
RR

Using the lgdb Comparative Debugging Feature

S–0042–22

© 2013 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless
permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: Cray and
design, Sonexion, Urika, and YarcData. The following are trademarks of Cray Inc.: ACE, Apprentice2, Chapel,
Cluster Connect, CrayDoc, CrayPat, CrayPort, ECOPhlex, LibSci, NodeKARE, Threadstorm. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark Linux is used pursuant to a sublicense from LMI, the exclusive licensee of Linus
Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of
their respective owners.

OpenMP is a trademark of OpenMP Architecture Review Board. PGI is a trademark of The Portland Group
Compiler Technology, STMicroelectronics, Inc. UNIX, the “X device,” X Window System, and X/Open are
trademarks of The Open Group.

RECORD OF REVISION

S–0042–22 Published December 2013 Supports Cray Debugger Support Toolkit release 2.2.0 running on Cray XE,
Cray XK, and Cray XC30 systems.

S–0042–20 Published March 2013 Supports Cray Debugger Support Toolkit release 2.1.2 running on Cray XE,
Cray XK, and Cray XC30 systems.

Abstract

Using the lgdb Comparative Debugging Feature S–0042–22

This paper describes the comparative debugging functionality first released in version 2.0 of lgdb, Cray's
command line debugger. Comparative debugging technology enables programmers to debug a faulty
program against a working version, by comparing data structures between the two executing programs. A
demonstration utilizing the comparative debugging feature of lgdb to find an error within a faulty version of
the High-Performance Linpack benchmark (HPL) is provided.

Contents

Page

Introduction [1] 7

1.1 The Comparative Debugging Cycle 7

Comparative Debugging Demonstration [2] 15

2.1 Staging the Demonstration . 15

2.2 The Comparative Debugging Process — Initial Pass 17

2.2.1 Locate Entry Point into Code 17

2.2.2 Specify Resource Requirements and Launch Applications 18

2.2.3 Define Key Data Structures . 19

2.2.4 Employ Assertions to Compare Data Structures 19

2.2.5 Evaluate Results . 20

2.3 Comparative Debugging — 2nd Pass 20

2.4 Comparative Debugging — 3rd Pass 23

2.5 Comparative Debugging — 4th Pass 26

2.6 Comparative Debugging — 5th Pass 27

2.7 Comparative Debugging — 6th Pass 29

2.8 Comparative Debugging — 7th Pass 32

2.9 Comparative Debugging — 8th Pass 35

Conclusion [3] 37

Procedures
Procedure 1. Initial pass of comparative debugging with lgdb 8

Examples
Example 1. Compile code with debugging enabled 8

Example 2. Launching applications using lgdb 10

Example 3. Two-dimensional data decomposition scheme 12

Example 4. Use an imperative assertion to compare data structures 13

Example 5. Use a declarative assertion to compare data structures 14

S–0042–22 5

Introduction [1]

The lgdb command line parallel debugger can be used to debug applications
compiled with CCE, PGI, and GNU Fortran, C, and C++ compilers. Basic operation
is documented in the lgdb(1) man page. Version 2.0 of lgdb also introduced the
first release of Cray's comparative debugging technology. Comparative debugging
enables programmers to compare corresponding data structures between two
executing applications. If the values of the corresponding data structures diverge, an
error may exist and the user is notified. This capability is useful for locating errors
that are introduced when applications are modified through code, compiler, or library
changes, or when running an application on a different scale produces incorrect
results.

Although this document offers an introduction to the concepts and constructs of
comparative debugging within lgdb, Cray recommends accessing the comparative
debugger technology through the new Cray Comparative Debugger (CCDB) with
graphical user interface (GUI) that enhances the debugging capabilities of lgdb. For
further information on CCDB, see the ccdb(1) man page.

Note: Throughout this document, some examples are left-justified to better fit the
page. Left justification has no special significance.

1.1 The Comparative Debugging Cycle
Comparative debugging assumes there are two versions of an application to be
compared, a reference version that is considered correct and a development version
being debugged. The typical comparative debugging cycle involves following the
use of key variables in the two applications, comparing their values, and tracing
them back to their points of definition to refine the area within the development
version where results first diverge. Although every debugging session takes its own
unique path, the initial pass through of comparative debugging with lgdb includes
the following steps.

S–0042–22 7

Using the lgdb Comparative Debugging Feature

Procedure 1. Initial pass of comparative debugging with lgdb

1. Locate Entry Point into Code.

Where in the code does it make sense to begin comparing data structures? Which
data structures must be compared? The user must have an in depth understanding
of the source code in order to select and locate key data structures, determine
comparison points, follow the path of execution, and understand the implications
of the results.

2. Prepare executable files.

Both applications will be launched for execution by lgdb, and must be compiled
using the debugging option (-g or -Gn) of the relevant compiler to include
additional debugger information required by lgdb.

Example 1. Compile code with debugging enabled

In this example, two executable files, version1 and version2, are created
when the source code files source1.f90 and source2.f90 are compiled
with debugging enabled.

% ftn -g -o version1 source1.f90
% ftn -g -o version2 source2.f90

3. To begin using lgdb, load the cray-lgdb module and then initiate the
debugger.

% module load cray-lgdb
% lgdb

4. Specify resource requirements and launch applications.

Applications are launched and processor resource requirements are defined by
using the launch command within lgdb. The syntax of the command is:

launch [--args "app_args" | -a "app_args"] [--aprun-args
"aprun_args" | -g "aprun_args"][--aprun-input "input_file" | -i
"input_file"] [--env="name=value",--env="name=value",...] [--workdir="work_path" |
-w="work_path"] $proc_set path_to_executable

8 S–0042–22

Introduction [1]

The launch command requires the following parameters:

$proc_set Defines a debugger variable and associates it with the number
of processing elements (PEs) in the application. For sequential
applications, $proc_set is a single debugger scalar variable. For
parallel applications, $proc_set is a debugger array variable, the
size of which determines the number of PEs for the application.

The launch command transparently passes the number of PEs
to aprun, through the -n option, to launch applications on
batch systems.

path_to_executable

Specifies the path to the application executable. This is passed
directly to aprun.

The launch command accepts the following options. Option arguments must be
enclosed within quotation marks, such as "args".

--args "app_args" | -a "app_args"

Passes app_args to the application executable.

--aprun-args "aprun_args" | -g "aprun_args"

Passes aprun_args to the aprun command.

--aprun-input "input_file" | -i "input_file"

Redirects the stdin of the aprun command to be input_file.
This is useful for applications requiring input from stdin.

--env=”name=value”, --env=”name=value”,...

Sets the environment variable (defined by name) to value, for this
aprun session instance. Note that --env= can be used more
than once to set multiple environment variables.

--workdir="work_path" | -w="work_path"

Changes the current working directory, relative to its present
setting where lgdb was invoked, to work_path. This is useful
for applications that write files to the current working directory.
If the --workdir= option is specified without a path, the
current working directory will be changed to the location of the
application's executable file. By default, if --workdir= is
not specified, work_path is defined as the directory from where
lgdb was invoked.

