
PAPI User’s Guide Version 3.5.0

PAPI USER’S GUIDE
TABLE OF CONTENTS

PAPI USER’S GUIDE...1
TABLE OF CONTENTS .. 1
PREFACE ... 4

INTENDED AUDIENCE .. 4
ORGANIZATION OF THIS DOCUMENT 4

INTRODUCTION TO PAPI ... 4
INSTALLING PAPI ... 4
C AND FORTRAN CALLING INTERFACES ... 4
EVENTS .. 4
PAPI COUNTER INTERFACES .. 4
PAPI TIMERS ... 5
PAPI SYSTEM INFORMATION .. 5
ADVANCED PAPI FEATURES ... 5
PAPI ERROR HANDLING .. 5
PAPI MAILING LISTS ... 5
APPENDICES ... 5

DOCUMENT CONVENTION .. . 5
INTRODUCTION TO PAPI .. 6

WHAT IS PAPI? 6
BACKGROUND 6
ARCHITECTURE 7

INSTALLING PAPI .. 8
C AND FORTRAN CALLING INTERFACES 9
EVENTS ... 10

WHAT ARE EVENTS? 10
NATIVE EVENTS ... 10

WHAT ARE NATIVE EVENTS? .. 10
PRESET EVENTS ... 11

WHAT ARE PRESET EVENTS? .. 11
EVENT QUERY .. 12
EVENT TRANSLATION 15

PAPI’S COUNTER INTERFACES 17
HIGH-LEVEL API .. 17

WHAT IS THE HIGH-LEVEL API? .. 17

- 1 -

PAPI User’s Guide Version 3.5.0
INITIALIZING THE HIGH-LEVEL API .. 17
EXECUTION RATE CALLS .. 19
READING, ACCUMULATING, AND STOPPING COUNTERS 20

LOW-LEVEL API 21
WHAT IS THE LOW-LEVEL API? ... 21
INITIALIZATION OF THE LOW-LEVEL API ... 22

EVENT SETS ... 24
WHAT ARE EVENT SETS? ... 24
CREATING AN EVENT SET .. 24
ADDING EVENTS TO AN EVENT SET .. 24
STARTING, READING, ADDING, AND STOPPING EVENTS IN AN EVENT SET 26
RESETTING EVENTS IN AN EVENT SET .. 27
REMOVING EVENTS IN AN EVENT SET ... 28
EMPTYING AND DESTROYING AN EVENT SET .. 29
THE STATE OF AN EVENT SET .. 30
GETTING AND SETTING OPTIONS ... 33

SIMPLE CODE EXAMPLES 40
HIGH-LEVEL API ... 40
LOW-LEVEL API .. 41

PAPI TIMERS .. 43
REAL TIME 43
VIRTUAL TIME ... 44

PAPI SYSTEM INFORMATION 46
EXECUTABLE INFORMATION .. 46
HARDWARE INFORMATION .. 47
SUBSTRATE INFORMATION .. 49

ADVANCED PAPI FEATURES .. 50
MULTIPLEXING .. 50
WHAT IS MULTIPLEXING? 50

USING PAPI WITH MULTIPLEXING ... 50
ISSUES OF MULTIPLEXING .. 52

USING PAPI WITH PARALLEL PROGRAMS 53
THREADS .. 53
MPI .. 56

OVERFLOW 58
WHAT IS AN OVERFLOW? .. 58
BEGINNING OVERFLOWS IN EVENT SETS .. 58

STATISTICAL PROFILING ... 60
WHAT IS STATISTICAL PROFILING? .. 60
GENERATING A PC HISTOGRAM .. 61

DATA AND INSTRUCTION ADDRESS RESTRICTION 63
Introduction ... 63
The PAPI Interface .. 63

- 2 -

PAPI User’s Guide Version 3.5.0
Itanium Idiosyncrasies .. 64
Supporting Software ... 65
The data_range.c Test Case ... 65
The papi_native_avail Utility .. 67

PAPI ERROR HANDLING ... 69
ERROR CODES 69

CONVERTING ERROR CODES TO ERROR MESSAGES 69

FURTHER INFORMATION .. 72
PAPI HOME PAGE 72
PAPI MAILING LISTS ... 72
REPORTING BUGS 72
PAPI PROGRAMMER’S REFERENCE 72
TABLE OF PRESET EVENTS 73
SUPPORTED PLATFORMS 73
SUPPORTED TOOLS 73
HARDWARE REFERENCES ... 73

BIBLIOGRAPHY .. 74

- 3 -

PAPI User’s Guide Version 3.5.0

PREFACE ..

INTENDED AUDIENCE

This document is intended to provide the PAPI user with a discussion of how to use
the different components and functions of PAPI. The intended users are application
developers and performance tool writers who need to access performance data to
tune and model application performance. The user is expected to have some level of
familiarity with either the C or Fortran programming language.

ORGANIZATION OF THIS DOCUMENT

INTRODUCTION TO PAPI

This section provides an introduction to PAPI by describing the project, its
motivation, and its architecture.

INSTALLING PAPI

This section provides an installation guide for PAPI. It states the necessary steps in
order to install PAPI on the various supported operating systems.

C AND FORTRAN CALLING INTERFACES

This section states the header files in which function calls are defined and the form
of the function calls for both the C and Fortran calling interfaces. Also, it provides a
table that shows the relation between certain pseudo-types and Fortran variable
types.

EVENTS

This section provides an explanation of events as well as an explanation of native
and preset events. The preset query and translation functions are also discussed in
this section. There are code examples using native events, preset query, and preset
translation with the corresponding output.

PAPI COUNTER INTERFACES

This section discusses the high-level and low-level interfaces in detail. The
initialization and functions of these interfaces are also discussed. Code examples
along with the corresponding output are included as well.

- 4 -

PAPI User’s Guide Version 3.5.0
PAPI TIMERS

This section explains the PAPI functions associated with obtaining real and virtual
time from the platform’s timers. Code examples along with the corresponding output
are included as well.

PAPI SYSTEM INFORMATION

This section explains the PAPI functions associated with obtaining hardware and
executable information. Code examples along with the corresponding output are
included as well.

ADVANCED PAPI FEATURES

This section discusses the advanced features of PAPI, which includes
multiplexing, threads, MPI, overflows, and statistical profiling. The functions
that are use to implement these features are also discussed. Code examples
along with the corresponding output are included as well.

PAPI ERROR HANDLING

This section discusses the various negative error codes that are returned by the
PAPI functions. A table with the names, values, and descriptions of the return codes
are given as well as a discussion of the PAPI function that can be used to convert
error codes to error messages along with a code example with the corresponding
output.

PAPI MAILING LISTS

This section provides information on two PAPI mailing lists for the users to ask
various questions about the project.

APPENDICES

These appendices provide various listings and tables, such as: a table of preset
events and the platforms on which they are supported, a table of PAPI supported
tools, more information on native events, multiplexing, overflow, and etc.

DOCUMENT CONVENTION

handle_error(1)

A function that passes the argument of 1. The user should provide this
function to handle errors.

- 5 -

PAPI User’s Guide Version 3.5.0

INTRODUCTION TO PAPI

WHAT IS PAPI?

PAPI is an acronym for Performance Application Programming Interface. The PAPI
Project is being developed at the University of Tennessee’s Innovative Computing
Laboratory in the Computer Science Department. This project was created to
design, standardize, and implement a portable and efficient API (Application
Programming Interface) to access the hardware performance counters found on
most modern microprocessors.

BACKGROUND

Hardware counters exist on every major processor today, such as Intel Pentium,
Core, IA-64, AMD Opteron, and IBM POWER series. These counters can provide
performance tool developers with a basis for tool development and application
developers with valuable information about sections of their code that can be
improved. However, there are only a few APIs that allow access to these counters,
and many of them are poorly documented, unstable, or unavailable. In addition,
performance metrics may have different definitions and different programming
interfaces on different platforms.

These considerations motivated the development of the PAPI Project. Some goals of
the PAPI Project are as follows:

• To provide a solid foundation for cross platform performance analysis tools
• To present a set of standard definitions for performance metrics on all

platforms
• To provide a standardize API among users, vendors, and academics
• To be easy to use, well documented, and freely available

- 6 -

http://icl.cs.utk.edu/papi

PAPI User’s Guide Version 3.5.0

ARCHITECTURE

The Figure below shows the internal design of the PAPI architecture. In this figure,
we can see the two layers of the architecture:

The Portable Layer consists of the API (low level and high level) and machine
independent support functions.

The Machine Specific Layer defines and exports a machine independent interface
to machine dependent functions and data structures. These functions are defined in
the substrate layer, which uses kernel extensions, operating system calls, or
assembly language to access the hardware performance counters. PAPI uses the
most efficient and flexible of the three, depending on what is available.

PAPI strives to provide a uniform environment across platforms. However, this is not
always possible. Where hardware support for features, such as overflows and
multiplexing is not supported, PAPI implements the features in software where
possible. Also, processors do not support the same metrics, thus you can monitor
different events depending on the processor in use. Therefore, the interface
remains constant, but how it is implemented can vary. Throughout this guide,
implementation decisions will be documented where it can make a difference to the
user, such as overhead costs, sampling, and etc.

- 7 -

Portable
Layer

Machine
Specific

Layer

PAPI Machine Dependent Substrate

Kernel Extension

Operating System

Hardware Performance Counters

PAPI Low Level
PAPI High Level

Tools

http://www.cs.utk.edu/~lparker/PAPICOUNTERINTERFACES.htm

PAPI User’s Guide Version 3.5.0

INSTALLING PAPI

On some of the systems that PAPI supports, you can install PAPI right out of the box
without any additional setup. Others require drivers or patches to be installed first.

Because installation instructions vary from platform to platform, please find
your particular Operating System and hardware section in the
/papi/INSTALL.txt file for current information on exactly how to install
PAPI for your configuration.

- 8 -

PAPI User’s Guide Version 3.5.0

C AND FORTRAN CALLING INTERFACES

PAPI is written in C. The function calls in the C interface are defined in the header
file, papi.h and consist of the following form:

<returned data type> PAPI_function_name(arg1, arg2,…)

The function calls in the Fortran interface are defined in the header file, fpapi.h and
consist of the following form:

PAPIF_function_name(arg1, arg2, …, check)

As you can see, the C function calls have equivalent Fortran function calls
(PAPI_<call> becomes PAPIF_<call>). This is generally true for most function calls,
except for the functions that return C pointers to structures, such as PAPI_get_opt
and PAPI_get_executable_info, which are either not implemented in the Fortran
interface, or implemented with different calling semantics. In the function calls of
the Fortran interface, the return code of the corresponding C routine is
returned in the argument, check.

For most architectures, the following relation holds between the pseudo-types listed
and Fortran variable types:

Pseudo-type Fortran type Description
C_INT INTEGER Default Integer type
C_FLOAT REAL Default Real type
C_LONG_LONG INTEGER*8 Extended size integer
C_STRING CHARACTER*(PAPI_MAX_STR_LEN) Fortran string
C_INT FUNCTION EXTERNAL INTEGER FUNCTION Fortran function

returning integer result

Array arguments must be of sufficient size to hold the input/output from/to the
subroutine for predictable behavior. The array length is indicated either by the
accompanying argument or by internal PAPI definitions.

Subroutines accepting C_STRING as an argument are on most implementations
capable of reading the character string length as provided by Fortran. In these
implementations, the string is truncated or space padded as necessary. For other
implementations, the length of the character array is assumed to be of sufficient
size. No character string longer than PAPI_MAX_STR_LEN is returned by the
PAPIF interface.

- 9 -

PAPI User’s Guide Version 3.5.0

EVENTS

WHAT ARE EVENTS?

Events are occurrences of specific signals related to a processor’s function.
Hardware performance counters exist as a small set of registers that count events,
such as cache misses and floating point operations while the program executes on
the processor. Monitoring these events facilitates correlation between the structure
of source/object code and the efficiency of the mapping of that code to the
underlying architecture. Each processor has a number of events that are native to
that architecture. PAPI provides a software abstraction of these architecture-
dependent native events into a collection of preset events that are accessible
through the PAPI interface.

NATIVE EVENTS

WHAT ARE NATIVE EVENTS?

Native events comprise the set of all events that are countable by the CPU. There
are generally far more native events available than can be mapped onto PAPI preset
events. Even if no preset event is available that exposes a given native event,
native events can still be accessed directly. To use native events effectively you
should be very familiar with the particular platform in use. PAPI provides access to
native events on all supported platforms through the low-level interface. Native
events use the same interface as used when setting up a preset event, but since a
PAPI preset event definition is not available for native events, a native event name
must often be translated into an event code before it can be used.

Native event codes and names are platform dependent, so native codes for
one platform are not likely to work for any other platform. To determine the
native events for your platform, see the native event lists for the various platforms
in the processor architecture manual. Every attempt is made to keep native event
names used by PAPI as similar as possible to those used in the vendor
documentation. This is not always possible. The utility code
util/papi_native_avail provides insight into the names of the native events for a
specific platform.

Native events are specified as arguments to the low-level function, PAPI_add_event
in a manner similar to adding PAPI preset events. In the following code example, a
native event name is converted to an event code and added to an eventset by using
PAPI_add_event:

- 10 -

http://icl.cs.utk.edu/papi/links

PAPI User’s Guide Version 3.5.0
#include <papi.h>
#include<stdio.h>

main()
{
int retval, EventSet = PAPI_NULL;
unsigned int native = 0x0;
PAPI_event_info_t info;

/* Initialize the library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 printf(“PAPI library init error!\n”);
 exit(1);
}

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Find the first available native event */
native = NATIVE_MASK | 0;
if (PAPI_get_event_info(native, &info) != PAPI_OK) {
 if (PAPI_enum_event(&native, 0) != PAPI_OK)
 handle_error(1);
}

/* Add it to the eventset */
if (PAPI_add_event(EventSet, native) != PAPI_OK)
 handle_error(1);
}

For more code examples using native events, see ctests/native.c and
util/native_avail.c in the papi source distribution.

