
Quality of Service for I/O Workloads in Multi-core Virtualized

Servers

Abstract: Emerging trend of multi-core servers promises to be the panacea for all data-

center issues with system virtualization as the enabling technology. System virtualization

gives the ability to create virtual replicas of a complete system, over which independent

virtual machines can be built, complete with their own, individual operating systems,

software and applications. This provides for complete system isolation of the virtual

machines. Apart from the system isolation, one of the key drivers for virtualization

adoption in data-centers will be the virtual machine performance isolation that can be

achieved over a consolidated server. This chapter exposes the basic requirements on

virtualized servers in order to provide performance isolation to virtual machines with a

specific focus on enterprise workloads that are a mix of compute and I/O intensive

workloads. We evaluate existing, popular system virtualization technologies in terms of

the provisions they have for performance isolation and their limitations, and propose an

end-to-end system virtualization architecture to overcome these limitations.

1. Introduction: Multi-core servers coupled with system virtualization are emerging as

credible solutions to data-center issues. Today’s data-centers have concerns of reducing

space and power footprint of its computing infrastructure which the multi-core servers

can easily address. A typical multi-core server has enough computing capacity to host

several of server applications on a single machine. The most significant issue with co-

hosting multiple server applications on a single machine is with the software environment

of each of the applications. In fact, non-compliance of software amongst multiple

applications is the biggest challenge for server consolidation and virtualization directly

addresses this problem. As a matter of fact, server consolidation is the genesis of system

virtualization so as to provide software isolation for individual applications. System

virtualization gives the ability to create virtual replicas of a complete system, over which

independent virtual machines (VMs) can be built, complete with their own, individual

operating systems, software and applications. This provides for complete software

isolation of the VMs. Apart from the software isolation, one of the key drivers for

virtualization adoption in data-centers will be the virtual machine performance isolation

that can be achieved over a consolidated server. This is essential particularly for

enterprise application workloads, like database, mail, and web-based applications, which

have both CPU and I/O workload components. Current commodity multi-core

technologies have micro-architecture support for virtualization that provides CPU

workload isolation.

In multi-core servers the ratio of cpu-cores to that of I/O interfaces tends to be

high. Because of this, the I/O device sharing dynamics change when compared to

dedicated servers, wherein all the resources like the processors, memory, I/O interfaces

for disk and network access are used predominantly by the hosted application. Hence,

solutions that optimize or maximize the application usage of the system resources are

sufficient to address the performance of the application. This scenario changes

completely when multiple applications are consolidated on to a single, physical, multi-

core server. Because of the restricted number of I/O interfaces that can be provisioned on

the multi-core servers, many workloads have to share an I/O interface. The challenge is in

ensuring performance of the independent I/O intensive applications on the consolidated

server while sharing a single I/O device interface across many workloads [1]. A logical

solution to this is to provide faster and high-bandwidth I/O interfaces, which happens to

be the trend in the current virtualized servers. Despite this, such systems suffer from two

distinct problems with regard to current I/O device virtualization technologies;

 Extra CPU cycles are required to support I/O over virtualized devices which result in

increased I/O access latency. This leads to reduction in the total usable bandwidth by

the application hosted inside the virtual machine [9].

 Device virtualization architectures are cohesive because of which the device and its

access software are monolithic. This causes performance degradation based on I/O

workloads and also causes limitations on the scalability of VMs that can share the I/O

device [2].

Both these reasons cause variability in application performance depending on the nature

of workload and the number of virtual machines sharing the I/O device. One way to

control this variability is to impose necessary Quality of Service (QoS) controls on

resource allocation and usage of all resources, including the I/O devices, by the virtual

machines. Ideally, the QoS controls should ensure that there is no loss of application

performance when hosted on virtualized servers with shared resources.

The chapter begins with a discussion on the resource specific QoS controls that

application performance depends on. An exploration of prevalent I/O virtualization

architectures with existing QoS controls, with specific focus on the issues in sharing of a

single NIC across multiple VMs, is presented to illustrate the previously described

problems. This is followed by a proposal, which is an extension to the I/O device

architecture, as recommended in the PCI-SIG IOV specification [3], for virtualizing

network I/O devices. The aim of the proposal is to enable fine-grained controls to a

virtual machine on the I/O path of a shared device so that there is no loss of application

performance, at the same time minimizing loss of usable device bandwidth. The proposed

architecture allows native access of I/O devices to virtual machines and provides device

level QoS hooks for controlling VM specific device usage. For evaluating the

architecture layered queuing network (LQN) [4][5] models are used. Simulations studies

on the LQN models demonstrate the benefits of the proposed architecture. On the

proposed architecture the application throughput observed is 60% more than what is

observed on the existing architectures and the performance is closer to non-virtualized

servers. The device-level QoS controls provide fine-grained controls on device usage by

the sharing VMs and significantly improve the usable device bandwidth on the shared

device. The proposed architecture also improves scalability in terms of the number of

virtual machines intending to share the I/O device

2. Application requirements for performance isolation on shared resources:
Application performance is based on timely availability of the required resources like

processors, memory and I/O devices. The basic guideline for consolidating enterprise

servers over multi-core virtualized systems is by ensuring availability of required

resources in a timely manner [6]. For the system to be able to do so, the application

resource requirements can be enumerated in terms of resource tuples. A resource tuple is

similar to a database record in the sense that it contains a sequence of values that describe

specific attributes of a resource.

Table 1: An example resource tuple definition for a VM

</CPU_Resource_Descriptor_tuple>

 (Default_Speed=1800MHz:Min_speed=1500MHz:Max_speed=2000MHz)

 (Default_Count=4:Min_count=1:Max_count=4)

 (Default_L1Cache=64KB:Min_L1cache=64KB:Max_L1cache=64KB)

 (Default_L2Cache=512KB:Min_L2cache=64KB:Max_L2cache=512KB)

</end_of_tuple>

</Memory_Resource_Descriptor_tuple>

 (Default_Space=2000MB:Min_space=1000MB:Max_space=4000MB)

 (Default_Bandwidth=6400MBps:Min_bandwidth=6400MBps:Max_bandwidth=6400MBps)

</end_of_tuple>

</Network_Resource_Descriptor_tuple>

 (Default_Speed=1000Mbps:Min_speed=100Mbps:Max_speed=1000Mbps)

 (Default_Bandwidth=5000KBps:Min_Bandwidth=5000KBps:Max_Bandwidth=8000KBps)

</end_of_tuple>

</Disk_Resource_Descriptor_tuple>

 (Default_space=1000MB:Min_space=1000MB:Max_space=1000MB)

 (Default_bandwidth=100MBps:Min_bandwidth=100MBps:Max_bandwidth=400MBps)

</end_of_tuple>

In this context, a resource tuple lists the various resources that the virtual machine’s

performance depends on. Using the xml format for resource specification, akin to Globus

Resource Specification Language [7], the following example in Table 1 illustrates the

resource tuples for a typical VM that has both compute and I/O workloads. Each resource

tuple is specified using a set of attributes which completely describe the specific resource

requirement in terms of the quantity, number of units, speed of resource access and any

other associated attributes of the resource. With reference to Table 1, the

“CPU_Resource_Descriptor_tuple” describes the various attributes, like speed, count, L1

cache, L2 cache, of the CPU resource. Each attribute is described by three values,

namely, Default, Minimum and Maximum. The Default parameter specifies the attribute

value that the virtual machine monitor (VMM) can initially allocate to the VM. On an

average, this is the value that the VM expects to use. The minimum parameter value

defines the least value for the attribute that the VM could use while supporting the

guaranteed performance and maximum attribute value defines the maximum amount of

resource that the VM can use while supporting its workload. For example in the resource

tuple depicted in Table 1, while the Default_speed of CPU expected is 1800MHz, the

application can run with acceptable degraded performance using a CPU_speed of

1500MHz and with enhanced performance using a CPU_speed of 2000MHz. Ofcourse,

all the three attributes can be effectively used if the VMM uses dynamic adaptive

resource allocation policies.