S–0042–22 9

Using the lgdb Comparative Debugging Feature

Example 2. Launching applications using lgdb

In this example, two PEs for each application, version1 and version2,
are launched and associated with the process sets $working and $broken,
respectively.

dbg> launch $working{2} version1
dbg> launch $broken{2} version2

5. Define key data structures.

In parallel programming, data is typically decomposed and distributed across
numerous application PEs. To perform comparisons of distributed data structures,
each individual piece must be obtained from the PEs and reconstructed. In lgdb,
a decomposition scheme is created in script mode and specifies the reconstruction
of distributed variables into the global representation of the data by defining
four required characteristics: dimensionality, distribution, process grid, and
dimension order. Enter the following command to initiate script mode and create
a decomposition scheme, $scheme_name. Script subcommands are read until the
end subcommand is issued, returning lgdb to interactive mode. Following are
explanations of the decomposition script subcommands.

dbg all> decomposition $scheme_name

dimension Specifies the size and dimensionality of the global
reconstruction. Each characteristic must have the same
dimensionality as defined by the dimension subcommand.

10 S–0042–22

Introduction [1]

distribute Specifies the distribution type for each dimension of the
reconstruction. Distribution options are:

block Equal-sized chunks of data are assigned to each
PE.

cyclic Elements in the dimension are dealt out in round
robin fashion.

a numeric value

Representing the blocking factor used to
partition the dimension in a block-cyclic
distribution.

asterisk (*)

Indicating that this dimension is not distributed
and, therefore, each PE in the global
reconstruction contains all of the data in that
dimension.

proc_grid Defines the process grid for the reconstruction by specifying the
number of PEs contained in each dimension. If a dimension is
not distributed, the value for that dimension must be defined as
an asterisk (*).

S–0042–22 11

Using the lgdb Comparative Debugging Feature

dim_order Defines the order in which the application PEs are assigned in
each dimension of the process grid for the global reconstruction.
Each local chunk of data obtained from each PE must be placed
into the global reconstruction. To do this, each PE is assigned
a logical position in the process grid for its chunk of data.
When considering n- dimensional distributions, any of the n
dimensions can be assigned sequential numbered PEs, and any of
the other higher order dimensions can be incremented after the
dimension containing sequential PEs is filled.

dim_order is defined by assigning a sequential number from
1 to n to each of the defined distributed dimensions indicating
fastest to slowest varying dimension, respectively. If a dimension
is not distributed, the order must be defined as an asterisk
(*). The fastest varying dimension is the dimension assigned
sequential PEs up to its corresponding grid size. The second
fastest varying dimension is incremented after the fastest varying
dimension is completely filled and PEs are again assigned to the
fastest varying dimension. This process continues until all PEs
have been assigned to all of the n- dimensions.

Example 3. Two-dimensional data decomposition scheme

This example creates a decomposition scheme for an 8 x 8 array:

dgb all> decomposition $data_a
> dimension 8,8
> distribute block,*
> proc_grid 4,*
> dim_order 1,*
> end
dgb all>

The first dimension of the array is distributed in a block manner, and the second
dimension is not distributed; therefore, each application PE contains all eight
elements. The proc_grid definition indicates that the data is to be distributed
over four PEs in the first dimension and not distributed in the second dimension.
Thus, the local chunk of data for each PE is a 2 x 8 array of data, or two rows
of the data array. The dim_order definition specifies that the first dimension
is the fastest, and in this case, the only varying dimension because the second
dimension is not distributed.

The decomposition construct provides a method to reconstruct distributed data
into a global view that can be compared across applications. Instead of writing
thousands of individual assertion statements to conduct comparisons of data
variables across application PEs, users can create a decomposition scheme to
globally reconstruct the data automatically.

12 S–0042–22

Introduction [1]

6. Employ assertions to compare data structures.

Assertions, the key construct used in lgdb, define the names of two data
structures that are to be compared. There are two types of assertions available
in lgdb, imperative and declarative.

Imperative assertions allow a user to interactively compare data structures
between the executing applications when they are suspended at user-define
breakpoints. The user can create breakpoints within the two applications before
they are simultaneously executed. When a breakpoint is reached and the
applications are suspended, the user issues a compare command to compare the
contents of key data structures at that time.

Example 4. Use an imperative assertion to compare data structures

In this example, the variable Value in the reference application "working" is
compared with the variable Value in the development application "broken".

dgb all> compare $working::Value = $broken::Value
dgb all>

The process of debugging using only imperative assertions would involve
numerous iterations of defining breakpoints, resuming or restarting the
applications, and comparing the contents of key data structures. If the user wants
to compare the results of computations within a loop, the compare command
must be manually invoked for each iteration of the loop when a breakpoint is
reached. This is obviously not the most efficient method.

Declarative assertions allow a user to state a set of spatial and temporal
conditions that must be satisfied for the data structures within the development
version to be considered correct. In lgdb, declarative assertions are defined
by the assert subcommand within an assertion script, and state that a data
structure (the spatial condition) at a specific line (the temporal condition) in the
development application should contain the same value as the corresponding data
structure, at a specific line, in the reference application. An assertion script can
contain as many assertions as needed.

The build command initiates assertion script mode, subcommands are accepted
until the end subcommand is entered to return lgdb to interactive mode, after
which the start command is used to initiate execution of the assertion script.
The script will continue to successful completion or until the assertion interpreter
halts due to assertion failures or application errors.

S–0042–22 13

Using the lgdb Comparative Debugging Feature

Example 5. Use a declarative assertion to compare data structures

The assertion script in this example instructs lgdb to compare the value of the
variable stor1 at line 234 of source1.f90 for the application associated
with the process set $working with the variable stor1 at line 187 of
source2.f90 for the application associated with the process set $broken.

dbg all> build $test
> assert $working::stor1@"source1.f90":234 = $broken::stor1@"source2.f90":187
> end
dbg all>

lgdb will create breakpoints in both applications at the respective line numbers,
and will compare the specified variables when the assertion script is executed.
If the comparison does not detect an error, the applications are automatically
resumed; otherwise, execution of the applications is halted and the difference is
reported.

7. Evaluate results and repeat debugging process, as necessary.

Results from the assertion script provide clues to the user as to other areas of the
application code that should be investigated. Tracing the path of data structure
calculations to find where results diverge will likely require multiple iterations
of the comparative debugging cycle.

With this preliminary release of the comparative debugging feature, it is
necessary to quit lgdb and then restart it, in order to release the applications and
associated variables, making it possible to relaunch the applications and begin
another debugging cycle. This will be resolved in a future release.

14 S–0042–22

Comparative Debugging Demonstration [2]

This demonstration illustrates the use of comparative debugging capabilities of
lgdb to detect and analyze data variances between two applications, a reference
version and a development version, that differ in results. The High-Performance
Linpack (HPL) benchmark, part of the HPC Challenge Benchmark set, is the test
application. All necessary files can be found in the demo directory of the lgdb
release package. Follow the directions in the README file to properly set up
and build the demo. For further information about the HPL benchmark, go to:
http://icl.cs.utk.edu/hpcc/index.html.

2.1 Staging the Demonstration
Two binaries are compiled for the HPL demonstration, hpcc_broken and
hpcc_working. hpcc_broken is built from HPL source into which a bug was
deliberately introduced, while hpcc_working is built from the original HPL source
code. Both executables are launched using the aprun command requesting four PEs
each; each PE maps to one MPI (Message Passing Interface) rank. Upon completion
of the run, an output file is generated containing results of the run.

Note: The scale of this demo is small for practical considerations. The techniques
used are applicable when running on thousands of processors.

