

What is Supercomputer?

● Broad term for one of the fastest computer currently

available.

● Designed and built to solve difficult computational problems
on extremely large jobs that could not be handled by no
other types of computing systems.

Characteristics :

● The ability to process instructions in parallel (Parallel processing)
● The ability to automatically recover from failures (Fault tolerance)

4

5

What is SahasraT?

● SahasraT is Country’s first petaflops supercomputer.

● SahasraT : Sahasra means “Thousand” and T means
“Teraflop”

● Built and designed by Cray (XC40 Series)

6

Compute Blade

4 Compute Nodes

Chassis

Rank 1 Network

16 Compute Blades

No Cables

64 Compute Nodes

Group

Rank 2 Network

Passive Electrical
Network

2 Cabinets

6 Chassis

384 Compute
Nodes

System

Rank 3
Network

Active
Optical
Network

Hundreds of
Cabinets

Up to 10s of
thousands of
nodes

Cray XC System Building Blocks

7

Connecting nodes together: Aries

Obviously, to function as a
single supercomputer, the
individual nodes must have
method to communicate with
each other.

All nodes in the
interconnected by the high
speed, low latency Cray Aries
Network.

Compute

node

Compute

node

Service

node

Compute

node

Compute

node

Service

node

Compute

node

Compute

node

Cray XC40 Cabinets

8

XC Compute Blade

9

Cray XC Rank1 Backplane Network

o Chassis with 16 compute blades

o 128 Sockets

o Inter-Aries communication over

backplane

o Per-Packet adaptive Routing

10

Types of nodes:

Service nodes:

• Its purpose is managing running jobs, but you can access using an interactive

session.

• It runs a full version of the CLE operating system (all libraries and tools

available)

• They are shared resources, mistakes and misbehaviour can effect jobs of other

users(!).

11

SahasraT hardware configuration:

● Based on Cray Linux Environment.

● Consists of

 CPU based Cluster
 Equipped with Intel Haswell processors

 Accelerated based Cluster
 Equipped with Nvidia GPUs

 Equipped with Intel KNLs

 2 PB High Speed storage (Lustre file system)

12

Types of nodes:

Compute nodes:

• These are the nodes on which jobs are executed

• These nodes, includes GPU and KNL accelerated cards.

• It runs Compute Node Linux, a version of the OS optimised for running batch

workloads

• They can only be accessed by starting jobs with aprun (in conjunction with a

batch system)

• They are exclusive resources that may only be used by a single user.

13

System configuration: Compute (H/W)

Compute Node :
No. of Nodes : 1376

Processor type : Intel Haswell

No. of cores per node : 12 cores

Clock Rate : 2.5 GHz

Memory per Node : 128 GB

Total Memory : 176 TB

Accelerator Node :
Accelerator : Intel XeonPhi 7120

No. of Nodes : 24

No. of Cores per node : 64 core

Clock Rate : 1.3 GHz

Memory per node : 96 GB

Total Peak Performance : ~60 TFLOPS

14

System configuration: Compute (H/W)

GPU Node :

No. of Nodes : 44

Processor type : Nvidia tesla K 40

No. of Cores per node : 2880 cores

Memory per Node : 12GB GDDR5

CPU Cores : Ivybridge

15

SahasraT Access details:

● Accessed from within the IISc network

● Use sahasrat.serc.iisc.ernet.in address to login
Eg: ssh computational_id@sahasrat.serc.iisc.ernet.in

● Use admin supply password to log in then change password –
follow the institute procedure for this

16

Cray Software

17

What is Cray?

● Cray systems are designed to be High Productivity as
well as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance

● a rich variety of commonly used tools and libraries

● a consistent interface to multiple compilers and libraries

● an increased automation of routine tasks

18

Cray’s Supported Programming Environment
Programming

Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 4.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

•Abnormal
Termination
Processing

STAT

Debugging Support

Tools

Performance Analysis

Scoping Analysis

Reveal

19

Trimming OS

● Standard Linux Server ● Linux on a Diet – CLE

Linux Kernel

Portmap

sshd

slpd

nscd

resmgrd

powersaved

cupsd

kdm

cron mingetty(s)

qmgr master

pickup

ndbd

…

init

klogd

Linux Kernel

ALPS

client
syslogd

Lustre

Client init

klogd

20

Cray Programming Environment:

● Cray supports C, C++, Fortran, Python etc programing
languages

● Cray supports GNU, Intel and other third party compilers

● Cray programming environment and cray compilers are
default user environments.

