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Abstract: Emerging trend of multi-core servers promises to be the panacea for all data-

center issues with system virtualization as the enabling technology. System virtualization 

gives the ability to create virtual replicas of a complete system, over which independent 

virtual machines can be built, complete with their own, individual operating systems, 

software and applications. This provides for complete system isolation of the virtual 

machines. Apart from the system isolation, one of the key drivers for virtualization 

adoption in data-centers will be the virtual machine performance isolation that can be 

achieved over a consolidated server. This chapter exposes the basic requirements on 

virtualized servers in order to provide performance isolation to virtual machines with a 

specific focus on enterprise workloads that are a mix of compute and I/O intensive 

workloads. We evaluate existing, popular system virtualization technologies in terms of 

the provisions they have for performance isolation and their limitations, and propose an 

end-to-end system virtualization architecture to overcome these limitations. 

 

1. Introduction: Multi-core servers coupled with system virtualization are emerging as 

credible solutions to data-center issues. Today’s data-centers have concerns of reducing 

space and power footprint of its computing infrastructure which the multi-core servers 

can easily address. A typical multi-core server has enough computing capacity to host 

several of server applications on a single machine. The most significant issue with co-

hosting multiple server applications on a single machine is with the software environment 

of each of the applications. In fact, non-compliance of software amongst multiple 

applications is the biggest challenge for server consolidation and virtualization directly 

addresses this problem.  As a matter of fact, server consolidation is the genesis of system 

virtualization so as to provide software isolation for individual applications. System 

virtualization gives the ability to create virtual replicas of a complete system, over which 

independent virtual machines (VMs) can be built, complete with their own, individual 

operating systems, software and applications. This provides for complete software 

isolation of the VMs. Apart from the software isolation, one of the key drivers for 

virtualization adoption in data-centers will be the virtual machine performance isolation 

that can be achieved over a consolidated server. This is essential particularly for 

enterprise application workloads, like database, mail, and web-based applications, which 

have both CPU and I/O workload components. Current commodity multi-core 

technologies have micro-architecture support for virtualization that provides CPU 

workload isolation.  

 

In multi-core servers the ratio of cpu-cores to that of I/O interfaces tends to be 

high. Because of this, the I/O device sharing dynamics change when compared to 

dedicated servers, wherein all the resources like the processors, memory, I/O interfaces 

for disk and network access are used predominantly by the hosted application. Hence, 

solutions that optimize or maximize the application usage of the system resources are 

sufficient to address the performance of the application. This scenario changes 

completely when multiple applications are consolidated on to a single, physical, multi-



core server. Because of the restricted number of I/O interfaces that can be provisioned on 

the multi-core servers, many workloads have to share an I/O interface. The challenge is in 

ensuring performance of the independent I/O intensive applications on the consolidated 

server while sharing a single I/O device interface across many workloads [1]. A logical 

solution to this is to provide faster and high-bandwidth I/O interfaces, which happens to 

be the trend in the current virtualized servers. Despite this, such systems suffer from two 

distinct problems with regard to current I/O device virtualization technologies;  

 Extra CPU cycles are required to support I/O over virtualized devices which result in 

increased I/O access latency. This leads to reduction in the total usable bandwidth by 

the application hosted inside the virtual machine [9]. 

 Device virtualization architectures are cohesive because of which the device and its 

access software are monolithic. This causes performance degradation based on I/O 

workloads and also causes limitations on the scalability of VMs that can share the I/O 

device [2].  

Both these reasons cause variability in application performance depending on the nature 

of workload and the number of virtual machines sharing the I/O device. One way to 

control this variability is to impose necessary Quality of Service (QoS) controls on 

resource allocation and usage of all resources, including the I/O devices, by the virtual 

machines. Ideally, the QoS controls should ensure that there is no loss of application 

performance when hosted on virtualized servers with shared resources.  

 

The chapter begins with a discussion on the resource specific QoS controls that 

application performance depends on. An exploration of prevalent I/O virtualization 

architectures with existing QoS controls, with specific focus on the issues in sharing of a 

single NIC across multiple VMs, is presented to illustrate the previously described 

problems. This is followed by a proposal, which is an extension to the I/O device 

architecture, as recommended in the PCI-SIG IOV specification [3], for virtualizing 

network I/O devices. The aim of the proposal is to enable fine-grained controls to a 

virtual machine on the I/O path of a shared device so that there is no loss of application 

performance, at the same time minimizing loss of usable device bandwidth. The proposed 

architecture allows native access of I/O devices to virtual machines and provides device 

level QoS hooks for controlling VM specific device usage. For evaluating the 

architecture layered queuing network (LQN) [4][5] models are used. Simulations studies 

on the LQN models demonstrate the benefits of the proposed architecture. On the 

proposed architecture the application throughput observed is 60% more than what is 

observed on the existing architectures and the performance is closer to non-virtualized 

servers. The device-level QoS controls provide fine-grained controls on device usage by 

the sharing VMs and significantly improve the usable device bandwidth on the shared 

device. The proposed architecture also improves scalability in terms of the number of 

virtual machines intending to share the I/O device 

 

2. Application requirements for performance isolation on shared resources: 
Application performance is based on timely availability of the required resources like 

processors, memory and I/O devices.  The basic guideline for consolidating enterprise 

servers over multi-core virtualized systems is by ensuring availability of required 

resources in a timely manner [6]. For the system to be able to do so, the application 



resource requirements can be enumerated in terms of resource tuples. A resource tuple is 

similar to a database record in the sense that it contains a sequence of values that describe 

specific attributes of a resource.  

Table 1: An example resource tuple definition for a VM 

 

</CPU_Resource_Descriptor_tuple> 

 (Default_Speed=1800MHz:Min_speed=1500MHz:Max_speed=2000MHz) 

 (Default_Count=4:Min_count=1:Max_count=4) 

 (Default_L1Cache=64KB:Min_L1cache=64KB:Max_L1cache=64KB) 

 (Default_L2Cache=512KB:Min_L2cache=64KB:Max_L2cache=512KB) 

</end_of_tuple> 

</Memory_Resource_Descriptor_tuple> 

 (Default_Space=2000MB:Min_space=1000MB:Max_space=4000MB) 

 (Default_Bandwidth=6400MBps:Min_bandwidth=6400MBps:Max_bandwidth=6400MBps) 

</end_of_tuple> 

</Network_Resource_Descriptor_tuple> 

 (Default_Speed=1000Mbps:Min_speed=100Mbps:Max_speed=1000Mbps) 