In the context of multi-core servers with server consolidation as the goal, the

resource tuples are assumed to be for each virtual machine of the virtualized server. This

assumption is based on the fact that one application server is consolidated using one VM.

In the case where multiple applications are co-located on a single VM, these resource

tuples can be arrived at using the aggregated resource requirement of all the applications

hosted by the VM. The resource tuples are used by the VMM while allocating or de-

allocating resources to the VMs.

3. Prevalent Commodity Virtualization technologies and QoS controls for I/O

device sharing: Virtualization technologies encompass a variety of mechanisms to

decouple the system architecture and the user-perceived behavior of hardware and

software resources. Among the prevalent technologies, there are two basic modes of

virtualization, namely, full system virtualization like in Vmware [19] and para-

virtualization as in Xen [14]. In full system virtualization complete hardware is replicated

virtually. Instruction emulation is used to support multiple architectures. The advantage

of this virtualization is that it enables unmodified operating systems (OS) to execute on

the virtual machine (VM). Since it adopts instruction emulation, it tends to have high

performance overheads as is observed in the experimental studies. Para-virtualization is

more efficient and comes with lower performance overheads. In this kind of

virtualization the OS is also modified suitably to run concurrently with other virtual

machines on the same hardware. In either case, system virtualization is enabled by a layer

called the virtual machine monitor (VMM) that now provides the resource management

functionality across multiple virtual machines.

Commodity virtualization technologies like Xen and Vmware have made the normal

desktop very versatile. A generic architecture of system virtualization implemented in

such systems is given in Figure 1. The access to CPU resource is native, to all virtual

machines sharing the CPU, for all instructions except the privileged instructions. The

privileged instructions are virtualized, i.e., whenever such instructions are executed from

within the VM, they are trapped and control is passed to the VMM. All I/O instructions

fall under the privileged instructions and hence are trapped when executed from within

the VM. Thus I/O devices like the Network Interface Card (NIC) and the DISK are

treated differently when virtualized. There are two different, popularly adopted

techniques, for I/O device virtualization. They are para-virtualization and emulation [17].

In para-virtualized mode of access, the hosting VM (as in Xen) or the VMM itself (as in

VMware-ESX server) has exclusive access to the physical device. Other VMs sharing the

device use software based mechanisms to access the physical device via the hosting VM

or the VMM. In emulated mode of access, each VM sharing the physical device has a

device driver that is implemented using emulation over the native device driver hosted by

the VMM. Both these modes provide data protection and integrity to individual VMs but

suffer from loss of performance and usable device bandwidth, as is illustrated by the

evaluation in next section. To understand the effect of these different virtualization

architectures on application performance, two different studies of httperf [13] benchmark

are evaluated. The first is described in section 3.1 and explores how virtualization affects

application performance. The second is described in section 3.2 which exposes the

existing QoS constructs’ effectiveness in providing the desired performance.

Figure 1: Generic System Virtualization architecture supported by prevalent commodity

virtualization technologies.

3.1 Effect of Virtualization on Application Performance: The current commodity

virtualization technologies like Xen and VMware allow for VM specific QoS controls on

different resources using different mechanisms. The CPU resource allocations are

handled directly by the VMM schedulers like Credit, SEDF or BVT schedulers of Xen

[14]. Also, as discussed in [8] - [11] the virtualization architecture for these resources is

fine-grained enough to give desired allocation and hence control the CPU allocation

specific performance for CPU-based workloads. The problem is with I/O devices. The

access to an I/O device is always through the OS kernel to ensure data integrity and

protection. The device is never aware as to which VM is using it at any given instance of

time; this information and control is managed by the VMM. Hence, resource allocation

controls with regard to the I/O devices are at higher abstraction level rather than at the

device level, unlike as in the case of CPU resource. This affects the way resource usage is

controlled and thereby the application performance.

The way disk devices are shared is different from the way NICs are shared. In Unix

like operating systems, to share disk devices, a disk partition is exposed as a file-system

which is exported to a single VM. Any and every operation to this file-system is from a

single VM and all read and write disk operations are block operations. The data

movements to and from the file-systems are synchronized using the file-system buffer

cache that is resident within the VM’s address space. In para-virtualization the physical

data movement is handled by the native device drivers within the VMM or hosted VM

and the para-virtualized device driver of the VM. The overheads in this case are due to

the multiple addresses translations of the data page between the device hosting VM and

the application VM. For the emulation based device virtualization, overheads are due to

the translation of every I/O instruction between the emulated and the native device driver.

Due to this nature of I/O activity, VM specific file-system policies get to be implemented

within the software layers of the VMM. Since the file-system activity is block based,

setting up appropriate block sizes can, to some extent, enable the control of bandwidth

and speed requirements on the I/O channel to the disk. However, these controls are still

coarse-grained and can be insufficient for servers with high consolidation ratios.

For network devices the existing architecture poses severe constraints. Network I/O is

packet based and sharing a single NIC with multiple VMs has intermixed packet streams.

This intermixing is transparent to the device and is sorted into VM specific streams by

the VMM or the device hosting VM. Apart from this, every packet is subjected to either

instruction translation or address translation due to virtualization. In either case the

virtualization techniques build over existing “single-OS over single hardware” model.

To understand the effect of sharing a NIC at near maximum utilization bandwidth, on

an application in virtualized environment, a comparative study of the behavior of two

benchmarks, netperf [12] and httperf [13] for three different environments, namely non-

virtualized, virtualized and consolidated-virtualized server is carried out. The non-

virtualized environment is achieved by hosting the application on an independent server

wherein all the hardware resources and software required by the application are available

to it as unshared resources. This forms the baseline for the relation between the

application resource requirement and achievable performance. The virtualized

environment is achieved by transporting the non-virtualized server to a virtual machine

hosted on a virtualized system. In this case, only one VM is hosted on the virtualized

system. This environment exposes how virtualization effects an application, based on its

workload. And, the consolidated-virtualized environment represents hosting of multiple

VMs on a virtualized system with specific shared resources, in this case the NIC. In all

the experiments described in this chapter, two VMs have been hosted under the

consolidated-virtualized environment. The reason for choosing only two VMs and not

more is because the focus of the experiments was to expose the issues in sharing

virtualized I/O devices. Also, because of this, the scale of experiments, both in the real

and simulation setup, was tractable for conclusive results especially because the

benchmarks exercise the network interface.

