
Intel® C++ Composer XE 2011 Getting
Started Tutorials

Document Number: 323647-001US

World Wide Web: http://developer.intel.com

Legal Information

Contents
Legal Information..5
Introducing the Intel® C++ Composer XE 20117
Prerequisites...9

Chapter 1: Navigation Quick Start
Starting the Intel® C++ Compiler from the Microsoft Visual Studio* IDE............11
Switching between the Installed Compilers..12
Starting the Intel® C++ Compiler from the Command Line..............................12
Starting the Intel® Parallel Debugger Extension..13

Chapter 2: Tutorial: Intel® C++ Compiler
Using Auto Vectorization...15

Introduction to Auto-vectorization...15
Establishing a Performance Baseline...16
Generating a Vectorization Report..18
Improving Performance by Pointer Disambiguation.................................19
Improving Performance by Aligning Data..20
Improving Performance with Interprocedural Optimization......................21
Additional Exercises...22

Using Guided Auto-parallelization...22
Introduction to Guided Auto-parallelization...22
Preparing the Project for Guided Auto-parallelization..............................22
Running Guided Auto-parallelization...23
Analyzing Guided Auto-parallelization Reports.......................................26
Implementing Guided Auto-parallelization Recommendations..................26

Threading Your Applications..30
Learning Objectives...30
Threading Your Application...30

iii

iv

Intel® C++ Composer XE 2011 Getting Started Tutorials

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.
The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. See http://www.intel.com/products/processor_number
for details.

Centrino, Cilk, Intel, Intel Atom, Intel Core, Intel NetBurst, Itanium, MMX, Pentium, Xeon are trademarks of
Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Copyright © 2011, Intel Corporation. All rights reserved.

5

6

Intel® C++ Composer XE 2011 Getting Started Tutorials

Introducing the Intel® C++ Composer
XE 2011
This guide shows you how to start the Intel® C++ Composer XE 2011 and begin debugging code using the Intel®
Parallel Debugger Extension. The Intel(R) C++ Composer XE 2011 is a comprehensive set of software development
tools that includes the following components:

• Intel® C++ Compiler

• Intel® Integrated Performance Primitives

• Intel® Threading Building Blocks

• Intel® Math Kernel Library

• Intel® Parallel Debugger Extension

Check http://software.intel.com/en-us/articles/intel-software-product-tutorials/ for the following:

• ShowMe video for using Intel® C++ Composer XE with Microsoft Visual Studio*

7

8

Intel® C++ Composer XE 2011 Getting Started Tutorials

Prerequisites
You need the following tools, skills, and knowledge to effectively use these tutorials.

NOTE. Although the instructions and screen captures in these tutorials refer to the Visual Studio*
2005 integrated development environment (IDE), you can use these tutorials with later versions
of Visual Studio.

Required Tools

You need the following tools to use these tutorials:

• Microsoft Visual Studio 2005 or later.

• Intel® C++ Composer XE 2011.

• Sample code included with the Intel® C++ Composer XE 2011.

NOTE.

• Samples are non-deterministic. Your results may vary from the examples shown throughout
these tutorials.

• Samples are designed only to illustrate features and do not represent best practices for creating
multithreaded code.

Required Skills and Knowledge

These tutorials are designed for developers with a basic understanding of Microsoft Visual Studio, including how
to:

• open a project/solution.

• access the Document Explorer. (valid in Microsoft Visual Studio 2005 /2008)

• display the Solution Explorer.

• compile and link a project.

• ensure a project compiled successfully.

9

10

Intel® C++ Composer XE 2011 Getting Started Tutorials

1Navigation Quick Start

Starting the Intel® C++ Compiler from the Microsoft Visual
Studio* IDE
The Intel® C++ Composer XE 2011 integrates into the following versions of the Microsoft Visual Studio* Integrated
Development Environment (IDE):

• Microsoft Visual Studio 2010*

• Microsoft Visual Studio 2008*

• Microsoft Visual Studio 2005*

Using the Intel® C++ Composer XE 2011 from Microsoft Visual Studio* IDE

To use the Intel® C++ Compiler do the following:

1. Launch Microsoft Visual Studio*.

2. Open or create a Visual Studio solution in the Solution Explorer pane.

3. From the Project menu, select Intel C++ Compiler XE > Use Intel C++.

4. Click OK in the Confirmation dialog box. This configures the solution to use the Intel® C++ Compiler. (Visual
Studio 2008 or Visual Studio 2005: you can configure the solution to use the Intel® C++ Compiler by clicking

on the toolbar icon . Visual Studio 2010: you can use Project > Properties General > Platform
Toolset to select the Intel C++ Compiler. This method is equivalent to using the Use Intel C++ menu item
except you can make the selection in individual build configurations.)