 (Default_Bandwidth=5000KBps:Min_Bandwidth=5000KBps:Max_Bandwidth=8000KBps) 

</end_of_tuple> 

</Disk_Resource_Descriptor_tuple> 

 (Default_space=1000MB:Min_space=1000MB:Max_space=1000MB) 

 (Default_bandwidth=100MBps:Min_bandwidth=100MBps:Max_bandwidth=400MBps) 

</end_of_tuple> 

 

 

In this context, a resource tuple lists the various resources that the virtual machine’s 

performance depends on. Using the xml format for resource specification, akin to Globus 

Resource Specification Language [7], the following example in Table 1 illustrates the 

resource tuples for a typical VM that has both compute and I/O workloads. Each resource 

tuple is specified using a set of attributes which completely describe the specific resource 

requirement in terms of the quantity, number of units, speed of resource access and any 

other associated attributes of the resource. With reference to Table 1, the 

“CPU_Resource_Descriptor_tuple” describes the various attributes, like speed, count, L1 

cache, L2 cache, of the CPU resource. Each attribute is described by three values, 

namely, Default, Minimum and Maximum. The Default parameter specifies the attribute 

value that the virtual machine monitor (VMM) can initially allocate to the VM. On an 

average, this is the value that the VM expects to use. The minimum parameter value 

defines the least value for the attribute that the VM could use while supporting the 

guaranteed performance and maximum attribute value defines the maximum amount of 

resource that the VM can use while supporting its workload. For example in the resource 

tuple depicted in Table 1, while the Default_speed of CPU expected is 1800MHz, the 

application can run with acceptable degraded performance using a CPU_speed of 

1500MHz and with enhanced performance using a CPU_speed of 2000MHz. Ofcourse, 

all the three attributes can be effectively used if the VMM uses dynamic adaptive 

resource allocation policies.  

 



In the context of multi-core servers with server consolidation as the goal, the 

resource tuples are assumed to be for each virtual machine of the virtualized server. This 

assumption is based on the fact that one application server is consolidated using one VM. 

In the case where multiple applications are co-located on a single VM, these resource 

tuples can be arrived at using the aggregated resource requirement of all the applications 

hosted by the VM. The resource tuples are used by the VMM while allocating or de-

allocating resources to the VMs. 

 

3. Prevalent Commodity Virtualization technologies and QoS controls for I/O 

device sharing: Virtualization technologies encompass a variety of mechanisms to 

decouple the system architecture and the user-perceived behavior of hardware and 

software resources. Among the prevalent technologies, there are two basic modes of 

virtualization, namely, full system virtualization like in Vmware [19] and para-

virtualization as in Xen [14]. In full system virtualization complete hardware is replicated 

virtually. Instruction emulation is used to support multiple architectures. The advantage 

of this virtualization is that it enables unmodified operating systems (OS) to execute on 

the virtual machine (VM). Since it adopts instruction emulation, it tends to have high 

performance overheads as is observed in the experimental studies. Para-virtualization is 

more efficient and comes with lower performance overheads. In this kind of 

virtualization the OS is also modified suitably to run concurrently with other virtual 

machines on the same hardware. In either case, system virtualization is enabled by a layer 

called the virtual machine monitor (VMM) that now provides the resource management 

functionality across multiple virtual machines.  

 

Commodity virtualization technologies like Xen and Vmware have made the normal 

desktop very versatile. A generic architecture of system virtualization implemented in 

such systems is given in Figure 1. The access to CPU resource is native, to all virtual 

machines sharing the CPU, for all instructions except the privileged instructions. The 

privileged instructions are virtualized, i.e., whenever such instructions are executed from 

within the VM, they are trapped and control is passed to the VMM. All I/O instructions 

fall under the privileged instructions and hence are trapped when executed from within 

the VM. Thus I/O devices like the Network Interface Card (NIC) and the DISK are 

treated differently when virtualized. There are two different, popularly adopted 

techniques, for I/O device virtualization. They are para-virtualization and emulation [17]. 

In para-virtualized mode of access, the hosting VM (as in Xen) or the VMM itself (as in 

VMware-ESX server) has exclusive access to the physical device. Other VMs sharing the 

device use software based mechanisms to access the physical device via the hosting VM 

or the VMM. In emulated mode of access, each VM sharing the physical device has a 

device driver that is implemented using emulation over the native device driver hosted by 

the VMM. Both these modes provide data protection and integrity to individual VMs but 

suffer from loss of performance and usable device bandwidth, as is illustrated by the 

evaluation in next section. To understand the effect of these different virtualization 

architectures on application performance, two different studies of httperf [13] benchmark 

are evaluated. The first is described in section 3.1 and explores how virtualization affects 

application performance. The second is described in section 3.2 which exposes the 

existing QoS constructs’ effectiveness in providing the desired performance. 



 

Figure 1: Generic System Virtualization architecture supported by prevalent commodity 

virtualization technologies. 

 

3.1 Effect of Virtualization on Application Performance: The current commodity 

virtualization technologies like Xen and VMware allow for VM specific QoS controls on 

different resources using different mechanisms. The CPU resource allocations are 

handled directly by the VMM schedulers like Credit, SEDF or BVT schedulers of Xen 

[14]. Also, as discussed in [8] - [11] the virtualization architecture for these resources is 

fine-grained enough to give desired allocation and hence control the CPU allocation 

specific performance for CPU-based workloads. The problem is with I/O devices. The 

access to an I/O device is always through the OS kernel to ensure data integrity and 

protection. The device is never aware as to which VM is using it at any given instance of 

time; this information and control is managed by the VMM. Hence, resource allocation 

controls with regard to the I/O devices are at higher abstraction level rather than at the 

device level, unlike as in the case of CPU resource. This affects the way resource usage is 

controlled and thereby the application performance.  

 

The way disk devices are shared is different from the way NICs are shared. In Unix 

like operating systems, to share disk devices, a disk partition is exposed as a file-system 

which is exported to a single VM. Any and every operation to this file-system is from a 

single VM and all read and write disk operations are block operations. The data 

movements to and from the file-systems are synchronized using the file-system buffer 

cache that is resident within the VM’s address space. In para-virtualization the physical 

data movement is handled by the native device drivers within the VMM or hosted VM 



and the para-virtualized device driver of the VM. The overheads in this case are due to 

the multiple addresses translations of the data page between the device hosting VM and 

the application VM. For the emulation based device virtualization, overheads are due to 

the translation of every I/O instruction between the emulated and the native device driver. 