● Modules application allows you to dynamically modify
your user environment by using modulefiles

21

An introduction to modules

22

What are Environment Modules?

● provides for the dynamic
modification of a user's
environment via modulefiles

● each modulefile contains the
information needed to configure
the shell for an application
● Typically alter or set shell

environment variables such as
PATH, MANPATH, etc.

● Modules can
be loaded and unloaded
dynamically and atomically, in
an clean fashion

● All popular shells are
supported
● including bash,ksh, zsh, sh, csh,

tcsh, as well as some scripting
languages such
as perl and python

● useful in managing different
applications and
versions of applications

● can be bundled into
metamodules
● load an entire suite of different

applications

23

Environment Setup

● The Cray XC system uses modules in the user
environment to support multiple software versions and to
create integrated software packages

● As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

● You can use the default version of an application, or you can choose
another version by using Modules system commands

24

Most important module commands

● Various applications in various versions
available
$> module avail # lists all
$> module avail cce # cce*

● Dynamic modification of a user’s
environment
$> module (un)load PRODUCT/MODULE

● E.g. PrgEnv-xxx changes compilers, linked

libraries, and environment variables

● Version management
$> module switch prod_v1 prod_v2
$> module switch PrgEnv-cray PrgEnv-gnu
$> module switch cce cce/8.5.8

● Metamodules bundles multiple modules
● Can create your own (meta)modules

● Module tool take care
● Environment variables

● PATH, MANPATH,
LD_LIBRARY_PATH,
LM_LICENSE_FILE,....

● Taking care of compiler and
linker arguments of loaded
products
● Include paths, linker paths, …

25

More module commands

• Prints actual loaded modules$> module list

• Prints all module available containing the specified string $> module avail [–S str]

• Adds or remove a module to the actual loaded list

• If no version specified, loading the default version
$> module (un)load [mod_name/version]

• Unload mod1 and load mod2

• e.g. to change versions of loaded modules
$> module switch [mod1] [mod2]

• Prints the module (short) description$> module whatis/help [mod]

• Prints the environmental modification$> module show [mod]

• add $HOME/privatemodules to the list of directories that the
module command will search for modules

$> module load user_own_modules

26

Default module list at SahasraT

27

“Meta”-Module PrgEnv-X

● PrgEnv-X is a “meta”-module
● loading several modules,

● including the compiler,

● the corresponding mathematical
libs,

● MPI,

● system environment needed for
the compiler wrappers

crayadm@login1:~> module show PrgEnv-cray
--
/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict PrgEnv
conflict PrgEnv-x1
conflict PrgEnv-x2
conflict PrgEnv-gnu
conflict PrgEnv-intel
conflict PrgEnv-pgi
conflict PrgEnv-pathscale
conflict PrgEnv-cray
setenv PE_ENV CRAY
prepend-path PE_PRODUCT_LIST CRAY
setenv cce_already_loaded 1
module load cce/8.6.1
setenv craype_already_loaded 1
module swap craype/2.5.12
module swap cray-mpich cray-mpich/7.6.0
module load cray-libsci
module load pmi
module load rca
module load atp
module load perftools-base
setenv CRAY_PRGENVCRAY loaded
--

28

Compile applications
on the Cray XC

29

Things to remember before compiling

● Check loaded programming modules

● Check compiler and their versions

● If not, load relevant modules

30

Compiler Driver Wrappers (1)

● All applications that will run in parallel on the Cray XC should
be compiled with the standard language wrappers.

The compiler drivers for each language are:
● cc – wrapper around the C compiler
● CC – wrapper around the C++ compiler
● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler version, target
architecture options, scientific libraries and their include files
automatically from the current used module environment. Use
the –craype-verbose flag to see the default options.