5. Select Rebuild Solution from the Visual Studio Build menu.

The results of the compilation display in the Output window.

Setting Intel® C++ Compiler Options

1. Select Project > Properties. The Property Pages for your solution display.

2. Locate C/C++ in the list and expand the heading.

3. Step through the available properties to select your configuration.

Compatibility

11

The Intel® C++ Compiler processes C and C++ language source files. The Intel® C++ Compiler is fully source-
and binary-compatible (native code only) with the Microsoft Visual Studio* C++ compiler. The Intel C++ Compiler
only supports native C++ project types provided by Visual Studio development environment. The project types
with .NET attributes such as the ones below, cannot be converted to an Intel C++ project:

• Empty Project (.NET)
• Class Library (.NET)
• Console Application (.NET)
• Windows Control Library (.NET)
• Windows Forms Application (.NET)
• Windows Service (.NET)

Refer to the User and Reference Guides for the full list of unsupported features.

Switching between the Installed Compilers
Switching to the Intel® C++ Composer XE 2011

To switch to the Intel® C++ Compiler do the following:

1. Launch Microsoft Visual Studio*.

2. Open the solution.

3. From the Project menu, select Intel C++ Compiler XE > Use Intel C++.

4. Click OK in the Confirmation dialog box. This configures the solution to use the Intel® C++ Compiler. (Visual
Studio 2008 or Visual Studio 2005: you can configure the solution to use the Intel® C++ Compiler by clicking

on the toolbar icon . Visual Studio 2010: you can use Project > Properties General > Platform
Toolset to select the Intel C++ Compiler. This method is equivalent to using the Use Intel C++ menu item
except you can make the selection in individual build configurations.)

Switching to the Microsoft Visual Studio* C++ Compiler
If you are using the Intel® C++ Compiler, you can switch to the Visual C++ Compiler at any time.
Switch compilers by doing the following:

1. Launch Microsoft Visual Studio*.
2. Open the solution.
3. From the Project drop-down menu, select Intel C++ Compiler XE > Use Visual C++.

This action updates the solution file to use the Microsoft Visual Studio C++ compiler. All configurations
of affected projects are automatically cleaned unless you select Do not clean project(s). If you choose
not to clean projects, you will need to rebuild updated projects to ensure all source files are compiled
with the new compiler.

Starting the Intel® C++ Compiler from the Command Line
Follow these steps to invoke the Intel® C++ Compiler from the command line:

12

1 Intel® C++ Composer XE 2011 Getting Started Tutorials

1. Open a command prompt from the Start>All Programs menu:
Intel Parallel Studio XE 2011 >Command Prompt Intel Parallel Studio 2011 >Command Prompt.

2. Invoke the compiler as follows:
icl [options...] inputfile(s) [/link link_options]

Use the command icl /help to display all available compiler options.

Starting the Intel® Parallel Debugger Extension
The Intel® Parallel Debugger Extension for Microsoft Visual Studio* is a debugging add-on for the Intel® Compiler's
parallel code development features. It facilitates developing parallelism into applications based on the Intel®
OpenMP* runtime environment.

The Intel® Parallel Debugger Extension provides:

• A new Microsoft Visual Studio* toolbar

• An extension to the Microsoft Visual Studio* Debug menu

• A set of new views and dialogs that are invoked from the toolbar or the menu tree

The debugger features include:

• C/C++ language support

• Assembler language support

• Access to the registers your application accesses

• Bitfield editor to modify registers

• MMU support

Preparing Applications for Parallel Debugging

You must enable the parallel debug instrumentation with the compiler to enable parallel debugging, such as
analyzing shared data or breaking at re-entrant function calls.

To enable the parallel debug instrumentation:

1. Open your application project in Microsoft Visual Studio*.

2. Select Project > Properties... from the menu. The Projectname Property Pages dialog box opens.

3. Enable Parallel debug checking.

1. Select Configuration Properties > C/C++ > Debug in the left pane.

2. Under Enable Parallel Debug Checks, select Yes (/debug:parallel).

4. Click OK.

5. Rebuild your application.

Your application is now instrumented for parallel debugging using the features of the Intel® Parallel Debugger
Extension.