PRESET EVENTS

WHAT ARE PRESET EVENTS?

Preset events, also known as predefined events, are a common set of events
deemed relevant and useful for application performance tuning. These events are
typically found in many CPUs that provide performance counters and give access to
the memory hierarchy, cache coherence protocol events, cycle and instruction
counts, functional unit, and pipeline status. Furthermore, preset events are
mappings from symbolic names (PAPI preset name) to machine specific definitions
(native countable events) for a particular hardware resource. For example, Total
Cycles (in user mode) is PAPI_TOT_CYC. Also, PAPI supports presets that may be
derived from the underlying hardware metrics. For example, Total L1 Cache Misses
(PAPI_L1_TCM) might be the sum of L1 Data Misses and L1 Instruction Misses on a
given platform. A preset can be either directly available as a single counter, derived
using a combination of counters, or unavailable on any particular platform.

- 11 -

PAPI User’s Guide Version 3.5.0
The PAPI library names approximately 100 preset events, which are defined in the
header file, papiStdEventDefs.h. For a given platform, a subset of these preset
events can be counted though either a simple high-level programming interface or a
more complete C or Fortran low-level interface. For a representative list of all the
preset events on some supported platforms, visit the PAPI web page:
http://icl.cs.utk.edu/projects/papi/presets.html. Note that processors and software
are revised over time, and this list may not be up to date. To determine exactly
which preset events are available on a specific platform, run util/papi_avail.c in
the papi source distribution.

The exact semantics of an event counter are platform dependent. PAPI preset
names are mapped onto available events so as to map as many countable events as
possible on different platforms. Due to hardware implementation differences, it is
not necessarily feasible to directly compare the counts of a particular PAPI preset
event obtained on different hardware platforms.

EVENT QUERY

The following low-level functions can be called to query about the existence of a
preset or native event (in other words, if the hardware supports that certain event),
and to get details about that event:

C:

PAPI_query_event(EventCode)
PAPI_get_event_info(EventCode, &info)
PAPI_enum_event(&EventCode, modifier)

Fortran:

PAPIF_query_event(EventCode, check)
PAPIF_get_event_info(EventCode, symbol, longDescr, shortDescr, count,
note, flags, check)
PAPIF_enum_event(&EventCode, modifier, check)

ARGUMENTS

EventCode -- a defined event, such as PAPI_TOT_INS.

symbol -- the event symbol, or name, such as the preset name, PAPI_BR_CN.

longDescr -- a descriptive string for the event of length less than
PAPI_MAX_STR_LEN.

- 12 -

http://icl.cs.utk.edu/projects/papi/presets.html

PAPI User’s Guide Version 3.5.0
shortDescr -- a short descriptive string for the event of length less than 18

characters.

count -- zero if the event CANNOT be counted.

note -- additional text information about an event (if available).

flags -- provides additional information about an event, e.g., PAPI_DERIVED for an
event derived from 2 or more other events.

modifier -- modifies the search criteria; for preset events, returns all events or
only available events; for native events, the definition is platform dependent.

PAPI_query_event asks the PAPI library if the preset or native event can be
counted on this architecture. If the event CAN be counted, the function returns
PAPI_OK. If the event CANNOT be counted, the function returns an error code.

PAPI_get_event_info asks the PAPI library for a copy of an event descriptor. This
descriptor can then be used to investigate the details about the event. In Fortran,
the individual fields in the descriptor are returned as parameters.

PAPI_enum_event asks the PAPI library to return an event code for the next
sequential event based on the current event code and the modifier. This function
can be used to enumerate all preset or native events on any platform. See
util/papi_avail.c or util/papi_native_avail.c for details.

EXAMPLE:

#include <papi.h>
#include <stdio.h>

main()
{

int EventSet = PAPI_NULL;
unsigned int native = 0x0;
int retval, i;
PAPI_preset_info_t info;
PAPI_preset_info_t *infostructs;

/* Initialize the library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
fprintf(stderr,"PAPI library init error!\n");
exit(1);

}

/* Check to see if the preset, PAPI_TOT_INS, exists */
if (PAPI_query_event (PAPI_TOT_INS) != PAPI_OK) {
fprintf (stderr,"No instruction counter? How lame.\n");
exit(1);

- 13 -

PAPI User’s Guide Version 3.5.0
}

/* Get details about the preset, PAPI_TOT_INS */
if (PAPI_get_event_info(PAPI_TOT_INS,&info) != PAPI_OK) {
fprintf (stderr,"No instruction counter? How lame.\n");
exit(1);

}

if (info.count>0)
printf ("This event is available on this hardware.\n");

if (info.flags & PAPI_DERIVED)
printf ("This event is a derived event on this hardware.\n");

/* Count the number of available preset events between
 PAPI_TOT_INS and the end of the preset list */
retval = 0;
i = PAPI_TOT_INS;
while (PAPI_enum_event(&i, TRUE) == PAPI_OK) {
 retval++;
}

OUTPUT (if PAPI_TOT_INS is available on your system):

This event is available on this hardware.

In the above code example, PAPI_query_event is used to see if a preset
(PAPI_TOT_INS) exists, PAPI_get_event_info is used to query details about the
event, and PAPI_enum_event is used to count the number of events in the preset
list after this preset.

On success, all three of these functions return PAPI_OK, and on error, a non-zero
error code is returned.

- 14 -

PAPI User’s Guide Version 3.5.0

EVENT TRANSLATION

A preset or native event can be referenced by name or by event code. Most PAPI
functions require an event code, while most user input and output is in terms of
names. Two low-level functions are provided to translate between these formats:

C:

PAPI_event_name_to_code(EventName, EventCode)
PAPI_event_code_to_name(EventCode, EventName)

Fortran:

PAPIF_event_name_to_code(EventName, EventCode, check)
PAPIF_event_code_to_name(EventCode, EventName, check)

ARGUMENTS

EventCode -- a preset or native event of integer type, such as PAPI_TOT_INS.
EventName -- the event name string, such as the preset name, “PAPI_BR_CN”.

Note that the preset does not actually have to be available on a given platform to
call these functions. Native event names are platform specific and where feasible
match those given in the vendor documentation.

PAPI_event_name_to_code is used to translate an ASCII PAPI preset or native
event name into an integer PAPI event code.

PAPI_event_code_to_name is used to translate an integer PAPI event code into an
ASCII PAPI preset or native event name.

Using PAPI_event_code_to_name in conjunction with PAPI_enum_event is a good
way to explore the names of native events on a specific platform, as shown in the
following code example:

#include <papi.h>
#include <stdio.h>

main()
{

int EventCode, retval;
char EventCodeStr[PAPI_MAX_STR_LEN];

/* Initialize the library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

- 15 -

PAPI User’s Guide Version 3.5.0

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, “PAPI library init error!\n”);
 exit(1);
 }

EventCode = 0 | NATIVE_MASK;
do {
 /* Translate the integer code to a string */
 if (PAPI_event_code_to_name(EventCode, EventCodeStr) == PAPI_OK)

 /* Print all the native events for this platform */
 printf("Name: %s\nCode: %x\n", EventCodeStr, EventCode);

} while (PAPI_enum_event(&EventCode, 0) == PAPI_OK);
}

OUTPUT:

Name: DATA_MEM_REFS
Code: 40000000
Name: DCU_LINES_IN
Code: 40000001
Name: DCU_M_LINES_IN
Code: 40000002
.
.
Name: SEG_REG_RENAMES_TOT
Code: 40000078
Name: RET_SEG_RENAMES
Code: 40000079

The output will vary depending on the platform. This was generated on an Intel
Pentium III processor.

On success, all the functions return PAPI_OK and on error, a non-zero error code is
returned.

- 16 -

PAPI User’s Guide Version 3.5.0

PAPI’S COUNTER INTERFACES

HIGH-LEVEL API

WHAT IS THE HIGH-LEVEL API?

The high-level API (Application Programming Interface) provides the ability to start,
stop, and read the counters for a specified list of events. It is meant for
programmers wanting simple event measurements using only PAPI preset events.
Some of the benefits of using the high-level API rather than the low-level API are
that it is easier to use and requires less setup (additional calls). This ease of use
comes with somewhat higher overhead and loss of flexibility.

It should also be noted that the high-level API can be used in conjunction with the
low-level API and in fact does call the low-level API. However, the high-level API by
itself is only able to access those events countable simultaneously by the underlying
hardware.

There are eight functions that represent the high-level API that allow the user to
access and count specific hardware events. Note that these functions can be
accessed from both C and Fortran. For a code example of using the high-level
interface, see Simple Code Examples: High Level API or ctests/high-level.c in
the PAPI source distribution.

For full details on the calling semantics of these functions, please refer to
the PAPI Programmer’s Reference.

INITIALIZING THE HIGH-LEVEL API

The PAPI library is initialized implicitly by several high-level API calls. In addition to
the three rate calls discussed later, either of the following two functions also
implicitly initializes the library:

C:

PAPI_num_counters()
PAPI_start_counters(*events, array_length)

Fortran:

PAPIF_num_counters(check)
PAPIF_start_counters(*events, array_length, check)

- 17 -

PAPI User’s Guide Version 3.5.0
ARGUMENTS

*events -- an array of codes for events such as PAPI_INT_INS or a native event code.
array_length -- the number of items in the events array.

PAPI_num_counters returns the optimal length of the values array for high-level
functions. This value corresponds to the number of hardware counters supported by
the current substrate. PAPI_num_counters initializes the PAPI library using
PAPI_library_init if necessary.

PAPI_start_counters initializes the PAPI library (if necessary) and starts counting
the events named in the events array. This function implicitly stops and initializes
any counters running as a result of a previous call to PAPI_start_counters. It is
the user’s responsibility to choose events that can be counted simultaneously by
reading the vendor’s documentation. The size of array_length should be no larger
than the value returned by PAPI_num_counters.

In the following code example, PAPI_num_counters is used to initialize the library
and to get the number of hardware counters available on the system. Also,
PAPI_start_counters is used to start counting events:

#include <papi.h>

main()
{

int Events[2] = { PAPI_TOT_CYC, PAPI_TOT_INS };
int num_hwcntrs = 0;

/* Initialize the PAPI library and get the number of counters available */
if ((num_hwcntrs = PAPI_num_counters()) <= PAPI_OK)
 handle_error(1);

printf("This system has %d available counters.", num_hwcntrs);

if (num_hwcntrs > 2)
 num_hwcntrs = 2;

 /* Start counting events */
 if (PAPI_start_counters(Events, num_hwcntrs) != PAPI_OK)
 handle_error(1);
}

POSSIBLE OUTPUT (varies on different systems):

This system has 4 available counters.

- 18 -

PAPI User’s Guide Version 3.5.0
On success, PAPI_num_counters returns the number of hardware counters available
on the system and on error, a non-zero error code is returned.

Optionally, the PAPI library can be initialized explicitly by using
PAPI_library_init. This can be useful if you wish to call PAPI low-level API
functions before using the high-level functions.

EXECUTION RATE CALLS

Three PAPI high-level functions are available to measure floating point or total
instruction rates. These three calls are shown below:

C:

PAPI_flips(*real_time, *proc_time, *flpins, *mflips)
PAPI_flops(*real_time, *proc_time, *flpins, *mflops)
PAPI_ipc(*real_time, *proc_time, *ins, *ipc)

Fortran:

PAPIF_flips(real_time, proc_time, flpins, mflips, check)
PAPIF_flops(real_time, proc_time, flpins, mflops, check)
PAPIF_ipc(real_time, proc_time, ins, ipc, check)

ARGUMENTS

*real_time -- the total real (wallclock) time since the first rate call.
*proc_time -- the total process time since the first rate call.
*flpins -- the total floating point instructions since the first rate call.
*mflips, *mflops – Millions of floating point operations or instructions per second
achieved since the latest rate call.
*ins -- the total instructions executed since the first PAPI_ipc call.
*ipc – instructions per cycle achieved since the latest PAPI_ipc call.

The first execution rate call initializes the PAPI library if needed, sets up the
counters to monitor either PAPI_FP_INS, PAPI_FP_OPS or PAPI_TOT_INS
(depending on the call), and PAPI_TOT_CYC events, and starts the counters.
Subsequent calls to the same rate function will read the counters and return total
real time, total process time, total instructions or operations, and the appropriate
rate of execution since the last call. A call to PAPI_stop_counters will reinitialize all
values to 0. Sequential calls to different execution rate functions will return an error.

Note that on many platforms there may be subtle differences between floating point
instructions and operations. Instructions are typically those execution elements
most directly measured by the hardware counters. They may include floating point
load and store instructions, and may count instructions such as FMA as one, even

- 19 -

PAPI User’s Guide Version 3.5.0
though two floating point operations have occurred. Consult the hardware
documentation for your system for more details. Operations represent a derived
value where an attempt is made, when possible, to more closely map to the
theoretical definition of a floating point event.

On success, the rate calls return PAPI_OK and on error, a non-zero error code is
returned.

For a code example, see ctest/flops.c or ctest/ipc.c in the papi source
distribution.

READING, ACCUMULATING, AND STOPPING COUNTERS

Counters can be read, accumulated, and stopped by calling the following high-level
functions, respectively:

C:

PAPI_read_counters(*values, array_length)
PAPI_accum_counters(*values, array_length)
PAPI_stop_counters(*values, array_length)

Fortran:

PAPIF_read_counters(*values, array_length, check)
PAPIF_accum_counters(*values, array_length, check)
PAPIF_stop_counters(*values, array_length, check)

ARGUMENTS

*values -- an array where to put the counter values.
array_length -- the number of items in the *values array.

