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Importance of studying defects

m Defects are ubiquitous in materials and thermodynamically
unavoidable at finite temperature.
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mechanical, electrical, and other transport properties.

m The performance and long-term stability of devices is often governed
by the creation, transport and annihilation of point defects.

m Product manufacturing process can be improved by studying the
defect formation at different environmental conditions.
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Methods — Ground-state properties

Properties that are intrinsic to a system with all its electrons in equilibrium.
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Properties that are intrinsic to a system with all its electrons in equilibrium.

m Density functional theory is the “standard model” for
understanding ground-state properties.

m Total energy is a functional of the charge density.

m Kohn-Sham formulation: Map the interacting
many-electron problem to non-interacting electrons
moving in a self-consistent field.

V2
( - 7 + Vionic(r) + VHartree(r) + ch(r) )1/1(1') = EQ,Z)(I')
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V2
( -+ Vionic(r) + VHartree(r) + ch(r) )1/1(1') = EQ,Z)(I')

2 !
Local density approximation
Generalized gradient approximation
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Methods — Ground-state properties
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Methods — Excited-state properties

Spectroscopic properties that involve experiments creating an excited
particle above the ground state.
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Spectroscopic properties that involve experiments creating an excited
particle above the ground state.

m Concept and formalism of interacting particle Green's function (G).
m Many-body perturbation theory is the “standard model” for
understanding excited-state properties.

G ' =Gppp + 2 — Vi

= GW approximation to the self-energy (X).

Science with SahasraT, May 2016. 9 /25



Methods — Excited-state properties
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Eé [ﬁq] (EF) = Eq[ﬁq] — Brer + s + Q(EF + Ev)
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Formation energy and charge transition level

Eé [ﬁq] (EF) = Eq[ﬁq] — Brer + s + Q(EF + Ev)
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Formation energy and charge transition level

DFT 4+ GW methodology.
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Why are defects challenging?

Potentially strong electron-electron correlations.

— Can be open-shell systems.
— Multiple localized, interacting electrons.

m Lattice relaxation effects.

m Screening from the host.
— Mimicking the system by isolated cluster may be incorrect.

Experiments often involve excited-state properties (deep level
transient spectroscopy or optical absorption etc.)

Computational difficulty — isolated defect.
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Structure of a-alumina

Hexagonal unit cell (space group R3C) contains 30 atoms
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Details of our calculation: a-alumina

DFET calculation GW calculation

m Quantum Espresso package m BerkeleyGW package

m Norm-conserving m 25 Ry cutoff for static dielectric
Pseudopotentials matrix

m PBE exchange correlation m For finite frequency used GPP

m Wavefunction cutoff: 75 Ry (Generalized Plasmon Pole)

m 2x2x2 kgrid for 120 atom m 4000 bands for 120 atom
supercell (2x2x1) supercell

= Only T point for 270 atom = 9000 bands for 270 atom
supercell (3x3x1) supercell
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PBE and quasiparticle level diagram - Vg
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Results:Charge transition levels

T |p1 P2 A
levels
el | 495 |365 |1.30
+1/0
el | 487 | 379 |1.08
et 521 [ 379 | 142
+2/+1
el 1505 | 385 |1.20
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Results:Charge transition levels

’ ‘ without correction with correction
E:I/—els P1 P2 A P1 P2 A Mean
ed® 1495 365 [1.30 |377 [3.65 [012 |3.71
ed® | 487 379 | 108 |393 [379 [014 |[3.86
et 521 | 379 | 142 |286 |[262 |024 |274
a1 505 |385 |120 |317 [291 [0.26 |3.04
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Results:Comparison with literature

| CT levels [ DFT+GW | HSE' | GGA? | GGA |

et1/0 38+01 | 4.1 52 | 5.65
et2/+1 20+ 0.1 | 3.2 50 | 4.35

m Ref. [1] HSE calculation with a band gap of 9.2 eV.
m Ref. [2] GGA with a scissors shift.

IM. Choi, A. Janotti and C. G. van de Walle, J. Appl. Phys. 113, 44501 (2013).
2K. Matsunaga et al, Phys. Rev. B 68, 85110 (2003).
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Configuration coordinate diagram

Formation energy (eV)
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Comparison to experiments

20 T r
Al-rich
2 T T T T ep @ CBM
—
. . >
@ Excitation A1203 Emission @ 15}
s >
Sk o
= (]
- C
= O 10t
@
s C
£ RS
| | | 1 +
0 3 5 3 3 g
Photon Energy (e V) B 5 6.68eV
FIG. 2. Excitation and emission spectra of the F L
center from subtractively colored Al,O; measured at
300 K.
0 0 +1 +2
00 01 0.2

Al displacement (A)
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Conclusions

m DFT and GW are powerful techniques to calculate ground-state and
excited-state properties of materials from first principles.

m DFT4+GW method combines these to calculate properties of defects
from first principles.

m Used DFT+GW to understand and charaterize F centers in
a-alumina.
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