13

Navigation Quick Start 1

14

1 Intel® C++ Composer XE 2011 Getting Started Tutorials

2Tutorial: Intel® C++ Compiler

Using Auto Vectorization

Introduction to Auto-vectorization

For the Intel® C++ Compiler, vectorization is the unrolling of a loop combined with the generation of packed
SIMD instructions. Because the packed instructions operate on more than one data element at a time, the loop
can execute more efficiently. It is sometimes referred to as auto-vectorization to emphasize that the compiler
automatically identifies and optimizes suitable loops on its own.

Using the -vec (Linux* OS) or the /Qvec (Windows* OS) option enables vectorization at default optimization
levels for both Intel® microprocessors and non-Intel microprocessors. Vectorization may call library routines that
can result in additional performance gain on Intel microprocessors than on non-Intel microprocessors. The
vectorization can also be affected by certain options, such as /arch or /Qx or -m or -x (Linux and Mac OS X).

Vectorization is enabled with the Intel C++ Compiler at optimization levels of /O2 and higher. Many loops are
vectorized automatically, but in cases where this doesn't happen, you may be able to vectorize loops by making
simple code modifications. In this tutorial, you will:

• establish a performance baseline

• generate a vectorization report

• improve performance by pointer disambiguation

• improve performance by aligning data

• improve performance using Interprocedural Optimization

Locating the Samples

To begin this tutorial, open the vec_samples.zip archive in the product's Samples directory:
<install-dir>\Samples\<locale>\C++\vec_samples.zip

Use these files for this tutorial:

• matrix_vector_multiplication_c.sln

• matrix_vector_multiplication_c.vcproj

• Driver.c

• Multiply.c

• Multiply.h

15

Open the Microsoft Visual Studio solution file, matrix_vector_multiplication_c.sln,

and follow the steps below to prepare the project for the vectorization exercises in this tutorial:

1. Convert to an Intel project by right-clicking on the matrix_vector_multiplication_c project and selecting
Intel C++ Composer XE > Use Intel C++. Click OK in the Confirmation dialog.

2. Change the Active solution configuration to Release using Build > Configuration Manager.

3. Clean the solution by selecting Build > Clean Solution.

Establishing a Performance Baseline

To set a performance baseline for the improvements that follow in this tutorial, build your project with these
settings:

1. Select Project > Properties > C/C++ > Optimization > General > Optimization > Minimize Size
(/O1).

2. Select Project > Properties > C/C++ > Optimization > Intel Specific > Interprocedural Optimization
> No.

16

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

3. Add the preprocessor definition, NOFUNCCALL, by selecting Project > Properties > C/C++ > Preprocessor
> Preprocessor Definitions, then adding NOFUNCCALL to the existing list of preprocessor definitions.

4. Select Project > Properties > C/C++ > Langauage > Intel Specific > Enable C99 Support > Yes.

17

Tutorial: Intel® C++ Compiler 2

This example uses a variable length array (VLA), and therefore, must be compiled with the /Qstd=c99 option.

5. Rebuild the project, then run the executable (Debug > Start Without Debugging) and record the execution
time reported in the output. This is the baseline against which subsequent improvements will be measured.

Generating a Vectorization Report

A vectorization report tells you whether the loops in your code were vectorized, and if not, explains why not.

Add the /Qvec-report1 option to the command line by selecting Project > Properties > C/C++> Command
Line > Additional Options, then adding /Qvec-report1.

Because vectorization is off at /O1, the compiler does not generate a vectorization report, so recompile at /O2
(default optimization):

Record the new execution time. The reduction in time is mostly due to auto-vectorization of the inner loop at
line 150 noted in the vectorization report:
Driver.c(150) (col. 4): remark: LOOP WAS VECTORIZED. Driver.c(164) (col. 2): remark: LOOP WAS
VECTORIZED. Driver.c(81) (col. 2): remark: LOOP WAS VECTORIZED.
The /Qvec-report2 option returns a list that also includes loops that were not vectorized, along with the reason
why the compiler did not vectorize them.

For C/C++ > Command Line > Additional Options, change /Qvec-report1 to /Qvec-report2.

Also, for Linker > Command Line > Additional Options, add /Qvec-report2:

18

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

Rebuild your project.