PAPI_read_counters, PAPI_accum_counters and PAPI_stop_counters all
capture the values of the currently running counters into the array, values. Each of
these functions behaves somewhat differently.

PAPI_read_counters copies the current counts into the elements of the values
array, resets the counters to zero, and leaves the counters running.

PAPI_accum_counters adds the current counts into the elements of the values
array and resets the counters to zero, leaving the counters running. Care should be
exercised not to mix calls to PAPI_accum_counters with calls to the execution rate
functions. Such intermixing is likely to produce unexpected results.

- 20 -

PAPI User’s Guide Version 3.5.0
PAPI_stop_counters stops the counters and copies the current counts into the
elements of the values array. This call can also be used to reset the rate functions
if used with a NULL pointer to the values array.

In the following code example, PAPI_read_counters and PAPI_stop_counters are
used to copy and stop event counters in an array, respectively:

#include <papi.h>

#define NUM_EVENTS 2

main()
{

int Events[NUM_EVENTS] = {PAPI_TOT_INS, PAPI_TOT_CYC};
long_long values[NUM_EVENTS];

/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

/* Do some computation here*/

/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

/* Do some computation here */

/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

}

On success, all of these functions return PAPI_OK and on error, a non-zero error
code is returned.

LOW-LEVEL API

WHAT IS THE LOW-LEVEL API?

The low-level API (Application Programming Interface) manages hardware events in
user-defined groups called Event Sets. It is meant for experienced application
programmers and tool developers wanting fine-grained measurement and control of
the PAPI interface. Unlike the high-level interface, it allows both PAPI preset and
native events. Other features of the low-level API are the ability to obtain
information about the executable and the hardware as well as to set options for
multiplexing and overflow handling. Some of the benefits of using the low-level API
rather than the high-level API are that it increases efficiency and functionality.

- 21 -

PAPI User’s Guide Version 3.5.0
It should also be noted that the low-level interface could be used in conjunction with
the high-level interface, as long as attention is paid to insure that the PAPI library is
initialized prior to the first low-level PAPI call.

The low-level API is only as powerful as the substrate upon which it is built. Thus,
some features may not be available on every platform. The converse may also be
true, that more advanced features may be available on every platform and defined
in the header file. Therefore, the user is encouraged to read the documentation for
each platform carefully. There are approximately 50 functions that represent the
low-level API. For a code example of using the low-level interface, see Simple Code
Examples: Low-Level API or ctests/low_level.c in the PAPI source distribution.

Note that most functions are implemented in both C and Fortran, but some
are implemented in only one of these two languages. For full details on the
calling semantics of these functions, please refer to the PAPI Programmer’s
Reference.

INITIALIZATION OF THE LOW-LEVEL API

The PAPI library must be initialized before it can be used. It can be initialized
explicitly by calling the following low-level function:

C:

PAPI_library_init(version)

Fortran:

PAPIF_library_init(check)

ARGUMENT

version -- upon initialization, PAPI checks the argument against the internal value
of PAPI_VER_CURRENT when the library was compiled. This guards against portability
problems when updating the PAPI shared libraries on your system.

Note that this function must be called before calling any other low-level
PAPI function.

On success, this function returns PAPI_VER_CURRENT.

On error, a positive return code other than PAPI_VER_CURRENT indicates a library
version mismatch and a negative return code indicates an initialization error.

Beginning with PAPI 3.0, there are a number of options for examining the current
version number of PAPI:

- 22 -

PAPI User’s Guide Version 3.5.0

• PAPI_VERSION produces an integer containing the complete current version
including MAJOR, MINOR, and REVISION components. Typically the REVISION
component changes with bug fixes or minor enhancements, the MINOR
component changes with feature additions or API changes, and the MAJOR
component changes with significant API structural changes.

• PAPI_VER_CURRENT contains the MAJOR and MINOR components and is useful for
determining library compatibility changes.

• PAPI_VERSION_MAJOR,
• PAPI_VERSION_MINOR,
• PAPI_VERSION_REVISION are macros that extract specified component from the

version number.

The following is a code example of using PAPI_library_init to initialize the PAPI
library:

#include <papi.h>
#include <stdio.h>
int retval;

main()
{

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT && retval > 0) {
 fprintf(stderr,"PAPI library version mismatch!\n");
 exit(1);
}

if (retval < 0) {
 fprintf(stderr, “Initialization error!\n”);
 exit(1);
}

fprintf(stdout, “PAPI Version Number\n”);
fprintf(stdout, “MAJOR: %d\n”, PAPI_MAJOR(retval));
fprintf(stdout, “MINOR: %d\n”, PAPI_MINOR(retval));
fprintf(stdout, “REVISION: %d\n”, PAPI_REVISION(retval));

}

OUTPUT FOR PAPI VERSION 3.5.0

PAPI Version Number
MAJOR: 3
MINOR: 5
REVISION: 0

- 23 -

PAPI User’s Guide Version 3.5.0

EVENT SETS

WHAT ARE EVENT SETS?

Event Sets are user-defined groups of hardware events (preset or native), which are
used in conjunction with one another to provide meaningful information. The user
specifies the events to be added to an Event Set, and other attributes, such as: the
counting domain (user or kernel), whether or not the events in the Event Set are to
be multiplexed, and whether the Event Set is to be used for overflow or profiling.
Other settings for the Event Set are maintained by PAPI, such as: what low-level
hardware registers to use, the most recently read counter values, and the state of
the Event Set (running/not running). Event Sets provide an effective abstraction for
the organization of information associated with counting hardware events. The PAPI
library manages the memory for Event Sets with a user interface through integer
handles to simplify calling conventions. The user is free to allocate and use any
number of them provided the substrate can provide the required resources. Only
one Event Set can be in active use at any time in a given thread or process.

CREATING AN EVENT SET

An event set can be created by calling the following the low-level function:

C:

PAPI_create_eventset (*EventSet)

Fortran:

PAPIF_create_eventset(EventSet, check)

ARGUMENT

EventSet -- Address of an integer location to store the new EventSet handle.

Once it has been created, the user may add hardware events to the EventSet by
calling PAPI_add_event or PAPI_add_events.

On success, this function returns PAPI_OK. On error, a non-zero error code is
returned.

For a code example using this function, see the next section.

ADDING EVENTS TO AN EVENT SET

Hardware events can be added to an event set by calling the following the low-level
functions:

- 24 -

PAPI User’s Guide Version 3.5.0
C:

PAPI_add_event(EventSet, EventCode)
PAPI_add_events(EventSet, *EventCode, number)

Fortran:

PAPIF_add_event(EventSet, EventCode, check)
PAPIF_add_events(EventSet, EventCode, number, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by
PAPI_create_eventset.
EventCode -- a defined event such as PAPI_TOT_INS.
*EventCode – address of an array of defined events.
number -- an integer indicating the number of events in the array *EventCode.

PAPI_add_event adds a single hardware event to a PAPI event set.

PAPI_add_events does the same as PAPI_add_event, but for an array of hardware
event codes.

In the following code example, the preset event, PAPI_TOT_INS is added to an
event set:

#include <papi.h>
#include <stdio.h>

main()
{

int EventSet = PAPI_NULL;
int retval;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create an EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

}

- 25 -

PAPI User’s Guide Version 3.5.0

On success, both of these functions return PAPI_OK and on error, a non-zero error
code is returned.

STARTING, READING, ADDING, AND STOPPING EVENTS IN AN
EVENT SET

Hardware events in an event set can be started, read, added, and stopped by calling
the following low-level functions, respectively:

C:

PAPI_start(EventSet)
PAPI_read(EventSet, *values)
PAPI_accum(EventSet, *values)
PAPI_stop(EventSet, *values)

Fortran:

PAPIF_start(EventSet, check)
PAPIF_read(EventSet, values, check)
PAPIF_accum(EventSet, values, check)
PAPIF_stop(EventSet, values, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by
PAPI_create_eventset.
*values -- an array to hold the counter values of the counting events.

PAPI_start starts the counting events in a previously defined event set.

PAPI_read reads (copies) the counters of the indicated event set into the array,
values. The counters are left counting after the read without resetting.

PAPI_accum adds the counters of the indicated event set into the array, values.
The counters are reset and left counting after the call of this function.

PAPI_stop stops the counting events in a previously defined event set and returns
the current events.

The following is a code example of using PAPI_start to start the counting of events
in an event set, PAPI_read to read the counters of the same event set into the
array values, and PAPI_stop to stop the counting of events in the event set:

#include <papi.h>

- 26 -

PAPI User’s Guide Version 3.5.0
#include <stdio.h>

main()
{

int retval, EventSet = PAPI_NULL;
long_long values[1];

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the Event Set */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting */
if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Do some computation here */

if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);

/* Do some computation here */

if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

}

On success, these functions return PAPI_OK and on error, a non-zero error code is
returned.

RESETTING EVENTS IN AN EVENT SET

The hardware event counts in an event set can be reset to zero by calling the
following low-level function:

C:

PAPI_reset(EventSet)

Fortran:

- 27 -

PAPI User’s Guide Version 3.5.0
PAPI_reset(EventSet, check)

ARGUMENT

EventSet -- an integer handle for a PAPI event set as created by
PAPI_create_eventset.

For example, the EventSet in the code example of the previous section could have
been reset to zero by adding the following lines:

if (PAPI_reset(EventSet) != PAPI_OK)
 handle_error(1);

On success, this function returns PAPI_OK and on error, a non-zero error code is
returned.

REMOVING EVENTS IN AN EVENT SET

A hardware event and an array of hardware events can be removed from an event
set by calling the following low-level functions, respectively:

C:

PAPI_remove_event(EventSet, EventCode)
PAPI_remove_events(EventSet, EventCode, number)

Fortran:

PAPIF_remove_event(EventSet, EventCode, check)
PAPIF_remove_events(EventSet, EventCode, number, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by
PAPI_create_eventset.
EventCode -- a defined event such as PAPI_TOT_INS or a native event.
*EventCode -- an array of defined events.
number -- an integer indicating the number of events in the array *EventCode.

PAPI_remove_event removes a single hardware event from a PAPI event set.

PAPI_remove_events, does the same as PAPI_remove_event, but for an array of
hardware event codes.

In the following code example, PAPI_remove_event is used to remove the event,
PAPI_TOT_INS, from an event set:

- 28 -

PAPI User’s Guide Version 3.5.0
#include <papi.h>
#include <stdio.h>
main()
{

int retval, EventSet = PAPI_NULL;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create an EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Remove event */
if (PAPI_remove_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

}

On success, these functions return PAPI_OK and on error, a non-zero error code is
returned.

EMPTYING AND DESTROYING AN EVENT SET

All the events in an event set can be emptied and destroyed by calling the following
low-level functions, respectively:

C:

PAPI_cleanup_eventset(EventSet)
PAPI_destroy_eventset(EventSet)

Fortran:

PAPIF_cleanup_eventset(EventSet, check)
PAPIF_destroy_eventset(EventSet, check)

ARGUMENT

EventSet -- an integer handle for a PAPI event set as created by
PAPI_create_eventset.

- 29 -

PAPI User’s Guide Version 3.5.0
Note that the event set must be empty in order to use
PAPI_destroy_eventset.

In the following code example, PAPI_cleanup_eventset is used to empty all the
events from an event set and PAPI_remove_eventset is used to deallocate the
memory associated with the empty event set:

#include <papi.h>
#include <stdio.h>

main()
{

int retval, EventSet = PAPI_NULL;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(&EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Remove all events in the eventset */
if (PAPI_cleanup_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Free all memory and data structures, EventSet must be empty. */
if (PAPI_destroy_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

}

On success, these functions return PAPI_OK and on error, a non-zero error code is
returned.

THE STATE OF AN EVENT SET

The counting state of an Event Set can be obtained by calling the following low-level
function:

C:

PAPI_state(EventSet, *status)

Fortran:

- 30 -

PAPI User’s Guide Version 3.5.0
PAPIF_state(EventSet, status, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by
PAPI_create_eventset.

status -- an integer containing a Boolean combination of one or more of the
following nonzero constants as defined in the PAPI header file, papi.h:

PAPI_STOPPED EventSet is stopped
PAPI_RUNNING EventSet is running
PAPI_PAUSED EventSet temporarily disabled by the library
PAPI_NOT_INIT EventSet defined, but not initialized
PAPI_OVERFLOWING EventSet has overflow enabled
PAPI_PROFILING EventSet has profiling enabled
PAPI_MULTIPLEXING EventSet has multiplexing enabled
PAPI_ATTACHED EventSet is attached to another thread/process

In the following code example, PAPI_state is used to return the counting state of
an EventSet:

#include <papi.h>
#include <stdio.h>

main ()
{

int retval, status = 0, EventSet = PAPI_NULL;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(&EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting */
if (PAPI_state(EventSet, &status) != PAPI_OK)
 handle_error(1);

printf("State is now %d\n", status);

if (PAPI_start(EventSet) != PAPI_OK)

- 31 -

PAPI User’s Guide Version 3.5.0
 handle_error(1);

if (PAPI_state(EventSet, &status) != PAPI_OK)
 handle_error(1);

printf("State is now %d\n", status);
}

OUTPUT:

State is now 1
State is now 2

On success, this function returns PAPI_OK and on error, a non-zero error code is
returned.

- 32 -

PAPI User’s Guide Version 3.5.0

GETTING AND SETTING OPTIONS

The options of the PAPI library or a specific event set can be obtained and set by
calling the following low-level functions, respectively:

C:

PAPI_get_opt(option, ptr)
PAPI_set_opt(option, ptr)

Fortran:

PAPIF_get_clockrate(clockrate)
PAPIF_get_domain(EventSet, domain, mode, check)
PAPIF_get_granularity(EventSet, granularity, mode, check)
PAPIF_get_preload(preload, check)

ARGUMENTS

option -- is an input parameter describing the course of action. The Fortran
calls are implementations of specific options. Possible values are defined in
papi.h and briefly described below:

Option name Explanation

General information requests

PAPI_CLOCKRATE Get clockrate in MHz.