For the netperf benchmark, netperf is the name of the client and netserver is the

server component. For this study, TCP_CRR test of netperf is chosen. The TCP_CRR

test measures the connect-request-response sequence throughput achievable on a server

and is similar to the access requests used in http based applications. In the case of httperf

benchmark, the client, called httperf, communicates with a standard http server using the

http protocol. The httperf client allows for specifying the workload in terms of the

number of http requests to the server in one second, for a given period of time, to

generate statistics like average number of replies received from the server, average

response time of a reply and the network bandwidth utilized for the workload. While

netperf gives the achievable or achieved throughput, httperf gives an average throughput

calculated for a subset of samples, executed over a specified period of time, within the

given experiment. Hence, httperf results give an optimistic estimate which may fall short

of expectation in situations where sustained throughput is a requirement.

For this study, all the benchmarks were run on a linux server with a total of 2GB

RAM and hosting a Broadcom Ethernet card configured to serve a bandwidth of

100Mbps. Although the NIC was capable of Gigabit speed, the network bandwidth was

scaled down since this made the study of NIC sharing dynamics feasible since at higher

request rates httperf reports failures that are not directly related to NIC sharing. The

experimental values, plotted in the following charts, are an average of five independent

measurements, to rule out the possibility of result variation. Each experiment was

executed for a period of 600 seconds to represent steady state of server behavior. For the

non-virtualized server, the machine is booted into a standard FedoraCore6 (FC6) Linux

system. For the Xen virtualized server, the same system is booted into Xen3.0.3 with

Fedora Core 6(FC6) for the Domain-0 and Domain-1. Domain-0 is the Independent

Driver Domain(IDD) [15] hosting the network I/O device and Domain-1 is the virtual

machine hosting the benchmark server. In case of the consolidated-virtualized server, two

virtual machines, namely Domain-1 and Domain-2, are hosted on the machine along-with

Domain-0. In this case, server component of the benchmark is hosted on each of the

virtual machine and independent clients make requests to each of the servers. In the case

of Vmware virtualized server, the virtualization is through VMware-ESXi hypervisor

hosting Linux VMs.

For each of the benchmarks, the comparison is between a non-virtualized server with

that of a virtualized server and consolidated-virtualized server. Two metrics are taken for

comparison; the first one is %CPU utilization of the server and the second one reply rate

or more commonly know as the application throughput of the server. Two charts, one for

each of the metrics, are shown for each of the benchmarks. Figure 2 (a) shows the plot of

%CPU utilization of the server against response message size for the netperf benchmark

on a Xen server. In this chart we observe that moving from a non-virtualized to a

virtualized server, the CPU resource utilization to support the same workload increases.

This is the effect of virtualization on application resource requirement. Further, when we

look at the case where two-VMs are consolidated on to a server, the server resource

utilization increases significantly, as expected. In this case, each of the VMs sharing the

same network interface, also share the Xen-VMM and IDD. When compared to servicing

a single VM, the VMM and IDD now have to also service the requests of the second VM,

which increases the CPU utilization on the server [9]. This is true for the httperf

benchmark also, as indicated by the graphs in Figure 3(a). Also, the sharing of VMM and

IDD by all device sharing VMs adds to device access latencies which contributes to a

reduction in the maximum sustained throughput of the application. This is illustrated in

Figure 2(b) and Figure 3(b), which give details of the throughput that is achieved in the

case of netperf and httperf benchmarks.

(a) Server CPU Utilization (b) Server achievable throughput

Figure 2: netperf server CPU Utilization and netserver achievable throughput on Xen-

virtualized system

In the case of the netperf benchmark the loss of achievable throughput, for an application

moving from non-virtualized to virtualized environment ranges from 4% to 20% and 10%

to 29% in the case of consolidated-virtualized server. The surprising result is the case of

total throughput achievable across both the VMs on a consolidated-virtualized server for

netperf. We observe that the total throughput achievable is almost double that of what is

achievable for a single VM. The reason for this is that the service time required to

generate a response to the netperf request is long enough not to allow complete utilization

of the network I/O bandwidth. And hence we see a better utilization for the consolidated

server when two VMs are using the same NIC. This gives a clear motivation for sharing

of I/O device in virtualized servers. However, in the case of httperf the improvement is

not so dramatic. We observe here that while the reply rate increases linearly with the

increase in request rate, till the peak rate, for the non-virtualized server, there is a gradual

drop of throughput from 2% to 12.5% for the virtualized server as we progress from the

request rate of 500reqs/s to the peak rate. The sustained total throughput for both the

VMs, without loss, for the consolidated-virtualized server improves to 800reqs/s but still

falls short of that achieved for the non-virtualized server by 10%.

 (a) Server CPU Utilization (b) Server throughput

Figure 3: httperf characterization on Xen server

Similar behavior is observed when Vmware virtualization technology is used. This is

depicted in Figure 4. The httperf benchmark tests using VMware-ESXi hypervisor were

conducted on an Intel Core2Duo server with 2 cores. The speed of processor and NIC

remain the same as that for the Xen server. Also, unlike in the case of Xen, pinning of

ESXi server (the hypervisor) to a CPU is not possible. Hence, any CPU utilization

measurements for the ESXi on Vmware show utilizations for all CPUs included, i.e.

%CPU utilization can be above 100% in the case of multi-core systems. As for the VMs,

both the VMs were hosted on the same physical CPU with one virtual CPU (VCPU)

each. VMware-ESXi server implements NIC virtualization using device emulation. As

can be seen, the overheads of emulation are comparatively high in relation to para-

virtualization which is used in Xen. Here also, virtualization of NIC results in using up

more CPU to support network traffic on a VM when compared to a non-virtualized

server. The other important observation is the loss of application throughput. Device

emulation imposes higher service times for packet processing and hence drastic drop of

application throughput is observed, when compared to non-virtualized and para-

virtualized systems. In this case we see almost 70% drop on maximum sustained

throughput when compared to the throughput achieved in non-virtualized environment.

This loss is visible even in the consolidated-virtualized case. Interestingly, the total

network bandwidth used in the case of consolidated VMs was only 50% of the available

bandwidth. Hence, the bottleneck is the CPU resource available to the VMs since each of

the VM was hosted on the same core. When the same experiment was carried out with

each VM pinned to an independent CPU, there was an increase in application throughput,

but this throughput still fell short by 10% of what was achieved for the single VM. This

indicates that even with the availability of required resources to each of the VMs the

device sharing architecture in virtualized servers has constraints that impose severe

restrictions in usable bandwidth and scalability of device sharing.