The vectorization report indicates that the loop at line 45 in Multiply.c did not vectorize because it is not the
innermost loop of the loop nest. Two versions of the innermost loop at line 55 were generated, but neither version
was vectorized.
Multiply.c(45) (col. 2): remark: loop was not vectorized: not inner loop. Multiply.c(55) (col. 3):
remark: loop was not vectorized: existence of vector dependence. Multiply.c(55) (col. 3): remark:
loop skipped: multiversioned. Driver.c(140) (col. 2): remark: loop was not vectorized: not inner loop.
Driver.c(140) (col. 2): remark: loop was not vectorized: vectorization possible but seems inefficient.
Driver.c(141) (col. 2): remark: loop was not vectorized: vectorization possible but seems inefficient.
Driver.c(145) (col. 2): remark: loop was not vectorized: not inner loop. Driver.c(148) (col. 3): remark:
loop was not vectorized: not inner loop. Driver.c(150) (col. 4): remark: LOOP WAS VECTORIZED.
Driver.c(164) (col. 2): remark: LOOP WAS VECTORIZED. Driver.c(81) (col. 2): remark: LOOP WAS
VECTORIZED. Driver.c(69) (col. 2): remark: loop was not vectorized: vectorization possible but seems
inefficient. Driver.c(54) (col. 2): remark: loop was not vectorized: not inner loop. Driver.c(55) (col.
3): remark: loop was not vectorized: vectorization possible but seems inefficient.

NOTE. For more information on the /Qvec-report compiler option, see the Compiler Options
section in the Compiler User and Reference Guide.

Improving Performance by Pointer Disambiguation

Two pointers are aliased if both point to the same memory location. Storing to memory using a pointer that
might be aliased may prevent some optimizations. For example, it may create a dependency between loop
iterations that would make vectorization unsafe. Sometimes, the compiler can generate both a vectorized and
a non-vectorized version of a loop and test for aliasing at runtime to select the appropriate code path. If you
know that pointers do not alias and inform the compiler, it can avoid the runtime check and generate a single
vectorized code path. In Multiply.c, the compiler generates runtime checks to determine whether or not the
pointer b in function matvec(FTYPE a[][COLWIDTH], FTYPE b[], FTYPE x[]) is aliased to either a or x . If
Multiply.c is compiled with the NOALIAS macro, the restrict qualifier of the argument b informs the compiler
that the pointer does not alias with any other pointer, and in particular that the array b does not overlap with a
or x.

NOTE. The restrict qualifier requires the use of either the /Qrestrict compiler option for .c
or .cpp files, or the /Qstd=c99 compiler option for .c files.

Replace the NOFUNCCALL preprocessor definition with NOALIAS.

19

Tutorial: Intel® C++ Compiler 2

This conditional compilation replaces the loop in the main program with a function call. Rebuild your project, run
the executable, and record the execution time reported in the output.
Multiply.c(45) (col. 2): remark: loop was not vectorized: not inner loop. Multiply.c(55) (col. 3):
remark: LOOP WAS VECTORIZED. Driver.c(140) (col. 2): remark: loop was not vectorized: not inner
loop. Driver.c(140) (col. 2): remark: loop was not vectorized: vectorization possible but seems
inefficient. Driver.c(141) (col. 2): remark: loop was not vectorized: vectorization possible but seems
inefficient. Driver.c(164) (col. 2): remark: LOOP WAS VECTORIZED. Driver.c(145) (col. 2): remark:
loop was not vectorized: nonstandard loop is not a vectorization candidate. Driver.c(81) (col. 2):
remark: LOOP WAS VECTORIZED. Driver.c(69) (col. 2): remark: loop was not vectorized: vectorization
possible but seems inefficient. Driver.c(54) (col. 2): remark: loop was not vectorized: not inner loop.
Driver.c(55) (col. 3): remark: loop was not vectorized: vectorization possible but seems inefficient.
Now that the compiler has been told that the arrays do not overlap, it knows that it is safe to vectorize the loop.

Improving Performance by Aligning Data

The vectorizer can generate faster code when operating on aligned data. In this activity you will improve
performance by aligning the arrays a, b, and x in Driver.c on a 16-byte boundary so that the vectorizer can
use aligned load instructions for all arrays rather than the slower unaligned load instructions and can avoid
runtime tests of alignment. Using the ALIGNED macro will modify the declarations of a, b, and x in Driver.c
using the __attribute keyword, which has the following syntax:

float array[30] __attribute((aligned(base, [offset])));

This instructs the compiler to create an array that it is aligned on a "base"-byte boundary with an "offset"
(Default=0) in bytes from that boundary. Example:

FTYPE a[ROW][COLWIDTH] __attribute((aligned(16)));

In addition, the row length of the matrix, a, needs to be padded out to be a multiple of 16 bytes, so that each
individual row of a is 16-byte aligned. To derive the maximum benefit from this alignment, we also need to tell
the vectorizer it can safely assume that the arrays in Multiply.c are aligned by using #pragma vector
aligned.

