PGI® Tools Guide

Parallel Tools for Scientists and Engineers

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI® Tools Guide
Copyright © 2004 — 2010 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America

First Printing: Release 5.2, June 2004
Second Printing; Release 6.0, March 2005
Third Printing: Release 6.1, December 2005
Fourth Printing: Release 6.2, August 2006
Fifth Printing: Release 7.0-1, December, 2006
Sixth Printing: Release 7.0-2, February, 2007
Seventh Printing: Release 7.1, October, 2007
Eighth Printing: Release 7.2 May, 2008
Ninth Printing: Release 8.0 November, 2008
Tenth Printing: Release 9.0 June, 2009
Eleventh Printing: Release 2010, version10.0, November, 2009
Twelfth Printing: Release 2010, version10.4, April, 2010

Technical support: http://www.pgroup.com/support/
Sales: sales@pgroup.com
Web: http://www.pgroup.com

ID: 10841215

Contents

PLEEACE ..o s Xix
INtNAEA AUBIENCEc.viivieiieniieiieit ettt ettt et eeenee e XiX
Supplementary DOCUMENLAIONevuieiiiieriieieeie ittt ettt eeee e eees Xix
Compatibility and Conformance to Standardsccccoceviiiiiiiiiiiiiini e, XixX
OFZANIZALIONeviieiiiiiice ettt e s e e e e e e XX
CONVEILIONSeveeiiiiiieeiiiit ettt ettt e ettt e et e e e st e e e s sabnee e e e XXii
TEIMUNOLOZY ...ttt ettt et en Xxii
Related PUDLCAONSc..ooiiiiiiiiiiiii e e xXxii
System REQUITEIMENLScccouuiiiiiiiiiiiiiiiiie ettt XXiii

1. Getting Started with the PGDBG Debugger ..., 1
Definition Of TEITSc.vevitiitiitiiiieiiet et 1
Building Applications for DeDUGcc.cooriiiiiiiiiiiii 1

Debugging Optimized COMEcceeviiriiriiiiiiiiiiiecee e 2
Building for Debug 0n Windowsccocooiiiiiiiiiiiiiic e 2
PGDBG Invocation and INiAZAtONc.coiiiiiiiiiiiiic e 2
INVOKING PGDBGoviiiiiiiiiiie ittt 2
INItIALZING PGDBGc.vvevviiiiiiieit ettt 3
StArting @ SESSIONcccuvviiiiiiiiiiiiiiiii 3
Using Command LiNe OPHONSeoueiuiiiiiiiiiintiitiitisie ettt 3
PGDBG Graphical USer INEITACEc.oovveiiiiriiiiiiieie e 3
PGDBG Command LANGUAZEcoveriiiiiiiiiiiiiiieie e 3
TrOUDIESROONGc.viiiiiiiiiiii e 4
Selecting @ Version Of JAVAccoooiriiiiiiiiiiiiiicce s 4

2. The PGDBG Graphical User Interface ..., 5

Main WARAOW ..ottt 5
PGDBG Main Window COMPONENLScceeiiieiiiiiiniiniieieaiiete ettt 6
Command/Focus PAnelcocoooiiiiiiiiiiiiiii e 7
COMMANG £AD ..ottt 7
FOCUS 1D ..t 8
Process/Thread PANelcooooviiiiiiiiiiii 9

Process/TRread GIid tADovvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt 9

SUMMATY T2 ..ottt 10
SOULCE PANELovviiiiiiiiiiiee ettt e e e e e e e e e aa 10
Source Panel COMPONENLSc.eevviiiiriiiiiiiiii ettt 11
DiSplay MO tADSccueeviiiiiiiiiiiii e 11

Main WINAOW MEIUSvvvviiiiiiiiiiiiiiiiiie ettt ettt e e e e e e ettt et e e e e s e s eaab bt et e eeeeseesaeaees 11
1 L (<51 1) PRSI 12
Settings MENUcovviiiiiiiiiiiiiii 12

DA MEIU ..oovntiiiii e e e e e e e e e e e et e e aa s 12
WINAOW MEIIUoooiiiiiiiiiiiiiieee ettt e e e ettt e e e e e sttt et e e e e e e e sabbraaeeeas 13
CONIIOL MENU ...vviiiiiiiiiiiiiiiii ettt e e ettt e e e e s e st b et e e e e s e e s ataaaaes 14
OPHONS MENUovviiiiiiiiiiiiiiiiii i 15

HEIP MEIU ...t 16

1 L070) |71 PP 16
Main Window COMDBO BOXESvvvvviiiiiiiiiiiiiiiiieeee ettt s e 17
SOUTCE PANCL MESSAZESe.vvenviiiiiiieiieiteei ettt 18
SOULCE PANEL EVENLSvoviiiiiiiiiiiiiiiieee ettt e e e et e e e e e e eaaaaes 18
Source Panel POP-UP MENUScc.ooiiriiiiiiiiiiiieiieitet et 18
SUDWIILAOWS ..ottt e ettt e e e e s e ettt et e e e e e e s e e bbb et e e e s e e s satrrraeeeeas 20
Standard Subwindow CONLLOLScccueiiiiiiiiiiiiiiiie e 21
MemOry SUDWINAOWc..ooiiiiiiiiiiieiie ettt 22
Disassembler SUDWIAOWvvvvviiiiiiiiiiiiiiiie et 22
Registers SUDWINAOWccuiiiiiiiiiiiiiie e 23
CUSEOM SUDWIIAOW ...ttt s et 24
Messages SUDWINAOWooviiiiiiiiiiii e 24

3. PGDBG Command Line OPtionscccccoiiviiiiniiiniinceecee e 25
Command-Line OPHONS SYNLAXvevuvieriieiiieriieeiiesiieeieesieeebeestreebeestteabeessbeebeesseessbeessseeseens 25
ComMANA-LINE OPLOMNSvveeiiieiiietieeteeitte ettt estteebeestteeaeesteesbeestressbeesbaessbeesseessseesseessbeenseens 25
4. PGDBG Command LANGUAZEcccoooervririiiiiinciieienisiieisssse s 27
COMMANA OVEIVIEWoovvvviiiiiiieee e ettt ettt e e e ettt e e e e e e et b e e e e e e e e s e s abrreeeeeeeas 27
COMMANA SYNEAX ...ttt ettt 27
COMMANG MOUESoooiiiiiiiiiiiiicee ettt e e e e 27

(00 1R 7 1L TP PPPPPI 28
SYMDOLS ... 28
SCOPE RUIES ... e 28
Register SYMDOLSooiiiiiiiiiii e 28
SOULCE COUE LOCALIONS ...vvvvvveiieiiiiiiiiiiii ettt e e e e e ettt e e e s e s e st e e e e e e e e esiaes 28
LEXICAL BLOCKS ...ttt aanasane 29
NI 1151113 1P P PR PTPN 30
VOIS oo e et a e aar e 30
Event COMMAIASoovvvvviiiiieii ittt e e e e s rr e e 31
Event ComMANd ACHONc.ovvvvvviiiiiiiiiiiiiiie et e e e e e e 32

