
TR-2008-04

On Using Multiple CPU Threads to Manage Multiple

GPUs under CUDA

Hammad Mazhar

Simulation Based Engineering Lab

University of Wisconsin Madison

August 1, 2008

1

Abstract

Presented here is a short guide on how to set up a CUDA program so that it uses two

different GPUs on two different cpu threads, with each GPU kernel executed from one

thread. This implementation is specific to Windows XP and uses events to synchronize

and time threads.

Contents

1. Introduction ... 2

2. Overview of process ... 2

3. Source ... 3

3.1 main.cpp .. 4

3.2 simulate.cu .. 5

3.3 simulate_kernel.cu .. 6

2

1. Introduction
This document outlines a basic framework to create multi-threaded multi-GPU CUDA

programs. This is important because it allows the leveraging of multiple GPUs working

with the same set of data at the same time. Data can be divided between two cards, which

reduces computation time and can even double the speed of a simulation. There are many

ways to implement threads in C++, this method uses Windows XP specific commands to

create threads and events. Events allow threads to synchronize by making them wait for

that event to occur. This makes sure that one card doesn’t process data before it is ready

or process data out of sync with the other card. The code provided can be expanded for

additional GPUs by creating an extra thread for each card. For simplicity, this example

does not provide a kernel.

2. Overview of process
The application starts execution in the main function, where two threads called Thread1

and Thread2 are created and begin executing. The main function outputs the data and

waits for the two threads to finish processing. Each thread sets the device to its respective

number, 0 for Thread1 and 1 for Thread 2. The threads execute the CUDA code which in

turn executes the kernels that process the data. Once the kernel finishes and returns to the

calling thread it activates its respective event. The main function waits for each event’s

activation signal; once both events are activated it resets the events and displays the new

data. The main thread and two child threads loop and continue to output and process data.

In this example the two child threads do not wait for an event before processing; only the

main thread i.e., the master thread waits for the two child threads to finish processing.

Figure 1: Application Flow

3. Source

Main.cpp is the code that creates and runs the main thread as well as the two

threads, one for each device.

initialization and simulation functions.

device number specified. Simulate

kernel, and then copies the data back to the main memory.

contains the kernel definition that processes the

does not modify or process any data.

3

Application Flow. Dashed lines indicate events being activated.

is the code that creates and runs the main thread as well as the two

threads, one for each device. Simulate.cu contains CUDA specific code for

functions. Initialize initializes the CUDA device to the

Simulate copies and initializes data to the device, runs the

kernel, and then copies the data back to the main memory. Simulate_kernel.cu

contains the kernel definition that processes the data; this kernel definition is a stub and

does not modify or process any data.

. Dashed lines indicate events being activated.

is the code that creates and runs the main thread as well as the two child

ode for the

initializes the CUDA device to the

copies and initializes data to the device, runs the

Simulate_kernel.cu

is a stub and

4

1.1 main.cpp
//main.cpp

//Includes necessary for threads and IO

#include <windows.h>

#include <process.h>

#include <stdio.h>

#include <cutil.h>

//create an array of 2 event Handles

HANDLE hEvent[2];

//Declare data variables

float pointA[32]={0};

float pointB[32]={0};

// extern "C" allows a C++ class to use Cuda code written in C

//(From the .cu file)

//.cu files cannot define/include C++ objects or classes

//Initialize switches to the device specified

extern "C" void Initialize(int device);

//Simulate runs the kernel

extern "C" void Simulate(float *dataA,float *dataB);

//First Thread Function

static void Thread1 (LPVOID lpParam)

{

//loop forces thread to run forever, thread does not wait but

//sets an event that is waited upon in the main thread

while (true)

{

//set active CUDA device to first device

Initialize(0);

 Simulate(pointA,pointB);

//Turns event on so that it can be processed

 SetEvent(hEvent[0]);

}

}

//Second Thread Function

static void Thread2 (LPVOID lpParam)

{

//Like first thread function but sets second event

while (true)

{

//set active CUDA device to second device

Initialize(1);

 Simulate(pointA,pointB);

 SetEvent(hEvent[1]);

}

}

//main function that runs main thread
void main(int argc, char **argv)

{

//declare local variables

int i=0;

5

//create two events

//Second Parameter specifies whether event is reset manually

//if FALSE, event is reset after it has been waited upon

//if TRUE, ResetEvent(HANDLE hEvent); needs to be called

//Third Parameter specifies the initial state when created

hEvent[0] = CreateEvent(NULL, FALSE, TRUE, NULL);

hEvent[1] = CreateEvent(NULL, FALSE, TRUE, NULL);

//start two new threads

_beginthread(Thread1, 0, NULL);

_beginthread(Thread2, 0, NULL);

//loop runs 10 times

//loop prints data and then waits for new data to be calculated

//before printing again

while (i<10)

{

++i;

//prints data

for(int i=0; i<32; ++i){

printf("%f %f\n",pointA[i], pointB[i]);

}

//----

//use if only a single event needs to be waited upon

//WaitForSingleObject(HANDLE hEvent, INFINITE);

//----

//use this if multiple threads need to be waited upon

//2=Number of objects

//hEvent = array of Handles for event

//Wait for all threads to finush (true)

//Time to wait for threads to finish (INFINITE)

WaitForMultipleObjects(2,hEvent,TRUE,INFINITE);

}

//helper function that prompts user to press the “Enter” key

//before exiting

CUT_EXIT(argc, argv);

}

//END OF FILE

1.2 simulate.cu

//simulate.cu
#include <stdio.h>

#include <stdlib.h>

#include <cutil.h>

#include "simulate_kernel.cu"

extern "C" void Initialize(int device)

{

//sets the current device to device, device starts at 0

//NOTE:THIS DOES NOT CHECK TO SEE IF DEVICE IS CUDA COMPATABLE

CUDA_SAFE_CALL(cudaSetDevice(device));

}

extern "C" void Simulate(float *dataA,float *dataB)

{

6

//Local pointers to data arrays (not allocated)

float *DevDataA=0;

float *DevDataB=0;

//Allocate memory for variables on device

CUDA_SAFE_CALL(cudaMalloc((void**) &DevDataA, sizeof(float)*32));

CUDA_SAFE_CALL(cudaMalloc((void**) &DevDataB, sizeof(float)*32));

//copy memory from system memory to device memory

CUDA_SAFE_CALL(cudaMemcpy(DevDataA, dataA, sizeof(float)*32,

cudaMemcpyHostToDevice));

CUDA_SAFE_CALL(cudaMemcpy(DevDataB, dataB, sizeof(float)*32,

cudaMemcpyHostToDevice));

//kernel runs one block with 32 thread

sim_kernel<<<1,32>>>(DevDataA,DevDataB);

//Returns string if kernel fails

CUT_CHECK_ERROR("Kernel execution failed");

//copy memory from device to system memory

CUDA_SAFE_CALL(cudaMemcpy(dataA, DevDataA, sizeof(float)*32,

cudaMemcpyDeviceToHost));

CUDA_SAFE_CALL(cudaMemcpy(dataB, DevDataB, sizeof(float)*32,

cudaMemcpyDeviceToHost));

//free memory used by variables

CUDA_SAFE_CALL(cudaFree(DevDataA));

CUDA_SAFE_CALL(cudaFree(DevDataB));

}

//END OF FILE

1.3 simulate_kernel.cu

//simulate_kernel.cu

//definition of kernel

__global__ static void sim_kernel(float *DataA, float *DataB)

{

//Process and modify data here

}

//END OF FILE