S–0042–22 15

http://icl.cs.utk.edu/hpcc/index.html

Using the lgdb Comparative Debugging Feature

Run hpcc_broken:

% aprun -n 4 ./hpcc_broken

The generated output file, hpccoutf.txt, contains a failure message. The
following is a partial listing from that log:

- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:

||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0

==
T/V N NB P Q Time Gflops
--
WR11C2R4 1000 80 2 2 0.05 1.306e+01
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 283705609311.4508057 FAILED
||Ax-b||_oo = 132.675817
||A||_oo = 262.773468
||A||_1 = 263.865287
||x||_oo = 16.028046
||x||_1 = 3689.284539
||b||_oo = 0.499776
==

Finished 1 tests with the following results:
0 tests completed and passed residual checks,
1 tests completed and failed residual checks,
0 tests skipped because of illegal input values.

--

End of Tests.

16 S–0042–22

Comparative Debugging Demonstration [2]

Run hpcc_working:

% aprun -n 4 ./hpcc_working

The output of hpcc_working is appended to hpccoutf.txt and does not
contain a failure message. The following is a partial listing from the log file:

- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:

||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0

==
T/V N NB P Q Time Gflops
--
WR11C2R4 1000 80 2 2 0.05 1.337e+01
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0054597 PASSED
==

Finished 1 tests with the following results:
1 tests completed and passed residual checks,
0 tests completed and failed residual checks,
0 tests skipped because of illegal input values.

--

End of Tests.

2.2 The Comparative Debugging Process — Initial Pass
The HPL benchmark is a good choice for a debugging demonstration as its size and
complexity provides sufficient challenges to make the debugging process interesting.
As you will see, after the initial pass through the debugging steps described earlier,
several iterations of defining key data structures, employing assertions and evaluating
results (step 5 through step 7) are needed to follow the clues back to the origin of
the bug.

Important: In many of the examples within this demonstration, some command
lines are split across two lines for publishing purposes only. lgdb does not
interpret commands split across multiple lines.

2.2.1 Locate Entry Point into Code

To debug this problem, a logical entry point into the HPL code must first be
determined. The FAILED message in the hpcc_broken output is being generated
by the following section of code from the source file HPL_pdtest.c:

429 HPL_fprintf(TEST->outfp, "%s%16.7f%s%s\n",
430 "||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= ", resid1,
431 " ", (resid1 < TEST->thrsh ? "PASSED" : "FAILED"));

S–0042–22 17

Using the lgdb Comparative Debugging Feature

This checks to see if the variable resid1 is less than the value of TEST->thrsh.
If so, PASSED is printed to the output file, otherwise FAILED is printed. Something
must be different with the calculation of resid1, on line 418 of HPL_pdtest.c,
in the broken version of the code:

418 resid1 = resid0 / (TEST->epsil * (AnormI * XnormI + BnormI) * (double)(N));

Therefore, the focus is on the variables going into the calculation of resid1.

2.2.2 Specify Resource Requirements and Launch Applications

After loading the cray-lgdb module and invoking lgdb, the first task is to launch
both the broken and working versions of the HPL application using the launch
command. As described earlier, launch associates an instance of an application
with an internal process set representation. Therefore, in the following output,
launching four PEs of the hpcc_broken binary associates them with the process
set $broken.

Note: Commands shown are available in the script files found in the
hpcc_scripts directory. Scripts can be used inside lgdb using the source
command.

dbg all> launch $broken{4} hpcc_broken
Starting alps application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications network...
Timeout in 60 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [4]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
[0..3]Initial breakpoint, main at /lus/.../.../src/hpcc.c:18
dgb all>

Similarly, launching four PEs of the hpcc_working binary associates them with
the process set $working. Additionally, the error tolerance level is set for the
assertion scripts when comparing floating point values.

dbg all> launch $working{4} hpcc_working
Starting alps application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications network...
Timeout in 60 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [4]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
[0..3]Initial breakpoint, main at /lus/.../.../src/hpcc.c:18
dbg all> set error 1.0e-14 1.0e-13 absolute
dbg all>

18 S–0042–22

Comparative Debugging Demonstration [2]

2.2.3 Define Key Data Structures

Both applications are now launched and held immediately before execution is passed
to their main() routines. The next task is to create a decomposition scheme that
will make PE comparisons of the scalar data easier. In this case, the decomposition
is named $chk1 and is defined with a total size of four data variables distributed in
a block fashion over a grid of four PEs. This means that when $chk1 is used in
conjunction with a scalar variable in either of the two invoked process sets, it expects
a single scalar data variable is present in each PE, because there are a total of four
data variables distributed over four PEs.

dbg all> decomposition $chk1
> dimension 4
> distribute block
> proc_grid 4
> dim_order 1
> end
dbg all>

2.2.4 Employ Assertions to Compare Data Structures

Recall from Locate Entry Point into Code on page 17 that the following line of code
produces different results in the two versions of the application.

418 resid1 = resid0 / (TEST->epsil * (AnormI * XnormI + BnormI) * (double)(N));

Therefore, an assertion script is built and executed to compare the variables that go
into the resid1 calculation.

dbg all> build $resid1
> assert $chk1{$broken::resid0@"HPL_pdtest.c":418} = $chk1{$working::resid0@"HPL_pdtest.c":418}
> assert $chk1{$broken::TEST->epsil@"HPL_pdtest.c":418} =
$chk1{$working::TEST->epsil@"HPL_pdtest.c":418}
> assert $chk1{$broken::AnormI@"HPL_pdtest.c":418} = $chk1{$working::AnormI@"HPL_pdtest.c":418}
> assert $chk1{$broken::XnormI@"HPL_pdtest.c":418} = $chk1{$working::XnormI@"HPL_pdtest.c":418}
> assert $chk1{$broken::BnormI@"HPL_pdtest.c":418} = $chk1{$working::BnormI@"HPL_pdtest.c":418}
> assert $chk1{$broken::N@"HPL_pdtest.c":418} = $chk1{$working::N@"HPL_pdtest.c":418}
> end
Assertion script $resid1 compiled.
dbg all> start $resid1
***Starting execution of applications
dbg all>
*** Difference found in AssertID:1
*** Difference found in AssertID:4

*** The interpreter has halted.
Assertion script $resid1 complete.
Successful Assertion Set Iterations: 0
Total Passed Assertions: 4
Total Warned Assertions: 0
Total Failed Assertions: 2

Assertion summary:

S–0042–22 19

Using the lgdb Comparative Debugging Feature

AssertID 1: Pass: 0 Warn: 0 Fail: 1
AssertID 2: Pass: 1 Warn: 0 Fail: 0
AssertID 3: Pass: 1 Warn: 0 Fail: 0
AssertID 4: Pass: 0 Warn: 0 Fail: 1
AssertID 5: Pass: 1 Warn: 0 Fail: 0
AssertID 6: Pass: 1 Warn: 0 Fail: 0

Current location:
working[0..3]: Application halted in HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:418
broken[0..3]: Application halted in HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:418
dbg all>

A deviation in the data is found causing the assertion interpreter to halt execution.

Note: The amount of output above is typical after an assertion run. For brevity
after future runs, nonessential information will be removed.

2.2.5 Evaluate Results

After running the assertion script, $resid1, it is determined that variables resid0
and XnormI deviate between the two applications. Therefore, it is safe to ignore
the other variables that went into the calculation of resid1 and focus on resid0
and XnormI.