Due to this nature of I/O activity, VM specific file-system policies get to be implemented 

within the software layers of the VMM. Since the file-system activity is block based, 

setting up appropriate block sizes can, to some extent, enable the control of bandwidth 

and speed requirements on the I/O channel to the disk. However, these controls are still 

coarse-grained and can be insufficient for servers with high consolidation ratios.  

 

For network devices the existing architecture poses severe constraints. Network I/O is 

packet based and sharing a single NIC with multiple VMs has intermixed packet streams. 

This intermixing is transparent to the device and is sorted into VM specific streams by 

the VMM or the device hosting VM. Apart from this, every packet is subjected to either 

instruction translation or address translation due to virtualization. In either case the 

virtualization techniques build over existing “single-OS over single hardware” model. 

 

To understand the effect of sharing a NIC at near maximum utilization bandwidth, on 

an application in virtualized environment, a comparative study of the behavior of two 

benchmarks, netperf [12] and httperf [13] for three different environments, namely non-

virtualized, virtualized and consolidated-virtualized server is carried out. The non-

virtualized environment is achieved by hosting the application on an independent server 

wherein all the hardware resources and software required by the application are available 

to it as unshared resources. This forms the baseline for the relation between the 

application resource requirement and achievable performance. The virtualized 

environment is achieved by transporting the non-virtualized server to a virtual machine 

hosted on a virtualized system. In this case, only one VM is hosted on the virtualized 

system. This environment exposes how virtualization effects an application, based on its 

workload. And, the consolidated-virtualized environment represents hosting of multiple 

VMs on a virtualized system with specific shared resources, in this case the NIC. In all 

the experiments described in this chapter, two VMs have been hosted under the 

consolidated-virtualized environment. The reason for choosing only two VMs and not 

more is because the focus of the experiments was to expose the issues in sharing 

virtualized I/O devices. Also, because of this, the scale of experiments, both in the real 

and simulation setup, was tractable for conclusive results especially because the 

benchmarks exercise the network interface.     

 

For the netperf benchmark, netperf is the name of the client and netserver is the 

server component. For this study, TCP_CRR test of netperf is chosen. The TCP_CRR 

test measures the connect-request-response sequence throughput achievable on a server 

and is similar to the access requests used in http based applications. In the case of httperf 

benchmark, the client, called httperf, communicates with a standard http server using the 

http protocol. The httperf client allows for specifying the workload in terms of the 

number of http requests to the server in one second, for a given period of time, to 

generate statistics like average number of replies received from the server, average 

response time of a reply and the network bandwidth utilized for the workload. While 



netperf gives the achievable or achieved throughput, httperf gives an average throughput 

calculated for a subset of samples, executed over a specified period of time, within the 

given experiment. Hence, httperf results give an optimistic estimate which may fall short 

of expectation in situations where sustained throughput is a requirement.  

 

For this study, all the benchmarks were run on a linux server with a total of 2GB 

RAM and hosting a Broadcom Ethernet card configured to serve a bandwidth of 

100Mbps. Although the NIC was capable of Gigabit speed, the network bandwidth was 

scaled down since this made the study of NIC sharing dynamics feasible since at higher 

request rates httperf reports failures that are not directly related to NIC sharing. The 

experimental values, plotted in the following charts, are an average of five independent 

measurements, to rule out the possibility of result variation. Each experiment was 

executed for a period of 600 seconds to represent steady state of server behavior. For the 

non-virtualized server, the machine is booted into a standard FedoraCore6 (FC6) Linux 

system. For the Xen virtualized server, the same system is booted into Xen3.0.3 with 

Fedora Core 6(FC6) for the Domain-0 and Domain-1. Domain-0 is the Independent 

Driver Domain(IDD) [15] hosting the network I/O device and Domain-1 is the virtual 

machine hosting the benchmark server. In case of the consolidated-virtualized server, two 

virtual machines, namely Domain-1 and Domain-2, are hosted on the machine along-with 

Domain-0. In this case, server component of the benchmark is hosted on each of the 

virtual machine and independent clients make requests to each of the servers. In the case 

of Vmware virtualized server, the virtualization is through VMware-ESXi hypervisor 

hosting Linux VMs.  

 

For each of the benchmarks, the comparison is between a non-virtualized server with 

that of a virtualized server and consolidated-virtualized server. Two metrics are taken for 

comparison; the first one is %CPU utilization of the server and the second one reply rate 

or more commonly know as the application throughput of the server. Two charts, one for 

each of the metrics, are shown for each of the benchmarks. Figure 2 (a) shows the plot of 

%CPU utilization of the server against response message size for the netperf benchmark 

on a Xen server. In this chart we observe that moving from a non-virtualized to a 

virtualized server, the CPU resource utilization to support the same workload increases. 

This is the effect of virtualization on application resource requirement. Further, when we 

look at the case where two-VMs are consolidated on to a server, the server resource 

utilization increases significantly, as expected. In this case, each of the VMs sharing the 

same network interface, also share the Xen-VMM and IDD. When compared to servicing 

a single VM, the VMM and IDD now have to also service the requests of the second VM, 

which increases the CPU utilization on the server [9]. This is true for the httperf 

benchmark also, as indicated by the graphs in Figure 3(a). Also, the sharing of VMM and 

IDD by all device sharing VMs adds to device access latencies which contributes to a 

reduction in the maximum sustained throughput of the application. This is illustrated in 

Figure 2(b) and Figure 3(b), which give details of the throughput that is achieved in the 

case of netperf and httperf benchmarks. 

 



        

(a) Server CPU Utilization       (b) Server achievable throughput 

Figure 2:  netperf server CPU Utilization and netserver achievable throughput on Xen-

virtualized system 

In the case of the netperf benchmark the loss of achievable throughput, for an application 

moving from non-virtualized to virtualized environment ranges from 4% to 20% and 10% 

to 29% in the case of consolidated-virtualized server. The surprising result is the case of 

total throughput achievable across both the VMs on a consolidated-virtualized server for 

netperf. We observe that the total throughput achievable is almost double that of what is 

achievable for a single VM. The reason for this is that the service time required to 

generate a response to the netperf request is long enough not to allow complete utilization 

of the network I/O bandwidth. And hence we see a better utilization for the consolidated 

server when two VMs are using the same NIC. This gives a clear motivation for sharing 

of I/O device in virtualized servers. However, in the case of httperf the improvement is 

not so dramatic. We observe here that while the reply rate increases linearly with the 

increase in request rate, till the peak rate, for the non-virtualized server, there is a gradual 

drop of throughput from 2% to 12.5% for the virtualized server as we progress from the 

request rate of 500reqs/s to the peak rate. The sustained total throughput for both the 

VMs, without loss, for the consolidated-virtualized server improves to 800reqs/s but still 

falls short of that achieved for the non-virtualized server by 10%.  