PAPI_MAX_CPUS Get number of CPUs.

PAPI_MAX_HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.

PAPI_HWINFO Get information about the hardware.

PAPI_SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI features the substrate supports.

PAPI_LIB_VERSION Get the full PAPI version of the library.

PAPI_PRELOAD Get ‘‘LD_PRELOAD’’ environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set the default counting domain for newly created
event sets.

PAPI_DEFGRN Get/Set the default counting granularity.

PAPI_DEBUG Get/Set the PAPI debug state and the debug handler. The

- 33 -

PAPI User’s Guide Version 3.5.0

available debug states are defined in papi.h. The debug
state is available in ptr->debug.level. The debug handler is
available in ptr->debug.handler. For information regarding
the behavior of the handler, please see the man page for
PAPI_set_debug.

Multiplexing control

PAPI_ MULTIPLEX Get/Set options for multiplexing.

PAPI_MAX_MPX_CTRS Get maximum number of multiplexing counters.

PAPI_DEF_MPX_USEC Get/Set the sampling time slice in microseconds for
multiplexing.

Manipulating individual event sets

PAPI_ATTACH Get thread or process id to which event set is attached.
Returns TRUE if currently attached. Set event set specified
in ptr->ptr->attach.eventset to be attached to thread or
process id specified in in ptr->attach.tid.

PAPI_DETACH Get thread or process id to which event set is attached.
Returns TRUE if currently detached. Set event set specified
in ptr->ptr->attach.eventset to be detached from any
thread or process id.

PAPI_DOMAIN Get/Set domain for a single event set. The event set is
specified in ptr->domain.eventset

PAPI_GRANUL Get/Set granularity for a single event set. The event set is
specified in ptr->granularity.eventset.
Currently unimplemented.

Platform Specific Options

PAPI_DATA_ADDRESS Set data address range to restrict event counting for event
set specified in ptr->addr.eventset. Starting and ending
addresses are specified in ptr->addr.start and ptr-
>addr.end, respectively. If exact addresses cannot be
instantiated, offsets are returned in ptr->addr.start_off and
ptr->addr.end_off. Currently implemented on Itanium only.

PAPI_INSTR_ADDRESS Set instruction address range as described above. Itanium
only.

ptr -- is a pointer to a structure that acts as both an input and output parameter.
It is defined in papi.h and below.
EventSet -- input; a reference to an EventSetInfo structure
clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate
generated at init time with a quick timing routine
domain -- output; execution domain for which events are counted

- 34 -

PAPI User’s Guide Version 3.5.0
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current
event set
preload -- output; environment variable string for preloading libraries

PAPI_get_opt and PAPI_set_opt query or change the options of the PAPI library or
a specific event set created by PAPI_create_eventset. In the C interface, these
functions pass a pointer to the PAPI_option_t structure. Not all options require or
return information in this structure. The Fortran interface is a series of calls
implementing various subsets of the C interface. Not all options in C are
available in Fortran.

Note that a number of options are available as separate entry points in both C and
Fortran. This can make calling sequences simpler. Calls that are simply wrappers to
PAPI_get_opt and PAPI_set_opt are listed below:

PAPI_get_executable_info Get the executable’s address space information.

PAPI_get_hardware_info Get information about the system hardware.

PAPI_get_multiplex Get the multiplexing status of specified event set.

PAPI_get_shared_lib_info Get information about the shared libraries used by
the process.

PAPI_get_substrate_info Get information about the substrate features.

PAPI_set_debug Set the current debug level for PAPI.

PAPI_set_domain Set the default execution domain for new event
sets.

PAPI_set_granularity Get/Set the default granularity for new event sets.

PAPI_set_multiplex Convert a standard event set to a multiplexed event
set.

The PAPI_option_t structure is actually a union of structures that provide specific
information for each of the options defined in the table above. This union is defined
as shown below:

- 35 -

PAPI User’s Guide Version 3.5.0
 typedef union {
 PAPI_preload_info_t preload;
 PAPI_debug_option_t debug;
 PAPI_granularity_option_t granularity;
 PAPI_granularity_option_t defgranularity;
 PAPI_domain_option_t domain;
 PAPI_domain_option_t defdomain;
 PAPI_attach_option_t attach;
 PAPI_multiplex_option_t multiplex;
 PAPI_hw_info_t *hw_info;
 PAPI_shlib_info_t *shlib_info;
 PAPI_exe_info_t *exe_info;
 PAPI_substrate_info_t *sub_info;
 PAPI_addr_range_option_t addr;
 } PAPI_option_t;

Each of these individual structures, as defined in papi.h, is shown below:

For PAPI_PRELOAD:

 typedef struct _papi_preload_option {
 char lib_preload_env[PAPI_MAX_STR_LEN];
 char lib_preload_sep;
 char lib_dir_env[PAPI_MAX_STR_LEN];
 char lib_dir_sep;
 } PAPI_preload_info_t;

For PAPI_DEBUG:

 typedef int (*PAPI_debug_handler_t) (int code);
 typedef struct _papi_debug_option {
 int level;
 PAPI_debug_handler_t handler;
 } PAPI_debug_option_t;

For PAPI_DEFGRN and PAPI_GRANUL:

 typedef struct _papi_granularity_option {
 int eventset;
 int granularity;
 } PAPI_granularity_option_t;

For PAPI_DEFDOM and PAPI_DOMAIN:

 typedef struct _papi_domain_option {
 int eventset;
 int domain;
 } PAPI_domain_option_t;

For PAPI_ATTACH and PAPI_DETACH:

 typedef struct _papi_attach_option {
 int eventset;
 unsigned long tid;
 } PAPI_attach_option_t;

- 36 -

PAPI User’s Guide Version 3.5.0

For PAPI_MULTIPLEX and PAPI_DEF_MPX_USEC:

 typedef struct _papi_multiplex_option {
 int eventset;
 int us;
 int flags;
 } PAPI_multiplex_option_t;

For PAPI_HWINFO:

 typedef struct _papi_hw_info {
 int ncpu; /* Number of CPU's in an SMP Node */
 int nnodes; /* Number of Nodes in the entire system */
 int totalcpus; /* Total number of CPU's in the entire system */
 int vendor; /* Vendor number of CPU */
 char vendor_string[PAPI_MAX_STR_LEN]; /* Vendor string of CPU */
 int model; /* Model number of CPU */
 char model_string[PAPI_MAX_STR_LEN]; /* Model string of CPU */
 float revision; /* Revision of CPU */
 float mhz; /* Cycle time of this CPU */
 PAPI_mh_info_t mem_hierarchy; /* PAPI memory heirarchy description */
 } PAPI_hw_info_t;

For PAPI_SHLIBINFO and PAPI_EXEINFO:

 typedef struct _papi_address_map {
 char name[PAPI_HUGE_STR_LEN];
 caddr_t text_start; /* Start address of program text segment */
 caddr_t text_end; /* End address of program text segment */
 caddr_t data_start; /* Start address of program data segment */
 caddr_t data_end; /* End address of program data segment */
 caddr_t bss_start; /* Start address of program bss segment */
 caddr_t bss_end; /* End address of program bss segment */
 } PAPI_address_map_t;

 typedef struct _papi_shared_lib_info {
 PAPI_address_map_t *map;
 int count;
 } PAPI_shlib_info_t;

 typedef struct _papi_program_info {
 char fullname[PAPI_HUGE_STR_LEN]; /* path+name */
 PAPI_address_map_t address_info;
 } PAPI_exe_info_t;

- 37 -

PAPI User’s Guide Version 3.5.0
For PAPI_SUBSTRATEINFO:

 typedef struct _papi_substrate_option {
 char name[PAPI_MAX_STR_LEN]; /* Name of the substrate we're using,
 usually CVS RCS Id */
 char version[PAPI_MIN_STR_LEN]; /* Version of this substrate,
 usually CVS Revision */
 char support_version[PAPI_MIN_STR_LEN]; /* Version of the support library */
 char kernel_version[PAPI_MIN_STR_LEN]; /* Version of the kernel PMC
 support driver */
 int num_cntrs; /* Number of hardware counters substrate supports */
 int num_mpx_cntrs; /* Number of multiplexed counters the substrate or
 PAPI supports */
 int num_preset_events; /* Number of preset events the substrate supports */
 int num_native_events; /* Number of native events the substrate supports */
 int default_domain; /* The default domain when this substrate is used */
 int available_domains; /* Available domains */
 int default_granularity; /* Default granularity when this substrate is used */
 int available_granularities; /* Available granularities */
 int multiplex_timer_sig; /* Signal number used by the multiplex timer,
 0 if not */
 int multiplex_timer_num; /* Number of the itimer or POSIX 1 timer used
 by the multiplex timer */
 int multiplex_timer_us; /* uS between switching of sets */
 int hardware_intr_sig; /* Signal used by hardware to deliver PMC events */
 int opcode_match_width; /* Width of opcode matcher if exists, 0 if not */
 int reserved_ints[4];
 unsigned int hardware_intr:1; /* hw overflow intr, does not need to be
 emulated in software*/
 unsigned int precise_intr:1; /* Performance interrupts happen precisely */
 unsigned int posix1b_timers:1; /* Using POSIX 1b interval timers
 (timer_create) instead of setitimer */
 unsigned int kernel_profile:1; /* Has kernel profiling support (buffered
 interrupts or sprofil-like) */
 unsigned int kernel_multiplex:1; /* In kernel multiplexing */
 unsigned int data_address_range:1; /* Supports data address range limiting */
 unsigned int instr_address_range:1; /* Supports instruction address range
 limiting */
 unsigned int fast_counter_read:1; /* Supports user level PMC read
 instruction */
 unsigned int fast_real_timer:1; /* Supports a fast real timer */
 unsigned int fast_virtual_timer:1; /* Supports a fast virtual timer */
 unsigned int attach:1; /* Supports attach */
 unsigned int attach_must_ptrace:1; /* Attach must first ptrace and
 stop the thread/process*/
 unsigned int edge_detect:1; /* Supports edge detection on events */
 unsigned int invert:1; /* Supports invert detection on events */
 unsigned int profile_ear:1; /* Supports data/instr/tlb miss
 address sampling */
 unsigned int grouped_cntrs:1; /* Underlying hardware uses counter groups */
 unsigned int reserved_bits:16;
 } PAPI_substrate_info_t;

- 38 -

PAPI User’s Guide Version 3.5.0
For PAPI_DATA_ADDRESS and PAPI_INSTR_ADDRESS:

 /* address range specification for range restricted counting */
 typedef struct _papi_addr_range_option { /* if both are zero, range disabled */
 int eventset; /* eventset to restrict */
 caddr_t start; /* user requested start address of address range */
 caddr_t end; /* user requested end address of an address range */
 int start_off; /* hardware specified offset from start address */
 int end_off; /* hardware specified offset from end address */
 } PAPI_addr_range_option_t;

The file, papi.h, contains current definitions for the structures unioned in the
PAPI_option_t structure. Users should refer to papi.h for specifics on the use of
fields in these structures.

In the following code example, PAPI_get_opt is used to acquire the option,
PAPI_MAX_HWCTRS, of an event set and PAPI_set_opt is used to set the option,
PAPI_DOMAIN, to the same event set:

#include <papi.h>
#include <stdio.h>

main()
{

int num, retval, EventSet = PAPI_NULL;
PAPI_option_t options;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
 handle_error();

printf("This machine has %d counters.0,num);

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error();

/* Set the domain of this EventSet
 to counter user and kernel modes for this
 process */

memset(&options,0x0,sizeof(options));

options.domain.eventset = EventSet;
options.domain.domain = PAPI_DOM_ALL;
if (PAPI_set_opt(PAPI_DOMAIN, &options) != PAPI_OK)
 handle_error();

}

- 39 -

PAPI User’s Guide Version 3.5.0
POSSIBLE OUTPUT (VARIES ON DIFFERENT PLATFORMS):

This machine has 4 counters.

On success, these functions return PAPI_OK and on error, a non-zero error code is
returned.

For more code examples, see ctests/second.c or ctests/third.c in the PAPI
source distribution.

SIMPLE CODE EXAMPLES

HIGH-LEVEL API

The following is a simple code example of using the high-level API:

#include <papi.h>

#define NUM_FLOPS 10000
#define NUM_EVENTS 1

main()
{

int Events[NUM_EVENTS] = {PAPI_TOT_INS};
long_long values[NUM_EVENTS];

/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

/* Add the counters */
if (PAPI_accum_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n", values[0]);

do_flops(NUM_FLOPS);

/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n", values[0]);

- 40 -

PAPI User’s Guide Version 3.5.0
}

POSSIBLE OUTPUT:

After reading the counters: 441027
After adding the counters: 891959
After stopping the counters: 443994

Notice that on the second line (after adding the counters) the value is approximately
twice as large as the first line (after reading the counters) because
PAPI_read_counters resets and leaves the counters running, then
PAPI_accum_counters adds the value of the current counter into the values array.

LOW-LEVEL API

The following is a simple code example that applies the same technique as the
above example, except it uses the Low-Level API:

#include <papi.h>
#include <stdio.h>

#define NUM_FLOPS 10000

main()
{

int retval, EventSet=PAPI_NULL;
long_long values[1];

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

/* Create the Event Set */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our Event Set */
if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

/* Start counting events in the Event Set */
if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

/* Defined in tests/do_loops.c in the PAPI source distribution */
do_flops(NUM_FLOPS);

/* Read the counting events in the Event Set */
if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);

- 41 -

PAPI User’s Guide Version 3.5.0

printf("After reading the counters: %lld\n",values[0]);

/* Reset the counting events in the Event Set */
if (PAPI_reset(EventSet) != PAPI_OK)
 handle_error(1);

do_flops(NUM_FLOPS);

/* Add the counters in the Event Set */
if (PAPI_accum(EventSet, values) != PAPI_OK)
 handle_error(1);
printf("After adding the counters: %lld\n",values[0]);

do_flops(NUM_FLOPS);

/* Stop the counting of events in the Event Set */
if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);

printf("After stopping the counters: %lld\n",values[0]);
}

POSSIBLE OUTPUT:

After reading the counters: 440973
After adding the counters: 882256
After stopping the counters: 443913

Notice that in order to get the desired results (the second line approximately twice
as large as the first line), PAPI_reset was called to reset the counters, since
PAPI_read did not reset the counters.