 (a) Server CPU utilization (b) Server throughput

Figure 4: httperf characterization on Vmware-ESXi server

The most noteworthy point of observation is the behavior of each stream of

benchmark in the case of consolidated-virtualized server. We see that in general there is a

further reduction in throughput, when compared to the virtualized environment, in netperf

and httperf, with a marked decrement in the later case. This indicates the obvious; lack of

QoS constraints would lead to severe interference in performance offered by the VMs

sharing a common device. It is noteworthy here that in linux packet level QoS controls

are available as a software stack through the netfilter module, which is a serious

drawback. While the software controls work well for the transmission path, the reception

path is virtually uncontrolled at the device level. As a result, it may so happen that the

device is receiving a large number of packets for a VM that would eventually be dropped

and this leads to loss of bandwidth for the other VMs sharing this device. Provisioning

for QoS controls in such systems is currently done only in software that is controlling the

device, since the device is oblivious to the fact that it is being shared by multiple VMs.

These controls are placed quite high in the software stack where the source or destination

of the data is known. This causes the controls to be coarse-grained. In scenarios where

I/O device utilization is pushed to its maximum, limitations of such QoS controls are

revealed as loss of usable bandwidth or scalability of sharing. This results in

unpredictable loss of application performance as is described in the next section.

3.2 Evaluation of prevalent Network QoS controls available in Virtualized Servers:
To understand the effect of software based QoS controls on network bandwidth sharing

in virtualized servers, an analysis of experimental study conducted with network

bandwidth control on a consolidated virtualized server, hosting two VMs, each running

an application server and sharing a NIC. Each VM was built with with 1 VCPU, 512MB

RAM, 25GB disk partition and a Virtual NIC built using a software bridge (Xen) or

switch (VMware-ESXi) over a single physical NIC configured to 100Mbps speed. Each

VM hosted an identical but independent http server. Initially the VCPUs of each VM

were pinned to the same physical CPU. The experimental setup consisted of two

independent httperf clients, each making requests to an independent http server. We

choose to use httperf benchmark for this study and not netperf because the bandwidth

control mechanisms available are based on time-sampled averages and hence need certain

time specific observation to understand the mechanism control on the constrained

channel. Initially it would seem that the control is not very effective but with the progress

of time, once a steady state behavior sets in with respect to the traffic on the network

channel, the effect of the control is visible on the application throughput.

To understand the NIC sharing dynamics, two distinct studies were made. The first

was applying no bandwidth control on the NIC, each VM was subject to equal load from

each of the httperf client. As can be observed from the performance of consolidated

virtualized server case in Figure 3 and Figure 4 the NIC sharing is equal in both the

virtualization solutions. When no QoS controls are enforced and each VM has equal

demand for the resource, it is shared equally on a best effort basis. In the second study

bandwidth control was enforced on one VM, namely VM2, while allowing complete

available bandwidth to the other VM, the VM1. The bandwidth controls enforced were

based on the following principle. For each of the virtualization technologies used, i.e. Xen

and Vmware, the network bandwidth used by a single VM to support different httperf

request rates, without performance loss, was measured. These bandwidth measurements

were then used to apply control on the outgoing traffic from VM2 since the available

controls allow constraints only on the outgoing traffic. On the incoming traffic, ideally

the control should be applied at the device or the device driver. Such controls are not

available currently. Instead, in Xen, atleast one can use the netfilter module stream based

controls after receiving the packet. This is of not much use, because by receiving a packet

that could potentially be dropped, the device bandwidth is anyway wasted. Hence, the

study involves using only the outgoing traffic controls for the constrained VM. On the

VM2 where the QoS control was applied, the study was made by systematically applying

bandwidth control from 150 to 950 httperf requests/sec for the Xen server and from 50 to

550 httperf requests/sec for the VMware server. The selection of this different range for

each of the virtualized server is based on the maximum throughput each can support in a

consolidated virtualized environment. For each QoS control, the maximum throughput

achieved, without loss, by each of the VM is plotted in the graphs of Figure 5. In these

Figures, the x-axis represents the httperf request rate based on which the network

bandwidth control was applied on the VM2. The y-axis represents the application

throughput achieved by the VM. In the case of Xen, linux tc utility of the netfilter module

was used to establish appropriate bandwidth controls. Specifically, each traffic stream

from the VMs was defined using htb class with tbf queue discipline with the desired

bandwidth control. Each queue was also setup with a burst value to support a maximum

of 10 extra packets. In the case of Vmware, the Veam Monitor controls for network

bandwidth were used and were populated with the same QoS controls as was done for the

Xen server.

For both solutions, we notice that applying bandwidth control on one VM does not

necessarily allow the availability of idle bandwidth to the unconstrained VM. Referring

back to Figure 3 and Figure 4, we observe that the maximum application throughput

achieved in the case of consolidated server for Xen is around 475 replies/s and for

VMware is around 150 replies/s. Figure 5 demonstrates that even with QoS controls on

one VM the other VM is not able to exploit the bandwidth availability. We also observe

that the unconstrained VM does not improve the total throughput achieved across the

shared interface. The reasons for this behavior are multitude, the most significant one

being the virtualization overhead in terms of the CPU resource required by the VMM or

the hosting VM to support I/O workload and serialization of this resource, second is the

lack of control on the incoming network stream, third is that of the incoming stream

having higher priority over the outgoing stream. All of these problems lead to

unpredictable performance even with appropriate QoS controls in place.

 (a) Xen-IDD Linux QoS controls on VM2 (b) Vmware-ESXi QoS controls on VM2

Figure 5: Effect of hypervisor network bandwidth controls on application throughput for

consolidated virtualized server hosting two virtual machines.

As observed from the behavior of the benchmarks, we identify the following bottlenecks

for sharing network I/O device across multiple VMs on Xen or Vmware virtualized

server.

 Virtualization increases overheads in device utilization which leads to increased CPU

utilization of the VMM and IDD hosting the device.

 Virtualization overheads cause loss of device bandwidth utilization from within a

VM. Consolidation improves the device bandwidth utilization but further adds to

CPU utilization of the VMM and IDD. Also, if the VMM and IDD do not support

concurrent device access APIs they become the bottlenecks for the shared device

access.

 QoS features for regulating incoming and outgoing traffic are currently implemented

in the software stack. Uncontrolled incoming traffic to a VM sharing a network

device can severely impact the performance of other VMs because the decision to

drop an incoming packet is taken after the device has received the packet.

Based on the above observations, we propose an extension to I/O virtualization

architecture, as recommended by the PCI-SIG IOV specification [3]. The PCI-SIG IOV

specification defines the rudiments for making I/O devices virtualization aware. On the

multi-core servers with server consolidation as the goal, particularly in the enterprise

segment, being able to support multiple virtual I/O devices on a single physical device is

a necessity. Already high speed network devices like 10Gbps NICs are appearing in the

market. Pushing such devices to even 80% utilization needs fine-grained resource

management at the device level. The basic goal of the proposed architecture is to be able

to support finer levels of QoS guarantees, without compromising on device utilization.