  

    

              (a) Server CPU Utilization                           (b) Server throughput 

Figure 3: httperf characterization on Xen server 

 



Similar behavior is observed when Vmware virtualization technology is used. This is 

depicted in Figure 4. The httperf benchmark tests using VMware-ESXi hypervisor were 

conducted on an Intel Core2Duo server with 2 cores. The speed of processor and NIC 

remain the same as that for the Xen server. Also, unlike in the case of Xen, pinning of 

ESXi server (the hypervisor) to a CPU is not possible. Hence, any CPU utilization 

measurements for the ESXi on Vmware show utilizations for all CPUs included, i.e. 

%CPU utilization can be above 100% in the case of multi-core systems. As for the VMs, 

both the VMs were hosted on the same physical CPU with one virtual CPU (VCPU) 

each. VMware-ESXi server implements NIC virtualization using device emulation. As 

can be seen, the overheads of emulation are comparatively high in relation to para-

virtualization which is used in Xen. Here also, virtualization of NIC results in using up 

more CPU to support network traffic on a VM when compared to a non-virtualized 

server. The other important observation is the loss of application throughput. Device 

emulation imposes higher service times for packet processing and hence drastic drop of 

application throughput is observed, when compared to non-virtualized and para-

virtualized systems. In this case we see almost 70% drop on maximum sustained 

throughput when compared to the throughput achieved in non-virtualized environment. 

This loss is visible even in the consolidated-virtualized case. Interestingly, the total 

network bandwidth used in the case of consolidated VMs was only 50% of the available 

bandwidth. Hence, the bottleneck is the CPU resource available to the VMs since each of 

the VM was hosted on the same core. When the same experiment was carried out with 

each VM pinned to an independent CPU, there was an increase in application throughput, 

but this throughput still fell short by 10% of what was achieved for the single VM. This 

indicates that even with the availability of required resources to each of the VMs the 

device sharing architecture in virtualized servers has constraints that impose severe 

restrictions in usable bandwidth and scalability of device sharing.  

 

    
           (a) Server CPU utilization             (b) Server throughput  

Figure 4: httperf characterization on Vmware-ESXi server 

 

The most noteworthy point of observation is the behavior of each stream of 

benchmark in the case of consolidated-virtualized server. We see that in general there is a 

further reduction in throughput, when compared to the virtualized environment, in netperf 

and httperf, with a marked decrement in the later case. This indicates the obvious; lack of 

QoS constraints would lead to severe interference in performance offered by the VMs 



sharing a common device. It is noteworthy here that in linux packet level QoS controls 

are available as a software stack through the netfilter module, which is a serious 

drawback. While the software controls work well for the transmission path, the reception 

path is virtually uncontrolled at the device level. As a result, it may so happen that the 

device is receiving a large number of packets for a VM that would eventually be dropped 

and this leads to loss of bandwidth for the other VMs sharing this device. Provisioning 

for QoS controls in such systems is currently done only in software that is controlling the 

device, since the device is oblivious to the fact that it is being shared by multiple VMs. 

These controls are placed quite high in the software stack where the source or destination 

of the data is known. This causes the controls to be coarse-grained. In scenarios where 

I/O device utilization is pushed to its maximum, limitations of such QoS controls are 

revealed as loss of usable bandwidth or scalability of sharing. This results in 

unpredictable loss of application performance as is described in the next section. 

 

3.2 Evaluation of prevalent Network QoS controls available in Virtualized Servers: 
To understand the effect of software based QoS controls on network bandwidth sharing 

in virtualized servers, an analysis of experimental study conducted with network 

bandwidth control on a consolidated virtualized server, hosting two VMs, each running 

an application server and sharing a NIC. Each VM was built with with 1 VCPU, 512MB 

RAM, 25GB disk partition and a Virtual NIC built using a software bridge (Xen) or 

switch (VMware-ESXi) over a single physical NIC configured to 100Mbps speed. Each 

VM hosted an identical but independent http server. Initially the VCPUs of each VM 

were pinned to the same physical CPU. The experimental setup consisted of two 

independent httperf clients, each making requests to an independent http server. We 

choose to use httperf benchmark for this study and not netperf because the bandwidth 

control mechanisms available are based on time-sampled averages and hence need certain 

time specific observation to understand the mechanism control on the constrained 

channel. Initially it would seem that the control is not very effective but with the progress 

of time, once a steady state behavior sets in with respect to the traffic on the network 

channel, the effect of the control is visible on the application throughput.  

 

To understand the NIC sharing dynamics, two distinct studies were made. The first 

was applying no bandwidth control on the NIC, each VM was subject to equal load from 

each of the httperf client. As can be observed from the performance of consolidated 

virtualized server case in Figure 3 and Figure 4 the NIC sharing is equal in both the 

virtualization solutions. When no QoS controls are enforced and each VM has equal 

demand for the resource, it is shared equally on a best effort basis. In the second study 

bandwidth control was enforced on one VM, namely VM2, while allowing complete 

available bandwidth to the other VM, the VM1. The bandwidth controls enforced were 

based on the following principle. For each of the virtualization technologies used, i.e. Xen 

and Vmware, the network bandwidth used by a single VM to support different httperf 

request rates, without performance loss, was measured. These bandwidth measurements 

were then used to apply control on the outgoing traffic from VM2 since the available 

controls allow constraints only on the outgoing traffic. On the incoming traffic, ideally 

the control should be applied at the device or the device driver. Such controls are not 

available currently. Instead, in Xen, atleast one can use the netfilter module stream based 



controls after receiving the packet. This is of not much use, because by receiving a packet 

that could potentially be dropped, the device bandwidth is anyway wasted. Hence, the 

study involves using only the outgoing traffic controls for the constrained VM. On the 

VM2 where the QoS control was applied, the study was made by systematically applying 

bandwidth control from 150 to 950 httperf requests/sec for the Xen server and from 50 to 

550 httperf requests/sec for the VMware server. The selection of this different range for 

each of the virtualized server is based on the maximum throughput each can support in a 

consolidated virtualized environment. For each QoS control, the maximum throughput 

achieved, without loss, by each of the VM is plotted in the graphs of Figure 5. In these 

Figures, the x-axis represents the httperf request rate based on which the network 

bandwidth control was applied on the VM2. The y-axis represents the application 

throughput achieved by the VM. In the case of Xen, linux tc utility of the netfilter module 

was used to establish appropriate bandwidth controls. Specifically, each traffic stream 

from the VMs was defined using htb class with tbf queue discipline with the desired 

bandwidth control. Each queue was also setup with a burst value to support a maximum 

of 10 extra packets. In the case of Vmware, the Veam Monitor controls for network 

bandwidth were used and were populated with the same QoS controls as was done for the 

Xen server.  