EXPIESSIONSovviiiiiiiiiiiiiiiii i 33

PGI® Tools Guide

L0011 0) L PP PP UPOPSRPP 34

5. PGDBG Command SUMMALYcccoooiiiiiiniiiiiicee s 37
Notation Used in Command SECHONSc.cocviriiriiiiiniiiiiieiec e 37
COMMANA SUMIMIALYeiiiiiiiiiiiit ittt ettt e 38

6. PGDBG Assembly-Level Debuggingcc.coooooviniiniininininnssesnesenns 49
Assembly-Level Debugging OVEIVIEWcccocoiuiiiiiiiiiiiiiiiieiie st 49
Assembly-Level Debugging on Microsoft Windows SYStemsc.ccocvvveiererenencnenennens 49
Assembly-Level Debugging with FOTtranccooceeiiiiiiiiiiiiiiie e 49
Assembly-Level Debugging With C++c.ooiiiiiiiiiiiiiiie e 50
Assembly-Level Debugging Using the PGDBG GUIcoooviiiiiniiiiieiieiiieiecieeiee i 50

Register SYMDOLSooiiiiiiiii e 51

X80 ReIStEr SYMDOLScveoviiiieiieiieieieieete ettt ene s 52
AMDOG4/EMOAT RegiSter SYMDOLScooveieieieieieiieeie ettt 53

SSE Register SYMDOLScooiiiiiiiiiiiiiii e 54

7. PGDBG Source-Level Debugging ... 55
Debugging FOTTIANccoeiiiiiiiiiiiii ittt 55
FOItran TYPESooviiiiiiiiiiiii i 55

ATTAYS oottt 55

OPEIALOLS ..ot 55

Name of the Main ROULNEcccoevviiiiiiiiieie ettt 56

COMMON BIOCKSc.vveviiiiiiiiieic e 56

INEEINAl PLOCEAUIESeovviiiieiieii ettt sbe e neeas 56

MOGULES ...ttt ettt 57

MOAULE PLOCEAUIESoveieniiiiiiiiiieiie et 57
DEDUZEZING G ..ottt 58
Calling C++ Instance Methodscocooiiiiiiiiiiiiiii 58

8. PGDBG Platform-Specific FEaturesccoocoiiniiiinieeecean, 61
Pathname CONVENTONSccvertiiieiiieieete sttt ettt et e et e beeneesteeaeeneesbeeeeeneenneenes 61
Debugging With COTe Filesccooviiriiiiiiiiiiiiieee e 61
SIGNALS ..e.evete ettt b ettt 03
Signals Used Internally by PGDBGccooueiiiiiiiiniinieieieiesieeie e 03

Signals Used by LInUX LIDFATIESccvoviiiiiiiiiiiiiiieieic e 03

9. PGDBG Parallel Debugging OVErview ..., 65
Overview of Parallel Debugging Capabilitycooeiririiiiiiiieiiee e 05
Graphical Presentation of Threads and ProCeSSESc.cccverviiieiierieeienieieeie e 05

Basic Process and Thread NAMINGccooiiiiiiiiiiiiieiiiieeee s 05
Thread and Process Grouping and NAMiNGc..ccceviriiiiiiriinienieieie et 006
PGDBG DebUZ MOES ..ottt 06
Threads-only DEDUZGEZINGc..coveriiriiiiiiiiiiiic s 67
Process-only DeDUZZINGc..oooviiiiiiiiiiiiiiiii e 67

Multilevel DEDUZZINGcvevieviiiiieiieiiieee e 67

ProCeSS/TRIEAA SELScvviriiiiiiitiiti et 68
NAMEA P/ESELS ..ottt et 68
P/ASEE NOTAOM ...ttt ettt 68
DYNAMIC VS. SEALC P/A-SELSvevieieieeiieteie ettt 09
CULTENt VS. PIEfiX P/-SEE ..vviviiiiiiiiiti ittt 70
P/t-5et COMMEANUSoovviiiiiiiiiiii ittt 70
Operations 0N P/t SELcooiviiiiiiiiiiiiiiiii 71
P/ SEE USAZE ...vvveiiiiiiiiiiiiii i 72

COMMEANG SELveetiieiie ettt ettt ettt ettt et e et et e st e sbneenbeentees 73
Process Level Commandscooieriiiiiiiiiiiiiiiiicicr e 73
Thread Level COMMANAScoooiiiiiiiiiiiiiiii e 74
Global COMMANGScceeiiiiiiiiii e 75

Process and Thread CONtrolcccooieiiiiiiiiiiiiiiic e 75

Configurable StOP MOMEc.eiuiiiiiiiiiiit e 76

Configurable Wait MOGEcoviuiiiiiiiiiiiiieiet et 76

STALUS MESSAZESvveeiieeeiiiititee ettt e ettt e ettt e e e sttt e e e s s st ereeeees 79

The PGDBG CommMAnd PrOMPEcc..eouiiiiiiiiiiiiitiit ettt 79

Paralle]l EVENLScc.ooviiiiiiiiii e 80

Parallel StAEMENESccviriiiiiiiii it 81
Parallel Compound/Block StAtementscoccevviriiriiiiiniinieiiieeiecse e 81
Parallel If, EISe StAtEMENLScc.eeevuriiiiiiieiiirie et ettt 81
Parallel While StAtemMentsccooiieiiiiiiiiiiiiict et 82
Return Statementscocciiiiiiiiiiiiiiiii 82

10. PGDBG - Parallel Debugging with OpenMPc.cccocooevivivniiiiecn, 83

OpenMP and Multi-thread SUPPOITcc.ooiiriiiiiiiii i 83

Multi-Thread and OpenMP DebuZgingcccverieriiriiriiiiiiienieit et 83

Debugging OpenMP Private DAAcocoeviiiiiiiiniiiiiiiiicise e 84

11. PGDBG Parallel Debugging with MPI ..., 87

MPI and Multi-ProCess SUPPOTEoviruiiriiiiiiiiiieti ettt 87

PrOCESS COMITOLc..viiiiiiiiiiiie ittt ettt ettt et e b e bt e enae e 87

Process SYNCArOMIZAONcocueviiiiiiiiiiiicii e 88

MPI MESSAZE QUEUELSuvviiiiiiiiiiiiiiiiiii it 88

MPI GLOUPS .ottt ettt e e e e sttt e e e s st bttt e e e e e nennnnes 89

MPI LIStEINET PIOCESSES ...ovvivvniiiieiie ettt e et e e e e e e e e e st e e e e eeans 89

NN & 11 1 2 & TSP UPPS 90

Multi-Process MPI DeDUZZINGc.ooviriiiiiiiiiiiiiiiiciec e 90
Invoking PGDBG for MPI DeDUZZINGcovrvriiieiiiiieiiiiiiit et 90
Using PGDBG for MPL DeDUZZINGcc.evurimiiiiiiiiiiiiiesie et 92