This proposal has its basis in exokernel’s [16] implementation of I/O handling in the

sense of decoupling device management mechanism from data access mechanism. The

architecture is designed to enable native access of I/O devices to virtual machines and

provide device level QoS hooks for controlling VM specific device usage. The

architecture aims to reduce network I/O device access latency and enable improvement in

effective usable bandwidth in virtualized systems by addressing the following issues:

 Separating device management issues from device access issues.

 Allowing native access of a device to a VM by supporting concurrent devices access

and eliminating IDD from the path of device access.

 Enable fine-grained resource controls at the device.

The rest of the chapter is organized as follows. We describe the need for extending I/O

device virtualization architecture by presenting the related work in section 4. In section 5

we highlight the bottlenecks of the device access path in the existing architecture,

followed by a detailed description of the proposed architecture to overcome these

bottlenecks taking Xen virtualization as the reference model. We then describe the

network packet workflow for the proposed architecture, which forms the basis for

generating the LQN model used in the simulation studies for architecture evaluation

described in section 6. Brief description of the LQN model generation and detailed

presentation of simulation results is covered in section 0. Finally, in section 8 we

conclude with remarks on the benefits of the architecture.

4. Review of I/O virtualization techniques: I/O virtualization started with dedicated

I/O devices assigned to a VM and has now evolved to device sharing across multiple

VMs through virtualized software interfaces [17]. A dedicated software entity, called the

I/O domain is used to perform physical device management. The I/O domain can be part

of the VMM or be an independent domain, like the independent driver domain (IDD) of

Xen. In the case of IDD the I/O devices are private to the domain and memory accesses

by the devices are restricted to the IDD. Any application in a VM seeking access to the

device has to route the request through the IDD and the request has to pass through the

address translation barriers of the IDD and VM [22] - [27]. Recent publications on

concurrent direct network access (CDNA) [20] and scalable self-virtualizing network

interface are closer to the proposed work. However, the scalable self-virtualizing

interface [21] describes assigning a specific core for network I/O processing on the

virtual interface and exploits multiple cores on embedded network processors for this.

The paper does not detail how the address translation issues are handled, particularly in

the case of virtualized environments.

The CDNA work is architecturally similar to the proposal in the paper. CDNA relies on

per VM Rx/Tx ring buffers to manage VM specific network data. The VMM handles the

virtual interrupts. However, it does not talk about the performance interference due to

uncontrolled data reception by the device nor does it talk about the need for addressing

the QoS constraints at the device level. The proposed architecture in this paper addresses

these and also the issue of pushing the basic constructs to assign QoS attributes like

required bandwidth and priority into the device to get fine-grained control on interference

effects. The proposed architecture has it basis in exokernel’s philosophy of separating

device management from protection. In exokernel, the idea was to extend native device

access to applications with exokernel providing the protection. In our approach, the

extension of native device access is to the VM, the protection being managed by the

VMM. A VM is assumed to be running the traditional OS. Further, the PCI-SIG

community has realized the need for I/O device virtualization and has come out with the

IOV specification to deal with it. The IOV specification however, talks about device

features to allow native access to virtual device interfaces, through the use of I/O page

tables, virtual device identifiers and virtual device specific interrupts. The specification

presumes that QoS is a software feature and does not address this.

Many implementations adhering to the IOV specification are now being introduced in the

market by Intel [28], Neterion [29], NetXen [30], etc. CrossBow[31] suite from SUN

Microsystems talks about this kind of resource provisioning, but it is a software stack

over a standard IOV complaint hardware. The results published using any of these

products are exciting in terms of the performance achieved, but almost all of these have

ignored the control of reception at the device level. We believe that lack of such a control

on highly utilized devices will either cause performance degradation or lead to under-

utilization of the device bandwidth.

5. Extension of I/O virtualization architecture: In the existing Xen virtualization

architecture, when we analyze the network packet workflow we observe few bottlenecks

which we aim to eliminate in the proposed scheme. The bottlenecks are:

 Since the device is shared, the device memory behaves like a common memory for all

the contending VMs accessing the device. One misbehaving VM can ensure

deprivation leading to data loss for another VM.

 The IDD is also a bottleneck for all the VMs sharing the device. IDD incurs

processing overheads for each VM. Current IDD implementations do not have any

hooks for controlling the overheads on a per VM basis. Lack of such controls leads to

performance interference in the device sharing VMs.

 Every network packet has to cross the address translation barrier of VMM to IDD to

VM and vice-versa. This happens because of lack of separation of device

management issues from device access issues. The service overheads of this stage-

wise data movement causes drop in effective utilized device bandwidth. In multi-core

servers with scarce I/O devices, this would mean having high-bandwidth under-

utilized devices or low throughput applications on the consolidated server.

To overcome the above listed drawbacks, we propose an extended architecture for

virtualizing I/O devices that enables separation of device management issue from device

access issue. This is done by building device protection mechanisms into the physical

device and managed by the VMM. As an example, for the case of NIC, the VMM should

be able to recognize the destination VM of an incoming packet by the interrupt raised by

the device and forward it to the appropriate VM. The VM should then be able to process

the packet as it would do so in the case of non-virtualized environment. Thus, device

access and scheduling of device communication is managed by the VM that is using the

device. This eliminates the intermediary VMM/IDD on the device access path and

reduces I/O service time which improves the usable device bandwidth.

5.1 Proposed I/O Virtualization Architecture Description: Figure 3 gives a block

schematic of the proposed I/O virtualization architecture. The picture depicts a NIC card

that can be housed within a multi-core server. The card has a controller that manages the

DMA transfer to and from the device memory. The standard device memory is now

replaced by a partitionable memory supported with n sets of device registers. A set of m

memory partitions, where m ≤ n, with device registers forms the virtual-NICs. Ideally the

device memory should be reconfigurable, i.e. dynamically partitionable, and the VM’s

QoS requirements would drive the sizing of the memory partition. The advantage of

having a dynamically partitionable device memory is that any unused memory can be

easily extended into or reduced from a vNIC in order to match adaptive QoS

specifications. The NIC identifies a vNIC request by generating message signaled

interrupts (MSI). The number of interrupts supported by the controller restricts the

number of virtual-NICs that can be exported. Although, the finite number of physical

resources on the NIC restricts the number of vNICs that can be exported, judicious use of

native and para-virtualized access to the vNICs, based on the QoS guarantees a VM

needs to honor, can overcome the limitation. A VM that has to support stringent QoS

guarantees can choose to use native access to the vNIC whereas those VMs that are

looking for best-effort NIC access can be allowed para-virtualized access to the vNIC.

The VMM can aid in setting up the appropriate hosting connections based on the

requested QoS requirements. The architecture can be realized by the following

modifications:

 Virtual-NIC: In order to define vNIC, the physical device should support time-

sharing in hardware. For a NIC this can be achieved by using MSI and dynamically

partitionable device memory. These form the basic construct to define a virtual device on

a physical device as depicted in Figure 3. Each virtual device has a specific logical device

address, like the MAC address in case of NICs, based on which the MSI is routed.