NOTE. If you use #pragma vector aligned, you must be sure that all the arrays or subarrays
in the loop are 16-byte aligned. Otherwise, you may get a runtime error. Aligning data may still
give a performance benefit even if #pragma vector aligned is not used. See the code under the
ALIGNED macro in Multiply.c

If your compilation targets the Intel® AVX instruction set, you should try to align data on a 32-byte
boundary. This may result in improved performance. In this case, #pragma vector aligned
advises the compiler that the data is 32-byte aligned.

Rebuild the program after adding the ALIGNED preprocessor definition to ensure consistently aligned data.

20

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

Multiply.c(45) (col. 2): remark: loop was not vectorized: not inner loop. Multiply.c(55) (col. 3):
remark: LOOP WAS VECTORIZED. Driver.c(140) (col. 2): remark: loop was not vectorized: not inner
loop. Driver.c(140) (col. 2): remark: loop was not vectorized: vectorization possible but seems
inefficient. Driver.c(140) (col. 2): remark: LOOP WAS VECTORIZED. Driver.c(141) (col. 2): remark:
loop was not vectorized: vectorization possible but seems inefficient. Driver.c(164) (col. 2): remark:
LOOP WAS VECTORIZED. Driver.c(145) (col. 2): remark: loop was not vectorized: nonstandard loop
is not a vectorization candidate. Driver.c(81) (col. 2): remark: LOOP WAS VECTORIZED. Driver.c(69)
(col. 2): remark: loop was not vectorized: vectorization possible but seems inefficient. Driver.c(72)
(col. 3): remark: LOOP WAS VECTORIZED. Driver.c(54) (col. 2): remark: loop was not vectorized:
not inner loop. Driver.c(55) (col. 3): remark: loop was not vectorized: vectorization possible but
seems inefficient. Driver.c(60) (col. 3): remark: loop was not vectorized: not inner loop. Driver.c(61)
(col. 4): remark: LOOP WAS VECTORIZED.

Now, run the executable and record the execution time.

Improving Performance with Interprocedural Optimization

The compiler may be able to perform additional optimizations if it is able to optimize across source line boundaries.
These may include, but are not limited to, function inlining. This is enabled with the /Qipo option.

Rebuild the program using the /Qipo option to enable interprocedural optimization.

Select Optimization > Interprocedural Optimization > Multi-file(/Qipo)

Note that the vectorization messages now appear at the point of inlining in Driver.c (line 155).

Driver.c(145) (col. 2): remark: loop was not vectorized: not inner loop. Driver.c(155) (col. 3): remark:
loop was not vectorized: not inner loop. Driver.c(155) (col. 3): remark: LOOP WAS VECTORIZED.
Driver.c(164) (col. 2): remark: LOOP WAS VECTORIZED. Driver.c(54) (col. 2): remark: loop was not
vectorized: not inner loop. Driver.c(55) (col. 3): remark: loop was not vectorized: vectorization
possible but seems inefficient. Driver.c(60) (col. 3): remark: LOOP WAS VECTORIZED. Driver.c(69)
(col. 2): remark: loop was not vectorized: vectorization possible but seems inefficient.
Now, run the executable and record the execution time.

21

Tutorial: Intel® C++ Compiler 2

Additional Exercises

The previous examples made use of double precision arrays. They may be built instead with single precision
arrays by adding the preprocessor definition, FTYPE=float. The non-vectorized versions of the loop execute
only slightly faster the double precision version; however, the vectorized versions are substantially faster. This
is because a packed SIMD instruction operating on a 16-byte vector register operates on four single precision
data elements at once instead of two double precision data elements.

NOTE. In the example with data alignment, you will need to set COLBUF=3 to ensure 16-byte
alignment for each row of the matrix a. Otherwise, #pragma vector aligned will cause the
program to fail.

This completes the tutorial for auto-vectorization, where you have seen how the compiler can optimize performance
with various vectorization techniques.

Using Guided Auto-parallelization

Introduction to Guided Auto-parallelization

Guided Auto-parallelization (GAP) is a feature of the Intel® C++ Compiler that offers selective advice and, when
correctly applied, results in auto-vectorization or auto-parallelization for serially-coded applications. Using the
/Qguide option with your normal compiler options at /O2 or higher is sufficient to enable the GAP technology
to generate the advice for auto-vectorization. Using /Qguide in conjunction with /Qparallel will enable the
compiler to generate advice for auto-parallelization.

In this tutorial, you will:

1. prepare the project for Guided Auto-parallelization.

2. run Guided Auto-parallelization.

3. analyze Guided Auto-parallelization reports.

4. implement Guided Auto-parallelization recommendations.