 

For both solutions, we notice that applying bandwidth control on one VM does not 

necessarily allow the availability of idle bandwidth to the unconstrained VM. Referring 

back to Figure 3 and Figure 4, we observe that the maximum application throughput 

achieved in the case of consolidated server for Xen is around 475 replies/s and for 

VMware is around 150 replies/s. Figure 5 demonstrates that even with QoS controls on 

one VM the other VM is not able to exploit the bandwidth availability. We also observe 

that the unconstrained VM does not improve the total throughput achieved across the 

shared interface. The reasons for this behavior are multitude, the most significant one 

being the virtualization overhead in terms of the CPU resource required by the VMM or 

the hosting VM to support I/O workload and serialization of this resource, second is the 

lack of control on the incoming network stream, third is that of the incoming stream 

having higher priority over the outgoing stream. All of these problems lead to 

unpredictable performance even with appropriate QoS controls in place. 

 

      

 (a) Xen-IDD Linux QoS controls on VM2         (b) Vmware-ESXi QoS controls on VM2 



Figure 5: Effect of hypervisor network bandwidth controls on application throughput for 

consolidated virtualized server hosting two virtual machines. 

As observed from the behavior of the benchmarks, we identify the following bottlenecks 

for sharing network I/O device across multiple VMs on Xen or Vmware virtualized 

server. 

 Virtualization increases overheads in device utilization which leads to increased CPU 

utilization of the VMM and IDD hosting the device. 

 Virtualization overheads cause loss of device bandwidth utilization from within a 

VM. Consolidation improves the device bandwidth utilization but further adds to 

CPU utilization of the VMM and IDD. Also, if the VMM and IDD do not support 

concurrent device access APIs they become the bottlenecks for the shared device 

access.  

 QoS features for regulating incoming and outgoing traffic are currently implemented 

in the software stack. Uncontrolled incoming traffic to a VM sharing a network 

device can severely impact the performance of other VMs because the decision to 

drop an incoming packet is taken after the device has received the packet. 

Based on the above observations, we propose an extension to I/O virtualization 

architecture, as recommended by the PCI-SIG IOV specification [3]. The PCI-SIG IOV 

specification defines the rudiments for making I/O devices virtualization aware. On the 

multi-core servers with server consolidation as the goal, particularly in the enterprise 

segment, being able to support multiple virtual I/O devices on a single physical device is 

a necessity. Already high speed network devices like 10Gbps NICs are appearing in the 

market. Pushing such devices to even 80% utilization needs fine-grained resource 

management at the device level. The basic goal of the proposed architecture is to be able 

to support finer levels of QoS guarantees, without compromising on device utilization. 

This proposal has its basis in exokernel’s [16] implementation of I/O handling in the 

sense of decoupling device management mechanism from data access mechanism. The 

architecture is designed to enable native access of I/O devices to virtual machines and 

provide device level QoS hooks for controlling VM specific device usage. The 

architecture aims to reduce network I/O device access latency and enable improvement in 

effective usable bandwidth in virtualized systems by addressing the following issues: 

 Separating device management issues from device access issues. 

 Allowing native access of a device to a VM by supporting concurrent devices access 

and eliminating IDD from the path of device access. 

 Enable fine-grained resource controls at the device. 

The rest of the chapter is organized as follows. We describe the need for extending I/O 

device virtualization architecture by presenting the related work in section 4. In section 5 

we highlight the bottlenecks of the device access path in the existing architecture, 

followed by a detailed description of the proposed architecture to overcome these 

bottlenecks taking Xen virtualization as the reference model. We then describe the 

network packet workflow for the proposed architecture, which forms the basis for 

generating the LQN model used in the simulation studies for architecture evaluation 



described in section 6. Brief description of the LQN model generation and detailed 

presentation of simulation results is covered in section 0. Finally, in section 8 we 

conclude with remarks on the benefits of the architecture. 

4. Review of I/O virtualization techniques: I/O virtualization started with dedicated 

I/O devices assigned to a VM and has now evolved to device sharing across multiple 

VMs through virtualized software interfaces [17]. A dedicated software entity, called the 

I/O domain is used to perform physical device management. The I/O domain can be part 

of the VMM or be an independent domain, like the independent driver domain (IDD) of 

Xen. In the case of IDD the I/O devices are private to the domain and memory accesses 

by the devices are restricted to the IDD. Any application in a VM seeking access to the 

device has to route the request through the IDD and the request has to pass through the 

address translation barriers of the IDD and VM [22] - [27]. Recent publications on 

concurrent direct network access (CDNA) [20] and scalable self-virtualizing network 

interface are closer to the proposed work. However, the scalable self-virtualizing 

interface [21] describes assigning a specific core for network I/O processing on the 

virtual interface and exploits multiple cores on embedded network processors for this. 

The paper does not detail how the address translation issues are handled, particularly in 

the case of virtualized environments.  

The CDNA work is architecturally similar to the proposal in the paper. CDNA relies on 

per VM Rx/Tx ring buffers to manage VM specific network data. The VMM handles the 

virtual interrupts. However, it does not talk about the performance interference due to 

uncontrolled data reception by the device nor does it talk about the need for addressing 

the QoS constraints at the device level. The proposed architecture in this paper addresses 

these and also the issue of pushing the basic constructs to assign QoS attributes like 

required bandwidth and priority into the device to get fine-grained control on interference 

effects. The proposed architecture has it basis in exokernel’s philosophy of separating 

device management from protection. In exokernel, the idea was to extend native device 

access to applications with exokernel providing the protection. In our approach, the 

extension of native device access is to the VM, the protection being managed by the 

VMM. A VM is assumed to be running the traditional OS. Further, the PCI-SIG 

community has realized the need for I/O device virtualization and has come out with the 

IOV specification to deal with it. The IOV specification however, talks about device 

features to allow native access to virtual device interfaces, through the use of I/O page 

tables, virtual device identifiers and virtual device specific interrupts. The specification 

presumes that QoS is a software feature and does not address this.  

