
Workshop on High Performance Computing & Parallel Programming

Concepts

Pankaj Navani, Ravi Teja, Nachiket - Applications Analyst, Cray Inc. (Team @ SERC)

Program Brief

Copyright 2016 Cray Inc.
2

Day 1 - Sat. 10th Sept. 2016
Venue : SERC 4th floor Auditorium

Time : 10:00AM - 5:00PM

 Introduction

 SahasraT Architecture & Environment

 Parallel Programming Models

 Performance Monitoring and Tuning

 Lab Sessions

Day 2 - Sat. 17th Sept. 2016
Venue : SERC 4th floor Auditorium

Time : 10:00AM - 5:00PM

 Intel Processor Architectures

 Parallelization Techniques

 Vectorization techniques

 Thread Level Parallelism

 Intel Compiler Options – Quick Tweaks

 Performance and Math Kernel Libraries

 Accelerated Python for performance computing

 Lab Session

Day-1 Agenda

Sep. 2016 Zuse 75, Copyright 2016 Cray Inc.
3

Timeline Duration Title Agenda

10:00 - 10:10 10 min. Opening Remarks - Prof. R. Govindrajan (Chairman, SERC) Opening Remarks

Cray and Brief History of Supercomputing

System Architecture

Interconnect, Communications

Programing Environment

Scheduling Strategies & Job Submission

Web / IISc Online Resources

Introduction to Parallel Computing

Basic Terminology and Concepts

Memory Architectures

11:30 - 11:50 20 min.

Multicore and Multimode

Designing Parallel Programs

Optimization Techniques with Examples Codes

13:00-14:00 60 min

Cray Tools

Third Party Tools Available On The System

Some Examples

15:00-15:20 20 min.

15:30-17:00 90 min. Hands on Session (Pankaj, Ravi Teja and Nachiket) LAB : Practice / Dummy Codes (Three Examples)

Lunch Break

Coffee / Tea Break

Day 1 - SahasraT Induction For New-Scholars

Introductions Parallel Programming Models - Ravi Teja 40 min.

Performance Monitoring and Tuning - Pankaj Navani 60 min.

SahasraT Architecture - Pankaj Navani

10:50- 11:30

14:00-15:00

Parallel Programming Models Contd..

40 min.10:10-10:50

12:00- 13:00 60 min.

Coffee / Tea Break

Cray: a long history of supercomputing…

Copyright 2016 Cray Inc.
4

Merging Big Data and Supercomputing
Anything that can be simulated needs a Cray Anything that can be simulated needs a Cray

Manufacturing
Earth

Sciences
Energy Life Sciences

Financial

Services

Government

and Defense

Higher

Education

We build the world’s fastest

supercomputers to help solve

“Grand Challenges” in science

and engineering

We’ve Made Incredible Progress

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
5

Zuse Z3

Introduced 1941

Flop Rate ~ ¼ F

Memory Size ~176 B

Cray-1

1976 (vs. Z3)

~250 MF 1e9

8 MB 4.7e4

IISc “SaharaT”
8-cabinet Cray-XC40

2015 (vs. Z3)

~1.14 PF 4.56e15

172 TB 10.7e12

Petascale

Cray XC

Systems

Ordered &

Installed

Copyright 2016 Cray Inc.
6

UNDISCLOSED

SYSTEMS

http://www.afrl.hpc.mil/
http://www.afrl.hpc.mil/
//upload.wikimedia.org/wikipedia/de/7/76/HLRN-Logo.svg
//upload.wikimedia.org/wikipedia/de/7/76/HLRN-Logo.svg
http://www.nersc.gov/
http://www.nersc.gov/

May 11, 2016Zuse 75, Copyright 2016 Cray Inc.
7

Technology Shifts and Responses…

Copyright 2016 Cray Inc.

● It has been 40 years since the first Cray-1
Supercomputer shipped to Los Alamos

● Optimal design has always been
dependent on underlying technologies
● Processors & Memories
● Storage
● Interconnects

● Shifts in these technologies can (and will)
have large impacts on how systems look
and how they are programmed

● Workloads and Users are also
changing…

8

Architectural Response

May 11, 2016 Zuse 75, Copyright 2016 Cray Inc.
9

GPU computing

(Nvidia Kepler)
Large # of much

simpler processors

Vector Computing (Intel
Xeon Phi)

Parallelism with low complexity &
control overhead

Arithmetic

Single / Multicycle

Data Path

Pipelining Memory Hierarchy IO Optimization

Multicore
Multiple, simpler

processors

Single Socket
RISC / CISC Design

Cray Value Proposition

Systems Management & Performance Software

Packaging

System Interconnect

SahasraT – Interconnect

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
11

768 Sockets = 9216 cores less than 1µs away

Copyright 2016 Cray Inc.
12

2-cabinet Group

Copper cables

between chassis

Backplane

connections within

chassis

This basic structure is

repeated in “SahasraT”

This basic structure is

repeated in “SahasraT”

Compute Blade with Aries

Copyright 2016 Cray Inc.
13

• CPU Cluster - Intel

Xeon E5-2680v3 @

2.5GHz (Haswell) based

1376 compute nodes

with a total count of

33024 cores (24 cores

per node) with a

sustained performance

of 950 TFLOPS

• GPU Cluster - NVIDIA

Tesla K-40 based 44

nodes (2880 cores per

node) with a sustained

performance of

52TFLOPS

• MIC Cluster - Intel

XeonPhi 5120D Knights

Corner based 48 nodes

with a sustained

performance of

28TFLOPS

Cray XC Rank-1 Network – Carried in Backplanes

Copyright 2016 Cray Inc.
14

• Chassis with 16 compute blades

• 128 sockets

• All-to-all within the backplane

• Per Packet Adaptive Routing

• Chassis with 16 compute blades

• 128 sockets

• All-to-all within the backplane

• Per Packet Adaptive Routing

Cray XC Rank-2 Network

Copyright 2016 Cray Inc.
15

2-cabinet Group

Copper cables

between chassis

Backplane

connections within

chassis

This basic structure

is repeated in large

systems

This basic structure

is repeated in large

systems

768 Sockets = 9216 cores less than 1µs away

Cray XC Packaging Review

SERC Tools Workshop
16

Group 0 Group 1 Group 2 Group 3

Rank-1

Chassis

Rank-2

2 Cabinet Group

Rank-3

Between Groups

October 26-27 2015

4 nodes = 1 blade; 16 blades = 1 chassis; 3 chassis = 1 cabinet; 2 cabinets = 1 group

Placement Insensitive – Dragon Fly Architecture

Copyright 2016 Cray Inc.

● Example: Sandia miniApp, miniGhost

● Running on 2256 node CSCS system (¼ global
bandwidth)
● Runtime in seconds for 100 cycles

17

Random blocks of 64

nodes

69.4 69.4 69.4 69.5

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

4 4

Random layout of

nodes

70.9 71.0 70.6 70.5

Contiguous Blocks of

512 nodes

69.0 68.8 68.9 68.9

3 1 3 2 1 3 2 3 3 1 1 4 4 1 3 3 4 2 1 2 3 2 2 2 3 2 3 1 4 2 4 3 4 1 3 1 4 2 1 1 4 1 3 2 3 3 2 3 4 4 3 2 1 3 3 3 1 1 2 4

1 4 3 3 3 3 4 2 3 3 4 4 3 4 4 2 3 2 2 3 2 3 1 1 1 1 1 2 2 2 2 2 1 4 1 4 2 4 3 1 2 2 3 2 4 2 3 4 4 3 3 1 4 2 2 3 3 3 1 2 4 3 2 1

3 1 2 1 3 2 3 4 4 4 2 1 3 4 1 1 1 4 1 2 1 4 2 1 3 2 4 1 2 1 2 4 4 3 2 3 1 2 1 1 2 1 1 1 1 4 1 4 3 1 3 2 1 3 2 2 4 1 4 1 4 1 3 4

3 3 4 2 4 4 4 3 3 4 3 4 4 4 3 1 1 2 3 1 4 2 1 2 2 1 2 4 2 1 4 4 2 1 2 1 4 1 4 3 4 1 2 4 2 2 4 4 4 1 4 2 3 1 4 2 3 1 2 2

4 3 2 4 3 4 3 1 2 3 2 4 1 2 4 2 2 3 3 2 4 1 1 3 4 4 2 1 1 2 3 1 2 1 4 4 2 1 2 3 4 3 1 2 1 4 2 2 4 4 1 2 4 4 4 2 1 3 3 3 1 4 3 3

1 1 2 4 1 3 4 4 4 2 2 1 1 1 1 4 4 4 1 4 2 2 3 3 1 1 4 4 2 2 1 1 4 1 1 1 2 2 2 3 1 2 4 1 1 1 3 4 2 2 4 1 3 4 3 4 4 4 4 1 1 4 4 3