Preparing the Project for Guided Auto-parallelization

To begin this tutorial, open the GuidedAutoParallel.zip archive located in the product's Samples directory
located at:
\Samples\<Locale>\C++\
The following Visual Studio* 2005 project files and source files are included:

• GAP-c.sln

• GAP-c.vcproj

• main.cpp

• main.h

22

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

• scalar_dep.cpp

• scalar_dep.h

Open the Microsoft Visual Studio Solution file, GAP-c.sln,

and follow the steps below to prepare the project for Guided Auto-parallelization (GAP).

1. Convert to an Intel project by right-clicking on the GAP-c project and selecting Intel C++ Composer XE >
Use Intel C++. Click OK in the Confirmation dialog.

2. Clean the Solution by selecting Build > Clean Solution.

3. Since GAP is enabled only with option /O2 or higher, you will need to change the build configuration to Release
using Build > Configuration Manager.

Running Guided Auto-parallelization

There are several ways to run GAP analysis in Visual Studio, depending on whether you want analysis for the
whole solution, the project, a single file, a function, or a range of lines in your source code. In this tutorial, we
will use single-file analysis. Follow the steps below to run a single-file analysis on scalar_dep.cpp in the GAP-c
project:

1. In the GAP-c project, right-click on scalar_dep.cpp.

2. Select Intel C++ Composer XE > Guided Auto Parallelism > Run Analysis on file "scalar_dep.cpp"

3. If the /Qipo option is enabled, the Analysis with Multi-file optimization dialog appears. Click Run Analysis.

4. On the Configure Analysis dialog, click Run Analysis using the choices shown here:

23

Tutorial: Intel® C++ Compiler 2

NOTE. If you select Send remarks to a file, GAP messages will not be available in the Output
window or Error List window.

See the GAP Report in the Output window. GAP reports in the standard Output window are encapsulated with
GAP REPORT LOG OPENED and END OF GAP REPORT LOG.

24

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

Also, see the GAP Messages in the Error List window:

25

Tutorial: Intel® C++ Compiler 2

Analyzing Guided Auto-parallelization Reports

Analyze the output generated by GAP analysis and determine whether or not the specific suggestions are
appropriate for the specified source code. For this sample tutorial, GAP generates output for the loop in
scalar_dep.cpp:

for (i=0; i<n; i++) {
 if (A[i] > 0) {b=A[i]; A[i] = 1 / A[i]; }
 if (A[i] > 1) {A[i] += b;}
 }

In this example, the GAP Report generates a recommendation (remark #30761) to add the /Qparallel option
to improve auto-parallelization. Remark #30515 indicates if variable b can be unconditionally assigned, the
compiler will be able to vectorize the loop.

Implementing Guided Auto-parallelization Recommendations

The GAP Report in this example recommends using the /Qparallel option to enable parallelization. Follow these
steps to enable this option:

1. Right-click on the GAP-c project and select Properties

26

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

2. On the Property Pages dialog, expand the C/C++ heading and select Optimization.

3. In the right-hand pane under Intel Specific, select Parallelization, then choose Enable Parallelization
(/Qparallel) and click OK.

Now, run the GAP Analysis again and review the GAP Report:

27

Tutorial: Intel® C++ Compiler 2

The remark #30521 indicates that loop at line 50 cannot parallelize because the variable b is conditionally
assigned. Remark #30525 indicates that the loop trip count must be greater than 188 for the compiler to
parallelize the loop.

Apply the necessary changes after verifying that the GAP recommendations are appropriate and do not change
the semantics of the program.

For this loop, the conditional compilation enables parallelization and vectorization of the loop as recommended
by GAP:

#ifdef TEST_GAP
#pragma loop count min (188)
 for (i=0; i<n; i++) {
 b = A[i];
 if (A[i] > 0) {A[i] = 1 / A[i];}
 if (A[i] > 1) {A[i] += b;}
 }

#else

for (i=0; i<n; i++) {
 if (A[i] > 0) {b=A[i]; A[i] = 1 / A[i]; }
 if (A[i] > 1) {A[i] += b;}
 }

28

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

#endif

}

To verify that the loop is parallelized and vectorized:

1. Add the options /Qvec-report1 /Qpar-report1 to the Linker > Command Line > Additional Options
dialog.

2. Add the preprocessor definition TEST_GAP to compile the appropriate code path.

3. Rebuild the GAP-c project and note the reports in the output window:

29

Tutorial: Intel® C++ Compiler 2

For more information on using the -guide, -vec-report, and -par-report compiler options, see the Compiler
Options section in the Compiler User Guide and Reference.

This completes the tutorial for Guided Auto-parallelization, where you have seen how the compiler can guide
you to an optimized solution through auto-parallelization.