- 42 -

PAPI User’s Guide Version 3.5.0

PAPI TIMERS

PAPI timers use the most accurate timers available on the platform in use. These
timers can be used to obtain both real and virtual time on each supported platform.
The real time clock runs all the time (e.g. a wall clock) and the virtual time clock
runs only when the processor is running in user mode.

REAL TIME

Real time can be acquired in clock cycles and microseconds by calling the following
low-level functions, respectively:

C:

PAPI_get_real_cyc()
PAPI_get_real_usec()

Fortran:

PAPIF_get_real_cyc(check)
PAPIF_get_real_usec(check)

Both of these functions return the total real time passed since some arbitrary
starting point and are equivalent to wall clock time. Also, these functions always
succeed (error-free) since they are guaranteed to exist on every PAPI supported
platform.

In the following code example, PAPI_get_real_cyc and PAPI_get_real_usec are
used to obtain the real time it takes to create an event set in clock cycles and
microseconds, respectively:

#include <papi.h>

 main()
{

long_long start_cycles, end_cycles, start_usec, end_usec;
int EventSet = PAPI_NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

/* Gets the starting time in clock cycles */
start_cycles = PAPI_get_real_cyc();

/* Gets the starting time in microseconds */
start_usec = PAPI_get_real_usec();

/*Create an EventSet */

- 43 -

PAPI User’s Guide Version 3.5.0
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 exit(1);

/* Gets the ending time in clock cycles */
end_cycles = PAPI_get_real_cyc();

/* Gets the ending time in microseconds */
end_usec = PAPI_get_real_usec();

printf("Wall clock cycles: %lld\n", end_cycles - start_cycles);
prinf(“Wall clock time in microseconds: %lld\n”, end_usec - start_usec);

}

POSSIBLE OUTPUT:

Wall clock cycles: 100173
Wall clock time in microseconds: 136

VIRTUAL TIME

Virtual time can be acquired in clock cycles and microseconds by calling the
following low-level functions, respectively:

C:

PAPI_get_virt_cyc()
PAPI_get_virt_usec()

Fortran:

PAPIF_get_virt_cyc(check)
PAPIF_get_virt_usec(check)

Both of these functions return the total number of virtual units from some arbitrary
starting point. Virtual units accrue every time a process is running in user-mode.
Like the real time counters, these functions always succeed (error-free) since they
are guaranteed to exist on every PAPI supported platform. However, the resolution
can be as bad as 1/Hz as defined by the operating system on some platforms.

In the following code example, PAPI_get_virt_cyc and PAPI_get_virt_usec are
used to obtain the virtual time it takes to create an event set in clock cycles and
microseconds, respectively:

#include <papi.h>

main()
{

long_long start_cycles, end_cycles, start_usec, end_usec;
int EventSet = PAPI_NULL;

- 44 -

PAPI User’s Guide Version 3.5.0

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

/* Gets the starting time in clock cycles */
start_cycles = PAPI_get_virt_cyc();

/* Gets the starting time in microseconds */
start_usec = PAPI_get_virt_usec();

/*Create an EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 exit(1);

/* Gets the ending time in clock cycles */
end_cycles = PAPI_get_virt_cyc();

/* Gets the ending time in microseconds */
end_usec = PAPI_get_virt_usec();

printf("Virtual clock cycles: %lld\n", end_cycles - start_cycles);
prinf(“Virtual clock time in microseconds: %lld\n”, end_usec - start_usec);

}

POSSIBLE OUTPUT:

Virtual clock cycles: 715408
Virtual clock time in microseconds: 976

- 45 -

PAPI User’s Guide Version 3.5.0

PAPI SYSTEM INFORMATION

EXECUTABLE INFORMATION

Information about the executable’s address space can be obtained by using the
following low-level function:

C:

PAPI_get_executable_info()

Fortran:

PAPIF_get_exe_info(fullname, name, text_start, text_end, data_start, data_end,
bss_start, bss_end, lib_preload_env, check)

ARGUMENTS

The following arguments are implicit in the structure returned by the C function, or
explicitly returned by Fortran:

fullname -- fully qualified path + filename of the executable
name -- filename of the executable with no path information
text_start, text_end -- Start and End addresses of program text segment
data_start, data_end -- Start and End addresses of program data segment
bss_start, bss_end -- Start and End addresses of program bss segment
lib_preload_env -- environment variable for preloading libraries

Note that the arguments, text_start and text_end, are the only fields
that are filled on every architecture.

In C, this function returns a pointer to a structure containing information about the
current program, such as the start and end addresses of the text, data, and bss
segments.

In Fortran, the fields of the structure are returned explicitly.

In the following code example, PAPI_get_executable_info is used to acquire
information about the start and end addresses of the program’s text segment:

#include <papi.h>
#include <stdio.h>

main()
{

- 46 -

PAPI User’s Guide Version 3.5.0
const PAPI_exe_info_t *prginfo = NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if ((prginfo = PAPI_get_executable_info()) == NULL)
 exit(1);

printf("Start of user program is at %p\n",prginfo->text_start);
printf("End of user program is at %p\n",prginfo->text_end);

}

POSSIBLE OUTPUT:

Start of user program is at 0x4000000000000f20
End of user program is at 0x4000000000034e00

In C, on success, the function returns a non-NULL pointer and on error, NULL is
returned.

In Fortran, on success, the function returns PAPI_OK and on error, a non-zero error
code is returned.

HARDWARE INFORMATION

Information about the system hardware can be obtained by using the following low-
level function:

C:
PAPI_get_hardware_info()

Fortran:
PAPIF_get_hardware_info (ncpu, nnodes, totalcpus, vendor,
vendor_string, model, model_string, revision, mhz)

ARGUMENTS
The following arguments are implicit in the structure returned by the C function, or
explicitly returned by Fortran.

ncpu -- number of CPUs in an SMP Node
nnodes -- number of Nodes in the entire system
totalcpus -- total number of CPUs in the entire system
vendor -- vendor id number of CPU
vendor_string -- vendor id string of CPU
model -- model number of CPU
model_string -- model string of CPU
revision -- Revision number of CPU

- 47 -

PAPI User’s Guide Version 3.5.0
mhz -- Cycle time of this CPU; *may* be an estimate generated at initial time with a
quick timing routine

In C, this function returns a pointer to a structure containing information about the
hardware on which the program runs, such as: the number of CPUs, CPU model
information, and the cycle time of the CPU.

In Fortran, the fields of the structure are returned explicitly.

Note that if this function were called before PAPI_library_init, it would be
undefined.

In the following code example, PAPI_get_hardware_info is used to acquire
hardware information about the total number of CPUs and the cycle time of the CPU:

#include <papi.h>
#include <stdio.h>

main()
{

const PAPI_hw_info_t *hwinfo = NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if ((hwinfo = PAPI_get_hardware_info()) == NULL)
 exit(1);

printf("%d CPU’s at %f Mhz.\n",hwinfo->totalcpus,hwinfo->mhz);
}

POSSIBLE OUTPUT:

1 CPUs at 733.000000 Mhz.

In C, on success, this function returns a non-NULL pointer and on error, NULL is
returned.

In Fortran, on success, this function returns PAPI_OK and on error, a non-zero error
code is returned.

- 48 -

PAPI User’s Guide Version 3.5.0

SUBSTRATE INFORMATION

Implementation details about the current hardware dependent substrate can be
obtained by using the following low-level function:

C:
PAPI_get_substrate_info()

Fortran:
This call is not implemented in the Fortran interface.

ARGUMENTS
In C, this function returns a pointer to a structure containing implementation details
about the substrate currently in use, such as: the number of counters and
multiplexed counters supported, the number of preset and native events available,
and whether (and how) certain advanced features are supported. For more details,
refer to the definition of the PAPI_substrate_info_t structure found in papi.h, or
see the discussion under getting and setting options. Note: if this function is called
before PAPI_library_init, its output is undefined.

In the following code example, PAPI_get_substrate_info is used to determine
how many preset and native events can be counted for a given substrate:

#include <papi.h>
#include <stdio.h>

main()
{

const PAPI_substrate_info_t *subinfo = NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if ((subinfo = PAPI_get_substrate_info()) == NULL)
 exit(1);

printf("num_preset_events: %d\n",subinfo->num_preset_events);
printf("num_native_events: %d\n",subinfo->num_native_events);

 }

POSSIBLE OUTPUT:

num_preset_events: 47
num_native_events: 193

On success, this function returns a non-NULL pointer and on error, NULL is returned.

- 49 -

PAPI User’s Guide Version 3.5.0

ADVANCED PAPI FEATURES

MULTIPLEXING

WHAT IS MULTIPLEXING?

Multiplexing allows more events to be counted than can be supported by the
hardware. When a microprocessor has a limited number of hardware counters, a
large application with many hours of run time may require days or weeks of profiling
in order to gather enough information on which to base a performance analysis.
Multiplexing overcomes this limitation by subdividing the usage of the counter
hardware over time (timesharing) among a large number of performance events.

USING PAPI WITH MULTIPLEXING

INITIALIZATION OF MULTIPLEX SUPPORT

Multiplex support in the PAPI library can be enabled and initialized by calling the
following low-level function:

C:

PAPI_muliplex_init()

Fortran:

PAPIF_multiplex_init(check)

The above function sets up the internal structures to allow more events to be
counted than there are physical counters. It does this by timesharing the existing
counters at some loss in precision. This function should be used after calling
PAPI_library_init. After this function is called, the user can proceed to use the
normal PAPI routines. It should be also noted that applications that make no use of
multiplexing should not call this function.

On success, this function returns PAPI_OK and on error, a non-zero error code is
returned.

For a code example, see the next section.

- 50 -

PAPI User’s Guide Version 3.5.0
CONVERTING AN EVENT SET INTO A MULTIPLEXED EVENT SET

In addition, a standard event set can be converted to a multiplexed event set by the
calling the following low-level function:

C:

PAPI_set_multiplex(EventSet)

Fortran:

PAPIF_set_multiplex(EventSet)

ARGUMENT

EventSet -- an integer handle for a PAPI event set as created by
PAPI_create_eventset.

The above function converts a standard PAPI event set created by a call to
PAPI_create_eventset into an event set capable of handling multiplexed events.
This function must be used after calling PAPI_multiplex_init and
PAPI_create_eventset, but prior to calling PAPI_start. Events can be added to
an event set either before or after converting it into a multiplexed set, but the
conversion must be done prior to using it as a multiplexed set.

In the following code example, PAPI_set_multiplex is used to convert a standard
event set into a multiplexed event set:

#include <papi.h>

int retval, i, EventSet = PAPI_NULL, max_to_add = 6, j = 0;
long_long *values;
const PAPI_preset_info_t *pset;

main()
{
 /* Initialize the PAPI library */
 retval = PAPI_library_init(PAPI_VER_CURRENT);
 if (retval != PAPI_VER_CURRENT)
 handle_error(1);

 /* Enable and initialize multiplex support */
 if (PAPI_multiplex_init() != PAPI_OK)
 handle_error(1);

 /* Create an EventSet */
 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

 /* Convert the EventSet to a multiplexed event set */
 if (PAPI_set_multiplex(EventSet) != PAPI_OK)
 handle_error(1);

- 51 -

PAPI User’s Guide Version 3.5.0

 for (i=0;i<PAPI_MAX_PRESET_EVENTS;i++)
 {
 if ((PAPI_query_event (i | PAPI_PRESET) == PAPI_OK)
 && ((i | PAPI_PRESET) != PAPI_TOT_CYC))
 {
 if (PAPI_add_event(&EventSet, pset->event_code != PAPI_OK)
 handle_error(1);

 if (++j >= max_to_add)
 break;
 }
 }

 values = (long_long *)malloc(max_to_add*sizeof(long_long));
 if (values == NULL)
 handle_error(1);

 /* Start counting events */
 if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);
}

On success, both functions return PAPI_OK and on error, a non-zero error code is
returned.

For more code examples, see ctests/multiplex1.c in the papi source distribution.

ISSUES OF MULTIPLEXING

The following are some issues concerning multiplexing that the PAPI user should be
aware of:

• Hardware multiplexing is not supported by all platforms. On those
platforms where it is supported, PAPI takes advantage of it. Otherwise, PAPI
implements software multiplexing through the use of a high-resolution interval
timer. For more information on which platforms support hardware or software
multiplexing, see Appendix H.

• Multiplexing unavoidably incurs a small amount of overhead when switching
events. In addition, no single event is measured for the full analysis time. These
factors can adversely affect the precision of reported counter values. In other
words, the more events that are multiplexed, the more likely that the results will
be statistically skewed. The amount of time spent in the measured regions should
be greater than the multiplexing time slice times the number of events measured
in order to get acceptable results.

• The default time slice for multiplexing is currently set at 100000 microseconds.
Occasionally this setting can cause a resonant situation in the code in which a
given pattern repeats at the same frequency that timers are switched out. This
can by addressed by changing the time slice setting by calling PAPI_set_opt
with the PAPI_DEF_MPX_USEC option.

- 52 -

PAPI User’s Guide Version 3.5.0

• To prevent naïve use of multiplexing by the novice user, the high level API can
only access those events countable simultaneously by the underlying hardware,
unless a low level function has been called to explicitly enable multiplexing.