2.3 Comparative Debugging — 2nd Pass
Because XnormI deviates, an assertion script must be built to compare every variable
that goes into its calculation. XnormI is defined in the source file HPL_pdtest.c
as follows:

357 rdata->XnormI =
358 XnormI = HPL_pdlange(GRID, HPL_NORM_1, 1, N, NB, mat.X, 1);

Variables GRID, N, and NB are straightforward to compare, but the matrix mat.X
is a bit more complicated to compare and is done separately in the assertion script
$XnormI_mat.X.

20 S–0042–22

Comparative Debugging Demonstration [2]

Note: With this preliminary release of the comparative debugging feature, it is
necessary to quit lgdb and then restart it, in order to release the applications and
associated variables, thus making it possible to relaunch the applications and run
another test. For brevity, rather than include the following step in every iteration,
they will simply be noted as, "Restart and Relaunch."

dbg all> quit
% lgdb
dbg all> launch $broken{4} hpcc_broken
dbg all> launch $working{4} hpcc_working
dbg all> set error 1.0e-14 1.0e-13 absolute

dgb all> Restart and Relaunch
dbg all> decomposition $chk2
> dimension 4
> distribute block
> proc_grid 4
> dim_order 1
> end
dbg all> build $XnormI
> assert $chk2{$broken::*GRID@"HPL_pdtest.c":357} = $chk2{$working::*GRID@"HPL_pdtest.c":357}
> assert $chk2{$broken::N@"HPL_pdtest.c":357} = $chk2{$working::N@"HPL_pdtest.c":357}
> assert $chk2{$broken::NB@"HPL_pdtest.c":357} = $chk2{$working::NB@"HPL_pdtest.c":357}
> assert $chk2{$broken::*GRID@"HPL_pdtest.c":359} = $chk2{$working::*GRID@"HPL_pdtest.c":359}
> assert $chk2{$broken::N@"HPL_pdtest.c":359} = $chk2{$working::N@"HPL_pdtest.c":359}
> assert $chk2{$broken::NB@"HPL_pdtest.c":359} = $chk2{$working::NB@"HPL_pdtest.c":359}
> end
Assertion script $XnormI compiled.
dbg all> start $XnormI
***Starting execution of application

*** The interpreter has halted. ***
Assertion script $XnormI complete.
Successful Assertion Set Iterations: 1
Total Passed Assertions: 6
Total Warned Assertions: 0
Total Failed Assertions: 0

There are no deviations before or after the call to XnormI; therefore, all of these
variables can safely be ignored.

mat.X is the 1 by nq solution vector x. As shown in the following section of code,
this points to a region inside of mat.A to avoid unneeded reallocation of memory.

187 mat.A = (double *)HPL_PTR(vptr,
188 ((size_t)(ALGO->align) * sizeof(double)));
189 mat.X = Mptr(mat.A, 0, mat.nq, mat.ld);

S–0042–22 21

Using the lgdb Comparative Debugging Feature

Use lgdb to break at line 357 (prior to the calculation of XnormI) and print the
value of nq.

dgb all> Restart and Relaunch
dbg all> break HPL_pdtest.c:357
broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357.
working[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357.
dbg all> continue
working[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:357
broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:357
dbg all> print nq
broken[1,3]: 480
broken[0,2]: 520
working[1,3]: 480
working[0,2]: 520
dbg all>

Thinking about this in terms of the global problem, one might expect the global
solution vector x to be 1 by 1000; however, a reconstruct of what each PE is
pointing at, indicates that there is enough space for a 1 by 2000 vector. Note that
mat.X points into the local A matrix; however, to compare only the bits on which
HPL_pdlange operates (as on line 358 of HPL_pdtest.c), the PEs used to
calculate the norm value must be determined.

The code for the function HPL_pdlange, shows that HPL_NORM_1 only
operates for PEs with mp greater than 0. The next step is to set a break
at HPL_pdtest.c:357, continue to the breakpoint, set a breakpoint at
HPL_pdlange.c:164 (the start of the HPL_NORM_1 calculation) and then issue a
print on mp, to find the following for both $working and $broken:

dbg all> Restart and Relaunch
dbg all> break HPL_pdtest.c:357
broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357.
working[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 357.
dbg all> continue
broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:357
working[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:357
dbg all> break HPL_pdlange.c:164
broken[0..3]: Breakpoint 2: file ./lus/.../src/pauxil/HPL_pdlange.c, line 164.
working[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, line 164.
dbg all> continue
broken[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdlange.c:164
working[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdlange.c:164
dbg all> print mp
broken[2..3]: 0
broken[0..1]: 1
working[2..3]: 0
working[0..1]: 1
dbg all>

22 S–0042–22

Comparative Debugging Demonstration [2]

This means that PE 0 and PE 1 hold the actual information for mat.X, and only
these two PEs must be compared. To do this, the dereferenced mat.X pointer must
be cast to the proper dimension so that lgdb is able to grab the amount of data
expected, because C language does not provide a way to determine this directly from
the pointer alone.

dbg all> Restart and Relaunch
dbg all> build $XnormI_matX
> assert $broken{0}::(double[520])*mat.X@"HPL_pdtest.c":357 =
$working{0}::(double[520])*mat.X@"HPL_pdtest.c":357
> assert $broken{0}::(double[520])*mat.X@"HPL_pdtest.c":359 =
$working{0}::(double[520])*mat.X@"HPL_pdtest.c":359
> assert $broken{1}::(double[480])*mat.X@"HPL_pdtest.c":357 =
$working{1}::(double[480])*mat.X@"HPL_pdtest.c":357
> assert $broken{1}::(double[480])*mat.X@"HPL_pdtest.c":359 =
$working{1}::(double[480])*mat.X@"HPL_pdtest.c":359
> end
Assertion script $XnormI_matX compiled.
dbg all> start $XnormI_matX
***Starting execution of application
*** Difference found in AssertID:1
*** Difference found in AssertID:3

After running $XnormI_matX, it is found that mat.X is different before the call to
XnormI; therefore, the original source of deviation must occur earlier.

2.4 Comparative Debugging — 3rd Pass
In addition to XnormI, $resid0 was also found to be a deviating variable in our
original calculation of resid1; therefore, every variable that goes into the function
that calculates its value must be checked.

407 rdata->RnormI =
408 resid0 = HPL_pdlange(GRID, HPL_NORM_I, N, 1, NB, Bptr, mat.ld);

S–0042–22 23

Using the lgdb Comparative Debugging Feature

Bptr is a bit more complicated to compare, and is done separately in the assertion
script $resid0_Bptr.

dbg all> Restart and Relaunch
dbg all> decomposition $chk3
> dimension 4
> distribute block
> proc_grid 4
> dim_order 1
> end
dbg all> build $resid0
> assert $chk3{$broken::*GRID@"HPL_pdtest.c":407} = $chk3{$working::*GRID@"HPL_pdtest.c":407}
> assert $chk3{$broken::N@"HPL_pdtest.c":407} = $chk3{$working::N@"HPL_pdtest.c":407}
> assert $chk3{$broken::NB@"HPL_pdtest.c":407} = $chk3{$working::NB@"HPL_pdtest.c":407}
> assert $chk3{$broken::mat.ld@"HPL_pdtest.c":407} = $chk3{$working::mat.ld@"HPL_pdtest.c":407}
> assert $chk3{$broken::*GRID@"HPL_pdtest.c":409} = $chk3{$working::*GRID@"HPL_pdtest.c":409}
> assert $chk3{$broken::N@"HPL_pdtest.c":409} = $chk3{$working::N@"HPL_pdtest.c":409}
> assert $chk3{$broken::NB@"HPL_pdtest.c":409} = $chk3{$working::NB@"HPL_pdtest.c":409}
> assert $chk3{$broken::mat.ld@"HPL_pdtest.c":409} = $chk3{$working::mat.ld@"HPL_pdtest.c":409}
> end
Assertion script $resid0 compiled.
dbg all> start $resid0
***Starting execution of application
*** The interpreter has halted. ***
Script $resid0 complete.
Successful Assertion Set Iterations: 1
Total Passed Assertions: 8
Total Warned Assertions: 0
Total Failed Assertions: 0

There are no deviations before or after the call to $resid0; therefore, it is safe to
ignore all of these variables and move on to check Bptr.