Many implementations adhering to the IOV specification are now being introduced in the 

market by Intel [28], Neterion [29], NetXen [30], etc. CrossBow[31] suite from SUN 

Microsystems talks about this kind of resource provisioning, but it is a software stack 

over a standard IOV complaint hardware. The results published using any of these 

products are exciting in terms of the performance achieved, but almost all of these have 

ignored the control of reception at the device level. We believe that lack of such a control 

on highly utilized devices will either cause performance degradation or lead to under-

utilization of the device bandwidth.   

 



5. Extension of I/O virtualization architecture: In the existing Xen virtualization 

architecture, when we analyze the network packet workflow we observe few bottlenecks 

which we aim to eliminate in the proposed scheme. The bottlenecks are:  

 Since the device is shared, the device memory behaves like a common memory for all 

the contending VMs accessing the device. One misbehaving VM can ensure 

deprivation leading to data loss for another VM. 

 The IDD is also a bottleneck for all the VMs sharing the device. IDD incurs 

processing overheads for each VM. Current IDD implementations do not have any 

hooks for controlling the overheads on a per VM basis. Lack of such controls leads to 

performance interference in the device sharing VMs. 

 Every network packet has to cross the address translation barrier of VMM to IDD to 

VM and vice-versa. This happens because of lack of separation of device 

management issues from device access issues. The service overheads of this stage-

wise data movement causes drop in effective utilized device bandwidth. In multi-core 

servers with scarce I/O devices, this would mean having high-bandwidth under-

utilized devices or low throughput applications on the consolidated server.  

To overcome the above listed drawbacks, we propose an extended architecture for 

virtualizing I/O devices that enables separation of device management issue from device 

access issue. This is done by building device protection mechanisms into the physical 

device and managed by the VMM. As an example, for the case of NIC, the VMM should 

be able to recognize the destination VM of an incoming packet by the interrupt raised by 

the device and forward it to the appropriate VM. The VM should then be able to process 

the packet as it would do so in the case of non-virtualized environment. Thus, device 

access and scheduling of device communication is managed by the VM that is using the 

device. This eliminates the intermediary VMM/IDD on the device access path and 

reduces I/O service time which improves the usable device bandwidth. 

 

5.1 Proposed I/O Virtualization Architecture Description: Figure 3 gives a block 

schematic of the proposed I/O virtualization architecture. The picture depicts a NIC card 

that can be housed within a multi-core server. The card has a controller that manages the 

DMA transfer to and from the device memory. The standard device memory is now 

replaced by a partitionable memory supported with n sets of device registers. A set of m 

memory partitions, where m ≤ n, with device registers forms the virtual-NICs. Ideally the 

device memory should be reconfigurable, i.e. dynamically partitionable, and the VM’s 

QoS requirements would drive the sizing of the memory partition. The advantage of 

having a dynamically partitionable device memory is that any unused memory can be 

easily extended into or reduced from a vNIC in order to match adaptive QoS 

specifications. The NIC identifies a vNIC request by generating message signaled 

interrupts (MSI). The number of interrupts supported by the controller restricts the 

number of virtual-NICs that can be exported. Although, the finite number of physical 

resources on the NIC restricts the number of vNICs that can be exported, judicious use of 

native and para-virtualized access to the vNICs, based on the QoS guarantees a VM 

needs to honor, can overcome the limitation. A VM that has to support stringent QoS 

guarantees can choose to use native access to the vNIC whereas those VMs that are 



looking for best-effort NIC access can be allowed para-virtualized access to the vNIC. 

The VMM can aid in setting up the appropriate hosting connections based on the 

requested QoS requirements. The architecture can be realized by the following 

modifications: 

 Virtual-NIC: In order to define vNIC, the physical device should support time-

sharing in hardware. For a NIC this can be achieved by using MSI and dynamically 

partitionable device memory. These form the basic construct to define a virtual device on 

a physical device as depicted in Figure 3. Each virtual device has a specific logical device 

address, like the MAC address in case of NICs, based on which the MSI is routed. 

Dedicated DMA channels, a specific set of device registers and a partition of the device 

memory are part of the virtual device interface which is exported to a VM when it is 

started. We call this virtual interface as the virtual-NIC which forms a restricted address 

space on the device for the VM to use and remains in possession of the VM till it is active 

or relinquishes the device.  

 Accessing virtual-NIC: For accessing the virtual-NIC the IDD layer for network I/O 

in Xen is replaced by a VM’s native device driver. This device driver can only 

manipulate the restricted device address space which was exported through the virtual-

NIC interface by the VMM.  

 

 



Figure 6: NIC architecture supporting MSI interrupts with partitionable device memory, 

multiple device register sets and DMA channels enabling independent virtual-NICs. 

With the virtual-NIC, the VMM only identifies and forwards the device interrupt to the 

destination VM. The OS of the VM now handles the I/O access and thus can be 

accounted for the resource usage it incurs. This eliminates the performance interference 

due to IDD handling multiple VMs’ request to a shared device. Also, because the I/O 

access is now directly done by the VM, the service time on the I/O access reduces 

thereby resulting in better bandwidth utilization. With the virtual-NIC interface, data 

transfer is handled by the VM. While initializing the device driver for the virtual NIC the 

VM sets up the Rx/Tx descriptor rings within its address space and makes request to the 

VMM for initializing the I/O page translation table. The device driver uses this table and 

does DMA directly into the VM’s address space. 

 QoS and virtual-NIC: The device memory partition acts as a dedicated device buffer 

for each of the VMs and with appropriate logic on the NIC card one can easily implement 

QoS based SLAs on the device that translate to bandwidth restrictions and VM based 

processing priority. The key is being able to identify the incoming packet to the 

corresponding VM, which the NIC is now expected to do. While communicating, the 

NIC controller decides on whether to accept or reject the incoming packet based on the 

bandwidth specification or the device memory free level. This gives a fine-grained 

control on the incoming traffic and helps reduce the interference effects. The outbound 

traffic can be controlled by the VM itself, as is done in the existing architectures.   

 

5.2 Network Packet workflow using the virtualized I/O architecture: With the 

proposed I/O device virtualization architecture, each VM gets direct access to the shared 

I/O device without having to route the request through the IDD. Only the device 

interrupts get routed through the VMM. In Figure 4a, and Figure 4b the workflow for 

network data reception and transmission using the described device virtualization 

architecture is depicted. When a packet arrives at the NIC, it deciphers the destination 

address of the packet, checks if it is a valid destination, then copies the packet into the 

destination VM’s portion of the device memory and issues DMA to the destination VM 

based on the virtual NIC’s priority. On completion of the DMA the device raises an 

interrupt to the VMM. The VMM intercepts the interrupt, determines the destination VM, 

forwards the interrupt to the VM and schedules it. The VM’s device driver then receives 

the data from the VM specific device descriptor rings as it would do in the case of non-

virtualized server. In the case of transmission, the process is same as in the case of non-

virtualized server, except that the VM’s device driver DMA’s data directly into the 

device memory allocated to its virtual-NIC. It may be worthwhile to note here that the 

code changes to support this architecture in the existing implementation will not be 

excessive. Each VM can use the native device driver for the exported virtual device 

interface. This device driver is the standard device driver for the IOV complaint devices 

with the only difference that it has now restricted device access. The device access 

restrictions in terms of memory, DMA channels, interrupt line and device register sets are 

setup by the VMM when the VM requests for a virtual device. With the virtual device 

interface the VMM now only has to implement the virtual device interrupts. 