3 3 4 2 1 4 2 3 3 1 3 3 4 3 1 1 3 4 1 3 2 2 4 3 2 3 4 1 2 3 2 1 2 1 4 4 3 2 1 3 2 1 4 2 3 4 3 4 2 4 4 4 1 3 2 2 3 2 3 4

4 3 1 2 1 1 4 2 4 3 3 4 3 4 3 3 2 3 4 1 2 4 2 4 4 3 1 2 4 1 1 3 4 3 3 4 4 2 4 4 4 1 4 2 4 4 2 4 4 1 2 3 1 3 2 1 1 3 1 2 3 4 3

1 2 3 2 1 4 3 1 2 2 4 4 4 3 3 3 3 2 2 4 4 2 4 4 1 2 3 2 1 2 4 1 2 1 1 3 2 4 2 2 4 3 1 2 4 3 3 2 4 4 1 1 2 2 1 1 4 4 2 3 2 4 3 1

2 2 2 2 2 3 2 4 3 2 3 4 4 4 2 2 1 1 2 3 2 3 1 1 4 2 1 2 2 1 2 1 2 1 4 3 2 3 3 2 2 1 3 4 1 2 3 3 4 2 2 4 4 3 4 2 3 1 3 1

1 1 1 1 1 1 3 1 3 4 4 4 2 1 1 4 2 1 1 2 4 3 4 1 3 4 2 2 4 1 1 2 2 1 4 4 3 3 2 2 3 4 3 3 1 1 4 2 1 2 2 2 2 3 1 3 1 4 2 1 3 1 2 3

3 3 4 2 4 3 2 1 2 4 3 2 1 3 4 3 4 3 1 3 4 3 1 4 4 2 2 2 1 2 3 1 2 1 3 4 1 4 2 1 2 1 4 2 2 4 2 3 4 2 2 2 4 3 3 1 1 3 1 1 1 3 3 4

4 2 2 1 1 3 3 4 1 2 2 2 2 3 2 2 1 2 1 2 1 2 4 1 3 1 3 3 3 2 3 4 1 2 2 1 1 3 1 4 4 3 1 3 3 1 3 4 3 3 1 4 4 1 3 2 4 1 4 3

3 1 3 1 4 1 1 1 3 2 3 2 3 4 1 4 4 2 2 1 1 2 4 3 4 3 1 3 2 4 4 2 2 4 1 3 2 3 4 4 1 1 1 3 2 1 2 1 1 2 2 1 4 1 1 4 1 2 1 4 2 1 3 3

3 1 4 2 3 1 4 3 2 3 4 1 4 2 4 3 3 4 4 4 4 2 4 2 3 4 3 4 4 4 1 2 2 1 2 1 3 2 3 1 3 2 4 1 2 4 3 1 1 4 3 1 1 3 1 1 3 1 1 1 3 1 3 4

4 3 3 2 2 1 3 3 3 3 4 2 4 2 3 3 3 4 4 2 3 2 4 2 4 2 1 1 1 4 3 4 4 1 1 3 3 4 2 4 2 2 4 2 2 4 1 2 2 2 2 1 1 2 1 4 2 3 3 1

4 2 2 3 2 4 1 2 4 2 2 4 4 2 1 4 3 2 3 2 4 3 2 3 4 3 4 3 1 4 4 1 1 1 4 4 2 4 1 1 3 4 1 4 2 3 3 3 1 4 2 1 4 2 3 1 4 2 2 4 2 4 3 1

3 3 1 4 1 4 1 1 4 4 1 3 3 3 1 1 2 2 2 1 3 4 2 1 1 1 1 3 4 4 1 1 4 3 2 1 2 1 4 2 1 4 1 2 3 4 4 4 3 1 4 2 3 1 3 4 2 2 2 2 3 3 2 1

2 1 1 2 1 2 3 4 4 2 4 4 2 3 3 2 3 3 2 3 2 4 1 2 4 4 1 4 4 2 1 1 2 1 3 4 3 4 1 3 2 4 4 1 1 3 3 1 4 2 1 4 3 2 4 2 3 3 2 2

2 1 2 4 4 4 1 1 3 3 3 3 3 1 4 2 3 1 3 2 4 1 2 2 3 3 1 2 3 3 2 2 1 3 2 4 4 4 1 1 1 3 4 3 3 2 4 2 4 1 4 1 4 4 3 4 4 2 4 1 3 4 3 4

1 1 1 4 1 3 4 3 1 3 1 1 1 1 4 2 1 3 1 2 4 4 2 3 1 4 4 2 1 3 2 2 3 3 2 3 4 4 3 3 4 4 1 3 3 3 3 1 1 2 3 1 3 3 1 2 2 4 2 3 3 2 4 3

2 1 2 2 1 3 4 2 1 1 1 3 3 1 3 3 4 2 2 2 2 3 2 1 4 4 1 2 2 3 3 4 2 2 4 1 4 4 1 3 4 3 1 3 1 2 3 1 2 1 4 4 2 2 3 1 2 2 2 4

2 1 4 3 4 2 4 1 4 3 1 2 1 2 4 4 3 2 3 2 4 1 4 1 4 2 2 1 4 2 4 1 2 4 4 4 3 3 4 4 3 1 3 4 1 1 2 2 3 1 3 3 1 3 4 3 3 2 1 2 2 1 4 2

3 4 1 2 3 3 1 2 3 1 1 4 3 1 4 1 2 3 3 3 1 2 1 4 2 2 2 3 1 3 1 1 1 2 1 1 4 2 2 1 4 2 1 3 4 2 2 1 4 1 3 2 1 3 2 2 4 3 4 4 4 4 4 2

4 4 2 1 3 2 1 4 4 2 1 4 2 3 3 2 1 2 3 1 4 2 3 2 2 3 2 2 3 3 4 3 4 4 2 4 3 1 2 3 2 4 4 4 3 1 4 4 1 1 3 3 2 2 1 4 4 4 2 4

3 1 2 3 4 1 4 3 4 3 2 1 1 1 2 2 2 4 4 3 3 4 3 1 3 4 4 4 1 1 3 3 3 1 1 1 1 3 3 4 3 2 4 4 2 3 2 2 4 4 3 2 4 2 4 2 4 4 3 2 3 2 1 2

3 1 2 3 3 2 1 2 3 4 1 2 4 4 2 1 4 4 3 3 4 4 4 3 4 1 3 2 4 3 3 1 3 3 1 3 2 2 1 2 4 1 1 4 1 2 1 2 2 4 1 4 2 4 4 2 3 4 3 4 1 4 3 1

4 3 1 3 1 4 2 3 2 3 3 2 3 3 3 2 2 1 4 2 4 3 4 2 1 4 4 3 1 2 4 2 1 2 2 1 2 2 2 1 2 4 3 1 3 2 4 4 1 3 1 1 4 2 1 4 3 3 1 1

2 3 2 2 2 4 1 2 3 2 4 1 3 4 2 3 1 4 4 4 1 2 3 1 3 4 1 3 4 3 3 4 2 1 1 3 3 4 2 2 1 3 4 3 1 4 4 4 1 3 3 3 1 1 4 2 4 1 1 4 1 4 2 2

2 3 1 1 1 4 4 1 3 1 2 1 4 4 4 2 2 4 1 4 2 1 4 4 1 1 2 1 4 3 4 1 2 1 2 3 3 1 4 3 3 4 2 1 1 4 3 4 2 4 2 4 2 2 4 3 4 1 2 1 3 4 4 2

2 4 4 1 2 2 1 4 3 1 3 3 3 3 4 1 3 2 2 2 4 3 3 3 2 3 2 1 1 3 4 1 1 2 3 4 4 1 4 3 4 2 3 2 3 2 4 3 1 2 1 2 4 1 2 3 3 1 3 4

3 3 4 2 4 4 3 3 3 3 4 2 1 1 1 2 3 4 2 4 2 4 3 1 3 4 1 1 3 2 3 3 4 1 1 1 3 3 4 2 2 3 2 3 4 1 1 4 1 3 3 2 4 4 4 2 3 3 3 3 1 2 4 1

4 4 3 2 2 2 3 2 2 2 1 4 3 2 4 3 4 4 2 3 4 3 4 2 3 3 1 3 2 1 1 2 3 2 1 4 4 1 2 3 2 4 2 3 3 4 4 4 1 2 4 4 2 3 4 4 4 3 2 3 2 3 1 3

2 4 4 1 3 4 2 3 2 4 4 1 4 3 2 2 2 3 1 1 2 2 2 4 4 4 2 4 1 4 2 3 4 1 3 3 1 4 3 4 2 3 4 2 2 4 2 1 1 4 3 2 4 3 3 3 2 2 3 2