Dedicated DMA channels, a specific set of device registers and a partition of the device

memory are part of the virtual device interface which is exported to a VM when it is

started. We call this virtual interface as the virtual-NIC which forms a restricted address

space on the device for the VM to use and remains in possession of the VM till it is active

or relinquishes the device.

 Accessing virtual-NIC: For accessing the virtual-NIC the IDD layer for network I/O

in Xen is replaced by a VM’s native device driver. This device driver can only

manipulate the restricted device address space which was exported through the virtual-

NIC interface by the VMM.

Figure 6: NIC architecture supporting MSI interrupts with partitionable device memory,

multiple device register sets and DMA channels enabling independent virtual-NICs.

With the virtual-NIC, the VMM only identifies and forwards the device interrupt to the

destination VM. The OS of the VM now handles the I/O access and thus can be

accounted for the resource usage it incurs. This eliminates the performance interference

due to IDD handling multiple VMs’ request to a shared device. Also, because the I/O

access is now directly done by the VM, the service time on the I/O access reduces

thereby resulting in better bandwidth utilization. With the virtual-NIC interface, data

transfer is handled by the VM. While initializing the device driver for the virtual NIC the

VM sets up the Rx/Tx descriptor rings within its address space and makes request to the

VMM for initializing the I/O page translation table. The device driver uses this table and

does DMA directly into the VM’s address space.

 QoS and virtual-NIC: The device memory partition acts as a dedicated device buffer

for each of the VMs and with appropriate logic on the NIC card one can easily implement

QoS based SLAs on the device that translate to bandwidth restrictions and VM based

processing priority. The key is being able to identify the incoming packet to the

corresponding VM, which the NIC is now expected to do. While communicating, the

NIC controller decides on whether to accept or reject the incoming packet based on the

bandwidth specification or the device memory free level. This gives a fine-grained

control on the incoming traffic and helps reduce the interference effects. The outbound

traffic can be controlled by the VM itself, as is done in the existing architectures.

5.2 Network Packet workflow using the virtualized I/O architecture: With the

proposed I/O device virtualization architecture, each VM gets direct access to the shared

I/O device without having to route the request through the IDD. Only the device

interrupts get routed through the VMM. In Figure 4a, and Figure 4b the workflow for

network data reception and transmission using the described device virtualization

architecture is depicted. When a packet arrives at the NIC, it deciphers the destination

address of the packet, checks if it is a valid destination, then copies the packet into the

destination VM’s portion of the device memory and issues DMA to the destination VM

based on the virtual NIC’s priority. On completion of the DMA the device raises an

interrupt to the VMM. The VMM intercepts the interrupt, determines the destination VM,

forwards the interrupt to the VM and schedules it. The VM’s device driver then receives

the data from the VM specific device descriptor rings as it would do in the case of non-

virtualized server. In the case of transmission, the process is same as in the case of non-

virtualized server, except that the VM’s device driver DMA’s data directly into the

device memory allocated to its virtual-NIC. It may be worthwhile to note here that the

code changes to support this architecture in the existing implementation will not be

excessive. Each VM can use the native device driver for the exported virtual device

interface. This device driver is the standard device driver for the IOV complaint devices

with the only difference that it has now restricted device access. The device access

restrictions in terms of memory, DMA channels, interrupt line and device register sets are

setup by the VMM when the VM requests for a virtual device. With the virtual device

interface the VMM now only has to implement the virtual device interrupts.

 (a) Packet reception workflow (b) Packet transmission workflow

Figure 7: Workflow of network I/O communication with improvised I/O device

virtualization architecture.

6. Architecture Evaluation: Since the architecture involves design of a new NIC and a

change in both VMM and VM device handling code, we first choose to evaluate the

architecture using simulation based on layered queuing network (LQN) [18] models to

understand the benefits. The reason for choosing LQN based modeling is twofold. One,

there is a lack of appropriate system simulation tools that allow incorporating design of

new hardware along-with VMM and VM OS changes. Second, LQN models are intuitive

queuing models that enable capturing of the devices and software contention in the end-

to-end workflow, right from the application to the device including the intermediate

layers of the VM, IDD and VMM. With appropriate profiling tools, the LQN models are

fairly easy to build and effective in terms of capturing the causes of bottlenecks in the

access path. For further details on general description of LQN modeling and MOL refer

[5].

6.1. LQN model for the proposed architecture: We generate the LQN model

manually using the LQNDEF [4] software developed at the RADS lab of Carleton

University. Here we present results for the model generated for the httperf benchmark

since the bottleneck issues are prominent for this benchmark. Complete details on

generating of the LQN models and validating the models against experimental data for

this benchmark are discussed in [32] [33]. Three assumptions were made while

generating the LQN models.

 The service times established at each of the entries constituting the LQN were

populated based on the service times measured for an http request, instead of a tcp-

packet. While it is feasible to model packet level contention, the reason for choosing

request level contention was to be able to measure the benchmark throughput in terms

of the number of satisfied requests. The model validation results demonstrate that

there is no significant loss/gain (< 1%) of throughput because of this.

 For the chosen mode of run of httperf benchmark, the arrival request rate was

observed to be uniform and measured service times were also uniform. Hence, the

service times and arrival rates populated on the LQN model were modeled as

deterministic.

 For all the activities proposed to be handled by the device hardware in the proposed

architecture and modeled as separate entities in the LQN model, the service time was

set to be significantly low (1 X 10e-10 seconds). For the rest of the software entries,

the service times were derived based on the measurements made for the non-

virtualized servers. This is justified since our proposed architecture gives native

access to the device from within the VM which is assumed to be running the same

Guest OS as was used for the non-virtualized server.

In general it is observed that the maximum throughputs observed using the LQN model

are higher than the experimental observations. The reason for this is simple. For every

packet received or transmitted in Linux, there are several layers of the network stack that

each packet has to pass through. The time taken to traverse this passage is what is

recorded by the profiler as the service time. In real system, to match the difference

between the device speed and CPU speed, appropriate memory buffers (TCP send and

receive buffers of linux kernel) are maintained. The sizing of these buffers affects the

observed application throughput. Normally, higher the buffer size larger the observed

throughput. This trend is maintained to the point till the device is able to handle the

network traffic. Once device saturation is reached, the failure behavior usually results in

sudden drop in application throughput. While setting up the LQN model we choose to use

the maximum permissible buffer size in the simulator (which is more than 3 times than

what was set on the experimental system) so as to determine the maximum possible

throughput for the setup service times. This gives an idea on the upper-bound of

application throughput on a system with maximum possible resources with the service

times possible with the architecture. The idea is to eliminate buffer size constraint in the

simulation environment. While it is true that for the proposed architecture in which native

access to the I/O device is provided, the maximum throughput that can be achieved in

reality cannot exceed that of the maximum throughput achieved in the case of non-

virtualized server, the results observed using simulations are contradictory. This is

because of the fact that in the simulation environment, the buffers sizes used were

maximum permitted. Hence, to make the comparison fair, care has been taken to generate

results of existing architecture in a simulation environment, validate these results with

those observed experimentally and then used for comparison with the results of the

proposed architecture.