● Use them exactly like you would the original compiler, e.g. To
compile prog1.f90:

$> ftn -c <any_other_flags> prog1.f90

31

Compiler Driver Wrappers (2)

● The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.
$> module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login. This may differ on
other Cray systems.
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich).
● To support SHMEM load the cray-shmem module.

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

32

Compiler Versions

● There are usually multiple versions of each compiler
available to users.
● The most recent version is usually the default and will be loaded when

swapping the PrgEnv.

● To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce cce/8.3.10

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

PrgEnv-pgi pgi

33

EXCEPTION: Cross Compiling Environment

● The wrapper scripts, ftn, cc, and CC, will create a highly
optimized executable tuned for the Cray XC’s compute nodes
(cross compilation).

● This executable may not run on the login nodes (nor pre/post
nodes)
● Login nodes do not support running distributed memory applications
● Some Cray architectures may have different processors in the login and

compute nodes. Typical error is ‘… illegal Instruction …’

● If you are compiling for the login nodes
● You should use the original direct compiler commands, e.g. ifort, pgcc,

crayftn, gcc, … PATH will change with modules. All libraries will have to
be linked in manually.

● Conversely, you can use the compiler wrappers {cc,CC,ftn} and use the
-target-cpu= option among {abudhabi, haswell, interlagos, istanbul,
ivybridge, mc12, mc8, sandybridge, shanghai, x86_64. The x86_64 is the
most compatible but also less specific.

34

Compiler man Pages

● For more information on individual compilers

● To verify that you are using the correct version of a compiler,
use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray
● --version option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

PrgEnv-pgi man pgcc man pgCC man pgf90

Wrappers man cc man CC man ftn

35

More module commands

• Prints actual loaded modules$> module list

• Prints all module available containing the specified string $> module avail [–S str]

• Adds or remove a module to the actual loaded list

• If no version specified, loading the default version
$> module (un)load [mod_name/version]

• Unload mod1 and load mod2

• e.g. to change versions of loaded modules
$> module switch [mod1] [mod2]

• Prints the module (short) description$> module whatis/help [mod]

• Prints the environmental modification$> module show [mod]

• add $HOME/privatemodules to the list of directories that the
module command will search for modules

$> module load user_own_modules

36

“Meta”-Module PrgEnv-X

● PrgEnv-X is a “meta”-module
● loading several modules,

●including the compiler,

●the corresponding mathematical libs,

●MPI,

●system environment needed for the
compiler wrappers

crayadm@elogin04:~> module show PrgEnv-cray
--
/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict PrgEnv
conflict PrgEnv-x1
conflict PrgEnv-x2
conflict PrgEnv-gnu
conflict PrgEnv-intel
conflict PrgEnv-pgi
conflict PrgEnv-pathscale
conflict PrgEnv-cray
setenv PE_ENV CRAY
prepend-path PE_PRODUCT_LIST CRAY
setenv cce_already_loaded 1
module load cce/8.6.3
setenv craype_already_loaded 1
module swap craype/2.5.13
module swap cray-mpich cray-mpich/7.6.3
module load cray-libsci
module load udreg
module load ugni

37

What module does ?

38

Targeting different node types

● Compiling for the CPU nodes
● module load craype-haswell

(enables the haswell specific instructions. Default is x86_64)

% module load PrgEnv-Cray or PrgEnv-gnu or PrgEnv-intel

% module load craype-haswell

% module load <application related modules>

Then compile application

39

Targeting different node types

● Compiling for the CPU nodes
● module load craype-haswell

(enables the haswell specific instructions. Default is x86_64)

% module load PrgEnv-Cray or PrgEnv-gnu or PrgEnv-intel

% module load craype-haswell

% module load <application related modules>

Then compile application

40

Targeting different node types

● Compiling for KNL nodes

While compiling application for KNL,

● Load cray-mic-knl

% module load craype-mic-knl

● Based on PrgEnv, use below flags and compile application

“-xMIC-AVX512″ for Intel Compilers

“-hcpu=mic-knl” for Cray compilers

“-march=knl” for GNU compilers

41

Targeting different node types

● Compiling for the GPU nodes
● module load craype-accel-nvidia35 or craype-accel-nvidia60