Threading Your Applications

Learning Objectives

In this tutorial, we will be building different parallel implementations of the same function with both the Microsoft
Visual C++* Compiler and Intel® C++ Composer XE 2011. When executed, the application will display the
execution time required to render the object in the window title. This time is an indication of the speedup obtained
with parallel implementations compared to a baseline established with a serial implementation in the first step.

Threading Your Application

Tachyon is a ray-tracer application, rendering objects described in data files. The Tachyon program is located in
the product Samples directory: <install-dir>\Samples\<locale>\C++\Tachyon.zip.

30

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

Expand the archive to \Tachyon

By default we use balls.dat as the input file. Data files are stored in the directory \Tachyon\dat\. Originally,
Tachyon was an application with parallelism implemented in function pthread_create()(source file
\Tachyon\src\Windows\pthread.cpp) with explicit threads: one for the rendering, and the other for calculations.
In this tutorial we implement parallelization on the calculation thread with OpenMP*, Intel® TBB, and Intel® Cilk™
Plus. Parallelization is implemented only for one function draw_task(), which you can find in the source file
build_serial.cpp, in project build_serial.

Open the Microsoft Visual Studio* Solution \Tachyon\vc8\tachyon_compiler.sln. It includes these projects:

• build_serial

• build_with_cilk

• build_with_openmp

• build_with_tbb

• tachyon.common

NOTE. Projects build_with_openmp, build_with_tbb and build_with_tbbc use OpenMP,
Intel® TBB and Intel® Cilk™ Plus, respectively. In addition to these implementations, there is also
an option for users to implement with lambda functionality based on Intel TBB

Follow the steps below to build the serial and Intel® Cilk™ Plus approaches to Tachyon.

Workflow Steps

In the following, we will be building different parallel implementations of the same function with both the Microsoft
Visual C++ Compiler and the Intel® C++ Compiler. When executed, the application will display the execution
time required to render the object in the window title. This time is an indication of the speedup obtained with
parallel implementations compared to a baseline established with a serial implementation in the first step.

31

Tutorial: Intel® C++ Compiler 2

Building the Serial Project

1. Set the build_serial project as the StartUp project (Project > Set as StartUp Project).
2. Set the configuration to Release mode: Build > Configuration Manager > Active solution configuration:
> Release, then build the build_serial project.

3. Execute the application tachyon_compiler.exe with Debug > Start without Debugging. Take a note of the
time in seconds displayed in the window title. This time to render the image is the baseline for parallelization
with the Microsoft Visual C++ Compiler.

4. For projects build_serial and "tachyon.common" change compiler to Intel(R) Parallel Composer (Project
> Intel C++ Composer XE 2011 > Use Intel C++ ...).

5. Rebuild build_serial in Release mode (now with Intel Compiler).
6. Execute the application. Note the time to render the image as the baseline for parallelization with the Intel
C++ Compiler.

Building with OpenMP*

1. Set the build_with_openmp project as StartUp project.
2. For project build_with_openmp, change the compiler to Intel C++ Composer XE (Project > Intel C++
Composer XE > Use Intel C++...).

3. For the project build_with_openmp, make sure the /Qopenmp compiler option is set (Project > Properties
> Configuration Properties > C/C++ > Language > OpenMP Support = Generate Parallel Code
(/Qopenmp)).

4. Open source file build_with_openmp.cpp in the project build_with_openmp.
5. Uncomment OpenMP* pragmas in the routine draw_task which create parallel regions and distribute loop
iteration within the team of threads.

6. Comment out return inside parallel region in the routine draw_task.
7. Uncomment zero assignment to variable ison (ison = 0;) inside parallel region in the routine draw_task.
8. Uncomment return at the end of the routine draw_task.
9. Build build_with_openmp in Release configuration.
10. Execute the application.
11. Measure performance compared with the serial version.

Options that use OpenMP are available for both Intel® and non-Intel microprocessors, but these options may
perform additional optimizations on Intel®microprocessors than they perform on non-Intel microprocessors. The
list of major, user-visible OpenMP constructs and features that may perform differently on Intel® vs. non-Intel
microprocessors includes: locks (internal and user visible), the SINGLE construct, barriers (explicit and implicit),
parallel loop scheduling, reductions, memory allocation, and thread affinity and binding.

Building with Intel® TBB

1. Set build_with_tbb project as StartUp project.

32

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

2. For project build_with_tbb, change the compiler to Intel C++ Composer XE (Project > Intel C++
Composer XE > Use Intel C++...).