367 Bptr = Mptr(mat.A, 0, nq, mat.ld);

24 S–0042–22

Comparative Debugging Demonstration [2]

Bptr is the global N by 1 b matrix, and also points to a region inside mat.A to
avoid unnecessary reallocation of memory. The next step is to insert a break point
at HPL_pdtest.c:407, continue to the breakpoint, set another breakpoint at
HPL_pdlange.c:200 (found at the start of the HPL_NORM_I calculation) and
then issue a print command for mp and nq.

dbg all> break HPL_pdtest.c:407
break HPL_pdtest.c:407
broken[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 407.
working[0..3]: Breakpoint 1: file /lus/.../src/ptest/HPL_pdtest.c, line 407.
dbg all> continue
working[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:407
broken[0..3]: Breakpoint 1, HPL_pdtest at /lus/.../src/ptest/HPL_pdtest.c:407
dbg all> break HPL_pdlange.c:200
broken[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, line 200.
working[0..3]: Breakpoint 2: file /lus/.../src/pauxil/HPL_pdlange.c, line 200.
dbg all> continue
broken[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdlange.c:200
working[0..3]: Breakpoint 2, HPL_pdlange at /lus/.../src/pauxil/HPL_pdlange.c:200
dbg all> print mp
broken[2..3]: 480
broken[0..1]: 520
working[2..3]: 480
working[0..1]: 520
dbg all> print nq
broken[1,3]: 0
broken[0,2]: 1
working[1,3]: 0
working[0,2]: 1

This means that PEs 0 and 2 hold the information for Bptr, and only these two
PEs need to be compared. PE 0 contains 520 elements of b, and PE 2 contains 480
elements of b. As with mat.X, the dereferenced Bptr pointer must be cast to the
proper dimension so that lgdb is able to grab the amount of data expected, because
C language does not provide a way to determine this directly from a pointer alone.

dbg all> Restart and Relaunch
dbg all> build $resid0_Bptr
> assert $broken{0}::(double[520])*Bptr@"HPL_pdtest.c":407 =
$working{0}::(double[520])*Bptr@"HPL_pdtest.c":407
> assert $broken{0}::(double[520])*Bptr@"HPL_pdtest.c":409 =
$working{0}::(double[520])*Bptr@"HPL_pdtest.c":409
> assert $broken{2}::(double[480])*Bptr@"HPL_pdtest.c":407 =
$working{2}::(double[480])*Bptr@"HPL_pdtest.c":407
> assert $broken{2}::(double[480])*Bptr@"HPL_pdtest.c":409 =
$working{2}::(double[480])*Bptr@"HPL_pdtest.c":409
> end
Assertion script $resid0_Bptr compiled.
dbg all> start $resid0_Bptr
***Starting execution of application
*** Difference found in AssertID:1
*** Difference found in AssertID:3

After running $resid0_Bptr it is found that Bptr is different before the call for
resid0 and, therefore, the original source of deviation must occur earlier.

S–0042–22 25

Using the lgdb Comparative Debugging Feature

2.5 Comparative Debugging — 4th Pass
At this point, it is known that both mat.X and Bptr deviate at some point in the
code; however, mat.X deviates at an earlier point (HPL_pdtest.c:357) than
Bptr (HPL_pdtest.c:407). Note that, this does not imply that Bptr is not
also deviating at the point mat.X was checked, but it does suggest that mat.X is
deviating at an earlier point. Comparative debugging ignores the control flow as much
as possible, and it is best practice to always try to work backwards in time as quick as
possible to discover the deviation.

By examining the code, it is found that mat.X is originally pointed to at line 188. It
appears that line 189 generates the entire A matrix, into which mat.X is pointing.
The value of mat.X should be checked immediately after it is generated.

186 mat.A = (double *)HPL_PTR(vptr,
187 ((size_t)(ALGO->align) * sizeof(double)));
188 mat.X = Mptr(mat.A, 0, mat.nq, mat.ld);
189 HPL_pdmatgen(GRID, N, N+1, NB, mat.A, mat.ld, HPL_ISEED);

The following codes shows that the mat struct is being passed into the
HPL_pdgesv function at line 200.

198 HPL_ptimer_boot(); (void) HPL_barrier(GRID->all_comm);
199 HPL_ptimer(0);
200 HPL_pdgesv(GRID, ALGO, &mat);
201 HPL_ptimer(0);

It is not known whether mat.X is going to be used inside HPL_pdgesv, but it
should be checked before and after this function, just to be safe. There does not
appear to be any other locations where mat.X is used before line 357.

dbg all> Restart and Relaunch
dbg all> build $pdtest_matX
> assert $broken{0}::(double[520])*mat.X@"HPL_pdtest.c":198 =
$working{0}::(double[520])*mat.X@"HPL_pdtest.c":198
>assert $broken{0}::(double[520])*mat.X@"HPL_pdtest.c":200 =
$working{0}::(double[520])*mat.X@"HPL_pdtest.c":200
> assert $broken{0}::(double[520])*mat.X@"HPL_pdtest.c":201 =
$working{0}::(double[520])*mat.X@"HPL_pdtest.c":201
> assert $broken{1}::(double[480])*mat.X@"HPL_pdtest.c":198 =
$working{1}::(double[480])*mat.X@"HPL_pdtest.c":198
> assert $broken{1}::(double[480])*mat.X@"HPL_pdtest.c":200 =
$working{1}::(double[480])*mat.X@"HPL_pdtest.c":200
> assert $broken{1}::(double[480])*mat.X@"HPL_pdtest.c":201 =
$working{1}::(double[480])*mat.X@"HPL_pdtest.c":201
> end
Assertion script$pdtest_matX compiled.
dbg all> start $pdtest_matX
***Starting execution of application
*** Difference found in AssertID:3
*** Difference found in AssertID:6

After running $pdtest_matX, it is found that lines 198 and 200 do not deviate;
however, a deviation of mat.X is detected at line 201. Therefore, mat.X is deviating
somewhere inside HPL_pdgesv, and this function must be examined more closely.

26 S–0042–22

Comparative Debugging Demonstration [2]

2.6 Comparative Debugging — 5th Pass
Although it is known that the call to HPL_pdgesv is causing deviation on mat.X,
an important first check is to determine whether the arguments going into the function
(GRID, ALGO, and mat) are matching.

dbg all> Restart and Relaunch
dbg all> decomposition $chk4
> dimension 4
> distribute block
> proc_grid 4
> dim_order 1
> end
dbg all> build $pdgesv_args
> assert $chk4{$broken::*GRID@"HPL_pdtest.c":200} = $chk4{$working::*GRID@"HPL_pdtest.c":200}
> assert $chk4{$broken::*ALGO@"HPL_pdtest.c":200} = $chk4{$working::*ALGO@"HPL_pdtest.c":200}
> assert $chk4{$broken::mat@"HPL_pdtest.c":200} = $chk4{$working::mat@"HPL_pdtest.c":200}
> end
Assertion script $pdgesv_args compiled.
dbg all> start $pdgesv_args
***Starting execution of application
*** The interpreter has halted. ***
Assertion script $pdgesv_args complete.
Successful Assertion Set Iterations: 1
Total Passed Assertions: 3
Total Warned Assertions: 0
Total Failed Assertions: 0

No differences are detected. Next, HPL_pdgesv is examined.