3 1 2 2 1 3 3 4 3 3 2 2 3 1 2 2 4 2 4 2 2 4 1 3 3 2 3 4 2 1 2 1 3 1 3 1 1 3 3 2 4 3 1 4 4 1 1 1 4 4 3 1 1 3 3 2 1 2 1 2 2 3 1 2

1 1 3 2 2 3 3 3 1 2 1 2 2 1 2 3 1 3 3 3 1 2 3 3 1 1 3 3 3 1 3 1 3 3 3 1 3 3 1 3 3 1 3 1 1 1 3 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1 1 2

2 2 2 2 3

3 3 3 3 4

4 4 4 4 4 4 4 4 1

1 1 1 1 1 1 1 1 2

2 2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3 3 3 3 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 1

1 1 1 1 1 1 1 1 1 1 1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1

1 2 2

2 3 3

3 4 4

4 1 1

1 2 2

2 3 3

3 4 4

4 1 1

1 2 2

2 3 3

3 4 4

4 1 1

1 2 2

2 3 3

3 4 4

4 1 1

1 2 2

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

< 3% variance from best-case

to worst-case placement

Perfect Placement Worst-Case

Placement

Connectionless Protocol – Makes it Scalable

Copyright 2016 Cray Inc.
18

Irregular

Pattern

Irregular

Pattern

Nearest

Neighbor

Nearest

Neighbor

A Comparison of the Performance

Characteristics of Capability and

Capacity Class HPC Systems

By Douglas Doerfler, Mahesh Rajan,

Marcus Epperson, Courtenay

Vaughan, Kevin Pedretti, Richard

Barrett, Brian Barrett , Sandia

National Laboratories

A Comparison of the Performance

Characteristics of Capability and

Capacity Class HPC Systems

By Douglas Doerfler, Mahesh Rajan,

Marcus Epperson, Courtenay

Vaughan, Kevin Pedretti, Richard

Barrett, Brian Barrett , Sandia

National Laboratories

MPI Collective Latency to 310,440 Ranks

Copyright 2016 Cray Inc.
19

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Number of Nodes

MPI_Allreduce MPI_Barrier MPI_Bcast
Results are for up to

9420 nodes with 32

MPI ranks per node

System Management & Performance Software

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
20

Cray Programming Environment Distribution
Focus on Performance and Productivity

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 4.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

DDT

lgdb

Debugging Support

Tools

Abnormal
Termination
Processing

Performance Analysis

Scoping Analysis

Reveal

SC 2013 Copyright 2013 Cray Inc. - Confidential and Proprietary
21

$module avail

Sep. 2016 Zuse 75, Copyright 2016 Cray Inc.
22

• What application is really used by

the user?

• How many black-box users are

they?

• How do we know which (buggy)

library/compiler/tool is used by

the user?

• When can we get rid of old or

unused versions?

CRAY provides multiple (versions of) available compilers, libraries and tools:

$module list

Sep. 2016 Zuse 75, Copyright 2016 Cray Inc.
23

$module show

$module help

Cray Programming Environment Mission

• It is the role of the Programming Environment to close the gap between observed

performance and achievable performance

• Provide a tightly coupled programming

environment with compilers, libraries, and tools

that will hide the complexity of the system

• Address issues of scale and complexity of HPC

systems

• Target performance with ease of use based on

extended functionality and increased

automation

• Close interaction with users

 For feedback targeting performance and

functionality enhancements

application

information

Runtime

Information

Export/Import

Program

Analyses
Performance

Analysis

Queries for

Application

Optimization

Compiler

information

Static Analysis

Compiler

Applications

Performance

Overview

Performance

Problem

Analyzer

SC 2013 Copyright 2013 Cray Inc. - Confidential and Proprietary
24

Sustained Performance on Real World Applications -
Running the largest jobs, Most Nodes, at High Utilization

Copyright 2016 Cray Inc.
25

Interface | Policies & Job Management

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
26

How applications are run on a Cray XC

● The Cray XC is a batch system.
● Users submit batch job scripts to the PBS scheduler from a login node for execution

at some point in the future. Each job requires resources and a prediction of how long
it will run.

● The scheduler (running on an external server) chooses which jobs to run and allocates
appropriate resources

● The batch system will then execute the user’s job script on an a different node than
the login node (MOM node).

● The scheduler monitors the job and kills any that overrun their runtime prediction.

● User job scripts typically contain two types of statements.
1. Serial commands that are executed by the MOM node, e.g.,

● quick setup and post processing commands, e.g., rm, cd, mkdir ,etc.

2. Parallel executables that run on compute nodes.
1. Launched using the aprun command.

27
SERC Tools WorkshopOctober 26-27 2015

PBS on the XC40

● Main PBS commands:
● qsub – Submit a batch script to SLURM.
● aprun – Run parallel jobs.
● qdel– Signal jobs under the control of SLURM
● qstat – information about running jobs

● The entire information about your simulation execution is contained in a batch script which is
submitted via qsub.

● The batch script contains one or more parallel job runs executed via aprun (job step). Nodes
are used exclusively.

● The simulations have to be executed on /mnt/lustre/…

● Useful environment variables:
● PBS_NODEFILE: “cat $PBS_NODEFILE | uniq –c | sort” is a file that shows you which

nodes you are running on
● PBS_O_WORKDIR: directory from which qsub was run

28
SERC Tools WorkshopOctober 26-27 2015

Running a batch job

Login Node

qsub run.sh

PBS

Queue

Manager

PBS

MOM Node

Cray XC

Compute Nodes

#!/bin/bash

#PBS –l
select=10:ncpus=24:mpiprocs=24

#PBS –l place=scatter
cd $WORKDIR
aprun –n 240 –N 24 simulation.exe
rm –r $WORKDIR/tmp

#!/bin/bash

#PBS –l
select=10:ncpus=24:mpiprocs=24

#PBS –l place=scatter
cd $WORKDIR
aprun –n 240 –N 24 simulation.exe
rm –r $WORKDIR/tmp

Example Batch Job Script – run.sh

Parallel

Serial

Scheduler

Resources

The script will start by default in the directory where

qsub has been executed. This directory is available in

the environment variable $PBS_O_WORKDIR

SERC Tools Workshop
29

October 26-27 2015

Running an application on the Cray XC - ALPS + aprun

● ALPS : Application Level Placement Scheduler

● aprun is the ALPS application launcher
● It must be used to run application on the XC compute nodes:

interactively or in a batch job

● If aprun is not used, the application is launched on the MOM node (and will most likely
fail).

● aprun launches groups of Processing Elements (PEs) on the compute nodes
(PE == (MPI RANK || Coarray Image || UPC Thread || ..))

● aprun man page contains several useful examples

● The 3 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE
(More precise, the “stride” between 2 PEs on a node)

-d

SERC Tools Workshop
30

October 26-27 2015

Script example (large queue on SERC system)

#!/bin/sh

#PBS -N jobname 

#PBS -l select=343:ncpus=24

#PBS -l walltime=24:00:00

#PBS -l accelerator_type="None”

 #PBS -j oe

 ! Date stamps at top and bottom of script for reference

date

! Useful to take note of where job is launched

cd $PBS_O_WORKDIR; pwd

! Don’t necessarily need to load modules at runtime, but

! In case you do (e.g., for dynamic linking):

. /opt/modules/default/init/sh

! (or “source /opt/modules/default/init/csh” for csh)

! Then can do “module load X”, “module list” etc.

! Set up to run in the lustre directory /mnt/lustre for any

! parallel application (use diff directory for each run here)

RUNDIR=/mnt/lustre/USERNAME/myapp/run.$$

mkdir –p $RUNDIR

cd $RUNDIR

! Useful info when wondering later where run output might

! have gone

pwd

! Executable can be in lustre or in home directory ! Here, let’s copy it to our run directory

EXECDIR=/ufs/home/USERNAME/mybuilddir

cp $EXECDIR/a.out $RUNDIR

! Copy any input data you need or symlink it. Large input

! (and output) data files should be on lustre

cp /mnt/lustre/USERNAME/INPUTDATA/input_file .

! Useful info when looking back at run output

export MPICH_ENV_DISPLAY=1

export MPICH_VERSION_DISPLAY=1

! Run the executable. Use timers around aprun as a habit.

! This example uses linux “time” and also calculates walltime in

! a different way.

export beg_secs=`date +"%s"`

aprun -j 1 -n 8209 -N 24 ./a.out < input_file > output_file 

export end_secs=`date +"%s"`

let wallsecs=end_secs-beg_secs

echo "Time taken in seconds is " $wallsecs

date

! Date stamps at top and bottom of script for reference

! Maybe write output_file to stdout if useful and not too huge

cat output_file

31
SERC Tools WorkshopOctober 26-27 2015

What resources did it use?

