
CUDA Programming Model Overview

05 sep ,IISc SERC Punit Kishore

CUDA Programming Model

Parallel portions of an application are executed on
the device as kernels

One kernel is executed at a time

Many threads execute each kernel

Differences between CUDA and CPU threads

© NVIDIA Corporation 2006 2

Differences between CUDA and CPU threads
CUDA threads are extremely lightweight

Very little creation overhead

Instant switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Programming Model

A kernel is executed as a
grid of thread blocks

A thread block is a batch
of threads that can
cooperate with each
other by:

Host

Kernel
1

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

© NVIDIA Corporation 2006 3

other by:
Sharing data through
shared memory

Synchronizing their
execution

Threads from different
blocks cannot cooperate

Kernel
2

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Processors execute computing threads

Thread Execution Manager issues threads

128 Thread Processors

Parallel Data Cache accelerates processing

G80 Device

Input Assembler

Host

© NVIDIA Corporation 2006 4

Thread Execution Manager

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Programming Model

Threads and blocks have IDs
So each thread can decide
what data to work on

Block ID: 1D or 2D

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block Block Block

© NVIDIA Corporation 2006 5

Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data

Image processing

Solving PDEs on volumes

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Programming Model:
Memory Spaces

Each thread can:
Read/write per-thread registers

Read/write per-thread local memory

Read/write per-block shared memory

Read/write per-grid global memory

Grid

Block (0, 0)

Shared Memory

Registers Registers

Block (1, 0)

Shared Memory

Registers Registers

© NVIDIA Corporation 2006 6

Read/write per-grid global memory

Read only per-grid constant memory

Read only per-grid texture memory

Constant

Memory

Texture

Memory

Global

Memory

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

Local

Memory

Thread (0, 0)

Local

Memory

Thread (1, 0)

HostThe host can read/write
global, constant, and
texture memory (stored
in DRAM)

Execution Model

Kernels are launched in grids

One kernel executes at a time

A block executes on one multiprocessor

Does not migrate

Several blocks can execute concurrently on one

© NVIDIA Corporation 2006 7

Several blocks can execute concurrently on one
multiprocessor

Control limitations:
At most 8 concurrent blocks per SM

At most 768 concurrent threads per SM

Number is further limited by SM resources
Register file is partitioned among the threads

Shared memory is partitioned among the blocks

CUDA Advantages over Legacy GPGPU

Random access to memory

Thread can access any memory location

Unlimited access to memory

Thread can read/write as many locations as needed

User-managed cache (per block)

© NVIDIA Corporation 2006 8

User-managed cache (per block)

Threads can cooperatively load data into SMEM

Any thread can then access any SMEM location

Low learning curve

Just a few extensions to C

No knowledge of graphics is required

No graphics API overhead

CUDA Model Summary

Thousands of lightweight concurrent threads
No switching overhead

Hide instruction latency

Shared memory
User-managed L1 cache

Thread communication within blocks

Random access to global memory
Any thread can read/write any location(s)

© NVIDIA Corporation 2006 9

Any thread can read/write any location(s)

Current generation hardware:
Up to 128 streaming processors

Memory Location Cached Access Who

Local Off-chip No Read/write One thread

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host

Constant Off-chip Yes Read All threads + host

Texture Off-chip Yes Read All threads + host