97 if(A->n <= 0) return;
98
99 A->info = 0;

100
101 if((ALGO->depth == 0) || (GRID->npcol == 1))
102 {
103 HPL_pdgesv0(GRID, ALGO, A);
104 }
105 else
106 {
107 HPL_pdgesvK2(GRID, ALGO, A);
108 }
109 /*
110 * Solve upper triangular system
111 */
112 if(A->info == 0) HPL_pdtrsv(GRID, A);
113 /*
114 * End of HPL_pdgesv
115 */

S–0042–22 27

Using the lgdb Comparative Debugging Feature

This is a wrapper for three function calls. The next step is to create assertions for
mat.X at each of these. Note that this function transforms the symbolic mat name
into A.

dbg all> Restart and Relaunch
dbg all> build $pdgesv_matX
> assert $broken{0}::(double[520])*A.X@"HPL_pdgesv.c":97 =
$working{0}::(double[520])*A.X@"HPL_pdgesv.c":97
> assert $broken{0}::(double[520])*A.X@"HPL_pdgesv.c":103 =
$working{0}::(double[520])*A.X@"HPL_pdgesv.c":103
> assert $broken{0}::(double[520])*A.X@"HPL_pdgesv.c":107 =
$working{0}::(double[520])*A.X@"HPL_pdgesv.c":107
> assert $broken{0}::(double[520])*A.X@"HPL_pdgesv.c":112 =
$working{0}::(double[520])*A.X@"HPL_pdgesv.c":112
> assert $broken{0}::(double[520])*A.X@"HPL_pdgesv.c":115 =
$working{0}::(double[520])*A.X@"HPL_pdgesv.c":115
> assert $broken{1}::(double[480])*A.X@"HPL_pdgesv.c":97 =
$working{1}::(double[480])*A.X@"HPL_pdgesv.c":97
> assert $broken{1}::(double[480])*A.X@"HPL_pdgesv.c":103 =
$working{1}::(double[480])*A.X@"HPL_pdgesv.c":103
> assert $broken{1}::(double[480])*A.X@"HPL_pdgesv.c":107 =
$working{1}::(double[480])*A.X@"HPL_pdgesv.c":107
> assert $broken{1}::(double[480])*A.X@"HPL_pdgesv.c":112 =
$working{1}::(double[480])*A.X@"HPL_pdgesv.c":112
> assert $broken{1}::(double[480])*A.X@"HPL_pdgesv.c":115 =
$working{1}::(double[480])*A.X@"HPL_pdgesv.c":115
> end
Assertion script $pdgesv_matX compiled.
dbg all> start $pdgesv_matX
***Starting execution of application
*** Difference found in AssertID:5
*** Difference found in AssertID:10
*** The interpreter has halted. ***
Assertion script $pdgesv_matX complete.
Successful Assertion Set Iterations: 0
Total Passed Assertions: 6
Total Warned Assertions: 0
Total Failed Assertions: 2

Assertion summary:
AssertID 1: Pass: 1 Warn: 0 Fail: 0
AssertID 2: Pass: 0 Warn: 0 Fail: 0
AssertID 3: Pass: 1 Warn: 0 Fail: 0
AssertID 4: Pass: 1 Warn: 0 Fail: 0
AssertID 5: Pass: 0 Warn: 0 Fail: 1
AssertID 6: Pass: 1 Warn: 0 Fail: 0
AssertID 7: Pass: 0 Warn: 0 Fail: 0
AssertID 8: Pass: 1 Warn: 0 Fail: 0
AssertID 9: Pass: 1 Warn: 0 Fail: 0
AssertID 10: Pass: 0 Warn: 0 Fail: 1

The assertion at line 103 is never hit; therefore, it is not a part of the valid control flow
for the way this code is compiled. All assertions except for line 115 match. This
means that the deviation for A.X occurs in the HPL_pdtrsv function that solves
the upper triangular system. At this point, the other input, A.A, should be checked to
ensure that this is not deviating at an earlier point inside this function.

28 S–0042–22

Comparative Debugging Demonstration [2]

It is known that the total dimension of A is N by N+1; however, in the code's
comments it states that every process holds onto an ld by nq chunk of A. For process
0, A is 520 by 521, and for process 1, A is 520 by 481. Assertions for A.A can be
created in the same fashion as was done for A.X to check the A matrix at different
points in the control flow. Because line 103 is never hit, this assertion can be omitted
for our A matrix assertion script.

dbg all> Restart and Relaunch
dbg all> build $pdgesv_matA
> assert $broken{0}::(double[520][520])*A.A@"HPL_pdgesv.c":97 =
$working{0}::(double[520][520])*A.A@"HPL_pdgesv.c":97
> assert $broken{0}::(double[520][520])*A.A@"HPL_pdgesv.c":107 =
$working{0}::(double[520][520])*A.A@"HPL_pdgesv.c":107
> assert $broken{0}::(double[520][520])*A.A@"HPL_pdgesv.c":112 =
$working{0}::(double[520][520])*A.A@"HPL_pdgesv.c":112
> assert $broken{0}::(double[520][520])*A.A@"HPL_pdgesv.c":115 =
$working{0}::(double[520][520])*A.A@"HPL_pdgesv.c":115
> assert $broken{1}::(double[520][480])*A.A@"HPL_pdgesv.c":97 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesv.c":97
> assert $broken{1}::(double[520][480])*A.A@"HPL_pdgesv.c":107 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesv.c":107
> assert $broken{1}::(double[520][480])*A.A@"HPL_pdgesv.c":112 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesv.c":112
> assert $broken{1}::(double[520][480])*A.A@"HPL_pdgesv.c":115 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesv.c":115
> end
Assertion script $pdgesv_matA compiled.
dbg all> start $pdgesv_matA
***Starting execution of application
*** Difference found in AssertID:3
*** Difference found in AssertID:7

It is found that matrix A is deviating at line 112. This is an important result as it
deviates before the X matrix and indicates that the N+1 matrix is deviating inside the
call to HPL_pdgesvK2.

2.7 Comparative Debugging — 6th Pass
The call to HPL_pdgesvK2 is causing deviation to A.A only, and not to the inputs
GRID, ALGO, or A. Assertions must be created at different points in the code to check
A.A. At this point, this is a guess and check process. Assertions can be added or
removed, as needed, to refine the search.