Debugging Support for MPICH-1cccoiiiiiiiiiiiiice e 93

12. PGDBG Parallel Debugging of Hybrid Applicationscccccccoevivivvininne. 95

PGDBG Multilevel Debug MOdeccveviiiiiiiiieiiiiii e 95

PGI® Tools Guide

Multilevel DEDUZEZINGc..ooiiiiiiiiiiiiie e 95
13. PGDBG Command Referencecocoooiooiooioeeeeeeeeeeeeeeeeeee e 97
Notation Used in COMMANG SECHONSvvvveeeeeeeeeeeeeeee et e e e e 97
PLOCESS COMIIOLvviviiiiiiiiiiiiiieeeeeeeeeee ettt ettt ettt e et e e et e e et e et e e e e e e ereeeeeeeeeees 98
AACK ... 98

(V1) | L PPN 98
AEDUG ... 98
QEIACK ..oovveiiiic e 08

RALE ..o s 99

1115, (AP UPPPPRTTT 99

11 10,1 O PPPOROPUPPPPPPPPPPPIRE 99

12 99
PLOCS oottt 99

QUIL oo e 99
5 o 1) | PP PTPRPI 99

11 | R TP EPTPT 99

] () PO T TP PO PP P PP P PP PP PP P PP PP PPPPRRRPON 100
STRPT ..ottt 100
STEPOUL ...ooiiiiiiiiiiiiii 100

SYIIC .ottt e e e ettt e e e e e ettt e e e e e e bbbttt e e e e e e bbbttt e e e e e e bbbt et e e e s e anaetbbreees 100

) 1 L0 S PP P PP P PP PP PPPPPPON 100
TRPCAM ... 100
TRPEALS ..o 101

AL} L AT 101
ProCESS-TRICAA SELScoivveiieiieiie ettt ettt e et e et e e 101
AESEL ... 101
BOCUS .o 101
UNAEESEL ..o 101
VEBWSCE .oooiiiiiii ittt ettt e e e e e e et e e e e e e e e e e e e e e e e e e 101
WHACHISEESoovvviiiiiiiiiie e 101

B OIS .o e e e e e e et aaaaeaaraaa 102
DIEAKoviiiiiiiiiiiece e 102
DIEAKTovviiiiiiiiieic s 102
DI@AKS ..o 103
(1 10) | RO PPUPPTTRRRR 103
CLEAL ..oeeeeiiiiiceee e 103
(1) [TP PPPRR 104
QESADIEovvvvviiiiiiie e 104

QO 104

QOT oo 104
@NADIC ... 104
RWALCKH ... 105
RWALCRE@AWoooiiiiiiiiii e 105
RWAtChDOThoooviiiii e 105
ZMOTE ..o 105

viii

STOP oottt 105
SEOPE ©..vevvevtetetestete ettt ettt ettt et ettt h et b et s bbb st b st te bttt ere bt 106
TEACE ..ottt ettt ettt ettt ettt et bt h e b st bt et e b et st bttt ne et b 106
TEACET ...oviiiiitieti ettt ettt ettt ettt ettt b ettt ne et reere e 106
TEACK ...ovitiiet ettt bttt ettt 106
EPACKI ... 107
UNDIEAK ..ottt e 107
UNDPEAKT ..ottt 107
WALCH ..ot enaes 107
WALCKI ... 108
WHEIL ..o e 108
WHEIUL ..ot 108
Program LOCALONSccvviiiiiiiiiiiiiiitce i 108
ALTIVR ..ottt et 108
O et 108
BESASIN ..ottt 108
CUIL ..ottt 109
BHIE ..ot bbbt 109
TINES ..ottt ennes 109
BESt e 109
PWA oot 109
SEACKIIACEo..eiiiiiiiiiii e 110
SEACKAUIMP ..ot 110
WHETE ..o 110
7 (search fOrward)cccooiiiiiiiiii s 110
? (search backward)ccccocoiiiiiiiiiiii e 110
Printing Variables and EXPreSSIONScccueiiuieriiriiiioniieiiieniee et esiee st siee e siee e sive e 110
PIANE Lo 110
PLIIEE .o 112
ASCIL .oeeiiiit ettt e et e s e e et e e 112
DI Lo e 112
EC ..o e 112
BESPIAY ..o e 112
X .o e 113
OCT ettt e et 113
SEEIIG ..ottt e 113
UNAESPIAY ..ottt 113
SYMDOIS ANd EXPIESSIONSc.vvieriieiiiiiiieiiie ettt ettt ettt ettt et e e st st eebeesnbeeneeas 113
ASSIGIL ..ottt 113
CAll ..o ettt 113
AEClArAIONc..ooiiiiiiiiiii e 114
CIIEIY ..ottt bbbt ekttt ettt 114
IVAL oo e 115
EVAL Lottt 115

PGI® Tools Guide

T < APPSO PP PPTPT PR 115
SIZEOE ...t 115
EYPI ottt ettt e s et e e e e 115
SCOPE .vvevreeteet ettt ettt ettt ettt ettt et et e o1t e et e ettt ettt ettt et e et e e te et e tt et et et et et e eteeteeaeeneens 116
ECIS ..o 116
QOWIL .ottt ettt ettt ettt aae s 116
EIMERToiviieiittitct ettt ettt ettt ettt ettt et et b bttt eeteert ettt et et et teeaeereens 116
BHLES ..ottt 116
GLODAL ...ttt 116
IAIIEScooivvieiieteteeteeteete et est et et e eteeteeteessessess e b et e b e ebe ke et e e st st et e b e beebeeteereers s e e ens 116
L1 L P 117
UD oot 117
WHETEESooiiiiiiiiie e 117
WHICH ..o 117
REGISTET ACCESSvvvviiiieiiiiiiiiiii e ettt e e s 117
B oo 117
P et 117
TRES ..ottt e e 117
PELALALooviiiiiiiii ettt 118
] | PP TP PP T PP PP PP P O PP PPPPPPRPPPPRON 118
MEIMIOTY ACCESSvvveeeeeeeiiiitiiet et e e ettt e e e sttt e e e s e sttt e e e e s s abbb et e eeessnnbbbneeeeeees 118
CLEAMooiiiiiii ettt ettt ettt ettt e e 118
Areadcooooii e et 118
QUIMP oo 118
BECA . oo 119
PEAM ...ttt ettt ettt et ettt n ittt et nnrnnnnne 119
Ir@ad ... 119
MQAUINP ..o 120
STRAM ...ttt e ara e 120
COMVETSIONSeeieeeeeeeee ettt e e e e sttt ettt e e e e ettt bbbttt e e e e s s tbbb bttt e eeesaaabbbb b et e eeeesenbbbbbbeeeeeens 120
AAAE ..ottt e 120
FUNCHION ...t 120
JINE ..o e e 120
MISCEILANEOUSc.vviiieiiiieiie ettt e e e et e e s e e tb e e e stb e e e abeestbeeensaeeennes 121
ALIAS ...t eaes 121
QELECLOTY ..ot 121
REIP .o 121
BESTOTY ... 122
JANGUAGE ...t 122
LOg e 122
MOPTIINT ...ooiiiiiiiiiiiiii ettt 122
PBICIIV ..ottt 122
TEPEALoooiiiiiiiiiiiiii i 125
SCEAPT ..ottt 125
SCUCILYoiiiiiiiii et et ittt e ettt ettt s e e e ettt ettt e e e e e et e et bbb s e e et et e et bbb e e e e et et ebbba e as 125