Simulation and Results: In order to evaluate the proposed architecture we use the

parasrvn simulator of the LQNS software distribution [4] from Carleton University.

Since we believe this architecture is more suitable and will have practical usefulness for

multi-core servers, we evaluate such systems. For our study the LQN model consists of

one VMM and two VMs and each of these is pinned to a different core. We validate the

LQN model for the proposed architecture against the existing Xen architecture for a

multi-core server. To observe the behavior on a multi-core server for the existing

architecture, in the LQN model the VMM/IDD and each of the VMs are placed on an

independent core. Figure 5 depicts the results of achievable throughput and server CPU

utilization for a multi-core server with two VMs consolidated. The throughput graph for

both the VMs is similar and appears overlapped in the chart. As can be noted from Figure

8, in a multi-core environment with Xen IDD, VM1 and VM2 each pinned to a core, and

each VM servicing one httperf stream, the maximum throughput, without loss, achievable

per stream is 950requests/s as against 450requests/s in the case of single-core. But, for the

maximum throughput, we observe that the Xen-IDD, which is hosting the NIC of the

server, the CPU utilization saturates. This indicates that further increase in request rate is

not possible since the processor core serving the Xen-IDD does not have any computing

power left. Figure 9 shows these statistics for a similar situation but with the proposed

architecture. We observe that the maximum throughput achievable now per stream

increases to 1500 req/s, which is an increase of about 60% more. The total throughput

achievable at the NIC, derived from consolidating the throughput of both the streams,

also increases by 60% when compared to what was achieved on the existing architecture.

(a) Throughput (b) CPU Utilization

Figure 8: Charts for maximum throughput achievable per httperf stream and CPU

utilization for existing Xen architecture on a multi-core server hosting two VMs each

servicing one of the httperf stream. The IDD, VM1 and VM2 are pinned to independent

cores.

(a) Throughput (b) CPU Utilization

Figure 9: Maximum achievable throughput and CPU utilization charts for a multi-core

Xen server incorporating the proposed I/O virtualization architecture and hosting two

VMs, pinned to different cores, each servicing one httperf stream.

If we look at the CPU utilization of each VMs, we observe that the Dom0 which is the

VMM for the NIC, now consumes very less CPU. The reason for this is that, the NIC is

now offloading the identity of the destination of the packet and this identification

happens at hardware speeds. To account for this, a very low value of service time is

assigned in the LQN model. Also, in the existing model, bridging software that routes the

packets to a VM and which has substantial overhead, is done away with in the proposed

architecture. The net result is improved throughput, reduced virtualization overhead, and

reduction of VMM/IDD resource consumption on behalf of VMs. We also notice that the

VMM is now spending almost constant time which results in eliminating the performance

interference. This also improves the scalability of sharing the device across VMs. With

this architecture each VM is now accountable for all the resource consumption, thereby

leading to better QoS controls.

We next evaluate the proposed architecture for QoS controls on the network bandwidth.

Since this architecture is implemented using LQNs model, we make certain assumptions

to simulate the network bandwidth controls as implemented in the netfilter module of

Linux. LQNs is basically a queuing model wherein at any node (also called entry in

parasrvn notation) of the queue is described using three parameters, namely, the arrival

rate, the service time and the think time. The arrival rate models the rate of input requests

at the entry, service time depicts the time the entry takes to process the request before

forwarding to the next entry or replying back to the requesting entry and think time

denotes the time before which the entry actually services the request. The think time

parameter is useful to model policies like bandwidth restrictions, time-sharing intervals,

periodic processing, etc. The LQN is basically a directed acyclic graph that captures the

complete workflow. Hence, the arrival rate is set for the source entry and in this case

represents the rate of request arrival at the network interface of the virtualized server. The

service time represents the CPU time used for servicing the request by the entry of LQN

and think time is used as the bandwidth restriction that was applied in experimental case.

For example, to model 250reqests/second bandwidth restriction the think time derived is

1/250 seconds. This ensures that the entry will only process 250 requests/second and

anything extra will be queued or dropped. To model this restriction within the

experimental setup we use the burst parameter of the bandwidth control mechanism in

Linux netfilter module.

The justification is that in the Linux netfilter module the bandwidth restriction manifests

as packet loss after the restriction is saturated. The bandwidth restriction also has a burst

parameter that allows for some extra packets delivery on the channel above the

restriction. By setting the burst rate sufficiently low, in our case equivalent to 10 packets

which is also the minimum that is permissible, we ensure that overflow of bandwidth on

the constrained channel is restricted. For the html page that is requested in our

experiments, total number of packets needed to complete a successful request is about 14.

Hence by setting the burst rate to 10 packets ensures that the request fails thereby

throughput reported takes into account the desired behavior. The think time setting in

LQN model is more restrictive than the netfilter. But, since the think time value is based

on the deterministic request rate parameter to define the bandwidth constraint, we still

have equivalent results and this has been validated against observed values. The

following graphs in Figure 10 depict the effect of not imposing (Figure 10 (a)) and

imposing network bandwidth QoS on the incoming stream of VM2 (Figure 10 (b)), in the

proposed architecture. These simulations were conducted on a single core server to keep

the throughput range such that time consumed for comparable results was minimized.

As can be observed from the graphs of Figure 10 (a), for the best effort service, i.e. when

no QoS constraints are applied on any of the sharing streams, the maximum throughput,

without loss, achieved on any of the VMs is 850 replies/second on the consolidated-

virtualized server. This is slightly less than half of what is achieved by the VM using an

unshared device on the virtualized server (refer Figure Figure 9(a)). The graphs of Figure

10 (b) show that, unlike as in the case of existing architectures, the QoS constraints when

moved to device level, allow the usage of available bandwidth by the unconstrained

channel. In this figure, VM2 is constrained to allow requests starting from 150

requests/second to 950 requests/second and VM1 is unconstrained. Since the NIC is

discarding requests to VM2 that are above the specified request rate, VM1 is able to use

the available bandwidth, hence we see higher throughputs (1500 replies/sec) on VM1. As

the bandwidth control on VM2 is relaxed we see that the two graphs start converging

towards each other and finally merge to the best effort case. The bandwidth control on the

incoming stream also works to advantage on the http traffic because by discarding the

request at the device itself, the server and hence the resources, are spared to respond on

requests that will eventually be dropped because of bandwidth controls. The other

observation is that when multiple VMs are sharing the NIC, the maximum bandwidth

achievable on the unconstrained channel is less (<10%) than that which is achieved by

the isolated VM. Further reduction on this loss is possible by applying channel based

prioritization and bandwidth control on the outgoing channel of the constrained VM. The

outgoing channel constraints are easily achievable by using existing mechanisms.

 (a) Best effort, no Qos on NIC sharing. (b) QoS controls on VM2 outgoing channel.