Here, craype-accel-nvidia60 is for Pascal

craype-accel-nvidia35 for Kepler

● “module display craype-accel-nvidia35” tells you that this module

also loads cudatoolkit and cray-libsci-acc

Eg :
module load PrgEnv-gnu/6.0.4

module load gcc/4.9.3 or gcc/5.3.0

module load craype-ivybridge

module load craype-accel-nvidia35 (we have Kepler 40)

42

Summary

● Four compiler environments available on the XC:
● Cray (PrgEnv-cray is the default)
● Intel (PrgEnv-intel)
● GNU (PrgEnv-gnu)
● PGI (PrgEnv-pgi)

● All of them accessed through the wrappers ftn, cc and CC – just do module
swap to change a compiler or a version.

● There is no universally fastest compiler
● Performance strongly depends on the application (even input)
● We try however to excel with the Cray Compiler Environment
● If you see a case where some other compiler yields better performance, let

us know!

● Compiler flags do matter
● be ready to spend some effort for finding the best ones for your application.
● More information is given at the end of this presentation.

43

Run applications on XC

44

How to run application on a XC 40 ?

● Two ways to run applications :

● Interactive mode
 Log in to service node
 Less response time
 Prompt the user for input as data or commands
 Best suited for Short tasks, those which require frequent user

interaction

● Batch mode
 Submitted to a job scheduler
 Best for longer running processes
 Avoids idling the computing resources

45

How to run application on a XC 40?

Most Cray XCs are batch systems

● Users submit batch job scripts to a scheduler from a login node (e.g. PBS,
MOAB, SLURM) for execution at some point in the future.
Each job requires resources and a prediction how long it will run.

● The scheduler (running on an external server) chooses which jobs to run and
allocates appropriate resources

● The batch system will then execute the user’s job script on an a different node
as the login node.

● The scheduler monitors the job and kills any that overrun their runtime
prediction.

● The batch script contains one or more parallel job runs executed via aprun

46

● The main Cray system uses the workload manager and the Application Level Placement Scheduler

(ALPS)

● In your daily work you will mainly encounter the following commands:

qsub – Submit a batch script to PBS.

aprun – Run parallel jobs within the script.

qdel – Signal jobs under the control of PBS

qstat – information about running jobs

● Plenty of information can be found in the corresponding man pages on the system

● The entire information about your simulation execution is contained in a batch script which is submitted

via qsub.

● Nodes are used exclusively.

47

Running a job on HPC system :

● Prepare job submission script

● Script file defines the commands and cluster resources used for the
job

● Log in to “External Log-in node”

● The qsub command is used to submit a job to the PBS queue

● PBS queue used to allocate resources.

48

$> cat job.pbs
#!/bin/bash
#PBS –q queue_name
#PBS –l select=1:ncpus=24

#PBS –l walltime=00:10:00

#PBS –j oe

cd <my_work_dir>
aprun –n 24 –N 24 <exe>
rm –r <my_work_dir>/<tmp_files>

Lifecycle of a batch script

Login Node

qsub job.pbs

PBS

Queue

Manager

MOM

Node

Cray XC Compute Nodes

Parallel

Serial

Scheduler

Resources

49

Requesting Resources

● Job requirements
as #PBS comments
in the headers of
the batch script

● Common options:

These can be overridden or supplemented by adding arguments
to the qsub command line, e.g.

$> qsub –l select=20:ncpus=24 run.pbs

Option Description

-l nodes=<nnodes>:ppn=24 Requests X full nodes

(only full nodes are available on HazelHen)

-l walltime <HH:MM:SS> Maximum wall time job will occupy

-N <job_name> Name of the job

-A <code> Account to run job under (for controlling budgets)

-j oe collect both stderr and stdout to a single file

specified by the –o option or the default file for

stdout.