SLEEP ...t 126
SOUICEovtiteetete ettt sttt ettt ettt et es bt b e st e bbb e bbb e st eb e bt en e e bt e sttt et et ettt 126
UNALIAS ...t 126

1 O OSSP PSPPSR PO PP PTOOUPPTPOPPPO 126

14. Getting Started with the PGPROF Profilerccooooevivniiis 127
Basic PrOfilingcovoiiiiiiiiiiii e 127
Methods of Collecting Performance Datac.cocceviiiiiiinininiiiiicieeceee s 128
Instrumentation-based Profilingcccooeviiiiniiiiiiiiiiiii e, 128
Sample-based Profilingccccoviiiiiiiiiiiiiiiei e 129
Choose Profile Methodcc.ooiiiiiiiiiiiiiiicc e 130
Collect Performance DAtacccoiviriiiiiiiiiieiie e 131
Profiling Output FAlecc.oiiiiiiiiiiiii s 131
Using System Environment Variablescocooiviiiiiniininiiniiiiieiccccc e 131
Profiling MPI and Multi-threaded Programsc.cccceoverenininiiniiniiiicicccecec e 131
Profiling with Hardware Event COUNLETSccocoveriiruiriinininiiieieiencee e, 131
Profiler Invocation and Initializationcccooviviriniiiiiiiiic 131
APPLCAON TUIINGvevvetienie ettt ettt sttt ene et e b aneenaeas 132
TLOUDIESROONG ...t e 132
Selecting a Version Of JAVAcocveiiiieiieiiiie e 132

SLOW NEIWOTKovviiiiiiiciii e 132

15. Using PGPROF ... 133
PGPROF Tabs and ICONS OVEIVIEWc..coverieriiriiniiniiiiieiietieiete ettt 134
Profile NaVIGALONc.oiiiiiiiiiiiii it 135
HotSpot Navigationcccoooiiiiiiiiiiiiiiii i 138
SOItNG Profile DAAc.eoiviiiiiiiiiiee et 139
ComPIler FEEADACKcccviiiiiiiiiiiiiiiie ettt 139
Special Feedback MESSAZESc.evviriiriiriiiiiiiiiicieeee e 140
Profiling Parallel PrOZramscoccveviiiiiriininiiiiiiiciee e 140
Profiling Multi-threaded Programsocooiiiiiiiinininiii it 141
Profiling MPT PrOZLAIMScouveviiiiiiiiitiitieiiei ettt 142
Scalability COMPATISONcviiiiiiiiiiiiitiit e 144
Profiling Resource Utilization with Hardware Event COUNtersccoovervevierenenineninienenn, 146
Profiling with Hardware Event Counters (Linux Only)cccooveviriniiinieniiiinencneine 146
Profiling with Hardware Event Counters using pgeollectcocoocvvvivrininincncnennan. 146
Profiling with Hardware Event Counters using PAPIc..cocooiviviiiiincnincicncce 147
Analyzing Event Counter Profilescccoviiiiiiiiiiiiiiiiec e 148
Profiling ACCElErator PrOZIAIMScceeriiiieriieiieiie ittt ettt ettt 149
Analyzing Accelerator Performance DAtccoooerieriiiieiieni e 150

16. Compiler Options for Profiling ..., 155
SMPIOE SYIEAX ..t 155
Profiling Compilation OPHONSeoveiiriiriiriiiiiiiiieie s 155

Configuration Files for OpenMPI Profilingccccoeviriniiiiiiiiiiiecee e, 156

PGI® Tools Guide

Compiler Wrapper Data Filescocooiiiiiiiiiiiiiiiiie e 156

Configure OpenMPI for PGI Profilingccccooeriiiiiniiiiiiieiccccceee, 157

Modified Compiler Wrapper Data File Samplecccooiiiiiininininiiice, 158

17. PGPROF Command Line OPtions ..., 161
Command Line Option DESCIPHONSccueeruiiiiriieniiaieiieittee ettt 161
Profiler InvOCAtON aNd SEATTUPoovviiiiieiiiiieeiie ettt 162

18. PGPROF Environment Variablesccccoooovviiiiiiiiiceceee e, 165
System Environment Variablesccocooiiiiiiiiiiiiii 165

19. PGPROF Data and PreciSionc.cccocoooiiiioiiiiieeceeeeee e 167
MEASUTING THIMEe.viviiviiriettestestet ettt ettt ete et e et e et et e et e et e teeaeetsess e b e b e b et e sbeeaeeaeereens 167
PrOfile DALAovviviiiiieeiciiiett ettt ettt bttt ne et 167
Caveats (Precision of Profiling RESUILS)cccooiiviiiiiiiiiiiieccccceee e 168
Accuracy of Performance DAtaccooviiriiiiiiiniieiii e 168

CLOCK GIANMUIALILYeviviiviieieieiet ettt ettt ettt b e 169

Source Code COTTelationccceeruiiiiiiiriiiiiiieece e 169

20. PGPROF REf@reNCEoooviviiiiiiiciciiceeeeeee e 171
PGPROF User INterface OVEIVIEWccevieriiiieriiaieiiesieeieeee sttt sttt enee s 171
PGPROF MEIUScceiiiiiiiiiiiie e e ettt e ettt e e e e e ettt s e e e e e e e e et st s e aaeeeeesssaaenaaaeaeeeeanes 172

FILE MEIU ..ottt ettt 172

Settings MENUccoviiiiiiiiiiiiiii i 173

PLOCESSES MEIIUL ..ottt ettt e e et e e e s 175

VIBW MEIMUvvvievieeieie ettt ettt ettt ettt ettt ebeese ettt ess e st e b e e ebeebeeneeseens 176

SOTT MEIUeviiiiiiiiiii et e et e s st 177

SEATC MU ..ottt et 177

HEIP MENU ...ttt 178

a6 0 0 0) 1 179
PGPROF StatiStics TADLEc..ooiiiiiiiiiiiiiie e 181
Performance Datd VIEWSc.ccveiiiieriiiieiiieie ettt enee e 181

Source Code Line NUMDETINGcovvviiiiiiiiiiiiiiici e 184

PGPROF FOCUS PANELooiiiiiiiiiiiiiieiie ettt 185

21. The PGPROF Command Line Interfacec.ccccocooiveviiieiiiciieces 191
Command DeSCIIPHON SYNLAXcviiiiriieiiiiieiiete ettt 191
PGPROF Command SUMMALYccuieriiiiiiiariieiiieiiieiieesiie et esieesbeesiee e e sieeesbeessaeesseesieesneas 191
COMMANA REFEIENCEeovviiiiiiiiiiiici e 193