SERC Tools Workshop
32

● Can be good to record contents of $PBS_NODEFILE during batch session to
note what nodes were used (though list will be long if use lots of nodes!)
● cat $PBS_NODEFILE | sort | uniq -c

● Or look at “apstat –avv apid” when job is running to see placement

● See upcoming information on Cray Performance Tools
● perftools-lite is good place to start

● For accelerators, environment variables are available to produce job
statistics

October 26-27 2015

More info about my running job.... $apstat

SERC Tools Workshop
33

October 26-27 2015

$ xtnodestat –d

October 26-27 2015 SERC Tools Workshop
34

Legend:

nonexistent node S service node

; free interactive compute node - free batch compute node

A allocated (idle) compute or ccm node ? suspect compute node

W waiting or non-running job X down compute node

Y down or admindown service node Z admindown compute node

Available compute nodes: 0 interactive, 10 batch

You have a VERY busy machine...!

Queues on SERC System

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
35

pankaj@clogin72:~> qstat -q

server: sdb

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- ----- ----- ---- -----

phi_nodes -- -- -- -- 0 0 -- D S

ccm_queue -- -- -- -- 0 0 -- D S

temp0 -- -- 168:00:0 -- 1 0 -- E R

gpu_nodes -- -- -- -- 0 0 -- D S

cpu_nodes -- -- -- -- 0 0 -- D S

batch -- -- -- -- 0 20 -- E R

workq -- -- -- -- 0 0 -- D S

large -- -- 24:00:00 -- 0 0 -- E R

medium -- -- 24:00:00 -- 8 17 -- E R

small72 -- -- 72:00:00 -- 15 16 -- E R

small -- -- 24:00:00 -- 20 38 -- E R

gpu -- -- 24:00:00 4 30 20 -- E R

mgpu -- -- 24:00:00 24 1 3 -- E R

xphi -- -- 24:00:00 -- 2 0 -- E R

idqueue -- -- 02:00:00 -- 9 22 -- E R

----- -----

86 136

Batch Strategies and Queues

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

Queue name: Batch
Queue type: Route
Max_queued_by_each_user: 2
Route destinations: idqueue, small, small72, medium, large, gpu, xphi

==============================

Queue Name: idqueue
Queue Type: Execution (This queue is meant for interactive debugging
sessions of test runs of codes)
Job type: CPU MPI based/openmp based
Max_job_queued_per_user: 2
Core ranges: 24 – 256 ~ 10 nodes
Max_walltime: 2hrs
Max_user_job_run: 1
Total_job_runs: 32

36

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

All the other queues below are for production runs once the code has been
verified for correct execution.
Queue Name: small
Queue Type: Execution
Max_job_queued_per_user: 3
Job type: CPU MPI based/openmp based
Core ranges: 24 – 1032
Max_walltime: 24hrs
Max_user_job_run: 2
Total_job_runs: 20

==================================

Queue Name: small72
Queue Type: Execution
Max_job_queued_per_user: 1
Job type: CPU MPI based/openmp based
Core ranges: 24 – 1032
Max_walltime: 72hrs
Max_user_job_run: 1
Total_job_runs: 15

==================================
Queue Name: medium
Queue Type: Execution
Max_job_queued_per_user: 1
Job type: CPU MPI based/openmp based
Core ranges: 1033 - 8208
Max_walltime: 72hrs
Max_user_job_run: 1
Total_job_runs: 10

37

Queue Name: large

Queue Type: Execution

Max_job_queued_per_user: 1

Job type: CPU MPI based/openmp based

Core ranges: 8209 - 22800

Max_walltime: 24hrs

Max_user_job_run: 1

Total_job_runs: 4

====================================

Queue Name: gpu

Queue Type: Execution

Job Type: Cuda based code/Opencl code/ GPU applications

Max_job_queued_per_user: 5

Core ranges: 1 – 48

Min no. of accelerators (Nvidia): 1

Max no. of accelerators (Nvidia): 4

Max_walltime: 24hrs

Max_user_job_run: 3

Total_job_runs: 30

=====================================

Queue Name: xphi

Queue Type: Execution

Job Type: intel-xeon phi coprocessor job(offload mode is supported in Cray)

Max_job_queued_per_user: 3

Core ranges: 1 - 480

Max_walltime: 24hrs

Max_user_job_run: 2

Batch Strategies and Queues

SERC Online Resources

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.
38

http://www.serc.iisc.in/facilities/cray-xc40-

named-as-sahasrat/

For any queries, email to helpdesk_serc or please contact System Administrator, #109,SERC.

Cray Applications Analyst team can be aproaced via SERC System Admin Group

http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat/
mailto:helpdesk_serc@serc.iisc.in

Parallel Computing

10, Sep, 2016 Copyright 2016 Cray Inc.
39

Agenda

1. Introduction to Parallel Computing
2. Basic Terminology and Concepts
3. Memory Architectures
4. Multicore and Multi-node programming
5. Designing Parallel Programs

10, Sep, 2016 Copyright 2016 Cray Inc.
40

What is Parallel Computing?

10, Sep, 2016 Copyright 2016 Cray Inc.
41

What is parallel computing?

Sequential programming:
● Runs on a single CPU
● Computation is modeled after problems with a

chronological sequence of events.
● Processes are run one after another

10, Sep, 2016 Copyright 2016 Cray Inc.
42

What is parallel computing?

Parallel computing is the use of two or more processors (threads, cores or
computers) in combination to solve a single problem.

● Runs on multiple CPUs concurrently

● Computation is modeled into discrete parts that can be solved
concurrently

● In each part, processes are run one after another simultaneously on
different CPUs

10, Sep, 2016 Copyright 2016 Cray Inc.
43

Basic Terminology and Concepts

10, Sep, 2016 Copyright 2016 Cray Inc.
44

Basic Terminology

Instruction :

An order given to a computer processor by a program. Tells the
processor what to do

Process :

 An execution instances of a Program.

 Executes in a sequence of Instructions

 A process is always stored in the main memory also termed as the
primary memory or random access memory (RMA).

 Several process associated with a single program

Source : Operating System Concepts by Abraham Silberschatz , Peter B. Galvin , Greg Gagne

10, Sep, 2016 Copyright 2016 Cray Inc.
45

Basic Terminology

Thread

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a
register set, and a stack.

- Light-weight process

- Executes independently

- A process has only one thread of control

- A process executes Instructions concurrently

- Multiple threads can execute on a multiprocessor systems

- Threads running within a process shares resources such as

address space, Stack and other process information

- Threads are created using Posix libraries in C language

Source : Operating System Concepts by Abraham Silberschatz , Peter B. Galvin , Greg Gagne

10, Sep, 2016 Copyright 2016 Cray Inc.
46

Basic Terminology

Task

A logically discrete section of computational work. A task is typically a program or
program-like set of instructions that is executed by a processor.

Parallel Task

A task that can be executed by multiple processors

Serial Execution

Execution of a program sequentially, one statement at a time. In the simplest sense, this is
what happens on a one processor machine. However, virtually all parallel tasks will have
sections of a parallel program that must be executed serially.

Parallel Execution
Execution of a program by more than one task, with each task being able to execute the
same or different statement at the same moment in time.

Shared Memory
A computer architecture where all processors have direct access to common physical
memory.

Source : https://computing.llnl.gov/tutorials/parallel_comp

10, Sep, 2016 Copyright 2016 Cray Inc.
47

Basic Terminology

Distributed Memory
Network based memory access for physical memory that is not common.

Communications
● Parallel tasks typically need to exchange data. Through a shared memory bus or over a network

● The event of data exchange is commonly referred to as communications.

Synchronization
● The coordination of parallel tasks in real time associated with communications.

● Implemented by establishing a synchronization point within an application where a task may
not proceed further until another task(s) reaches the same or logically equivalent point.

● Synchronization usually involves waiting by at least one task, and can therefore cause a parallel
application's wall clock execution time to increase.

Granularity
In parallel computing, granularity is a qualitative measure of the ratio of computation to
communication.

● Coarse: relatively large amounts of computational work are done between communication
events

● Fine: relatively small amounts of computational work are done between communication events

Source : https://computing.llnl.gov/tutorials/parallel_comp

10, Sep, 2016 Copyright 2016 Cray Inc.
48

Parallel Computing Concepts

10, Sep, 2016 Copyright 2016 Cray Inc.
49

Parallel Computing Concepts – Flynn Classification

10, Sep, 2016 Copyright 2016 Cray Inc.

Parallel processing systems achieve parallelism by having more than one

processor performing tasks simultaneously. There are many different ways

to organize the processors and memory. One of the more widely used

classifications is called Flynn's Taxonomy.