USING PAPI WITH PARALLEL PROGRAMS

THREADS

WHAT ARE THREADS?

A thread is an independent flow of instructions that can be scheduled to run by the
operating system. Multi-threaded programming is a form of parallel programming
where several controlled threads are executing concurrently in the program. All
threads execute in the same memory space, and can therefore work concurrently on
shared data. Threads can run in parallel on several processors, allowing a single
program to divide its work between several processors, thus running faster than a
single-threaded program, which runs on only one processor at a time.

PAPI only supports thread level measurements with kernel or bound threads, which
are threads that have a scheduling entity known and handled by the operating
system’s kernel. In most cases, such as with SMP or OpenMP complier directives,
bound threads will be the default. Each thread is responsible for the creation, start,
stop, and read of its own counters. When a thread is created, it inherits no PAPI
information from the calling thread. There are some threading packages or APIs that
can be used to manipulate threads with PAPI, particularly Pthreads and OpenMP. For
those using Pthreads, the user should take care to set the scope of each thread to
PTHREAD_SCOPE_SYSTEM attribute, unless the system is known to have a non-
hybrid thread library implementation.

In addition, PAPI does support unbound or non-kernel threads, but the counts will
reflect the total events for the process. Measurements that are done in other
threads will get all the same values, namely the counts for the total process. For
unbound threads, it is not necessary to call PAPI_thread_init, which will be
discussed in the next section.

When threads are in use, PAPI allows the user to provide a routine to its library that
returns the thread ID of the currently running thread (for example, pthreads_self for
Pthreads) and this thread ID is used as a lookup function for the internal data
structures.

INITIALIZATION OF THREAD SUPPORT

Thread support in the PAPI library can be initialized by calling the following low-level
function:

C:

- 53 -

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://www.openmp.org/index.cgi?home
http://www.tldp.org/HOWTO/SMP-HOWTO.html

PAPI User’s Guide Version 3.5.0
PAPI_thread_init(handle)

Fortran:

PAPIF_thread_init(handle, check)

ARGUMENTS

handle -- Pointer to a routine that returns the current thread ID.

This function should be called only once, just after PAPI_library_init, and
before any other PAPI calls. If the function is called more than once, the
application will exit. Also, applications that make no use of threads do not need to
call this function.

The following example shows the correct syntax for using PAPI_thread_init with
OpenMP:

C:
#include <papi.h>
#include <omp.h>
if (PAPI_thread_init(omp_get_thread_num) != PAPI_OK)
 handle_error(1);

Fortran:

#include “fpapi.h”
#include “omp.h”
EXTERNAL omp_get_thread_num
C Fortran dictates that in order to a pass a subroutine
C as an argument, the subroutine must be
C declared external!
call PAPIF_thread_init(omp_get_thread_num, error)

On success, the function, PAPI_thread_init, returns PAPI_OK and on error, a non-
zero error code is returned.

For a code example of using PAPI_thread_init with Pthreads, see the next section.

THREAD ID

The identifier of the current thread can be obtained by calling the following low-level
function:

C:

PAPI_thread_id()

Fortran:

- 54 -

PAPI User’s Guide Version 3.5.0
PAPIF_thread_id(check)

This function calls the thread id function registered by PAPI_thread_init and
returns an unsigned long integer containing the thread identifier.

In the following code example, PAPI_thread_init and PAPI_thread_id are used to
initialize thread support in the PAPI library and to acquire the identifier of the
current thread, respectively, with Pthreads:

#include <papi.h>
#include <pthread.h>

main()
{

unsigned long int tid;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
 exit(1);

if (PAPI_thread_init(pthread_self) != PAPI_OK)
 exit(1);

if ((tid = PAPI_thread_id()) == (unsigned long int)-1)
 exit(1);

printf("Initial thread id is: %lu\n",tid);
}

OUTPUT:

Initial thread id is: 0

On success, this function returns a valid thread identifier and on error, (unsigned
long int) –1 is returned.

Four more utility functions related to threads are available in PAPI. These functions
allow you to register a newly created thread to make it available for reference by
PAPI, to remove a registered thread in cases where thread ids may be reused by the
system, and to create and access thread-specific storage in a platform independent
fashion for use with PAPI. These functions are shown below:

C:

PAPI_register_thread()
PAPI_unregister_thread()
PAPI_get_thr_specific(tag, ptr)
PAPI_set_thr_specific(tag, ptr)

- 55 -

PAPI User’s Guide Version 3.5.0
ARGUMENTS

tag -- Integer value specifying one of 4 storage locations.
ptr -- Pointer to the address of a data structure.

For more code examples of using Pthreads and OpenMP with PAPI, see
ctests/zero_pthreads.c and ctests/zero_omp.c in the papi source distribution,
respectively. Also, for a code example of using SMP with PAPI, see
ctests/zero_smp.c in the papi source distribution.

MPI

MPI is an acronym for Message Passing Interface. MPI is a library specification for
message-passing, proposed as a standard by a broadly based committee of vendors,
implementers, and users. MPI was designed for high performance on both massively
parallel machines and on workstation clusters. More information on MPI can be
found at http://www-unix.mcs.anl.gov/mpi.

PAPI supports MPI. When using timers in applications that contain multiplexing,
profiling, and overflow, MPI uses a default virtual timer and must be converted to a
real timer in order to for the application to work properly. Otherwise, the application
will exit.

Optionally, the supported tools, TAU and SvPablo, can be used to implement PAPI
with MPI.

The following is a code example of using MPI’s PI program with PAPI:

#include <papi.h>
#include <mpi.h>
#include <math.h>
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[];
{
 int done = 0, n, myid, numprocs, i, rc, retval, EventSet = PAPI_NULL;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 long_long values[1] = {(long_long) 0};

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 /*Initialize the PAPI library */
 retval = PAPI_library_init(PAPI_VER_CURRENT);
 if (retval != PAPI_VER_CURRENT) {
 fprintf(stderr, "PAPI library init error!\n");
 exit(1);
}

- 56 -

http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/node57.html
http://www-pablo.cs.uiuc.edu/Project/SVPablo/SvPabloOverview.htm
http://www.cs.uoregon.edu/research/paracomp/proj/tau
http://www-unix.mcs.anl.gov/mpi

PAPI User’s Guide Version 3.5.0

 /* Create an EventSet */
 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

/* Add Total Instructions Executed to our EventSet */
 if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

 /* Start counting */
 if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

 while (!done)
 {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);

 if (myid == 0)
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 }

 /* Read the counters */
 if (PAPI_read(EventSet, values) != PAPI_OK)
 handle_error(1);

 printf("After reading counters: %lld\n",values[0]);

 /* Start the counters */
 if (PAPI_stop(EventSet, values) != PAPI_OK)
 handle_error(1);
 printf("After stopping counters: %lld\n",values[0]);

 MPI_Finalize();
}

POSSIBLE OUTPUT (AFTER ENTERING 50, 75, AND 100 AS INPUT):

Enter the number of intervals: (0 quits) 50
pi is approximately 3.1416259869230028, Error is 0.0000333333332097
Enter the number of intervals: (0 quits) 75
pi is approximately 3.1416074684045965, Error is 0.0000148148148034

- 57 -

PAPI User’s Guide Version 3.5.0
Enter the number of intervals: (0 quits) 100
pi is approximately 3.1416009869231254, Error is 0.0000083333333323
Enter the number of intervals: (0 quits) 0
After reading counters: 117393
After stopping counters: 122921

OVERFLOW

WHAT IS AN OVERFLOW?

An overflow happens when the number of occurrences of a particular hardware
event exceeds a specified threshold. PAPI provides the ability to call user-defined
handlers when an overflow occurs. This can be done in hardware, if the processor
generates an interrupt signal when the counter reaches a specified value, or in
software, by setting up a high-resolution interval timer and installing a timer
interrupt handler. For software based overflow, PAPI compares the current counter
value against the threshold every time the timer interrupt occurs. If the current
value exceeds the threshold, then the user’s handler is called from within the signal
context with some additional arguments. These arguments allow the user to
determine which event overflowed, by how much it overflowed, and at what location
in the source code the overflow occurred.

Using the same mechanism as for user programmable overflow, PAPI also guards
against register precision overflow of counter values. Each counter can potentially
be incremented multiple times in a single clock cycle. This fact combined with
increasing clock speeds and the small dynamic range of some of the physical
counters means that an overflow is likely to occur on platforms where 64-bit
counters are not supported in hardware or by the operating system. In those cases,
the PAPI implements 64-bit counters in software using the same mechanism that
handles overflow dispatch.

BEGINNING OVERFLOWS IN EVENT SETS

An event set can begin registering overflows by calling the following low-level
function:

C:

PAPI_overflow(EventSet, EventCode, threshold, flags, handler)

ARGUMENTS

EventSet -- a reference to the event set to use
EventCode -- the event to be used for overflow detection
threshold -- the overflow threshold value to use

- 58 -

PAPI User’s Guide Version 3.5.0
flags -- bit map that controls the overflow mode of operation. The only currently

valid setting is PAPI_OVERFLOW_FORCE_SW, which overrides the default hardware
overflow setting on a platform that supports hardware overflow.

handler -- the handler function to call upon overflow

This function marks a specific EventCode in an EventSet to generate an overflow
signal after every threshold events are counted. Mutiple events within an event set
can be programmed to overflow by making successive calls to this function, but only
a single overflow handler can be registered. To turn off overflow for a specific event,
call PAPI_overflow with EventCode set to the desired event and threshold set to
zero.

The handler function is a user-supplied callback routine that performs whatever
special processing needed to handle the overflow interrupt, including sorting
multiple overflowing events from each other. It must conform to the following
prototype:

C:

PAPI_overflow_handler(EventSet, address, overflow_vector, void
*context)

ARGUMENTS

EventSet -- a reference to the event set in use
address – the address of the program counter when the overflow occurred
overflow_vector – a 64-bit vector that specifies which counter(s) generated the
overflow. Bit 0 corresponds to counter 0. The handler should be able to deal with
multiple overflow bits per call if more than one event may be set to overflow.
context -- a platform dependent structure containing information about the state of
the machine when the overflow occurred. This structure is provided for
completeness, but can generally be ignored by most users.

In the following code example, PAPI_overflow is used to mark PAPI_TOT_INS in
order to generate an overflow signal after every 100,000 counted events:

#include <papi.h>
#include <stdio.h>

#define THRESHOLD 100000

int total = 0; /* total overflows */

void handler(int EventSet, void *address, long_long overflow_vector, void *context)
{

fprintf(stderr, "handler(%d) Overflow at %p! vector=0x%llx\n",
 EventSet, address, overflow_vector);

total++;

- 59 -

PAPI User’s Guide Version 3.5.0
}

main()
{
 int retval, EventSet = PAPI_NULL;

 /* Initialize the PAPI library */
 retval = PAPI_library_init(PAPI_VER_CURRENT);
 if (retval != PAPI_VER_CURRENT)
 handle_error(1);

 /* Create the EventSet */
 if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(1);

 /* Add Total Instructions Executed to our EventSet */
 if (PAPI_add_event(EventSet, PAPI_TOT_INS) != PAPI_OK)
 handle_error(1);

 /* Call handler every 100000 instructions */
 retval = PAPI_overflow(EventSet, PAPI_TOT_INS, THRESHOLD, 0, handler);
 if (retval != PAPI_OK)
 handle_error(1);

 /* Start counting */
 if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);
}

On success, this function returns PAPI_OK and on error, a non-zero error code is
returned.

For more code examples, see ctests/overflow.c,
ctests/overflow_twoevents.c or ctests/overflow_pthreads.c in the papi
source distribution.

STATISTICAL PROFILING

WHAT IS STATISTICAL PROFILING?

Statistical Profiling involves periodically interrupting a running program and
examining the program counter at the time of the interrupt. If this is done for a
reasonable number of interrupting intervals, the resulting program counter
distribution will be statistically representative of the execution profile of the program
with respect to the interrupting event. Performance tools like UNIX prof sample the
program address with respect to time and hash the value into a histogram. At
program completion, the histogram is analyzed and associated with symbolic
information contained in the executable. GNU prof in conjunction with the –p option
of the GCC compiler performs exactly this analysis using the process time as the
interrupting trigger. PAPI aims to generalize this functionality so that a histogram

- 60 -

PAPI User’s Guide Version 3.5.0
can be generated using any countable hardware event as the basis for the interrupt
signal.

GENERATING A PC HISTOGRAM

A PC histogram can be generated on any countable event by calling either of the
following low-level functions:

C:

PAPI_profil(buf, bufsiz, offset, scale, EventSet, EventCode,
threshold, flags)
PAPI_sprofil(prof, profcnt, EventSet, EventCode, threshold, flags)

Fortran:

PAPI_profil(buf, bufsiz, offset, scale, EventSet, EventCode,
threshold, flags, check)

AGRUMENTS

*buf -- pointer to profile buffer array.
bufsiz -- number of entries in *buf.
offset -- starting value of lowest memory address to profile.
scale -- scaling factor for bin values.
EventSet -- The PAPI EventSet to profile when it is started.
EventCode -- code of the Event in the EventSet to profile.
threshold -- threshold value for the Event triggers the handler.
flags -- bit pattern to control profiling behavior. The defined bit values for the flags
variable are shown in the table below:

Defined bit Description
PAPI_PROFIL_POSIX Default type of profiling.
PAPI_PROFIL_RANDOM Drop a random 25% of the samples.
PAPI_PROFIL_WEIGHTED Weight the samples by their value.
PAPI_PROFIL_COMPRESS Ignore samples if hash buckets get big.
PAPI_PROFIL_BUCKET_16 Save samples in 16-bit hash buckets.
PAPI_PROFIL_BUCKET_32 Save samples in 32-bit hash buckets.
PAPI_PROFIL_BUCKET_64 Save samples in 64-bit hash buckets.
PAPI_PROFIL_FORCE_SW Force software overflow in profiling.