22. pgeollect REfErencecocoeiiiiiininiiieecc e 197
PECOLIECE OVEIVIEW ..ottt et 197
INVOKE PECOILECE ... 197
BUild fOr PGCOLECEeeviieieiicice e 198
GENETAL OPLOMS ...ttt ettt sh ettt ekt e ettt e b e et et e snbeesbeeeebeeteas 198

Xii

Time-Based Profilingccooviiiiiiiiiiit i 198

Time-Based Profiling OPHONScccooiriiiiiiiiiiieieie e 198
EVent-Based Profilingcccooiiiiiiiiiiiiiiet e 198

Root Privileges REQUITEMENEoovuiiiiiiiiiiiiieiie ettt 199
Interrupted Profile RUNSccoiiiiiiiiiiiiiieie e 199
Event-based Profiling OPtionscccovieriiiiieniiie et 199

Defining Custom Event SPeCifiCationscccooveririiiiiiiiiiceieicss s 200
INAEX ..o 203

Figures

2.1. Default Appearance of PGDBG GUIcc.cooveiiuieiiiiiiieiie et eeiie ettt sire e siae e ennees 6
2.2. PGDBG GUI COMPONEILS ...cceoiiiiiiiieteeeeesiniiiiitteeeeeees sttt eeeeeesanitbbbeeeeeeeessssbbbbbeeeeeeesaannbbbrreeeeas 7
2.3. PGDBG GUI Main Window with Focus Tab Selectedcccooiriiiriiiiniiiiiiienieciiecece 8
2.4. Process Grid with Inner Thread Gridcccoocoiiiiiiiiiieee e 10
2.5. PGDBG HEID ULLLYveoveeeeeeeeeeeeeeeeeee oo seeesee s e e e eeeseee e eseees s 16
2.6, PGDBG TOOIDALe.viviiiiiietieteeieiete ettt ettt ettt ettt et est bbb ane et b e e ene e 17
2.7. Opening a Subwindow Wwith @ POP-UP MENUc.ccviriiiriiiiiiiiiiiiie et 19
2.8. DALA POP-UP MENU ..oeiiiiiiiiiiiiiiiieeee ittt e e e e sttt e e e e e e e s nabbbbbaeeeeeeas 20
2.9. MemOTY SUDWINAOWooviiiiiiiiiiiiie ittt 22
2.10. Disassembler SUDWINAOWccuiiiiriiiiiiiieiiiies et 23
2.11. Registers SUDWINAOWcciiiiiiiiiiiiiiieiie et 23
2.12. CUSEOM SUDWINAOWeiiiiiiiiiiiiiit et 24
9.1. Focus Group DIZlog BOXcciviiiiiiiiiiiiieiiieeit ettt ettt sttt snbeesbaesnbeeeees 72
0.2, FOCUS 10 the GUIeoviiiiiiiiieiieite ettt ettt et 73
10.1. OpenMP Private Data in PGDBG GUIcooiiiiiiiiiiiiieeiiiiiceeiitee e 85
11.1. MeSSAZES SUDWINAOWeovreiiiiiiieiiiiiiie ettt ettt ettt ettt esbe e eesbe e taeenbeesseeenbeenseens 89
15.1. PGPROF OVEIVIEWcooeiiiiiiiiieiie e e e 134
15.2. PGPROF INGtIAl VIEWvveiiiiiiiiiiiiiiice ettt et e e aae e e ave e eane e 135
15.3. SOUICE COAE VIEWvovieviiiietieteeiesiete ettt ettt ettt ettt s ettt ese bt ene s eseene e 136
15.4. ASSEMDIY LEVEL VIEWccviiviiiiieiieiiitiete ettt ettt ettt ettt saa et eneesae e 137
15.5. View Navigation BULLONSoooiuiiiiiiiiiiiiiiiii et e e 138
15.6. HotSpot Navigation CONLIOLSc.evviriiiiiiriiiiitiiiee ettt eve v 138
15.7. SOTE VIEW .oeiiiiiiiiiiiiiiii et 139
15.8. Sample MPT PLOflEoouveiiiiiiiiiiiiie it 144
15.9. Profile of an Application Run with 4 Threadsccoeviiviiiiiiiiiiciecec e 145
15.10. Profile with Hardware Event COUNLETcoiiriiriiriiiniiiie ettt 149
15.11. Accelerator Performance Data for Routine-Level Profiling Examplec.cccccooviiniiiininnnnnn 150
15.12. Source-Level Profiling for an Accelerator ReiOncccoovvieriiiiiieiiiiiiienie e 152
15.13. Source-Level Profiling for an Accelerator Kernelc.ooovvviiiiniiiiiiniiiiicece e, 153
20.1. PGPROF USer INEIFACEeovveuiiiiiiiieiiiiiesiteie et 172
20.2. New Profile Session dialog DOXcccovviriiiiiiiiiiii e 173
20.3. Bar Chart Color Dialog BOXccoviiiiiiieiiiiiiiieie ettt ettt eraesae s 174
20.4. Font ChooSer DIalog BOXccuiiiiriiiiiiiieiiieieeie ettt ste et sbe s sae s 175

Xiv

20.5. View | Configure DIialog BOXccociiiirieiiiiiiiieiieieieeee e 176

20.6. PGPROF HEIPvoovieiieiieiiieite ettt ettt ettt naeeneeneens 179
20.7. PGPROF TOOIDALcooooviiiiiiiiiiii 179
20.8. ROULNE-IEVEL VIEWc.ueiiiiiiiiiiiieiic ettt e e 182
20.9. LINE-LEVEL VIEW ...ttt esssnnne 183
20.10. Assembly-1evel VIEWc.coiiiiiiiiiiiiiiiii e 184
20.11. FOCUS PANEL TADSoovviiiiiiiiieiie it 185
20.12. Parallelism Tab of FOCUS PANelcc.oiiiiiiiiiiiiieiieie et 185
20.13. Histogram Tab of FOCUS PANElcccooiiiiiiiiiiiiic e 186
20.14. Compiler Feedback Tab of Focus Panelcccooiiiiiiiiiiininiiiiiccecee 186
20.15. System Information Tab of FOCUS Panelcccooiiiiiiiiiriiniiniiciccecccee 187
20.16. Accelerator Tab of FOCUS PANELccoiiuiiiiiiiiiieiieeeee e 188