 Flynn's taxonomy : It is based on Instruction and Data processing. A

computer is classified by whether it processes a single Instruction at a

time or multiple Instructions simultaneously, and whether it operates on

one or multiple Data sets.

Parallel Computing Concepts – Flynn Classification

SIMDSISD

MISD MIMD

Single Instruction with Multiple DataSingle Instruction with Single Data

Multiple Instruction with Single Data Multiple Instruction with Multiple Data

10, Sep, 2016 Copyright 2016 Cray Inc.
51

Memory Architectures

10, Sep, 2016 Copyright 2016 Cray Inc.
52

Memory architectures

● Shared Memory
● Distributed Memory
● Hybrid Memory

10, Sep, 2016 Copyright 2016 Cray Inc.
53

Shared Memory

● Shared memory parallel computers vary widely, but generally have in
common the ability for all processors to access all memory as global address
space.

● Multiple processors can operate independently but share the same memory
resources.

● Changes in a memory location effected by one processor are visible to all
other processors.

● Shared memory machines can be divided into two main classes based upon
memory access times: UMA and NUMA.

Programming Models:

- MPI (Message Passing Interface)

- openMP API (Open Multi-Processing)

- pthreads etc

10, Sep, 2016 Copyright 2016 Cray Inc.
54

Shared Memory

Advantages:

• Global address space provides a user-friendly programming perspective to
memory

• Data sharing between tasks is both fast and uniform due to the proximity of
memory to CPUs

Disadvantages:

• Lack of scalability between memory and CPUs.
• Adding more CPUs can geometrically increases traffic on the shared memory-

CPU
• Programmer responsibility for synchronization constructs that insure "correct"

access of global memory.
• Expense: Expensive to design and produce shared memory machines with ever

increasing numbers of processors.

10, Sep, 2016 Copyright 2016 Cray Inc.
55

Distributed Memory

● Distributed memory systems require a communication network to connect inter-
processor memory.

● Processors have their own local memory. Memory addresses in one processor do not map
to another processor, so there is no concept of global address space across all processors.

● Each processor has its own local memory, it operates independently.

● When a processor needs access to data in another processor, it is usually the task of the
programmer to explicitly define how and when data is communicated.

● The network "fabric" used for data transfer varies widely

Programming Model :

- MPI (Message Passing Interface)

10, Sep, 2016 Copyright 2016 Cray Inc.
56

Advantages:

● Memory is scalable with number of processors. Increase the number of processors
and the size of memory increases proportionately.

● Each processor can rapidly access its own memory without interference and without
the overhead incurred with trying to maintain cache coherency (Changes it makes to
its local memory have no effect on the memory of other processors).

● Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

● The programmer is responsible for many of the details associated with data
communication between processors.

● It may be difficult to map existing data structures, based on global memory, to this
memory organization.

● Non-uniform memory access (NUMA) times

10, Sep, 2016 Copyright 2016 Cray Inc.
57

Hybrid Memory

● Combination of both shared and distributed memory
architectures.

● The shared memory component is usually a cache coherent SMP
machine. Processors on a given SMP can address that machine's
memory as global.

● The distributed memory component is the networking of multiple
SMPs. SMPs know only about their own memory - not the
memory on another SMP. Therefore, network communications are
required to move data from one SMP to another.

● Current trends seem to indicate that this type of memory
architecture will continue to prevail and increase at the high end
of computing for the foreseeable future.

● Advantages and Disadvantages: whatever is common to both
shared and distributed memory architectures.

10, Sep, 2016 Copyright 2016 Cray Inc.
58

CRAY XC 40 Login node architecture :
cpuinfo :

- Processor : Sandy Bridge

- No of Sockets : 1

- No of Physical Cores : 8

- No of Logical Cores : 16

- Hyper thread : Enabled

- Threads per Core : 2

- CPU Clock Rate : 2601 MHz

- L1 : 32 KB

- L2 : 256 KB

- L3 : 20 MB

Cray XC 40 login node architecture :

lscpu info:

CRAY XC 40 Login node CPU architecture :
cpuinfo :

- Processor : Haswell

- No of Sockets : 2

- No of cores per Socket : 12

- No of Physical Cores : 24

- No of Logical Cores : 48

- Hyper thread : Enabled

- Threads per Core : 2

- CPU Clock Rate : 2501 MHz

- L1 : 32 KB

- L2 : 256 KB

- L3 : 30 MB

Multicore and Multi-node programming

10, Sep, 2016 Copyright 2016 Cray Inc.
62

Multicore Programing

● Programming directly on processor cores is painful
● Concurrency platforms abstract processor cores
● Handles synchronization, communication protocols
● Perform load balancing
● Uses shared memory architecture

Example : Open MP

10, Sep, 2016 Copyright 2016 Cray Inc.
63

 Stands for Open specifications for Multi-Processing.
 API to exhibit multi-threaded and shared memory

parallelism.
 The API is specified for C/C++ and Fortran
 Latest Version : 4.5

 Three distinct components.
● Compiler Directives (44)

● Runtime Library Routines (35)
● Environment Variables (13)

Multicore Programing – Open-MP

10, Sep, 2016 Copyright 2016 Cray Inc.
64

 OpenMP is an explicit (not automatic) programming model, offering the programmer full

control over parallelization.

 OpenMP uses the fork-join model of parallel execution

 All OpenMP programs begin as a single process: the master thread. The master thread

executes sequentially until the first parallel region construct is encountered

 OpenMP programs accomplish parallelism exclusively through the use of threads.

 Threads exist within the resources of a single process. Without the process, they cease to

exist.

 Typically, the number of threads match the number of machine processors/cores

 Parallelization can be as simple as taking a serial program and inserting compiler directives

 Inserting subroutines to set multiple levels of parallelism, locks and even nested locks.

Multicore Programing – openMP Programming Model

10, Sep, 2016 Copyright 2016 Cray Inc.
65

Example openMP :

#include <omp.h>

main ()

{

#pragma omp parallel num_threads(4) // Compiler Directive

// setenv omp_num_threads 4 : Enviromment Variable

{

printf(”Hello! My Thread Id is : %d\n” , omp_get_num_thread ()) ;

// omp_get_num_thread () : Runtime library routine

}

}

Multicore Programing – Open-MP Programming Model

10, Sep, 2016 Copyright 2016 Cray Inc.
66

Example openMP :

Compilation : cc hello.c –openmp –o hello

Run : ./hello (Use qusb for Sahasrat)

Output :

Hello! My Thread Id is : 2

Hello! My Thread Id is : 1

Hello! My Thread Id is : 3

Hello! My Thread Id is : 4

Multicore Programing – Open-MP Programming Model

10, Sep, 2016 Copyright 2016 Cray Inc.
67

Multi-node Programing

● Based on distributed memory architecture
● Designed for MIMD
● Handle communications between nodes
● Perform load balancing between nodes

Example : MPI

10, Sep, 2016 Copyright 2016 Cray Inc.
68

About MPI

 Message Passing application programmer Interface
 Designed to provide access to parallel hardware

• Clusters
• Heterogeneous networks
• Parallel computers

 Provides for development of parallel libraries
 Supports C/C++ and Fortran
 Message passing

● Point-to-point message passing operations
 One to One Communication

● Collective (global) operations
 One to all, All to one & All to All Communications

Multi-node Programing – MPI

10, Sep, 2016 Copyright 2016 Cray Inc.
69

Example MPI :

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h> // Provides basic MPI definitions and types

int main (int argc, char *argv[])

{

int myrank; // Process rank

MPI_Init(&argc, &argv); // Start of MPI

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

// Rank of calling process in the communicator

printf(“Hello, I am process %d\n", myrank);

MPI_Finalize(); // End of MPI Communication

return 0;

}

Multi-node Programing – MPI Example

10, Sep, 2016 Copyright 2016 Cray Inc.
70

Example MPI :

Compilation :

cc hello_mpi.c –o hello_mpi // cc is a superior command for mpicc/mpiicc

Run :

mpirun –np 4 ./hello_mpi

(Use aprun command to PBS script to execute on sahasrat)

Output :

Hello, I am process 2

Hello, I am process 1

Hello, I am process 3

Hello, I am process 4

Multi-node Programing – MPI Example

10, Sep, 2016 Copyright 2016 Cray Inc.
71

Designing Parallel Programs

10, Sep, 2016 Copyright 2016 Cray Inc.
72

Designing a Parallel solution

 Every sequential problem may have one or more parallel solutions

 The best solution may differ from the actual sequential algorithm

 Solution is based on underlying hardware architecture, available
software resources, Problem and Size of the problem

Source : http://www.mcs.anl.gov/~itf/dbpp/text/book.html

10, Sep, 2016 Copyright 2016 Cray Inc.
73

Understand the Problem

 Identify the program's hotspots
 Identify bottlenecks in the program
 Identify Data dependence
 Look for alternative algorithms if possible

10, Sep, 2016 Copyright 2016 Cray Inc.
74

Steps to Parallelization

1. Understand the Problem

2. Partition/ Decompostion : The computation data set decomposed based on domain and
functional

3. Communication : The communication required to coordinate task execution

4. Agglomeration : Based on the performance requirements and cost, If necessary, tasks are
combined into larger tasks to improve performance or to reduce development costs

5. Mapping : Each task is assigned to a processor in a manner that attempts to satisfy the
competing goals of maximizing processor utilization and minimizing communication costs.
Mapping can be specified statically or determined at runtime by load-balancing algorithms.