3. For the project build_with_tbb make sure the Intel® TBB environment is set (Project > Intel C++
Composer XE > Select Build Components > Use TBB). See Note below.

4. Open source file build_with_tbb.cpp in the project build_with_tbb.
5. Uncomment TBB header files.
6. Uncomment class draw_task.
7. Comment out routine draw_task.
8. Uncomment lines regarding TBB schedule and number of threads in routine thread_trace.
9. Uncomment lines regarding grain size in routine thread_trace.
10. Uncomment TBB parallel_for routine in routine thread_trace.

11. Comment out call of routine draw_task in routine thread_trace.
12. Build build_with_tbb in Release configuration.
13. Execute the application.
14. Measure performance compared with the serial version.

NOTE. Double check the following project properties are set:

• Configuration Properties > C/C++ > General > Additional Include Directories: contains
$(INTEL_DEF_IA32_INSTALL_DIR)TBB\Include

• Configuration Properties > Linker > General > Additional Library Directories: contains
"$(INTEL_DEF_IA32_INSTALL_DIR)TBB\Lib\ia32\vc8" for Visual Studio 2005;
"$(INTEL_DEF_IA32_INSTALL_DIR)TBB\Lib\ia32\vc9" for Visual Studio 2008;
"$(INTEL_DEF_IA32_INSTALL_DIR)TBB\Lib\ia32\vc10" for Visual Studio 2010;

• For platform x64, the $(INTEL_DEF_X64_INSTALL_DIR) is used instead of
$(INTEL_DEF_IA32_INSTALL_DIR) and the library directory becomes
$(INTEL_DEF_X64_INSTALL_DIR)TBB\Lib\intel64\vc8 for Visual Studio 2005.

Building with Intel® Cilk™ Plus

1. Set the build_with_cilk project as the StartUp project.
2. For project build_with_cilk change compiler to the Intel C++ Compiler (Project > Intel C++ Composer
XE 2011 > Use Intel C++ ...).

3. For the project build_with_cilk make sure Intel® Cilk™ Plus for Intel® C++ Compiler additional include
directory is set (Project > Properties > Configuration Properties > C/C++ > General > Additional
Include Directories = C:\Program Files\Intel\ComposerXE-2011\compiler\include\cilk\).

4. Open source file build_with_cilk.cpp in the project build_with_cilk.
5. Uncomment Intel® Cilk™ Plus header files.

6. Uncomment routine draw_task related to Intel® Cilk™ Plus implementation.

7. Comment out the serial draw_task() function

33

Tutorial: Intel® C++ Compiler 2

8. Build build_with_cilk in Release mode.
9. Execute the application.
10. Measure performance compared with the serial version for Intel(R) Parallel Composer.

Platform and Other Details

The solution for this example was created in Microsoft Visual Studio 2005. If you open the tachyon_compiler.sln
solution in Microsoft Visual Studio 2008, then it will be converted to a Microsoft Visual Studio 2008 solution.

For Platform Win32

• The executable file for all implementations is tachyon_compiler.exe in the \Tachyon\vc8\Release\
directory.

• Object files are stored in \Tachyon\vc8\tachyon_compiler\Release\ directory.

For Platform x64

• The executable file for all implementations is tachyon_compiler.exe in the \Tachyon\vc8\x64\Release\
directory.

• Object files are stored in \Tachyon\vc8\x64\tachyon_compiler\Release\ directory.

34

2 Intel® C++ Composer XE 2011 Getting Started Tutorials

	Intel® C++ Composer XE 2011 Getting Started Tutorials
	Legal Information
	Contents
	Introducing the Intel® C++ Composer XE 2011
	Prerequisites
	1.
Navigation Quick Start
	Starting the Intel® C++ Compiler from the Microsoft Visual Studio* IDE
	Switching between the Installed Compilers
	Starting the Intel® C++ Compiler from the Command Line
	Starting the Intel® Parallel Debugger Extension

	2.
Tutorial: Intel® C++ Compiler
	Using Auto Vectorization
	Introduction to Auto-vectorization
	Establishing a Performance Baseline
	Generating a Vectorization Report
	Improving Performance by Pointer Disambiguation
	Improving Performance by Aligning Data
	Improving Performance with Interprocedural Optimization
	Additional Exercises

	Using Guided Auto-parallelization
	Introduction to Guided Auto-parallelization
	Preparing the Project for Guided Auto-parallelization
	Running Guided Auto-parallelization
	Analyzing Guided Auto-parallelization Reports
	Implementing Guided Auto-parallelization Recommendations

	Threading Your Applications
	Learning Objectives
	Threading Your Application