Tables

2.1. Colors Describing Thread SEAecccoiiiiiiiiiiiiiiiic e 9
4.1. PGDBG OPEIAOTSvevveevveiiessiesteeteesteestesteesseesteeteesseessesteesseessesseesseessessaesseessesseessesssesseenseens 34
5.1. PGDBG COMMEANUSeoviiiiiiieniiiiieitieitt ettt ettt ettt ettt enee i 38
0.1, GENEIAL REZISLETSecveeviieieeiieieiite ettt ettt ettt ettt et e bbbt e et e eaeeaeereersens e b 52
6.2. x87 Floating-Point StACK REGISIELSceiviieriiriiiirietieteriett ettt 52
0.3. SEZMENE REZISIELSc.oeviiriiitiitietiett ettt ettt et et e eteete et et et et e st e eteeaeeasess e st e b et e sbeeveeaeesaeseas 52
0.4. Special PUIPOSE REISLETScoviviiviiriiriiiierieiet ettt ettt ettt et ae e, 52
0.5. GENEIAL REZISLETSecvviviieieiiieieiitc ettt ettt ettt ettt ettt ettt e eaeeteersersens e b 53
0.6. FLOAting-POINt REZISIELSc..cviiiiisietiitietiett ettt ettt ettt ve ettt ettt e ebeeve e e s e s s 53
0.7. SEZMENE REGISLETScvvevivirietietiiesiete ettt ettt ettt ettt ettt estebe b et ese s et esaeseebesbeneeneeas 53
0.8. Special PUIPOSE REISLETScvevviiiriiriiriitietiet ettt ettt ettt ettt et ere e ae e, 53
0.9. SSE REZISIELSevieviivietiesteteteeteete et et ettete et et et et et e b et eteessessess e st et et et eebeebeersessess e s e s esnas 54
9.1. PGDBG DEDUZ MOEScovevviiiiiiiiiiiieiietieiee ettt 66
9.2, p/t=Set COMMEANSc..ventiiiiiiiietieie ittt ettt ettt et sttt et et enae s 70
9.3. PGDBG Parallel COMMANGScceeriiiiiiriieiiiieiiete et 73
0.4. PGDBG StOP MOUESc.viviviivierierieieteet ettt ettt ettt ettt ettt ettt b e eetsere s ss s 76
9.5. PGDBG Wit MOESeeveenieiiieniieniecii ettt ettt ettt 77
9.6. PGDBG Wit BERAVIOTc.ooviiiiiiiiiiieiiciiiett ettt 78
0.7. PGDBG Status MESSAZESoeeiiiiiiiiiiiiiiiieiiiiit ettt 79
10.1. Thread State Is Described Using COLOTcceiiiiiiiiiiiiiiiiiie et 84
11,10 MPICH SUPPOTL .ottt e e e e ettt e e e e e s sttt eeeeeeessnaeeees 93
13.1. pieny COMMANUScveeviviiriieriieeiteriie et eeite et et et e steeebeesteessbeesseeesbeesbeeesbeesaessbeeseesnsens 123
15.1. PGPROF ICON SUMMALYevviiiieiiiiiiiiiiittee ettt e e e e ettt e e e e sttt e e e e s s nabbbbeeeeeeeeeaanes 135
21.1. PGPROF COMMEANGSc.vevieniiiiiiiieniesiiett ettt ettt s 192

XV

XVi

Examples

9.1. Thread IDs in Threads-only Debug MOAEcooueiiiiiiiiiiiiiiiieiee e 67
9.2. Process IDs in process-only debug modecooeriiiiiiiiiiiniiiiiiiece e 67
9.3. Thread IDs in multilevel debug mOdec.cooouiiiiiiiiiiiiiiic e 67
9.4. p/t-sets in Threads-only Debug MOccoviiiiiiiiiiiiiiiieieece e 68
9.5. p/t-sets in Process-only Debug MOdeccceeriiiiiiiiiiiiiiiiicee e 69
9.6. p/t-sets in Multilevel DebUZ MOGEcevveriiiirieieiiiieiei ettt 69
9.7. Defining 2 DYNAMIC P/E-SELveivierierierienieieite ettt ettt sttt ettt ettt ettt ereeneeneeneas 69
0.8. Defiling A SALC P/A-SEL ...e.veviieiirierieeieiet ettt ettt ettt v et ettt et eb et et re e reens 69
12.1. Thread IDs in multilevel debug modecccovveriiiiiiiiniii e 95
13.1. SYNLAX EXAMPIESevvieeiieiiiieiie ettt ettt et et et e e bt e st e e bt e stbeesbeesaaessbeestbessseessseasbeenseesssaans 98
15.1. Partial Output from PEEVENLScovieiiriiiriiiieiie ittt 148
22.1. Custom Event EXAMPIE 1c.oooiiiiiiiiiiiiiieiii ettt sttt 201
22.2. Custom Event EXAMPIE 2c.oooiviiiiiiiiiiiieiie ettt ettt 201

XVii

Xviii

Preface

This guide describes how to use the PGPROF profiler and PGDBG debugger to tune and debug serial and
parallel applications built with The Portland Group (PGI) Fortran, C, and C++ for X86, AMDG64 and Intel 64
processor-based systems. It contains information about how to use the tools, as well as detailed reference
information on commands and graphical interfaces.

Intended Audience

This guide is intended for application programmers, scientists and engineers proficient in programming with
the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X860,
AMDG64, and Intel 64 hardware platforms. This guide assumes familiarity with basic operating system usage.

Supplementary Documentation

See http://www.pgroup.com/docs.htm for the PGDBG documentation updates. Documentation delivered

with PGDBG should be accessible on an installed system by accessing docs/index.htm in the PGI installation
directory. Typically the value of the environment variable PGI is set to the PGI installation directory. See http://
www.pgroup.com/fag/index.htm for frequently asked PGDBG questions and answers.

Compatibility and Conformance to Standards

The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms to
the ANSI standards for FORTRAN 77, Fortran 95, C, and C++ and includes extensions from MIL-STD-1753,
VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGF90, PGCC ANSI C,

and PGCPP support parallelization extensions based on the OpenMP defacto standard. PGHPF supports

data parallel extensions based on the High Performance Fortran (HPF) defacto standard. The PGI Fortran
Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran compilers.

PGDBG permits debugging of serial and parallel (multi-threaded, OpenMP and/or MPI) programs compiled
with PGI compilers. PGPROF permits profiling of serial and parallel (multi-threaded, OpenMP and/or MPI)
programs compiled with PGI compilers.

For further information, refer to the following:

¢ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

XiX

Organization

e ISO/IEC 1539:1991, Information technology — Programming Languages — Fortran, Geneva, 1991 (Fortran
90).

e ISO/IEC 1539:1997, Information technology — Programming Languages — Fortran, Geneva, 1997 (Fortran
95).

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

e OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

 American National Standard Programming Language C, ANSI X3.159-1989.
e ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).
e HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization

XX

This manual is organized as follows:

Part I: The PGDBG Debugger contains these thirteen chapters that describe PGDBG, a symbolic debugger for
Fortran, G, C++ and assembly language programs.

Chapter 1, “Getting Started with the PGDBG Debugger”
contains information on how to start using the debugger, including a description of how to build a target
application for debug and how to invoke PGDBG.