*prof -- pointer to PAPI_sprofil_t structure.
profcnt -- number of buffers for hardware profiling (reserved).

PAPI_profil creates a histogram of overflow counts for a specified region of the
application code by using its first four parameters to create the data structures

- 61 -

PAPI User’s Guide Version 3.5.0
needed by PAPI_sprofil and then calls PAPI_sprofil to do the work.
PAPI_sprofil assumes a pre-initialized PAPI_sprofil_t structure and enables
profiling for the EventSet based on its value. Note that the EventSet must be in
the stopped state in order for either call to succeed.

More than one hardware event can be profiled at the same time by making multiple
independent calls to these functions for the same EventSet before calling
PAPI_start. This can be useful for the simultaneous generation of profiles of two or
more related events, for example L1 cache misses and L2 cache misses. Profiling
can be turned off for specific events by calling the function for that event with a
threshold of zero.

On success, these functions return PAPI_OK and on error, a non-zero error code is
returned.

For more code examples, see profile.c, profile_twoevents.c or sprofile.c
in the ctests directory of the PAPI source distribution.

For a more extensive description of the parameters in the PAPI_profil call, see the
PAPI_profil man page or its html counterpart at:
http://icl.cs.utk.edu/projects/papi/files/html_man3/papi_profil.html

In the following code example, PAPI_profil is used to generate a PC histogram:

#include <papi.h>
#include <stdio.h>

main()
{

int retval;
int EventSet = PAPI_NULL;
unsigned long start, end, length;
PAPI_exe_info_t *prginfo;
unsigned short *profbuf;

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT & retval > 0) {
 fprintf(stderr,"PAPI library version mismatch!0);
 exit(1);
}

if (retval < 0)
 handle_error(retval);

if ((prginfo = PAPI_get_executable_info()) == NULL)
 handle_error(1);

start = (unsigned long)prginfo->text_start;
end = (unsigned long)prginfo->text_end;
length = end - start;

- 62 -

http://icl.cs.utk.edu/projects/papi/files/html_man3/papi_profil.html%0D

PAPI User’s Guide Version 3.5.0

profbuf = (unsigned short *)malloc(length*sizeof(unsigned short));
if (profbuf == NULL)
 handle_error(1);

memset(profbuf,0x00,length*sizeof(unsigned short));

if (PAPI_create_eventset(&EventSet) != PAPI_OK)
 handle_error(retval);

/* Add Total FP Instructions Executed to our EventSet */
if (PAPI_add_event(EventSet, PAPI_FP_INS) != PAPI_OK)
 handle_error(retval);

if (PAPI_profil(profbuf, length, start, 65536, EventSet, PAPI_FP_INS, 1000000,
PAPI_PROFIL_POSIX | PAPI_PROFIL_BUCKET_16) != PAPI_OK)
 handle_error(1);

/* Start counting */
if (PAPI_start(EventSet) != PAPI_OK)
 handle_error(1);

}

DATA AND INSTRUCTION ADDRESS RESTRICTION

Introduction

Performance instrumentation of data structures, as opposed to code segments, is a
feature not widely supported across a range of platforms. One platform on which
this feature is supported is the Itanium2. In fact, event counting on Itanium2 can be
qualified by a number of conditioners, including instruction address, opcode
matching, and data address. We have implemented a generalized PAPI interface for
data structure and instruction range performance instrumentation, also referred to
as data and instruction range specification, and applied that interface to the specific
instance of the Itanium2 platform to demonstrate its viability. This feature is being
introduced for the first time in the PAPI 3.5 release.

The PAPI Interface

Since PAPI is a platform-independent library, care must be taken when extending its
feature set so as not to disrupt the existing interface or to clutter the API with calls
to functionality that is not available on a large subset of the supported platforms. To
that end, we elected to extend an existing PAPI call, PAPI_set_opt(), with the
capability of specifying starting and ending addresses of data structures or
instructions to be instrumented. The PAPI_set_opt() call previously supported
functionality to set a variety of optional capability in the PAPI interface, including
debug levels, multiplexing of eventsets, and the scope of counting domains. This
call was extended with two new cases to support instruction and data address range
specification: PAPI_INSTR_ADDRESS and PAPI_DATA_ADDRESS. To access these

- 63 -

PAPI User’s Guide Version 3.5.0
options, a user initializes a simple option specific data structure and calls
PAPI_set_opt() as illustrated in the code fragment below:

 ...
 option.addr.eventset = EventSet;
 option.addr.start = (caddr_t)array;
 option.addr.end = (caddr_t)(array + size_array);
 retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);
 ...

The user creates a PAPI eventset and determines the starting and ending addresses
of the data to be monitored. The call to PAPI_set_opt then prepares the interface
to count events that occur on accesses to data in that range. The specific events to
be monitored can be added to the eventset either before or after the data range is
specified. In a similar fashion, an instruction range can be set using the
PAPI_INSTR_ADDRESS option. If this option is supported on the platform in use, the
data is transferred to the platform-specific implementation and handled
appropriately. If not supported, the call returns an error message.

It may not always be possible to exactly specify the address range of interest. If this
is the case, it is important that the user have some way to know what
approximations have been made, so that appropriate corrective action can be taken.
For instance, to isolate a specific data structure completely, it may be necessary to
pad memory before and after the structure with dummy structures that are never
accessed. To facilitate this, PAPI_set_opt() returns the offsets from the requested
starting and ending addresses as they were actually programmed into the hardware.
If the addresses were mapped exactly, these values are zero. An example of this is
shown below:

 ...
 retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);
 actual.start = (caddr_t)array - option.addr.start_off;
 actual.end = (caddr_t)(array + size_array) + option.addr.end_off;
 ...

Itanium Idiosyncrasies

There are roughly 475 native events available on Itanium 2.160 of them are
memory related and can be counted with data address specification in place. 283
can be counted using instruction address specification. All events in an eventset with
data or instruction range specification in place must be one of these supported
events. Further restrictions also apply to the use of data and instruction range
specification, as described below. Data addresses can only be specified in coarse
mode. Although four independent pairs of data address registers exist in the
hardware and would suggest that four disjoint address regions can be monitored
simultaneously, the Intel documentation strongly suggests that this is not a good
idea. Further, the underlying software takes advantage of these register pairs to

- 64 -

PAPI User’s Guide Version 3.5.0
tune the range of addresses that is actually monitored. See the discussion under
Data Address Ranges for further detail.

Instruction Address Ranges

Instruction ranges can be specified in one of two ways: coarse and fine. In fine
mode, addresses can be specified exactly, but both the start and end addresses
must exist on the same 4K byte page. In other words, the address range must be
less than 4K bytes, and the addresses can only differ in the bottom 12 bits. If fine
mode cannot be used, the underlying perfmon library automatically switches to
coarse address specification. Four pairs of registers are available to specify coarse
instruction address ranges. The restrictions to coarse address specification are
discussed below.

Data Address Ranges

Data addresses can only be specified in coarse mode. As with instruction ranges,
four pairs of registers are available to specify the data address ranges. Use of coarse
mode addressing for either instruction or data address specification can cause some
anomalous results. The Intel documentation points out that starting and ending
addresses cannot be specified exactly, since the hardware representation relies on
powers-of-two bitmasks. The perfmon library tries to optimize the alignment of
these power-of-two regions to cover the addresses requested as effectively as
possible with the four sets of registers available. Perfmon first finds the largest
power-of-two address region completely contained within the requested addresses.
Then it finds successively smaller power-of-two regions to cover the errors on the
high and low end of the requested address range. The effective result is that the
actual range specified is always equal to or larger than, and completely contains the
requested range, and can occupy from one to four pairs of address registers. In
some cases this can result in significant overcounts of the events of interest,
especially if two active data structures are located in close proximity to each other.
This may require that the developer insert some padding structures before and/or
after a particular structure of interest to guarantee accurate counts.

Supporting Software

To make this new PAPI feature more accessible and easier to use, a test case was
developed to both provide a coding example and to exercise and test the fuctionality
of the data ranging features of the Itanium 2. In addition, the papi_native_event
utility was modified to make it easier to identify events that support these features.

The data_range.c Test Case

A test case, called data_range was developed that measures memory load and
store events on three different types of data structures. Three static arrays of
16,384 ints were declared in the program, and three dynamic arrays of 16,384 ints

- 65 -

PAPI User’s Guide Version 3.5.0
were malloc'd. The data range was specified sequentially to be the starting and
ending addresses of each of:

• the pointers to the malloc'd arrays;
• the malloc'd arrays themselves;
• the statically declared arrays.

The work done in each case consisted of loading an initialization value into each
element of each array, and then summing the values of each element. This should
produce 16,384 loads and 16,384 stores on each element.

For the pointers, the size was 8 bytes and the starting and ending addresses could
be specified exactly. Output is shown below:

Measure loads and stores on the pointers to the allocated arrays
Expected loads: 32768; Expected stores: 0
These loads result from accessing the pointers to compute array
addresses.
They will likely disappear with higher levels of optimization.
Requested Start Address: 0x6000000000011640; Start Offset: 0x 0;
Actual Start Address: 0x6000000000011640
Requested End Address: 0x6000000000011648; End Offset: 0x 0; Actual
End Address: 0x6000000000011648
loads_retired: 32768
stores_retired: 0
Requested Start Address: 0x6000000000011628; Start Offset: 0x 0;
Actual Start Address: 0x6000000000011628
Requested End Address: 0x6000000000011630; End Offset: 0x 0; Actual
End Address: 0x6000000000011630
loads_retired: 32768
stores_retired: 0
Requested Start Address: 0x6000000000011638; Start Offset: 0x 0;
Actual Start Address: 0x6000000000011638
Requested End Address: 0x6000000000011640; End Offset: 0x 0; Actual
End Address: 0x6000000000011640
loads_retired: 32768
stores_retired: 0

For the allocated arrays, small offsets were introduced in each case, and the
resulting error in the loads and stores is exactly what would be predicted by the
activity in the adjacent memory locations:

Measure loads and stores on the allocated arrays themselves
Expected loads: 16384; Expected stores: 16384
Requested Start Address: 0x6000000004044010; Start Offset: 0x 10;
Actual Start Address: 0x6000000004044000
Requested End Address: 0x6000000004054010; End Offset: 0x 0; Actual
End Address: 0x6000000004054010
loads_retired: 16384

- 66 -

PAPI User’s Guide Version 3.5.0
stores_retired: 16384
Requested Start Address: 0x6000000004054020; Start Offset: 0x 20;
Actual Start Address: 0x6000000004054000
Requested End Address: 0x6000000004064020; End Offset: 0x 0; Actual
End Address: 0x6000000004064020
loads_retired: 16388
stores_retired: 16388
Requested Start Address: 0x6000000004064030; Start Offset: 0x 30;
Actual Start Address: 0x6000000004064000
Requested End Address: 0x6000000004074030; End Offset: 0x 10; Actual
End Address: 0x6000000004074040
loads_retired: 16392
stores_retired: 16392

For the static arrays, the locations of the arrays resulted in significant offsets, and
hence significant errors. The most interesting case is the second one, in which the
starting offset can be seen to force the inclusion of all three pointers to the malloc'd
arrays. Because of this the loads retired count is too high by 98310, almost exactly
3 * 32768 = 98204:

Measure loads and stores on the static arrays
These values will differ from the expected values by the size of the
offsets.
Expected loads: 16384; Expected stores: 16384
Requested Start Address: 0x60000000000218cc; Start Offset: 0x 18cc;
Actual Start Address: 0x6000000000020000
Requested End Address: 0x60000000000318cc; End Offset: 0x 734; Actual
End Address: 0x6000000000032000
loads_retired: 18432
stores_retired: 18432
Requested Start Address: 0x60000000000118cc; Start Offset: 0x 18cc;
Actual Start Address: 0x6000000000010000
Requested End Address: 0x60000000000218cc; End Offset: 0x 734; Actual
End Address: 0x6000000000022000
loads_retired: 115155
stores_retired: 16845
Requested Start Address: 0x60000000000318cc; Start Offset: 0x 18cc;
Actual Start Address: 0x6000000000030000
Requested End Address: 0x60000000000418cc; End Offset: 0x 734; Actual
End Address: 0x6000000000042000
loads_retired: 17971
stores_retired: 17971

The papi_native_avail Utility

To effectively use the instruction and address range specification feature for Itanium
2, one must know which of the roughly 475 available native events support these
features. In addition, there are other qualifiers to Itanium 2 native events that are
valuable to inspect. For these reasons, the papi_native_avail utility was

- 67 -

PAPI User’s Guide Version 3.5.0
enhanced to make it possible to filter the list of native events by these qualifiers. A
help feature was added to this utility to make it easier to remember the Itanium
specific options:

> papi_native_avail --help
This is the PAPI native avail program.
It provides availability and detail information
for PAPI native events. Usage:
 papi_native_avail [options]
Options:

 -h, --help print this help message
 --darr display Itanium events that support Data Address Range
Restriction
 --dear display Itanium Data Event Address Register events only
 --iarr display Itanium events that support Instruction Address
Range Restriction
 --iear display Itanium Instruction Event Address Register
events only
 --opcm display Itanium events that support OpCode Matching
 NOTE: The last five options are mutually exclusive.

If any of these options are specified on the command line, only those events that
support that option are displayed. Even so, the list can be extensive, with roughly
160 events supporting data address ranging, and even more supporting instruction
address ranging.

