High Performance
Computing

Introduction to Parallel Computing

Acknowledgements

Content of the following presentation is
borrowed from

The Lawrence Livermore National
Laboratory

https://hpc.lInl.gov/training/tutorials

Serial Computing

® Traditionally, software has been
written for serial computation:

® A problem is broken into a
discrete series of instructions

l instructions ® Instructions are executed

I“E““' sequentially one after another
N

2 tax
hrs
1_hrs

3_deduc

3_rate
2_check
2_deduc
2 _rate

2

ermp:

empi1_deduc

—# processor .

empi1_rate

empi_tax

Executed on a single processor

emp
emp
emp
emp
emp
emp
emp1

[
[

t ® Only one instruction may execute
at any moment in time

Parallel Computing

" Simultaneous use of multiple
compute resources to solve a
computational problem.

problem instructions

-~ |-

~ il | ==

-l | 1-E

~ il |-
N 13 i2 t

" Run on multiple CPUs

® Problem is decomposed into
multiple parts that can be solved
concurrently.

® Each part is decomposed into a
set of instructions.

" Instructions are executed
simultaneously on different CPUs

Compute Resources

 Single Computer with
multiple processors.

« Arbitrary Number of
Computers connected
by a network.

« Combination of both

NODE

NODE

NODE

Parallel Computer Architecture

NODE

NODE

NODE

memory

memory |

memory |

memory |

memory |

memory |

I

!

core|core

core|core

core|core

core |core

core |core

core |core

!

core | core

core | core

core |core

core |core

NETWORK

Ccore | core

core |core

Example: Networks connect multiple stand-
alone computers (nodes) to make larger parallel
computer clusters.

Parallel Computer Memory Architectures
Shared Memory

Interconnect

e
| swmgtenmesssepe

Parallel Computer Memory Architectures
Shared Memory

Advantages:

® Global address space provides a user-friendly programming perspective fo memory

® Data sharing between tasks is both fast and uniform due to the proximity of
memory to CPUs

Disadvantages:

® Lack of scalability between memory and CPUs.

® Programmer responsibility for synchronization constructs that ensure "correct"
access of global memory.

Parallel Computer Memory Architectures
Distributed Memory

A communication network to connect inter-processor
memory.

Processors have their own local memory. Memory addresses
in one processor do not map to another processor, so there
is no concept of global address space across all processors.

) | " Changes it makes to its local memory have no effect on the

memory of other processors.

Task of the programmer to explicitly define how and when
data is communicated. Synchronization between tasks is
likewise the programmer's responsibility.

The network "fabric" used for data transfer varies widely,

Parallel Computer Memory Architectures
Distributed Memory

Advantages:
® Scalable Memory: is scalable with the number of processors.

* Each processor can rapidly access its own memory.
® Cost effective: can use commodity, of f-the-shelf processors and networking.

Disadvantages:
® Programmer is responsible for details associated with data communication
between processors.

* It may be difficult to map existing data structures, based on global memory, to
this memory organization.

® Non-uniform memory access times - data residing on a remote node takes longer
to access than node local data.

Parallel Computer Memory Architectures
Hybrid Memory

CPU Memory

CPU Memory

Memory CPU

Memory CPU

The largest and fastest computers in the world today
employ both shared and distributed memory architectures

The shared memory component can be a shared memory
machine and/or graphics processing units (GPU).

The distributed memory component is the networking of
multiple shared memory/GPU machines, which know only
about their own memory - not the memory on another
machine.

Network communications are required to move data from
one machine to another.

Trends indicate that this type of memory architecture will
prevail and increase at the high end of computing for the
foreseeable future,

The Parallel Computing Terminology

Supercomputing / High Performance Computing (HPC) : Using the
world's fastest and largest computers to solve large problems.

Node : a standalone "computer in a box". Usually comprised of multiple
CPUs/processors/cores, memory, network interfaces, etc. Nodes are
networked together to comprise a supercomputer.

CPU / Processor / Core : It Depends..... (A Node has multiple Cores or
Processors)

Logical View of a Supercomputer

Connections within chassis

Limits and Costs of Parallel Programming

Parallel programs contain

a Serial Section
a Parallel Section

Observed speedup of a code which has
been parallelized, defined as:

wall-clock time of serial execution
wall-clock time of parallel execution

Amdhal's Law

Time = 5 units Time = 3 units

Speedup is limited \ m—
by the non- Y

parallelizable/ serial
por"l'ion of the work. Parallelizable Serial

§60b-0—

Gustafson's Law

> As more cores are integrated, the workloads are
also growing!
Let s be the serial time of a program and p the time
that can be done in parallel

Let f = p/(s+p)

—

S

= (C cores

s+ pC
S+ p

Spheedup = =1-f+ fC=1+ f(C-1)

Amdhal's Law & Gustafson's Law

workload
increases with
number of
proCessors
more speedup
iz obtained

Workload
remains
constant

How quickly can we complete analysis | Can we analyze more data in approx.

on a particular data set by increasing | same amount of time by increasing
Processor count? Processor count?