Chapter 2, “The PGDBG Graphical User Interface”
describes how to use the PGDBG graphical user interface (GUI).

Chapter 3, “PGDBG Command Line Options”
describes the PGDBG command-line options.

Chapter 4, “PGDBG Command Language”
provides detailed information about the PGDBG command language, which can be used from the
command-line user interface or from the command panel of the graphical user interface.

Chapter 5, “PGDBG Command Summary”
provides a brief summary table of the PGDBG debugger commands, providing a brief description of the
command as well as information about the category of command use.

Chapter 6, “PGDBG Assembly-Level Debugging”
contains information on assembly-level debugging; basic debugger operations, commands, and features
that are useful for debugging assembly code; and how to access registers.

Preface

Chapter 7, “PGDBG Source-Level Debugging”
contains information on language-specific issues related to source debugging.

Chapter 8, “PGDBG Platform-Specific Features”
contains platform-specific information as it relates to debugging.

Chapter 9, “PGDBG Parallel Debugging Overview”
contains an overview of the parallel debugging capabilities of PGDBG.

Chapter 10, “PGDBG - Parallel Debugging with OpenMP”
describes the parallel debugging capabilities of PGDBG and how to use them with OpenMP.

Chapter 11, “PGDBG Parallel Debugging with MPI’
describes the parallel debugging capabilities of PGDBG and how to use them with MPL

Chapter 12, “PGDBG Parallel Debugging of Hybrid Applications”
describes the parallel debugging capabilities of PGDBG and how to use them with hybrid applications.

Chapter 13, “PGDBG Command Reference”
provides reference information about each of the PGDBG commands, separated by area of use.

Part II: The PGPROF Profiler contains these ten chapters that describe the PGPROF Profiler, a tool for
analyzing the performance characteristics of C, C++, F77, and F95 programs.

Chapter 14, “Getting Started with the PGPROF Profiler”
contains information on how to start using the profiler, including a description of the profiling process,
information specific to certain how to profile MPI and OpenMP programs and how to profile with
hardware event counters.

Chapter 15, “Using PGPROF’
describes how to use the PGPROF graphical user interface (GUI).

Chapter 16, “Compiler Options for Profiling”
describes the compiler options available for profiling.

Chapter 17, “PGPROF Command Line Options”
describes the PGPROF command-line options and provides sample invocations with descriptions.

Chapter 18, “PGPROF Environment Variables”
contains information on environment variables that you can set to control the way profiling is performed
in PGPROE

Chapter 19, “PGPROF Data and Precision”
contains descriptions of the profiling mechanism that measures time, how statistics are collected, and the
precision of the profiling results.

Chapter 20, “PGPROF Reference”
provides reference information about the PGPROF graphical user interface, including information about
the menus, the toolbars, and the subwindows.

Chapter 21, “The PGPROF Command Line Interface”
provides information about the PGPROF command language, giving reference information about each of
the PGPROF commands, separated by area of use.

XXi

Conventions

Chapter 22, “pgcollect Reference”
provides reference information about the pgcollect command.

Conventions

This guide uses the following conventions:

italic
is used for emphasis.

Constant Wdth
is used for filenames, directories, arguments, options, examples, and for language statements in the text,
including assembly language statements.

Bold
is used for commands.

[item1 |
in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-
sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows
operating systems on a variety of x86-compatible processors. There are a wide variety of releases and
distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms which you can
access at www.pgroup.com/support/definitions.htm

Related Publications

The following documents contain additional information related to the X86 architecture and the compilers and
tools available from The Portland Group.

¢ PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data
types, input/output format specifiers, and additional reference material related to the use of PGI Fortran
compilers.

XXii

Preface

System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).
Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

The C Programming Language by Kernighan and Ritchie (Prentice Hall).

C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories, Inc.
(Addison-Wesley Publishing Co., 1990)

PGI User’s Guide, PGI Tools Guide, PGI Release Notes, FAQ, Tutorials, http://www.pgroup.com/
MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /

OpenMP http://www.openmp.org/

PAPI (Performance Application Program Interface) http://icl.cs.utk.edu/papi/

System Requirements

Linux or Windows (See http://www.pgroup.com/faq/install.htm for supported releases)
Intel x86 (and compatible), AMD Athlon or AMDG64, or Intel 64 or Core2 processor
Intel x86 (and compatible), AMD Athlon or AMDG4, or Intel 64 or Core2 processor

XXiii

XXiv

Part |. PGDBG Debugger

Part I of the PGI Tools Guide is about the PGDBG debugger. The information in this part describes PGDBG, a
symbolic debugger for Fortran, C, C++, and assembly language programs.

e Chapter 1, “Getting Started with the PGDBG Debugger,” starting on page 1, contains information on how to start
using the debugger, including a description of how to build a target application for debug, and how to invoke
PGDBG.

e Chapter 2, “The PGDBG Graphical User Interface,” starting on page 5, describes how to use the PGDBG graphical
user interface (GUI).

e Chapter 3, “PGDBG Command Line Options,” starting on page 25, describes the PGDBG command-line options
and how they are interpreted.

e Chapter 4, “PGDBG Command Language,” starting on page 27, provides detailed information about the PGDBG
command language, which can be used from the command-line user interface or from the command panel of the
graphical user interface.

e Chapter 5, “PGDBG Command Summary,” starting on page 37, provides a brief, alphabetical, summary table of the
PGDBG debugger commands. The table includes a brief description of the command as well as information about
the category of command use.

e Chapter 6, “PGDBG Assembly-Level Debugging,” starting on page 49, contains information on machine-level
debugging; basic debugger operations, commands, and features that are useful for debugging assembly code, as
well as information on how to access registers.

e Chapter 7, “PGDBG Source-Level Debugging,” starting on page 55, contains information on language-specific
issues related to source debugging.

e Chapter 8, “PGDBG Platform-Specific Features,” starting on page 61, contains platform-specific information as it
relates to debugging.

e Chapter 9, “PGDBG Parallel Debugging Overview,” starting on page 65, contains an overview of the parallel
debugging capabilities of PGDBG.

e Chapter 10, “PGDBG - Parallel Debugging with OpenMP,” starting on page 83, describes how to use the parallel
debugging capabilities of PGDBG with OpenMP.

e Chapter 11, “PGDBG Parallel Debugging with MPL” starting on page 87, describes how to use the parallel
debugging capabilities of PGDBG with MPI.

e Chapter 12, “PGDBG Parallel Debugging of Hybrid Applications,” starting on page 95, describes how to use the
parallel debugging capabilities of PGDBG in multilevel debug mode on hybrid applications.

e Chapter 13, “PGDBG Command Reference,” starting on page 97, provides reference information about each of the
PGDBG commands, grouping the commands by category of use.

Chapter 1. Getting Started with the
PGDBG Debugger

PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It provides debugger
features, such as execution control using breakpoints, single-stepping, and examination and modification of
application variables, memory locations, and registers.