S–0042–22 29

Using the lgdb Comparative Debugging Feature

Initially the value of A.A is checked before and after panel initialization (lines 121
and 134); before and after lookahead initialization (lines 140 and 164); before and
after the main loop (lines 164 and 202); and before and after cleanup (lines 202 and
210). The assertion script can be built to compare both PE 0 and PE 1, but for brevity,
in this example focus is on PE 0.

dbg all> Restart and Relaunch
dbg all> build $pdgesvK2
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":121 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":121
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":134 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":134
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":140 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":140
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":164 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":164
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":202 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":202
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":210 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":210
> end
Assertion script $pdgesvK2 compiled.
dgb all> start $pdgesvK2
***Starting execution of application
*** Difference found in AssertID:5

A deviation of A.A is detected at line 202, which means the deviation occurs
somewhere inside the main loop. Next an assertion script is built that looks explicitly
at the main loop, picking lines 174, 183, 185, 192, and 198 for comparison locations.

dbg all> Restart and Relaunch
dbg all> build $pdgesvK2_main_loop
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":174 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":174
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":183 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":183
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":185 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":185
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":192 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":192
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":198 =
$working{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":198
> end
Assertion script $pdgesvK2_main_loop compiled.
dbg all> start $pdgesvK2_main_loop
***Starting execution of application
*** Difference found in AssertID:3

30 S–0042–22

Comparative Debugging Demonstration [2]

A deviation of A.A is detected at line 185. This means the deviation occurs between
lines 174 and 185.

dbg all> build $pdgesvK2_main_loop2
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":176 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesvK2.c":176
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":177 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesvK2.c":177
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":178 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesvK2.c":178
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":179 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesvK2.c":179
> assert $broken{0}::(double[520][480])*A.A@"HPL_pdgesvK2.c":183 =
$working{1}::(double[520][480])*A.A@"HPL_pdgesvK2.c":183
> end
Assertion script $pdgesvK2_main_loop2 compiled.
dbg all> start $pdgesvK2_main_loop2
***Starting execution of application
*** Difference found in AssertID:1

A deviation of A.A is detected at line 177, which means the deviation occurs
inside HPL_pdupdate. Note that this is a function pointer that gets set inside
HPL_pdgesvK2. Its value can be determined by printing HPL_pdupdate.

dbg all> print HPL_pdupdate
broken[0,2..3]: No symbol "HPL_pdupdate" in current context
broken[1]: {void (*)()} 0x431c60 <HPL_pdupdateTT>
working[0,2..3]: No symbol "HPL_pdupdate" in current context
working[1]: {void (*)()} 0x431c60 <HPL_pdupdateTT>

This shows that HPL_pdupdate points to the function HPL_pdupdateTT.

S–0042–22 31

Using the lgdb Comparative Debugging Feature

2.8 Comparative Debugging — 7th Pass
HPL_update passes a HPL_T_panel pointer, which contains our A matrix, to
HPL_updateTT. This type is defined in hpl_panel.h. The member pmat
contains the local array information where the A matrix that is deviating is found. To
check the A matrix, use the variable PANEL->pmat->A. The control flow gets very
complicated inside this function due to the use of numerous compiler directives. An
assertion can be placed inside the main blocks to determine what is called and what
is not.

dbg all> Restart and Relaunch
dbg all> build $pdupdateTT
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":119 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":119
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":143 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":143
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":145 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":145
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":264 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":264
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":431 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":431
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":436 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":436
> end
Assertion script $pdupdateTT compiled.
dbg all> start $pdupdateTT
***Starting execution of application
*** Difference found in AssertID:5
*** The interpreter has halted. ***

Assertion summary:
AssertID 1: Pass: 1 Warn: 0 Fail: 0
AssertID 2: Pass: 1 Warn: 0 Fail: 0
AssertID 3: Pass: 0 Warn: 0 Fail: 0
AssertID 4: Pass: 1 Warn: 0 Fail: 0
AssertID 5: Pass: 0 Warn: 0 Fail: 1
AssertID 6: Pass: 0 Warn: 0 Fail: 0

32 S–0042–22

Comparative Debugging Demonstration [2]

Assertions on lines 119, 143, and 264 pass, but the assertion on line 431 failed. This
narrows the scope to between lines 264 and 431.

dbg all> build $else_block
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":300 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":300
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":328 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":328
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":352 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":352
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":360 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":360
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":386 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":386
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":410 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":410
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":431 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":431
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":436 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":436
> end
Assertion script $else_block compiled.
dbg all> start $else_block
***Starting execution of application
*** Difference found in AssertID:8
*** The interpreter has halted. ***

Assertion summary:
AssertID 1: Pass: 1 Warn: 0 Fail: 0
AssertID 2: Pass: 0 Warn: 0 Fail: 0
AssertID 3: Pass: 0 Warn: 0 Fail: 0
AssertID 4: Pass: 1 Warn: 0 Fail: 0
AssertID 5: Pass: 0 Warn: 0 Fail: 0
AssertID 6: Pass: 0 Warn: 0 Fail: 0
AssertID 7: Pass: 0 Warn: 0 Fail: 0
AssertID 8: Pass: 0 Warn: 0 Fail: 1

S–0042–22 33

Using the lgdb Comparative Debugging Feature

Assertions on lines 300 and 360 pass; however, the assertion on line 386 fails. At
this point the value of the directive HPL_CALL_VSIPL is not known. gdb will
automatically assign invalid line numbers to the next valid line in the source code;
therefore, it is necessary to first check higher line numbers to ensure gdb does not
assign a lower number to a higher number without notification.

367 #ifdef HPL_CALL_VSIPL
368 /*
369 * Create the matrix subviews
370 */
371 Uv1 = vsip_msubview_d(Uv0, nq0, 0, nn, jb);
372 Av1 = vsip_msubview_d(Av0, PANEL->ii+jb, PANEL->jj+nq0, mp, nn);
373
374 vsip_gemp_d(-HPL_rone, Lv1, VSIP_MAT_NTRANS, Uv1, VSIP_MAT_TRANS,
375 HPL_rone, Av1);
376 /*
377 * Destroy the matrix subviews
378 */
379 (void) vsip_mdestroy_d(Av1);
380 (void) vsip_mdestroy_d(Uv1);
381 #else
382 HPL_dgemm(HplColumnMajor, HplNoTrans, HplTrans, mp, nn,
383 jb, -HPL_rone, L2ptr, ldl2, Uptr, LDU, HPL_rone,
384 Mptr(Aptr, jb, 0, lda), lda);
385 #endif
386 HPL_dlatcpy(jb, nn, Uptr, LDU, Aptr, lda);

Start out by checking line 382 followed by the known failure at line 386.

dbg all> build $inner_if_block
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":382 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":382
> assert $broken{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":386 =
$working{1}::(double[520][480])*PANEL->pmat->A@"HPL_pdupdateTT.c":386
> end
Assertion script $inner_if_block compiled.
dbg all> start $inner_if_block
***Starting execution of application
*** Difference found in AssertID:2
*** The interpreter has halted. ***

Assertion summary:
AssertID 1: Pass: 1 Warn: 0 Fail: 0
AssertID 2: Pass: 0 Warn: 0 Fail: 1

The assertion on line 382 was hit and passed, but the assertion on line 386 fails. This
indicates that HPL_CALL_VSIPL was not defined and the function HPL_dgemm
was called. It is also known that the A matrix began deviating on the return from
this call.