       

      (a)  Packet reception workflow                         (b) Packet transmission workflow 

Figure 7: Workflow of network I/O communication with improvised I/O device 

virtualization architecture. 

 

6. Architecture Evaluation: Since the architecture involves design of a new NIC and a 

change in both VMM and VM device handling code, we first choose to evaluate the 

architecture using simulation based on layered queuing network (LQN) [18] models to 

understand the benefits. The reason for choosing LQN based modeling is twofold. One, 

there is a lack of appropriate system simulation tools that allow incorporating design of 

new hardware along-with VMM and VM OS changes. Second, LQN models are intuitive 

queuing models that enable capturing of the devices and software contention in the end-

to-end workflow, right from the application to the device including the intermediate 

layers of the VM, IDD and VMM. With appropriate profiling tools, the LQN models are 

fairly easy to build and effective in terms of capturing the causes of bottlenecks in the 

access path. For further details on general description of LQN modeling and MOL refer 

[5].  

 

6.1. LQN model for the proposed architecture: We generate the LQN model 

manually using the LQNDEF [4] software developed at the RADS lab of Carleton 

University. Here we present results for the model generated for the httperf benchmark 

since the bottleneck issues are prominent for this benchmark. Complete details on 

generating of the LQN models and validating the models against experimental data for 

this benchmark are discussed in [32] [33]. Three assumptions were made while 

generating the LQN models. 

 The service times established at each of the entries constituting the LQN were 

populated based on the service times measured for an http request, instead of a tcp-

packet. While it is feasible to model packet level contention, the reason for choosing 

request level contention was to be able to measure the benchmark throughput in terms 

of the number of satisfied requests. The model validation results demonstrate that 

there is no significant loss/gain (< 1% ) of throughput because of this. 

 For the chosen mode of run of httperf benchmark, the arrival request rate was 

observed to be uniform and measured service times were also uniform. Hence, the 



service times and arrival rates populated on the LQN model were modeled as 

deterministic.  

 For all the activities proposed to be handled by the device hardware in the proposed 

architecture and modeled as separate entities in the LQN model, the service time was 

set to be significantly low (1 X 10e-10 seconds). For the rest of the software entries, 

the service times were derived based on the measurements made for the non-

virtualized servers. This is justified since our proposed architecture gives native 

access to the device from within the VM which is assumed to be running the same 

Guest OS as was used for the non-virtualized server. 

In general it is observed that the maximum throughputs observed using the LQN model 

are higher than the experimental observations. The reason for this is simple. For every 

packet received or transmitted in Linux, there are several layers of the network stack that 

each packet has to pass through. The time taken to traverse this passage is what is 

recorded by the profiler as the service time. In real system, to match the difference 

between the device speed and CPU speed, appropriate memory buffers (TCP send and 

receive buffers of linux kernel) are maintained. The sizing of these buffers affects the 

observed application throughput. Normally, higher the buffer size larger the observed 

throughput. This trend is maintained to the point till the device is able to handle the 

network traffic. Once device saturation is reached, the failure behavior usually results in 

sudden drop in application throughput. While setting up the LQN model we choose to use 

the maximum permissible buffer size in the simulator (which is more than 3 times than 

what was set on the experimental system) so as to determine the maximum possible 

throughput for the setup service times. This gives an idea on the upper-bound of 

application throughput on a system with maximum possible resources with the service 

times possible with the architecture. The idea is to eliminate buffer size constraint in the 

simulation environment. While it is true that for the proposed architecture in which native 

access to the I/O device is provided, the maximum throughput that can be achieved in 

reality cannot exceed that of the maximum throughput achieved in the case of non-

virtualized server, the results observed using simulations are contradictory. This is 

because of the fact that in the simulation environment, the buffers sizes used were 

maximum permitted. Hence, to make the comparison fair, care has been taken to generate 

results of existing architecture in a simulation environment, validate these results with 

those observed experimentally and then used for comparison with the results of the 

proposed architecture. 

 

Simulation and Results: In order to evaluate the proposed architecture we use the 

parasrvn simulator of the LQNS software distribution [4] from Carleton University. 

Since we believe this architecture is more suitable and will have practical usefulness for 

multi-core servers, we evaluate such systems. For our study the LQN model consists of 

one VMM and two VMs and each of these is pinned to a different core. We validate the 

LQN model for the proposed architecture against the existing Xen architecture for a 

multi-core server. To observe the behavior on a multi-core server for the existing 

architecture, in the LQN model the VMM/IDD and each of the VMs are placed on an 

independent core. Figure 5 depicts the results of achievable throughput and server CPU 

utilization for a multi-core server with two VMs consolidated. The throughput graph for 



both the VMs is similar and appears overlapped in the chart. As can be noted from Figure 

8, in a multi-core environment with Xen IDD, VM1 and VM2 each pinned to a core, and 

each VM servicing one httperf stream, the maximum throughput, without loss, achievable 

per stream is 950requests/s as against 450requests/s in the case of single-core. But, for the 

maximum throughput, we observe that the Xen-IDD, which is hosting the NIC of the 

server, the CPU utilization saturates. This indicates that further increase in request rate is 

not possible since the processor core serving the Xen-IDD does not have any computing 

power left. Figure 9 shows these statistics for a similar situation but with the proposed 

architecture. We observe that the maximum throughput achievable now per stream 

increases to 1500 req/s, which is an increase of about 60% more. The total throughput 

achievable at the NIC, derived from consolidating the throughput of both the streams, 

also increases by 60% when compared to what was achieved on the existing architecture.  

 

                      

(a) Throughput              (b) CPU Utilization 

Figure 8: Charts for maximum throughput achievable per httperf stream and CPU 

utilization for existing Xen architecture on a multi-core server hosting two VMs each 

servicing one of the httperf stream. The IDD, VM1 and VM2 are pinned to independent 

cores. 