–o <my_output_file_name>
–e <my_error_file_name>

Redirects stdout and stderr to two separate files.

If not specified, the script output will be written to

files of the form <script_name>.e<JOBID> and

<script_name>.o<JOBID>.

-q <queue> Submit job to a specific queues

50

Running an application using ALPS + aprun

●aprun is the ALPS application launcher
● Runs applications on the XC compute nodes.
aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

Option Description

-n Total Number of PEs used by the application

-N Number of PEs per compute node

-d “stride” between 2 PEs on a node,

usually used for: Number of threads per PE

-S Pes per numa node (can have effects for memory bandwidth)

-j -j 2 enables hyperthreading

● Cannot get more
resources for aprun than
requested via WLM.

● The most important
parameters (manpage
for more examples)

● Applications started without aprun, are executed on mom nodes
and can affect other users jobs

51

Cray XC Basic MPI-Jobs Examples

Single node, Single task

Run a job on one task on
one node with full memory.

Single node, Multiple Ranks

Run a pure MPI job with 24

Ranks or less on one node.

Multiple nodes, Multiple Ranks

Run a pure MPI job on 4 nodes with 24 MPI

ranks or less on each node.

…
#PBS –l select=1:ncpus=24
…
aprun –n 1 ./<exe>

…
#PBS –l select=1:ncpus=24
…
aprun –n 24 ./<exe>

…
#PBS –l select=1:ncpus=24

…
aprun –n 96 –N 24 ./<exe>

52

Hyperthreads on the XC with ALPS

● Intel Hyper-Threading is a method of improving the throughput of a CPU by
allowing two independent program threads to share the execution resources of
one CPU
● When one thread stalls the processor can execute read instructions from a second

thread instead of sitting idle

● Because only the thread context state and a few other resources are replicated (unlike
replicating entire processor cores), the throughput improvement depends on whether the
shared execution resources are a bottleneck

● Typically much less than 2x with two hyperthreads

● With aprun, hyper-threading is controlled with -j
● -j 1 = no hyper-threading (default)

(a node is treated to contain 24 cores)

● -j 2 = hyper-threading enabled

(a node is treated to contain 48 cores)

● Try it, if it does not help, turn it off.

…
#PBS –l select=1:ncpus=24
…
aprun –n 48 –j2 ./<exe>

53

XC Hybrid MPI/OpenMP Jobs (Example)

Hybrid MPI/OpenMP job on 3 nodes with 12 MPI ranks per node, 4 threads for each rank,

using Hyperthreads.

…
#PBS –l select=1:ncpus=24
…
export OMP_NUM_THREADS=4
echo "OMP_NUM_THREADS: $OMP_NUM_THREADS"
aprun –n 1 –d $OMP_NUM_THREADS ./<omp_exe>

Pure OpenMP Job

Using 4 threads on one a
single node

…
#PBS –l select=3:ncpus=24
…
export OMP_NUM_THREADS=4
echo "OMP_NUM_THREADS: $OMP_NUM_THREADS"
aprun –n 36 –N 12 –d $OMP_NUM_THREADS –j 2 ./<hybrid_exe>

54

Monitoring your Job

● After submitting your job, you can monitor its status

Command Description

$> qsub <batch_script> <JOBID> Start your job with from the shell with qsub.

The <JOBID> is printed.

$> qstat -u $USER Prints status of all your jobs. Always check that the

reported resources are what you expect.

$> showq –u $USER information of active, eligible, blocked and completed

jobs

$> checkjob <JOBID> Detailed job state information and diagnostic output

$> qdel <JOBID> Only if you think that your job is not running properly

after inspecting your output files, you can cancel it with

qdel.

55

Interactive Sessions

eslogin08$> qsub -I -l nodes=2,walltime=00:19:00
qsub: waiting for job 123456.XXX-batch.YYY.com to start
...
qsub: job 123456.XXX-batch.YYY.de ready
Welcome to XXX (Cray XC40) at XXX.
Directory: /home/userxyz
Fri Feb 07 08:15:00 CEST 2015
mom15$> aprun –n 24 –N 12 … <my_application>

request an interactive session.