Source : http://www.mcs.anl.gov/~itf/dbpp/text/book.html

https://computing.llnl.gov/tutorials/parallel_com

10, Sep, 2016 Copyright 2016 Cray Inc.
75

Steps to Parallelization

Source : http://www.mcs.anl.gov/~itf/dbpp/text/book.html

10, Sep, 2016 Copyright 2016 Cray Inc.
76

Steps to Parallelizing ROMS (Regional Ocean Modeling
System)

1. Understand the Problem

ROMS is a free-surface, terrain-following, primitive equations ocean
model. Uses topography-following coordinates, and uses curvilinear grids.
Grid geometry can be stretched/distorted, but grid is logically Cartesian.

- Based on Fortran language and uses openMP or MPI

- Input file/ Workload/ benchmark size

- Grid Size (4096 x 512)

- MPI standard used

Source : https://www.myroms.org/wiki/Documentation_Portal

10, Sep, 2016 Copyright 2016 Cray Inc.
77

Partition/ Decomposition

● Break the problem into discrete "chunks" of work that can be distributed
to multiple tasks.

● Two ways to partition computation among parallel tasks

Domain decomposition Functional decomposition

10, Sep, 2016 Copyright 2016 Cray Inc.
78

Steps to Parallelization

● Parallel Decomposition via horizontal tiling (vertical not split)

● Halo regions around each tile.

● Data exchange happens in East-West and North-South direction.

10, Sep, 2016 Copyright 2016 Cray Inc.
79

Steps to Parallelization

- NtileI x NtileJ = 15 x 8
- MPI Ranks = 120
- Grid Size = 4096 x 512

- Each Rank computes of tile size 273.07 x 64

10, Sep, 2016 Copyright 2016 Cray Inc.
80

Partition/ Decomposition

In CFD, Multi dimension decomposition (x,1,1) to (x,y,z)

- Less number of faces always a gain for computation.

- Reduces significant overhead of communication and Computation.

- A mesh with F x F size

10, Sep, 2016 Copyright 2016 Cray Inc.
81

Partition/ Decomposition

In a topology of a mesh is cuboid, of (120,8,8) then

For X,1,1 : (120,1,1)

Faces = 120 x 2 x 8 x 8 = 15380

For X,Y,Z : (6,5,4)

Faces = 6 x 2 x 8 x 8 + 5 x 2 x 8 x 20 + 4 x 2 x 20 x 8 = 3648

10, Sep, 2016 Copyright 2016 Cray Inc.
82

Need of Communication

 Communications between tasks depends upon the problem

 Knowing which tasks must communicate with each other is critical
during the design stage of a parallel code

 Factors to Consider

● Cost of communications

● Latency vs. Bandwidth

● Synchronous vs. asynchronous communications

● Scope of communications

10, Sep, 2016 Copyright 2016 Cray Inc.
83

MPI Communication calls:

10, Sep, 2016 Copyright 2016 Cray Inc.
84

Steps to Parallelization

- Tile Size : 273.07 x 64

10, Sep, 2016 Copyright 2016 Cray Inc.
85

Load Balancing :

Distributing work among tasks

It can be considered a minimization of task idle time

10, Sep, 2016 Copyright 2016 Cray Inc.
86

Granularity :
A qualitative measure of the ratio of computation to communication.

Coarse-grain :
 Relatively large amounts of computational work are done between

communication events
 High computation to communication ratio
 Implies more opportunity for performance increase
 Harder to load balance efficiently

Fine-grain:
 Relatively small amounts of computational work are done between communication

events
 Low computation to communication ratio
 Facilitates load balancing
 Implies high communication overhead and less opportunity for performance enhancement
 If granularity is too fine it is possible that the overhead required for communications and

synchronization between tasks takes longer than the computation.

10, Sep, 2016 Copyright 2016 Cray Inc.
87

I/O :
● Reduce overall I/O as much as possible

● Writing large chunks of data rather than small chunks is usually
significantly more efficient.

● Fewer, larger files performs better than many small files.

10, Sep, 2016 Copyright 2016 Cray Inc.
88

Optimization techniques

10, Sep, 2016 Copyright 2016 Cray Inc.
89

1. Understand Hardware architecture

2. Check bottleneck using profiling tools and debugging tools

Eg : craypat, Allinea DDT, gprof, lgdb etc

For ROMS:

Base line code : 145 Sec

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
90

3. Use compiler related optimization flags

Eg: –O2/-O3, -parallel, -fp-model fast, -fopt-prefetch, -funroll-loops etc

For ROMS :

After removing –ip flag : 115 Sec

After changing –fp-model precise to –fp-model fast=1 : 100 Sec

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
91

4. Use architecture specific libraries

Eg: Cray’s libsci (includes BLAS, CBLAS, BLACS, LAPACK,

ScaLAPACK),

Intel’s MKL etc

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
92

5. Use SIMD length efficiently

For Sandy Bridge : 256 bit vector width
For Haswell : 256 bit vector width

Eg : -mavx, -avx etc

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
93

Eg: A typical loop:

Simple optimization techniques:

Issues :

• Array accesses not aligned on vector size boundary in memory

• Arrays may overlap - Compiler can’t determine at compile time

10, Sep, 2016 Copyright 2016 Cray Inc.
94

Actual Drhs allocation :
real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: Drhs

Modified allocation :

real(r8), allocatable, target :: Drhs_padded(:)
!DIR$ attributes align:64 :: Drhs_padded
real(r8), pointer :: Drhs(:,:)

AlignCue = IstrU - 1
PadOffset = 8 - (AlignCue - IminS)
PadRows = 8 - MOD((ImaxS - IminS + 1), 8)
ArraySize = PadOffset + ((ImaxS - IminS + 1 + PadRows) * (JmaxS - JminS + 1))
allocate(Drhs_padded(ArraySize))
Drhs(IminS:(ImaxS + PadRows), JminS:JmaxS) => &

Drhs_padded((PadOffset + 1):ArraySize)

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
95

6. Replace expensive operations by cheaper operations

Eg :

After optimization :

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
96

7. Use Cache efficiently

● Loop blocking/ tiling
● Interchange loops
● Loop unrolling

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
97

● Loop blocking/ tiling

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
98

● Loop blocking/ tiling

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.
99

● Interchange loops

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.

10

0

In ROMS,

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.

10

1

In ROMS,

After this Change : 91 Sec

With other misc.
optimization : 88 Sec

Simple optimization techniques:

10, Sep, 2016 Copyright 2016 Cray Inc.

10

2

Cray Scientific Libraries

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

10

3

Cray Scientific Libraries

FFT

FFTWFFTW

Dense
BLASBLAS

LAPACKLAPACK

ScaLAPACKScaLAPACK

IRTIRT

CASECASE

Sparse

CASKCASK

PETScPETSc

TrilinosTrilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CASE – Cray Adaptive Simplified Eigensolver

10

4

● Large variety of standard libraries available via modules
● Optimized for Cray Hardware and also for Haswell processor.

October 26-27, 2015 SERC Tools Workshop

What makes Cray libraries special

1. Node performance
● Highly tuned routines at the low-level (ex. BLAS)

2. Network performance
● Optimized for network performance

● Overlap between communication and computation

● Use the best available low-level mechanism

● Use adaptive parallel algorithms

3. Highly adaptive software
● Use auto-tuning and adaptation to give the user the known best

(or very good) codes at runtime

4. Productivity features
● Simple interfaces into complex software

10

5October 26-27, 2015 SERC Tools Workshop

Library Usage Overview.

● LibSci
● Includes BLAS, CBLAS, BLACS, LAPACK, ScaLAPACK

● Module is loaded by default (man libsci)

● Threading used within LibSci (OMP_NUM_THREADS). If you call

within a parallel region, single thread used. More info later on.