Figure 10: Throughput achieved before and after imposing QoS controls on VM2 of the

proposed architecture.

8. Conclusion: In this chapter we described how the lack of virtualization awareness in

I/O devices leads to latency overheads on the I/O path. Added to this, the intermixing of

device management and data protection issues further increases the latency, thereby

reducing the effective usable bandwidth of the device. Also, lack of appropriate device

sharing control mechanisms, at the device level leads to loss bandwidth and performance

interference on the device sharing VMs. To address these issues we proposed I/O device

virtualization architecture, as an extension to the PCI-SIG IOV specification, and

demonstrated its benefit through simulation techniques. The architecture evaluation was

done by capturing it as an LQN model and analyzing using simulation of the model. The

simulation results show a utilization benefit of about 60%, without enforcing any QoS

guarantees or applying any of the software optimization techniques to the I/O path. The

proposed architecture also improves the scalability of VMs sharing the NIC. We also

demonstrated that by moving the QoS controls to the shared device, the unused

bandwidth is made available to the unconstrained VM, unlike the case in prevalent

technologies. Although the evaluation was done for para-virtualized systems like Xen, we

believe the ideas proposed would benefit fully virtualized systems like Vmware too. The

reason being, in any of these virtualization techniques I/O device sharing is currently

regulated through a common software entity, which is eliminated in the proposed

architecture.

References

[1] M. Welsh and D. Culler, “Virtualization considered harmful: OS design directions

for well-conditioned services”, Hot Topics in OS, 8th Workshop, 2001.

[2] Robert P Goldberg, “Survey of Virtual Machine Research”, IEEE-Computer,

1974, vol7, no.6, p34-45.

[3] PCI-SIG IOV Specification available online at

http://www.pcisig.com/specifications/iov

[4] Layered Queueing Network Solver software package,

http://www.sce.carleton.ca/rads/lqns/

[5] J.A. Rolia and K. C. Sevcik, “The Method of Layers”, IEEE Transactions on

Software Engineering, Vol. 21, No.8, Aug 1995.

[6] Ben Verghese, Anoop Gupta and Mendel Rosenblum, Performance Isolation:

Sharing and Isolation in Shared-Memory Multiprocessors, ACM SIGPLAN Nov

19, 1998.

[7] “The Globus Resource Specification Language RSL v1.0.” [Online]. Available:

http://www-fp.globus.org/gram/rsl spec1.html

[8] Kyle J. Nesbit, Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Mateo

Valero, and James E. Smith, Virtual Private Machines: Hardware/Software

Interactions in the Multicore Era, In IEEE Micro special issue on Interaction of

Computer Architecture and Operating System in the Manycore Era, May/June

2008.

[9] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing performance

isolation across virtual machines in Xen. In M. van Steen and M. Henning,

editors, Middleware, volume 4290 of Lecture Notes in Computer Science, pages

342–362. Springer, 2006.

[10] Weng, C., Wang, Z., Li, M., and Lu, X. 2009. The hybrid scheduling

framework for virtual machine systems. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international Conference on Virtual Execution Environments

(Washington, DC, USA, March 11 - 13, 2009).

http://www-fp.globus.org/gram/rsl%20spec1.html

[11] Kim, H., Lim, H., Jeong, J., Jo, H., and Lee, J. 2009. Task-aware virtual

machine scheduling for I/O performance. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international Conference on Virtual Execution Environments

(Washington, DC, USA, March 11 - 13, 2009).

[12] Rick A. Jones, 'netperf: A Network Performance Benchmark,' Revision 1.

Information Networks Division, Hewlett-Packard Co., March 1993.

[13] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web Server

Performance,” ACM, Workshop on Internet Server Performance, pp. 59-67, June

1998.

[14] Paul Barham , Boris Dragovic , Keir Fraser , Steven Hand , Tim Harris ,

Alex Ho , Rolf Neugebauer , Ian Pratt , Andrew Warfield, “Xen and the art of

virtualization”, 19th ACM SIGOPS, Oct. 2003.

[15] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. War_eld, and M.

Williamson, “Safe hardware access with the Xen virtual machine monitor.” 1st

Workshop on OASIS, Oct 2004.

[16] M. Frans Kaashoek, et. Al., “Application Performance and Flexibility on

Exokernel Systems “, 16th ACM SOSP, Oct, 1997.

[17] Scott Rixner, “Breaking the Performance Barrier: Shared I/O in

virtualization platforms has come a long way, but performance concerns remain”,

ACM Queue – Virtualization, Jan/Feb 2008.

[18] C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The

Stochastic Rendezvous Network Model for Performance of Synchronous Client-

Server-like Distributed Software”, IEEE Trans. on Computers, vol. 44, no. 1,

January 1995, pp. 20-34.

[19] “VMware ESX Server 2 - Architecture and Performance Implications”,

2005, available at

http://www.vmware.com/pdf/esx2_performance_implications.pdf

[20] Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A. L.,

Zwaenepoel, W. Concurrent direct network access for virtual machine monitors.

In Proceedings of the International Symposium on High-Performance Computer

Architecture,2007 (February).

[21] H. Raj and K. Schwan. Implementing a scalable self-virtualizing network

interface on a multicore platform. In Workshop on the Interaction between

Operating Systems and Computer Architecture, Oct. 2005.

[22] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance VMM-

bypass I/O in virtual machines. In Proceedings of the USENIX Annual Technical

Conference, June 2006.

[23] Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network

virtualization in Xen. In Proceedings of the USENIX Annual Technical

Conference, June 2006.

[24] Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel.

Diagnosing performance overheads in the Xen virtual machine environment. In

Proceedings of the ACM/USENIX Conference on Virtual Execution

Environments, June 2005.

[25] J. Sugerman, G. Venkatachalam, and B. Lim. Virtualizing I/O devices on

VMware Workstation’s hosted virtual machine monitor. In Proceedings of the

USENIX Annual Technical Conference, June 2001.

[26] T. von Eicken and W. Vogels. Evolution of the virtual interface

architecture. Computer, 31(11), 1998.

[27] Santos, J. R., Janakiraman, G., Turner, Y., Pratt, I. 2007. Netchannel 2:

Optimizing network performance. Xen Summit Talk (November).

[28] Intel Virtualization Technology for Directed-I/O

www.intel.com/technology/itj/2006/v10i3/2-io/7-conclusion.htm

[29] Neterion http://www.neterion.com/

[30] NetXen http://www.netxen.com/

[31] CrossBow: Network Virtualization and Resource Control

http://www.opensolaris.org/os/community/networking/crossbow_sunlabs_ext.pdf

[32] J.Lakshmi, S.K.Nandy, “Modeling Architecture-OS interactions using

Layered Queuing Network Models”, International Conference Proceedings of

HPC Asia, March, 2009, Taiwan.

[33] J. Lakshmi, S. K. Nandy, “I/O Device virtualization in Multi-core era, a

QoS Pespective”, Workshop on Grids, Clouds and Virtualization, International

Conference on Grids and Pervasive computing, Geneva, May 2009.