•use qsub option –I
•typically used for small jobs which have to be run frequently for testing or for debugging sessions with

STAT, ATP, DDT etc. and usually used with small amount of nodes.

Once the Job is executed by PBS, the user receives a shell prompt where commands like aprun can be

executed directly. An entire batch script could be executed with source <bath_scipt>.

(!) interactive sessions are executed on MOM nodes. Every compute intense calculation has to be

executed with aprun.

56

Environment variables
● Job specific environmental variables are available

● E.g. using the maximum allocated resources

Environment Variable Description

PBS_O_WORKDIR Directory where qsub has been executed

PBS_JOBID Job ID

PBS_JOBNAME Job name as specified by the user

PBS_NODEFILE List of allocated nodes.

#!/bin/bash
#PBS -N xthi
#PBS -l nodes=3:ppn=24
#PBS -l walltime=00:05:00
...
NS=$(qstat -f ${PBS_JOBID} | awk '/Resource_List.nodect/{ print $3 }')
NRANK=$[${NS} * 24]

aprun -n ${NRANK} -N 24 -d ${OMP_NUM_THREADS} -j1 ./a.out

57

Queues on SERC System

crayadm@login1:~> qstat -q

server: sdb

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- ----- ----- ---- -----

large -- -- 24:00:00 -- 0 0 -- E R

medium -- -- 24:00:00 -- 8 17 -- E R

small72 -- -- 72:00:00 -- 15 16 -- E R

small -- -- 24:00:00 -- 20 38 -- E R

gpu -- -- 24:00:00 4 30 20 -- E R

mgpu -- -- 24:00:00 24 1 3 -- E R

knl -- -- 24:00:00 -- 2 0 -- E R

idqueue -- -- 02:00:00 -- 9 22 -- E R

----- -----

86 136

58

Queues on SERC System

Batch Strategies and Queues :

Queue name: Batch

Queue type: Route

Max_queued_by_each_user: 2

Route destinations: idqueue, small, small72, medium, large, gpu, knl

==============================

Queue Name: idqueue

Queue Type: Execution

Job type: CPU MPI based/ openmp based

Max_job_queued_per_user: 2

Core ranges: 24 – 256 ~ 10 nodes

Max_walltime: 2hrs

Max_user_job_run: 1

Total_job_runs: 32

59

Queues on SERC System
Queue Name: small

Queue Type: Execution

Max_job_queued_per_user: 3

Job type: CPU MPI based/openmp based

Core ranges: 24 – 1032

Max_walltime: 24hrs

Max_user_job_run: 2

Total_job_runs: 20

==================================

Queue Name: small72

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 24 – 1032

Max_walltime: 72hrs

Max_user_job_run: 1

Total_job_runs: 15

Queue Name: medium

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 1033 - 8208

Max_walltime: 72hrs

Max_user_job_run: 1

Total_job_runs: 10

==================================

Queue Name: large

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 8209 - 22800

Max_walltime: 24hrs

Max_user_job_run: 1

Total_job_runs: 4

60

Queues on SERC System
Queue Name: gpu

Queue Type: Execution

Job Type: Cuda based code/Opencl code/ GPU applications

Max_job_queued_per_user: 5

Core ranges: 1 – 48

Min no. of accelerators (Nvidia): 1

Max no. of accelerators (Nvidia): 4

Max_walltime: 24hrs

Max_user_job_run: 3

Total_job_runs: 30

=====================================

Queue Name: knl

Queue Type: Execution

Job Type: intel-xeon phi coprocessor job

Max_job_queued_per_user: 3

Core ranges: 1 - 480

Max_walltime: 24hrs

Max_user_job_run: 2

61

Limitations of SahasraT:

● Resources are shared between users

● User will get 1.5GB of /home area

● 10 TB of high speed storage (Lustre Storage)

Location : /mnt/lustre/<user>

● Third party applications’ licenses are to be provided by users

62

Questions?

63

Thank You

Email : iisc_support@cray.com