● FFTW
● module load fftw and man fftw

● PETSc
● module load cray-petsc{-complex} and man intro_petsc

● Trilinos
● module load cray-trilinos and man intro_trilinos

● Third Party Scientific Libraries
● module load cray-tpsl (use online documentation)

● Iterative Refiniment Toolkit (IRT) through LibSci.
● man intro_irt

● Cray Adaptive Sparse Kernels (CASK) are used in cray-petsc and cray-trilinos (transparent to
the developer).

10

6October 26-27, 2015 SERC Tools Workshop

Performance Analysis with CrayPat

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

10

7

Outline

SERC Tools Workshop

● Introduction to performance analysis with CrayPat

● Different approaches to profiling: Sampling vs. Tracing

● How to recompile and run your code for CrayPat.

● Combining Sampling and Tracing: Automatic Performance Analysis

● Collecting Hardware Performance counters.

October 26-27, 2015

The Optimization Cycle

October 26-27, 2015 SERC Tools Workshop

Profile

InspectDiagnose

Optimize

Major code
change

Process
Results

Debug
& Run

Loop while

time and

resources

permit

CrayPAT Overview

SERC Tools Workshop

● Assist the user with application performance analysis and optimization
● Provides concrete suggestions instead of just reporting data.

● Work on user codes at realistic core counts with thousands of processes/threads

● Integrate into large codes with millions of lines of code

● Is a universal tool
● Basic functionality available to all compilers on the system

● Additional functionality available for the Cray compiler (loop profiling)

● Requires no source code or Makefile modification
● Automatic instrumentation at group (function) level such as mpi, io, …

● Requires object files and archives for instrumentation and to be compiled with the wrapper scripts
while the perftools module was loaded.

● Able to generate instrumentation on optimized code.

● Creates a new stand-alone instrumented program while preserving the original binary.

● Is under continuous development – always improving!

October 26-27, 2015

Components of CrayPat

SERC Tools Workshop

● Available through the perftools module:

● pat_build - Instruments the program to be analyzed (command line)

● pat_report - Generates text reports from the performance data captured
during program execution and exports data for use in other programs.
(command line)

● Cray Apprentice2 - A graphical analysis tool
that can be used to visualize and explore the
performance data captured during program
execution.

● Reveal - A graphical source code analysis tool
that can be used to correlate performance analysis
data with annotated source code listings, to identify
key opportunities for optimization.

● craypat-lite – Light weight profiling tool.

October 26-27, 2015

Components of CrayPat (cont.)

SERC Tools Workshop

● grid_order - Generates MPI rank order information that can be used with the
MPICH_RANK_REORDER environment variable to override the default MPI rank placement scheme
and specify a custom rank placement. (For more information, see the intro_mpi(3) man page.)

● pat_help - Help system, which contains extensive usage information and examples. This
help system can be accessed by entering pat_help at the command line.

● The individual components of CrayPat are documented in the following
man pages (info on hardware counters will follow):
● intro_craypat(1)
● pat_build(1)
● pat_report(1)
● pat_help(1)
● grid_order(1)
● app2(1)
● reveal(1)

October 26-27, 2015

Sampling and Event Tracing

SERC Tools Workshop

CrayPAT provides two fundamental ways of profiling:

1. Sampling
● By taking regular snapshots of the applications call stack we can create a statistical profile

of where the application spends most time.

● Snapshots can be taken at regular intervals in time or when some other external event
occurs, like a hardware counter overflowing

2. Event Tracing
● Alternatively we can record performance information every time a specific program event

occurs, e.g. entering or exiting a function.

● We can get accurate information about specific areas of the code every time the event
occurs

● Event tracing code can be added automatically or included manually through API calls.

● Automatic Performance Analysis (APA) combines the two approaches.

● Loop profiling is a special flavor of event tracing.

October 26-27, 2015

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

The best approach is guided tracing.

e.g., Only tracing functions that are not small (i.e., very few

lines of code) and contribute a lot to application’s run time.

APA is an automated way to do this.

October 26-27, 2015 SERC Tools Workshop

CrayPat - Full featured application profiling

Exercise 1: Generate a Sampling Profile

October 26-27, 2015 SERC Tools Workshop

• Makes the default version of CrayPAT available

• Subsequent compiler invocations will automatically insert necessary hooks for profiling (not always up-to-

date with latest third-party compilers)

• Binaries are not automatically instrumented

> module load perftools

• Builds code with profiling hooks, then instruments the binary

• Result named himeno.exe+pat

> make clean; make

> pat_build –S himeno.exe

• Running the “+pat” binary creates a data file “*.xf” or a directory in run directory

• pat_report reads that data file and prints lots of human-readable performance data. Creates an *.ap2 file.

> aprun –n 24 ./himeno.exe+pat (within PBS script)

> pat_report –o myreport.txt himeno+pat+* (when PBS job returns)

Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function
| | | | Source
| | | | Line
| | | | PE=HIDE

100.0% | 2063.0 | -- | -- |Total
|---
| 82.3% | 1698.0 | -- | -- |USER
||--
|| 77.2% | 1592.2 | -- | -- |jacobi
3| | | | | Himeno/test.samp/himeno.c
||||--
4||| 61.1% | 1260.6 | 32.4 | 2.9% |line.243
4||| 7.2% | 147.8 | 19.2 | 13.2% |line.257
4||| 4.3% | 89.5 | 17.5 | 18.7% |line.258
4||| 4.2% | 86.5 | 8.5 | 10.2% |line.260
||||==
|| 5.1% | 105.8 | -- | -- |initmt
3| | | | | Himeno/test.samp/himeno.c
||==
| 16.4% | 338.2 | -- | -- |ETC
||--
|| 13.8% | 284.8 | 5.2 | 2.1% |__cray_scopy_HSW
|| 2.6% | 53.5 | 4.5 | 8.9% |__cray_sset_HSW
||==
| 1.3% | 26.6 | -- | -- |MPI
|===

Top function

Table 2: Profile by Group, Function, and Line

October 26-27, 2015 SERC Tools Workshop

Communication not

relevant. Threshold

of 0.5% can be

cancelled with –T

option.

Exercise 2: Generate a Tracing Profile

October 26-27, 2015 SERC Tools Workshop

• Makes the default version of CrayPAT available.

> module load perftools

• If your application is already built with perftools loaded you do not have to rebuild

when switching the experiment.

• Traces MPI functions calls and functions defined in the program source files

> pat_build –u –g mpi himeno.exe

• Running the “+pat” binary creates a data file or directory

• pat_report reads that data file and prints lots of human-readable performance data.

Creates an *.ap2 file.

> aprun –n 24 ./himeno.exe+pat (from within PBS script)
> pat_report –o myrep.txt himeno+pat+*

User functions

Table 1: Profile by Function Group and Function

October 26-27, 2015 SERC Tools Workshop

Synchronisation

Communication

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 20.643909 | -- | -- | 1149.0 |Total
|---
| 98.8% | 20.395989 | -- | -- | 219.0 |USER
||--
|| 91.1% | 18.797060 | 0.115535 | 0.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | 0.5% | 1.0 |initmt
|| 0.0% | 0.000402 | 0.000167 | 33.5% | 53.0 |sendp3
||==
| 1.2% | 0.239306 | -- | -- | 871.0 |MPI
||--
|| 0.7% | 0.148981 | 0.094595 | 44.4% | 159.0 |MPI_Waitall
|| 0.4% | 0.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend
|| 0.0% | 0.004125 | 0.004316 | 58.4% | 318.0 |MPI_Irecv
|| 0.0% | 0.000298 | 0.000013 | 4.8% | 55.0 |MPI_Allreduce
|| 0.0% | 0.000033 | 0.000013 | 32.8% | 1.0 |MPI_Cart_create
||==
| 0.0% | 0.008614 | -- | -- | 59.0 |MPI_SYNC
||--
|| 0.0% | 0.006696 | 0.006627 | 99.0% | 2.0 |MPI_Barrier(sync)
|| 0.0% | 0.001802 | 0.001399 | 77.6% | 55.0 |MPI_Allreduce(sync)
|| 0.0% | 0.000061 | 0.000052 | 86.3% | 1.0 |MPI_Init(sync)
|| 0.0% | 0.000056 | 0.000051 | 91.7% | 1.0 |MPI_Finalize(sync)
|===

Options for Tracing

SERC Tools Workshop

● More information is given in the pat_build man page

● -u Create new trace intercept routines for those functions that are defined in the respective source file
owned by the user.

● -w Make tracing the default experiment and create new trace intercept routines for those functions
for which no trace intercept routine already exists. If -t, -T, or the trace build directive are not specified,
only those functions necessary to support the CrayPat runtime library are traced.

● -T tracefunc Instrument program to trace the function references to tracefunc. This option applies to
all user-defined entry points as well as to those that appear in the predefined function groups listed
under the -g option. Use the nm or readelf command to determine function names to specify for
tracing. If tracefunc begins with an exclamation point (!) character, references to tracefunc are not
traced.