- 68 -

PAPI User’s Guide Version 3.5.0

PAPI ERROR HANDLING

ERROR CODES

All of the functions contained in the PAPI library return standardized error codes in
which the values that are greater than or equal to zero indicate success and those
that are less than zero indicate failure, as shown in the table below:

VALUE SYMBOL DEFINITION
0 PAPI_OK No error
-1 PAPI_EINVAL Invalid argument
-2 PAPI_ENOMEM Insufficient memory
-3 PAPI_ESYS A system or C library call failed, please check errno
-4 PAPI_ESBSTR Substrate returned an error, usually the result of an

unimplemented feature
-5 PAPI_ECLOST Access to the counters was lost or interrupted
-6 PAPI_EBUG Internal error, please send mail to the developers
-7 PAPI_ENOEVNT Hardware event does not exist
-8 PAPI_ECNFLCT Hardware event exists, but cannot be counted due to

counter resource limitations
-9 PAPI_ENOTRUN No events or event sets are currently not counting
-10 PAPI_EISRUN Event Set is currently running
-11 PAPI_ENOEVST No such event set available
-12 PAPI_ENOTPRESET Event is not a valid preset
-13 PAPI_ENOCNTR Hardware does not support performance counters
-14 PAPI_EMISC ‘Unknown error’ code
-15 PAPI_EPERM You lack the necessary permissions

CONVERTING ERROR CODES TO ERROR MESSAGES

Error codes can be converted to error messages by calling the following low-level
functions:

C:

PAPI_perror(code, destination, length)
PAPI_strerror(code)

Fortan:

PAPIF_perror(code, destination, check)

- 69 -

PAPI User’s Guide Version 3.5.0
ARGUMENTS

code -- the error code to interpret
*destination -- "the error message in quotes"
length -- either 0 or strlen(destination)

PAPI_perror fills the string, destination, with the error message corresponding to
the error code (code). The function copies length worth of the error description
string corresponding to code into destination. The resulting string is always null
terminated. If length is 0, then the string is printed to stderr.

PAPI_strerror returns a pointer to the error message corresponding to the error
code (code). If the call fails, the function returns a NULL pointer. Otherwise, a non-
NULL pointer is returned. Note that this function is not implemented in
Fortran.

In the following code example, PAPI_perror is used to convert error codes to error
messages:

#include <papi.h>
#include <stdio.h>

main()
{

int EventSet = PAPI_NULL;
int native = 0x0;
char error_str[PAPI_MAX_STR_LEN];

/* Initialize the PAPI library */
retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT && retval > 0) {
 fprintf(stderr,"PAPI library version mismatch!\n");
 exit(1);
}

if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK) {
 fprintf(stderr, "PAPI error %d: %s\n",retval,
 PAPI_strerror(retval));
 exit(1);
}

/* Add Total Instructions Executed to our EventSet */
if ((retval = PAPI_add_event(&EventSet, PAPI_TOT_INS)) != PAPI_OK) {
 PAPI_perror(retval,error_str,PAPI_MAX_STR_LEN);
 fprintf(stderr,"PAPI_error %d: %s\n",retval,error_str);
 exit(1);
}

/* Add POWER4 native event */
retval = PAPI_event_name_to_code(“PM_LD_MISS_L1”, &native);
if ((retval = PAPI_add_event(&EventSet, native)) != PAPI_OK) {
 /* Dump error string directly to stderr. */
 PAPI_perror(retval,NULL,NULL);

- 70 -

PAPI User’s Guide Version 3.5.0
 exit(1);
}

/* Start counting */
if ((retval = PAPI_start(EventSet)) != PAPI_OK)
 handle_error(retval);

}

OUTPUT:

Invalid argument

Notice that the above output was generated from the last call to
PAPI_perror.

On success, PAPI_perror returns PAPI_OK and on error, a non-zero error code is
returned.

- 71 -

PAPI User’s Guide Version 3.5.0

FURTHER INFORMATION

In addition to the information in this Users Guide on Programming with PAPI, a
number of other information sources are available. Most of these are available on
the PAPI website. Below we list some of these resources and indicate where they
can be found.

PAPI HOME PAGE

The PAPI Project home page can be found at:
http://icl.cs.utk.edu/papi/

PAPI MAILING LISTS

PAPI has two mailing lists for users and developers. For more information about the
mailing lists and to subscribe or modify your mailing list settings, click the “Mailing &
User Lists” tab under “Contacts’ on the PAPI web page, or go directly to:
http://icl.cs.utk.edu/papi/custom/index.html?lid=50&slid=67

REPORTING BUGS

If you find a bug in PAPI, you can send mail to one of the mailing lists above, or
peruse the mail archives to see if it has been reported by anyone else. You can also
submit the bug directly to PAPIzilla, the PAPI bug tracking website. To access
PAPIzilla, click the “Bug Reporting” tab under “Contacts’ on the PAPI web page, or
go directly to:
http://icl.cs.utk.edu/projects/papi/bugz/

PAPI PROGRAMMER’S REFERENCE

Function by function documentation for PAPI can be found in a number of formats.

PAPI man pages are part of the standard installation package. For a properly
installed PAPI, you should be able to display a man page for any PAPI function by
typing:

> man PAPI_xxx

where “PAPI_xxx” is a PAPI function name.

In addition, this information is also available in HTML format on the PAPI website at:
http://icl.cs.utk.edu/projects/papi/files/html_man3/papi.html

- 72 -

http://icl.cs.utk.edu/projects/papi/files/html_man3/papi.html
http://icl.cs.utk.edu/projects/papi/bugz/%0D
http://icl.cs.utk.edu/papi/custom/index.html?lid=50&slid=67
http://icl.cs.utk.edu/papi/

PAPI User’s Guide Version 3.5.0
If you want a printable version of the Programmer’s Reference, you can find it in
Word and PDF formats under the ‘Documentation’ tab on the PAPI website.

TABLE OF PRESET EVENTS

A table of present events, their standard definitions, and the platforms on which
they are defined can be found at:
http://icl.cs.utk.edu/projects/papi/presets.html

Note that tables inevitably become outdated. Always use the util/papi_avail
utility for the most current definitions of preset events on your platform.

SUPPORTED PLATFORMS

A table of currently supported hardware platforms and operating systems can be
found on the PAPI website under the “Supported Platforms” tab.

SUPPORTED TOOLS

A list of tools that support PAPI, along with a brief description of each tool and a link
to further information, can be found under the “Tools” tab on the PAPI website.

A second list of tools that support PAPI, along with a list of links to related projects
and links to a variety of vendor documentation can be found on the PAPI website
under the “Links” tab.

HARDWARE REFERENCES

A series of links to vendor and third party hardware documentation on performance
counter resources can also be found on the PAPI website under the “Links” tab.

- 73 -

http://icl.cs.utk.edu/projects/papi/presets.html

PAPI User’s Guide Version 3.5.0

BIBLIOGRAPHY

Browne, S., J. Dongarra J., Garner N., London K., and Mucci, P., "A Portable
Programming Interface for Performance Evaluation on Modern Processors,”
University of Tennessee Technical Report, Knoxville, Tennessee, July 2000.
http://icl.cs.utk.edu/papi/documents

Browne, S., Dongarra J., Garner N., London K., and Mucci, P., "A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware
Counters,” Proc. SC'2000, November 2000. http://icl.cs.utk.edu/papi/documents

Dongarra, J., London, K., Moore, S., Mucci, P., and Terpstra, D. "Using PAPI for
Hardware Performance Monitoring on Linux Systems,” Conference on Linux
Clusters: The HPC Revolution, Urbana, Illinois, June 25-27, 2001.
http://icl.cs.utk.edu/papi/documents

London, K., Moore, S., Mucci, P., Seymour, K., and Luczak, R. "The PAPI Cross-
Platform Interface to Hardware Performance Counters,” Department of Defense
Users' Group Conference Proceedings, Biloxi, Mississippi, June 18-21, 2001.
http://icl.cs.utk.edu/papi/documens

London, K., Dongarra, J., Moore, S., Mucci, P., Seymour, K., and Spencer, T. "End-
user Tools for Application Performance Analysis Using Hardware Counters,”
International Conference on Parallel and Distributed Computing Systems, Dallas, TX,
August 8-10, 2001. http://icl.cs.utk.edu/papi/documents

Mucci, P., Moore, S., and Smeds, Nils. “Performance Tuning Using Hardware Counter
Data,” Proc. SC’2001, November 2001. http://icl.cs.utk.edu/papi/documents

Mucci, P. “The IA64 Hardware Performance Monitor and PAPI”, The 2001
International Conference on Parallel and Distributed Processing Techniques and
Applications, June 2001. http://icl.cs.utk.edu/papi/documents

Mucci, P. “PAPI -- The Performance Application Programming Interface,” April 2000.
http://icl.cs.utk.edu/papi/documents

“POSIX Threads Programming.”
http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html

- 74 -

http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents
http://icl.cs.utk.edu/papi/documents

	TABLE OF CONTENTS	
	PREFACE	
	INTENDED AUDIENCE
	ORGANIZATION OF THIS DOCUMENT
	INTRODUCTION TO PAPI
	INSTALLING PAPI
	C AND FORTRAN CALLING INTERFACES
	EVENTS
	PAPI COUNTER INTERFACES
	PAPI TIMERS
	PAPI SYSTEM INFORMATION
	ADVANCED PAPI FEATURES
	PAPI ERROR HANDLING
	PAPI MAILING LISTS
	APPENDICES

	DOCUMENT CONVENTION

	INTRODUCTION TO PAPI	
	WHAT IS PAPI?
	BACKGROUND
	ARCHITECTURE

	INSTALLING PAPI	
	C AND FORTRAN CALLING INTERFACES	
	EVENTS	
	WHAT ARE EVENTS?
	NATIVE EVENTS
	WHAT ARE NATIVE EVENTS?

	PRESET EVENTS
	WHAT ARE PRESET EVENTS?

	EVENT QUERY
	ARGUMENTS
	EXAMPLE:
	OUTPUT (if PAPI_TOT_INS is available on your system):

	EVENT TRANSLATION
	ARGUMENTS
	OUTPUT:

	PAPI’S COUNTER INTERFACES	
	HIGH-LEVEL API
	WHAT IS THE HIGH-LEVEL API?
	INITIALIZING THE HIGH-LEVEL API
	ARGUMENTS
	POSSIBLE OUTPUT (varies on different systems):

	EXECUTION RATE CALLS	
	ARGUMENTS

	READING, ACCUMULATING, AND STOPPING COUNTERS
	ARGUMENTS

	LOW-LEVEL API
	WHAT IS THE LOW-LEVEL API?
	INITIALIZATION OF THE LOW-LEVEL API
	ARGUMENT
	OUTPUT FOR PAPI VERSION 3.5.0

	EVENT SETS
	WHAT ARE EVENT SETS?
	CREATING AN EVENT SET
	ARGUMENT

	ADDING EVENTS TO AN EVENT SET
	ARGUMENTS

	STARTING, READING, ADDING, AND STOPPING EVENTS IN AN EVENT SET
	ARGUMENTS

	RESETTING EVENTS IN AN EVENT SET
	ARGUMENT

	REMOVING EVENTS IN AN EVENT SET
	ARGUMENTS

	EMPTYING AND DESTROYING AN EVENT SET
	ARGUMENT

	THE STATE OF AN EVENT SET
	ARGUMENTS
	OUTPUT:

	GETTING AND SETTING OPTIONS
	ARGUMENTS
	POSSIBLE OUTPUT (VARIES ON DIFFERENT PLATFORMS):

	SIMPLE CODE EXAMPLES
	HIGH-LEVEL API
	POSSIBLE OUTPUT:

	LOW-LEVEL API
	POSSIBLE OUTPUT:

	PAPI TIMERS	
	REAL TIME
	POSSIBLE OUTPUT:

	VIRTUAL TIME
	POSSIBLE OUTPUT:

	PAPI SYSTEM INFORMATION	
	EXECUTABLE INFORMATION
	ARGUMENTS
	POSSIBLE OUTPUT:

	HARDWARE INFORMATION
	POSSIBLE OUTPUT:

	SUBSTRATE INFORMATION
	POSSIBLE OUTPUT:

	ADVANCED PAPI FEATURES	
	MULTIPLEXING
	WHAT IS MULTIPLEXING?
	USING PAPI WITH MULTIPLEXING
	INITIALIZATION OF MULTIPLEX SUPPORT
	CONVERTING AN EVENT SET INTO A MULTIPLEXED EVENT SET
	ARGUMENT

	ISSUES OF MULTIPLEXING

	USING PAPI WITH PARALLEL PROGRAMS
	THREADS
	WHAT ARE THREADS?
	INITIALIZATION OF THREAD SUPPORT
	ARGUMENTS
	THREAD ID
	OUTPUT:
	ARGUMENTS

	MPI
	POSSIBLE OUTPUT (AFTER ENTERING 50, 75, AND 100 AS INPUT):

	OVERFLOW
	WHAT IS AN OVERFLOW?
	BEGINNING OVERFLOWS IN EVENT SETS
	ARGUMENTS
	ARGUMENTS

	STATISTICAL PROFILING
	WHAT IS STATISTICAL PROFILING?
	GENERATING A PC HISTOGRAM
	AGRUMENTS

	DATA AND INSTRUCTION ADDRESS RESTRICTION
	Introduction
	The PAPI Interface
	Itanium Idiosyncrasies
	Instruction Address Ranges
	Data Address Ranges

	Supporting Software
	The data_range.c Test Case
	The papi_native_avail Utility

	PAPI ERROR HANDLING	
	ERROR CODES
	VALUE
	SYMBOL
	DEFINITION
	CONVERTING ERROR CODES TO ERROR MESSAGES
	ARGUMENTS
	OUTPUT:

	FURTHER INFORMATION	
	PAPI HOME PAGE
	PAPI MAILING LISTS
	REPORTING BUGS
	PAPI PROGRAMMER’S REFERENCE
	TABLE OF PRESET EVENTS
	SUPPORTED PLATFORMS
	SUPPORTED TOOLS
	HARDWARE REFERENCES

	BIBLIOGRAPHY	