34 S–0042–22

Comparative Debugging Demonstration [2]

2.9 Comparative Debugging — 8th Pass
Now compare all scalar inputs to the HPL_dgemm function call.

dbg all> Restart and Relaunch
dbg all> build $dgemm
> assert $broken{1}::ORDER@"HPL_dgemm.c":467 = $working{1}::ORDER@"HPL_dgemm.c":467
> assert $broken{1}::TRANSA@"HPL_dgemm.c":467 = $working{1}::TRANSA@"HPL_dgemm.c":467
> assert $broken{1}::TRANSB@"HPL_dgemm.c":467 = $working{1}::TRANSB@"HPL_dgemm.c":467
> assert $broken{1}::M@"HPL_dgemm.c":467 = $working{1}::M@"HPL_dgemm.c":467
> assert $broken{1}::N@"HPL_dgemm.c":467 = $working{1}::N@"HPL_dgemm.c":467
> assert $broken{1}::K@"HPL_dgemm.c":467 = $working{1}::K@"HPL_dgemm.c":467
> assert $broken{1}::ALPHA@"HPL_dgemm.c":467 = $working{1}::ALPHA@"HPL_dgemm.c":467
> assert $broken{1}::LDA@"HPL_dgemm.c":467 = $working{1}::LDA@"HPL_dgemm.c":467
> assert $broken{1}::LDB@"HPL_dgemm.c":467 = $working{1}::LDB@"HPL_dgemm.c":467
> assert $broken{1}::BETA@"HPL_dgemm.c":467 = $working{1}::BETA@"HPL_dgemm.c":467
> assert $broken{1}::LDC@"HPL_dgemm.c":467 = $working{1}::LDC@"HPL_dgemm.c":467
> end
Assertion script $dgemm compiled.
dbg all> start $dgemm
***Starting execution of application
*** Difference found in AssertID:7
*** Difference found in AssertID:10
*** The interpreter has halted. ***
Assertion script $dgemm complete.
Successful Assertion Set Iterations: 1
Total Passed Assertions: 20
Total Warned Assertions: 0
Total Failed Assertions: 2
Assertion summary:
AssertID 1: Pass: 2 Warn: 0 Fail: 0
AssertID 2: Pass: 2 Warn: 0 Fail: 0
AssertID 3: Pass: 2 Warn: 0 Fail: 0
AssertID 4: Pass: 2 Warn: 0 Fail: 0
AssertID 5: Pass: 2 Warn: 0 Fail: 0
AssertID 6: Pass: 2 Warn: 0 Fail: 0
AssertID 7: Pass: 1 Warn: 0 Fail: 1
AssertID 8: Pass: 2 Warn: 0 Fail: 0
AssertID 9: Pass: 2 Warn: 0 Fail: 0
AssertID 10: Pass: 1 Warn: 0 Fail: 1
AssertID 11: Pass: 2 Warn: 0 Fail: 0

S–0042–22 35

Using the lgdb Comparative Debugging Feature

Note that there was one successful assertion set iteration, which means that function
HPL_dgemm was called, without failure at some point in the control flow, before
it was called at line 382 of HPL_pdupdateTT.c. A difference between ALPHA
and BETA that correspond to assertIDs 7 and 10, respectively. When this took place
can be determined by issuing the backtrace (or bt) command after the script
interpreter halts.

dbg all> bt
broken[0,2-3]: *** program is running
broken[1]: 0 0x000000000042a488 in HPL_dgemm at ..src/blas/HPL_dgemm.c:467
broken[1]: 1 0x0000000000432561 in HPL_pdupdateTT at ..src/pgesv/HPL_pdupdateTT.c:382
broken[1]: 2 0x000000000044f69e in HPL_pdgesvK2 at ..src/pgesv/HPL_pdgesvK2.c:178
broken[1]: 3 0x0000000000432706 in HPL_pdgesv at ..src/pgesv/HPL_pdgesv.c:107
broken[1]: 4 0x000000000040fbce in HPL_pdtest at ..src/ptest/HPL_pdtest.c:200
broken[1]: 5 0x000000000040a1ad in HPL_main at ..src/ptest/HPL_pddriver.c:228
broken[1]: 6 0x0000000000402434 in main at ..src/hpcc.c:309
working[0,2-3]: *** program is running
working[1]: 0 0x000000000042a488 in HPL_dgemm at ..src/blas/HPL_dgemm.c:467
working[1]: 1 0x0000000000432561 in HPL_pdupdateTT at ..src/pgesv/HPL_pdupdateTT.c:382
working[1]: 2 0x000000000044f69e in HPL_pdgesvK2 at ..src/pgesv/HPL_pdgesvK2.c:178
working[1]: 3 0x0000000000432706 in HPL_pdgesv at ..src/pgesv/HPL_pdgesv.c:107
working[1]: 4 0x000000000040fbce in HPL_pdtest at ..src/ptest/HPL_pdtest.c:200
working[1]: 5 0x000000000040a1ad in HPL_main at ..src/ptest/HPL_pddriver.c:228
working[1]: 6 0x0000000000402434 in main at ..src/hpcc.c:309

This verifies that the call to HPL_dgemm was made at line 382 of
HPL_pdupdateTT.c, as expected. The values of ALPHA and BETA can be printed
to see what they are currently set to in both processes.

dbg all> print ALPHA
broken[0,2..3]: No symbol "ALPHA" in current context
broken[1]: 1
working[0,2..3]: No symbol "ALPHA" in current context
working[1]: -1
dbg all> print BETA
broken[0,2..3]: No symbol "BETA" in current context
broken[1]: -1
working[0,2..3]: No symbol "BETA" in current context
working[1]: 1

Note that there is a sign difference for both. The creator of the broken code
mistakenly reversed the sign for both ALPHA and BETA, which led to a deviation. If
the mistake is corrected, the code recompiled and script hpcc_script_1.rc is
run, the codes no longer deviate; the problem has been resolved.

36 S–0042–22

Conclusion [3]

A major bottleneck in the development of high-performance applications is caused
by the complexity of running applications across tens of thousands of processing
cores. Although progress has been made in debuggers for parallel programs with
improvements in the user interface to present application data, it is still cumbersome
to isolate the source of a program bug. Comparative debugging is a methodology for
debugging applications that undergo evolutionary changes such as enhancements,
optimizations, porting, or running at a larger scale. Comparative debugging enables
programmers to compare key data structures between two executing applications,
making it possible to pinpoint the area within the application where incorrect results
are first produced.

This paper demonstrated Cray's initial support of comparative debugging using
lgdb 2.0 to debug an error within a large and complex application. Although
the command-line interface is cumbersome, the basic functionality exists. In the
future, Cray plans to release its comparative debugger with a GUI, simplifying and
enhancing the debugging process.

S–0042–22 37

	Using the lgdb Comparative Debugging Feature
	Abstract
	Introduction [1]
	1.1 The Comparative Debugging Cycle

	Comparative Debugging Demonstration [2]
	2.1 Staging the Demonstration
	2.2 The Comparative Debugging Process � Initial Pass
	2.2.1 Locate Entry Point into Code
	2.2.2 Specify Resource Requirements and Launch Applications
	2.2.3 Define Key Data Structures
	2.2.4 Employ Assertions to Compare Data Structures
	2.2.5 Evaluate Results

	2.3 Comparative Debugging � 2nd Pass
	2.4 Comparative Debugging � 3rd Pass
	2.5 Comparative Debugging � 4th Pass
	2.6 Comparative Debugging � 5th Pass
	2.7 Comparative Debugging � 6th Pass
	2.8 Comparative Debugging � 7th Pass
	2.9 Comparative Debugging � 8th Pass

	Conclusion [3]
	List of Procedures
	Procedure 1. Initial pass of comparative debugging with lgdb

	List of Examples
	Example 1. Compile code with debugging enabled
	Example 2. Launching applications using lgdb
	Example 3. Two-dimensional data decomposition scheme
	Example 4. Use an imperative assertion to compare data structure
	Example 5. Use a declarative assertion to compare data structure