● -t tracefile Instrument program to trace all function references listed in tracefile.

● Only true function calls can be traced. Functions that are inlined by the compiler or that
have local scope in a compilation unit cannot be traced.

October 26-27, 2015

Options for Tracing

SERC Tools Workshop

● More information is given in the pat_build man page

● -g tracegroup Instrument the program to trace all function
references belonging to the trace function group tracegroup.
Only those functions actually executed by the program at
runtime are traced. A selection of tracegroup values is:

● blas Basic Linear Algebra subprograms
● netcdf Network Common Data Form
● hdf5 HDF5 I/O library
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● mpi MPI
● omp OpenMP API
● sysio I/O system calls
● syscall system calls

● More information on the various tracegroup values is
given in $CRAYPAT_ROOT/share/traces after loading
the perftools module.

October 26-27, 2015

Files generated during regular Profiling

SERC Tools Workshop

● a.out+pat+PID-node[s|t].xf: raw data files
● Depending on the nature of the program and the environmental conditions in

effect at the time of program execution, when executed, the instrumented
executable generates one or more data files with the suffix .xf, where:
● a.out is the name of the original program.
● PID is the process ID assigned to the instrumented program at runtime.
● node is the physical node ID upon which the rank zero process executed.
● s|t is a one-letter code indicating the type of experiment performed,

either s for sampling or t for tracing.
● Use the pat_report command to view or dump the .xf file or export it to

another file format for use with other applications, i.e. *.ap2 files.

● *.ap2 files: self contained compressed performance files.
● Normally about 5 times smaller than the corresponding set of *.xf files.
● Only one *.ap2 per experiment compared to potentially multiple *.xf files.
● Contains the information needed from the application binary and can be reused,

even if the application binary is no longer available or if it was rebuilt.
● Is independent on the version used to generate the ap2 file while the xf files are

very version dependent.
● It is the only input format accepted by Cray Apprentice2 and Reveal.
● => Can delete the .xf files after you have the ap2 file.

October 26-27, 2015

Using pat_report

SERC Tools Workshop

● Always need to run pat_report at least once to perform data conversion
● Combines information from xf output (optimized for writing to disk) and binary with raw

performance data to produce ap2 file (optimized for visualization analysis and smaller than raw data)

● Instrumented binary must still exist when data is converted!

● Resulting ap2 file is the input for subsequent pat_report calls and Reveal or Apprentice2

● xf files and instrumented binary files can be removed once ap2 file is generated.

● Generates a text report of performance results
● Data laid out in tables

● Many options for sorting, slicing or dicing data in the tables.
> pat_report –O <table option> *.ap2
> pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

October 26-27, 2015

Some useful predefined report types:

October 26-27, 2015 SERC Tools Workshop

● pat_report –O ca+src
● Show the callers (bottom-up view) leading to the routines that have a high use in the report

and include source code line numbers for the calls and time-consuming statements.

● pat_report –O load_balance
● Show load-balance statistics for the high-use routines in the program. Parallel processes with

minimum, maximum and median times for routines will be displayed. Only available with
tracing experiments.

● pat_report –O mpi_callers
● Show MPI message statistics. Only available with tracing experiments.

CrayPat-lite

● Light-weight application profiling
● Good place to start!

● Provide automatic application performance statistics at the end of a
job. Focus is to offer a simplified interface to basic application
performance information for users not familiar with the Cray
performance tools and perhaps new to application performance
analysis.

● The tool is enabled by loading a module and rebuild

● Program is automatically relinked to add instrumentation in a.out
(pat_build step done for the user)
● .o files are automatically preserved
● No modifications are needed to a batch script to run instrumented binary, since

original binary is replaced with instrumented version
● pat_report is automatically run before job exits.
● Performance statistics are issued to stdout
● User can use “classic” CrayPat for more in-depth performance investigation

> module load perftools-lite
> make clean && make

CrayPat-lite Overview

October 26-27, 2015 SERC Tools Workshop

Steps to Using CrayPat-lite

October 26-27, 2015 SERC Tools Workshop

Access light version of performance tools software

Build program

Run program (no modification to batch script)

a.out (instrumented program)a.out (instrumented program)

Condensed report to stdout

a.out*.rpt (same as stdout)

a.out*.ap2

MPICH_RANK_XXX files

Condensed report to stdout

a.out*.rpt (same as stdout)

a.out*.ap2

MPICH_RANK_XXX files

> make> make

aprun a.outaprun a.out

> module load perftools-lite> module load perftools-lite

Performance Statistics Available

October 26-27, 2015 SERC Tools Workshop

Job information
● Number of MPI ranks, …
● Wallclock
● Memory high water mark
● Performance counters (CPU only)

Profile of top time consuming routines with load balance

Observations and Instructions on how to get more info.

Cray Apprentice2

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

12

9

Installing Apprentice2 on Laptop

October 26-27, 2015 SERC Tools Workshop

13

0

From a Cray login node

● > module load perftools

● Go to:
● $CRAYPAT_ROOT/share/desktop_installers/

● Download .dmg or .exe installer to laptop

● Double click on installer and follow directions to install

● Of course, can just run app2 from the login prompt instead

Cray Apprentice2
% module load perftools

% app2 program1+pat+180tdo-0000.ap2

% module load perftools

% app2 program1+pat+180tdo-0000.ap2

131

Many options for viewing

Results. See “man app2”

or Cray documentation

October 26-27, 2015 SERC Tools Workshop

Call Tree View – Visualizing Load Imbalance

October 26-27, 2015 SERC Tools Workshop

13

2

Function

List

Load balance overview:

Height  Max time

Upper bar Average time

Lower bar  Min time

Yellow represents

imbalance time

Zoom

DUH Button:

Provides hints

for performance

tuning

Filtered

node or

sub tree

Green colored

node are not

traced.

Data displayed

when hovering

the mouse over

nodes or “?”.

Node width  inclusive time

Node height  exclusive time

Example – Craypat + Apprentice2

Sep, 2016 Zuse 75, Copyright 2016 Cray Inc.

13

3

Call-Tree – Users Baseline

Order of the matrix 77K

Time to Solution 3,259.549389 (3259 sec)

TLB utilization 4,817.62 refs/miss 9.41 avg uses

D1 cache hit,miss ratios 95.3% hits 4.7% misses

D1 cache utilization (misses) 21.30 refs/miss 2.66 avg hits

D2 cache hit,miss ratio 50.8% hits 49.2% misses

D1+D2 cache hit,miss ratio 97.7% hits 2.3% misses

D1+D2 cache utilization 43.29 refs/miss 5.41 avg hits

D2 to D1 bandwidth 7,486.647MiB/sec 25,551,258,703,839 bytes

TLB utilization

Here, 512 x 8-byte double precision floats Therefore any usage of page less than 10X shows

poor use. In the 4817 doesn’t looked good use considering lower user of the page present in

the buffer

D1 cache utilization

Level 1 cache line is 64 contiguous bytes, e.g. 8 x 8-byte doubles

So if every double was used once, expect 8 refs/miss

It Corresponds to hit ratio of 87.5%

95.4 is excellent utilization

D1+D2 cache hit ratio

Should be high (rule of thumb is more than 97%)

99.3% is pretty good ration

D2 cache utilization

Should be put to scrutiny, for performance optimization

Offered Block Size vs Cache+Performance
16X16-Mat_Blk_Size - 4,231.546053sec

32X32-Mat_Blk_Size - 4,234.151549sec

64X64-Mat_Blk_Size - 3,557.615978sec

Lower TLB Utilization correspond to

lower L2 cache hits

D1-D2 cache hit ration is directly

proportional to the performance

D2 Cache Miss Ratio- 10% lower

ration cause 19% performance hit in

the case of 16 and 32 block size

matrix

Call-Tree – New Baseline

Order of the matrix 110K

Time to Solution 3,557.615978 (3557 sec)

TLB utilization 7,120.13 refs/miss 13.91 avg uses

D1 cache hit,miss ratios 95.3% hits 4.7% misses

D1 cache utilization (misses) 21.41 refs/miss 2.68 avg hits

D2 cache hit,miss ratio 85.0% hits 15.0% misses

D1+D2 cache hit,miss ratio 99.3% hits 0.7% misses

D1+D2 cache utilization 142.64 refs/miss 17.83 avg hits

D2 to D1 bandwidth 4,995.377MiB/sec 18,452,159,972,629 bytes

~30%
more elements / time

IO, HEAP, MPI, PTHREAD, OMP, BLAS, BLACS, SCALAPACK, PBLAS

We have Improved on both the aspects of nonperformance, D2

cache hits and Overall TLB utilization

Thank You

Contact : pankaj.navani@cray.com & raviteja@cray.com