                 

(a) Throughput         (b) CPU Utilization 

Figure 9: Maximum achievable throughput and CPU utilization charts for a multi-core 

Xen server incorporating the proposed I/O virtualization architecture and hosting two 

VMs, pinned to different cores, each servicing one httperf stream. 



If we look at the CPU utilization of each VMs, we observe that the Dom0 which is the 

VMM for the NIC, now consumes very less CPU. The reason for this is that, the NIC is 

now offloading the identity of the destination of the packet and this identification 

happens at hardware speeds. To account for this, a very low value of service time is 

assigned in the LQN model. Also, in the existing model, bridging software that routes the 

packets to a VM and which has substantial overhead, is done away with in the proposed 

architecture. The net result is improved throughput, reduced virtualization overhead, and 

reduction of VMM/IDD resource consumption on behalf of VMs. We also notice that the 

VMM is now spending almost constant time which results in eliminating the performance 

interference. This also improves the scalability of sharing the device across VMs. With 

this architecture each VM is now accountable for all the resource consumption, thereby 

leading to better QoS controls. 

We next evaluate the proposed architecture for QoS controls on the network bandwidth. 

Since this architecture is implemented using LQNs model, we make certain assumptions 

to simulate the network bandwidth controls as implemented in the netfilter module of 

Linux. LQNs is basically a queuing model wherein at any node (also called entry in 

parasrvn notation) of the queue is described using three parameters, namely, the arrival 

rate, the service time and the think time. The arrival rate models the rate of input requests 

at the entry, service time depicts the time the entry takes to process the request before 

forwarding to the next entry or replying back to the requesting entry and think time 

denotes the time before which the entry actually services the request. The think time 

parameter is useful to model policies like bandwidth restrictions, time-sharing intervals, 

periodic processing, etc. The LQN is basically a directed acyclic graph that captures the 

complete workflow. Hence, the arrival rate is set for the source entry and in this case 

represents the rate of request arrival at the network interface of the virtualized server. The 

service time represents the CPU time used for servicing the request by the entry of LQN 

and think time is used as the bandwidth restriction that was applied in experimental case. 

For example, to model 250reqests/second bandwidth restriction the think time derived is 

1/250 seconds. This ensures that the entry will only process 250 requests/second and 

anything extra will be queued or dropped. To model this restriction within the 

experimental setup we use the burst parameter of the bandwidth control mechanism in 

Linux netfilter module. 

The justification is that in the Linux netfilter module the bandwidth restriction manifests 

as packet loss after the restriction is saturated. The bandwidth restriction also has a burst 

parameter that allows for some extra packets delivery on the channel above the 

restriction. By setting the burst rate sufficiently low, in our case equivalent to 10 packets 

which is also the minimum that is permissible, we ensure that overflow of bandwidth on 

the constrained channel is restricted. For the html page that is requested in our 

experiments, total number of packets needed to complete a successful request is about 14. 

Hence by setting the burst rate to 10 packets ensures that the request fails thereby 

throughput reported takes into account the desired behavior. The think time setting in 

LQN model is more restrictive than the netfilter. But, since the think time value is based 

on the deterministic request rate parameter to define the bandwidth constraint, we still 

have equivalent results and this has been validated against observed values. The 

following graphs in Figure 10 depict the effect of not imposing (Figure 10 (a)) and 

imposing network bandwidth QoS on the incoming stream of VM2 (Figure 10 (b)), in the 



proposed architecture. These simulations were conducted on a single core server to keep 

the throughput range such that time consumed for comparable results was minimized. 

As can be observed from the graphs of Figure 10 (a), for the best effort service, i.e. when 

no QoS constraints are applied on any of the sharing streams, the maximum throughput, 

without loss, achieved on any of the VMs is 850 replies/second on the consolidated-

virtualized server. This is slightly less than half of what is achieved by the VM using an 

unshared device on the virtualized server (refer Figure Figure 9(a)). The graphs of Figure 

10 (b) show that, unlike as in the case of existing architectures, the QoS constraints when 

moved to device level, allow the usage of available bandwidth by the unconstrained 

channel. In this figure, VM2 is constrained to allow requests starting from 150 

requests/second to 950 requests/second and VM1 is unconstrained. Since the NIC is 

discarding requests to VM2 that are above the specified request rate, VM1 is able to use 

the available bandwidth, hence we see higher throughputs (1500 replies/sec) on VM1. As 

the bandwidth control on VM2 is relaxed we see that the two graphs start converging 

towards each other and finally merge to the best effort case. The bandwidth control on the 

incoming stream also works to advantage on the http traffic because by discarding the 

request at the device itself, the server and hence the resources, are spared to respond on 

requests that will eventually be dropped because of bandwidth controls. The other 

observation is that when multiple VMs are sharing the NIC, the maximum bandwidth 

achievable on the unconstrained channel is less (<10%) than that which is achieved by 

the isolated VM. Further reduction on this loss is possible by applying channel based 

prioritization and bandwidth control on the outgoing channel of the constrained VM. The 

outgoing channel constraints are easily achievable by using existing mechanisms. 

   

  (a)   Best effort, no Qos on NIC sharing.    (b) QoS controls on VM2 outgoing channel. 

Figure 10: Throughput achieved before and after imposing QoS controls on VM2 of the 

proposed architecture. 

 

8. Conclusion: In this chapter we described how the lack of virtualization awareness in 

I/O devices leads to latency overheads on the I/O path. Added to this, the intermixing of 

device management and data protection issues further increases the latency, thereby 

reducing the effective usable bandwidth of the device. Also, lack of appropriate device 

sharing control mechanisms, at the device level leads to loss bandwidth and performance 

interference on the device sharing VMs. To address these issues we proposed I/O device 



virtualization architecture, as an extension to the PCI-SIG IOV specification, and 

demonstrated its benefit through simulation techniques. The architecture evaluation was 

done by capturing it as an LQN model and analyzing using simulation of the model. The 

simulation results show a utilization benefit of about 60%, without enforcing any QoS 

guarantees or applying any of the software optimization techniques to the I/O path. The 

proposed architecture also improves the scalability of VMs sharing the NIC. We also 

demonstrated that by moving the QoS controls to the shared device, the unused 

bandwidth is made available to the unconstrained VM, unlike the case in prevalent 

technologies. Although the evaluation was done for para-virtualized systems like Xen, we 

believe the ideas proposed would benefit fully virtualized systems like Vmware too. The 

reason being, in any of these virtualization techniques I/O device sharing is currently 

regulated through a common software entity, which is eliminated in the proposed 

architecture. 
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