Moving from Serial to Parallel Code

® Can the problem be parallelized?

® Calculation of the Fibonacci series (0,1,1,2,3,5,8,13,21,...)
by use of the formula:

®* F(n) = F(n-1) + F(n-2)
® Identify the program’s hotspots
® Identify bottlenecks in the program

® Identify Data Dependencies and Task Dependencies (inhibitors to
parallelism)

® Investigate other algorithms if possible & take advantage of
optimized third party parallel software.

Moving from Serial to Parallel Code

Data

Problem to solve

Decomposition

Task
Decomposition

Decomposition

Subproblems/ Tasks #m

‘ Assignment Specifying mechanism to divide work

Up among processes. (Static or
Parallel worker threads #- - -- - --

Dynamic)
Orchestration
T |dentify & Resolve Data & Control
* Dependencies

Mapping

Execution on Parallel Machine
Processor Cores

Moving from Serial to Parallel Code : Decomposition

Decomposition
Divide computation into smaller parts(tasks) that can be executed concurrently
There are two basic ways to partition computational work among parallel tasks

1. Domain/Data Decomposition

Data associated with the problem
is decomposed —_ L 1D
D

BLOCK CYCLIC

2
Problem Data Set

\ \ BLOCK, * *, BLOCK BLOCK, BLOCK

])
— — E m

cYCLIC, * *, CYCLIC CYCLIC, CYCLIC

More on Data Decomposition

For problems that operate on large amounts of data
Data is divided up between CPUs : Each CPU has its own chunk of
dataset to operate upon and then the results are collated.

Which data should we partition?
Input Data
Output Data
Intermediate Data

Ensure Load Balancing : Equal sized tasks not necessarily equal size
data sets.

« Static Load Balancing

« Dynamic Load Balancing

Moving from Serial to Parallel Code: Decomposition

2. Functional/ Task Decomposition

The problem is decomposed according to the work that must be done.
Each task then performs a portion of the overall work

Problem Instruction Set

Decomposition : Example

Dense Matrix-Vector Multiplication

/ ylil = 3oy Ali. j1bLi) \
Matrix A Vectorb Result vectory

Task 2

N /

Computing y[i] only use ith row of A and b
Task = > computing y[i]

Task size is uniform

No dependence between tasks

All tasks need b

Decomposition : What to look for

Does the partition define (at least an order of magnitude) more tasks
than there are processors in your target computer? (Flexibility)

Does the partition avoid redundant computation and storage
requirements? (Scalability)

Are tasks of comparable size? (Load Balancing)

Does the number of tasks scale with problem size? Increase in
problem size should increase the number of tasks rather than the
size of individual tasks.

Identify alternative partitions? You can maximize flexibility in
subsequent design stages by considering alternatives now.

Investigate both domain and functional decompositions.

Data Dependencies

 The order of statement execution affects the results of the
program.

* Multiple use of the same location(s) in storage by different tasks.

Loop carried dependence Loop independent data dependency

Data Dependencies

DO J = MYSTART,6 MYEND
A(J) = A(J-1) * 2.0
END DO

Task 1 Task2
X=2 X = 4
Y = X*%*2 Y = X*%3

If Task 2 has A(J) and task 1 has A(J-1)

Distributed memory architecture - task 2 must
obtain the value of A(J-1) from task 1 after task
1 finishes its computation

Shared memory architecture - task 2 must read
A(J-1) after task 1 updates it

(Race Condition) The value ofY is dependent on:

Distributed memory architecture - if or when the
value of X is communicated between the tasks.

Shared memory architecture - which task last
stores the value of X.

Handling Dependencies

 Distributed memory architectures - communicate required data
at synchronization points.

« Shared memory architectures -synchronize read/write

operations between tasks.
« Data Dependencies:- Mutual Exclusion
Locks & Critical Sections

« Task Dependencies:- Explicit or Implicit Synchronization
points called Barriers

Mapping

GOAL : Assigning the tasks/ processes to Processors while
Minimizing Parallel Processing Overheads

* Maximize data locality

« Minimize volume of data-exchange

« Minimize frequency of interactions

* Minimize contention and hot spots

« Overlap computation with interactions
Selective data and computation replication

Thank You

HPC Solution Stack

...

Dev and Perf
Debuggers Tools
" C
Custom User Interface |
Cluster

plication
Environment |
Layer

Software T o
Layer Cluster Management Job Scheduling Relplonr%ing U
d
B * S e e D e /I
n
Layer
| C t Management v |
F . ompute :
T:“:fre i P Storage Interconnect 9 s |
S Servers Servers e |