PGDBG supports debugging of certain types of parallel applications:

e Multi-threaded and OpenMP applications.
e MPI applications

e Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes on Linux
clusters.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,
and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the
listed types of applications regardless of how well the number of threads match the number of CPUs or how
well the number of processes match the number of cluster nodes.

Definition of Terms

Throughout Part I of this manual we use the term host to refer to the system on which PGDBG executes,
target, to refer to the program being debugged, and farget machine to refer to the system on which the target
runs. For more detailed definitions of these terms, refer to the PGI glossary of terms which you can access at
www.pgroup.com/support/definitions.htm.

For an introduction to terminology used to describe parallel debugging, refer to Chapter 9, “PGDBG Parallel
Debugging Overview” .

Building Applications for Debug

To build an application for debug, compile with the —g option. With this option, the compiler generates
information about the symbols and source files in the program and includes it in the executable file. The

PGDBG Invocation and Initialization

option —g also sets the compiler optimization to level zero (no optimization) unless you specify optimization
options such as -0, —f ast, or —f ast sse on the command line. Optimization options take effect whether
they are listed before or after —g on the command line.

Debugging Optimized Code

Programs built with —g and optimization levels higher than —Q0 can be debugged, but due to transformations
made to the program during optimization, source-level debugging may not be reliable. Assembly-level
debugging (e.g., accessing registers, viewing assembly code, etc.) is reliable, even with optimized code.
Programs built without —g can be debugged; however, information about types, local variables, arguments
and source file line numbers are not available. For more information on assembly-level debugging, refer to
Chapter 6, “PGDBG Assembly-Level Debugging”.

In programs built with both —g and optimization levels higher than —00, some optimizations may be disabled
or otherwise affected by the —g option, possibly changing the program behavior. An alternative option, -gopt,
can be used to build programs with full debugging information, but without modifying program optimizations.
Unlike —g, the —gopt option does not set optimization to level zero.

Building for Debug on Windows

To build an application for debug on Windows platforms, applications must be linked with the —g option

as well as compiled with—g. This process results in the generation of debug information stored in a ‘. dwf’
file and a ‘. pdb’ file. The PGI compiler driver should always be used to link applications; except for special
circumstances, the linker should not be invoked directly.

PGDBG Invocation and Initialization

PGDBG includes both a command-line interface and a graphical user interface (GUI). Text commands are
entered one line at a time through the command-line interface. The GUI interface supports command entry
through a point-and-click interface, a view of source and assembly code, a full command-line interface panel,
and several other graphical elements and features. “PGDBG Command Language” and “PGDBG Command
Reference” describe in detail how to use the PGDBG command-line interface. “The PGDBG Graphical User
Interface” describes how to use the PGDBG GUI.

Invoking PGDBG

PGDBG is invoked using the pgdbg command as follows:

% pgdbg argunents target argl arg2 ... argn

where ar gunent s may be any of the command-line arguments described in Chapter 3, “PGDBG Command
Line Options”. See Chapter 11, “PGDBG Parallel Debugging with MPI” for instructions on how to debug an
MPI program [Linux and Windows CCS Only].

The t ar get parameter is the name of the program executable file being debugged. The arguments ar g1
arg2 ...argn are the command-line arguments to the target program. Invoking PGDBG as described starts
the PGDBG Graphical User Interface (GUI) (See “PGDBG Graphical User Interface,” on page 3). For users
who prefer to use a command-line interface, PGDBG may be invoked with the —text parameter, as described in
Chapter 3, “PGDBG Command Line Options” and “PGDBG Command Language,” on page 3.

Chapter 1. Getting Started with the PGDBG Debugger

Note

The command shell interprets any I/0 redirection specified on the PGDBG command line. Refer to
“Process Control,” on page 87 for a description of how to redirect I/0 using the run command.

PGDBG supports both 32-bit and 64-bit applications. If the PATH environment variable is set to use the 32-bit
PGI tools, a 64-bit application can be debugged by invoking PGDBG normally. PGDBG automatically determines
the architecture of the target program and configures itself for 64-bit debugging. Conversely, you can debug a
32-bit application by invoking PGDBG with the PATH set to invoke the 64-bit PGI tools. For more details, refer
to Chapter 3, “PGDBG Command Line Options”.

Initializing PGDBG

Once PGDBG is started, it reads symbol information from the executable file, then loads the application into
memory. For large applications this process can take a few moments. An initialization file is useful for defining
common aliases, setting breakpoints, and for other startup commands.

If an initialization file named .pgdbgrc exists in the current directory or in the home directory, defined by the
environment variable HOME, PGDBG opens this file and executes the commands in it.

If an initialization file is found in the current directory, then the initialization file in the home directory, if there
is one, is ignored. However, a script command placed in the initialization file may execute the initialization file
in the home directory, or execute PGDBG commands in any other file.

Starting a Session

Once PGDBG is invoked and the initialization file is processed, PGDBG is ready to process commands.
Normally, a session begins by setting one or more breakpoints, using the break, stop or trace commands,
and then issuing 2 run command followed by cont , st ep, t r ace or next .

Using Command Line Options

PGDBG can interpret command-line options. For information on these options and how they are interpreted,
refer to Chapter 3, “PGDBG Command Line Options”.

PGDBG Graphical User Interface

The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor variations
in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,
the settings for various defaults and the window manager used. Except for differences caused by those factors,
the basic interface remains the same across all systems. For more information on the PGDBG GUI, refer to
“The PGDBG Graphical User Interface”.

PGDBG Command Language

PGDBG supports a command language that is capable of evaluating complex expressions. The command
language can be used by invoking the PGDBG command-line interface with the —text option, or in the
command prompt panel of the PGDBG graphical user interface. For more information on the command
language, refer to “PGDBG Command Language” and “PGDBG Command Reference”.

Troubleshooting

Troubleshooting

If you are having trouble during invocation or the initialization process, use the following sections for tips on
what might be causing your problem.

Selecting a Version of Java

The PGDBG graphical user interface (GUI) depends on Java. PGDBG command-line mode (pgdbg -text) does
not depend on Java. PGDBG requires that the Java Virtual Machine be a specific minimum version or above. By
default, PGDBG uses the version of Java installed with your PGI software; if you chose not to install Java when
installing your PGI software, PGDBG looks for Java on your PATH. Both of these can be overridden by setting
the PGI_JAVA environment variable to the full path of the Java executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:

$ export PG _JAVA=/ hone/ myuser/ nyj aval bi n/ j ava

Chapter 2. The PGDBG Graphical
User Interface

The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor variations
in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,
the settings for various defaults and the window manager used. Except for differences caused by those factors,
the basic interface remains the same across all systems.

Main Window

Figure 2.1, “Default Appearance of PGDBG GUI” shows the main window of PGDBG GUI when it is invoked

for the first time. This window appears when PGDBG starts and remains throughout the debug session. The
initial size of the main window is approximately 910x850. It can be resized according to the conventions of the
window manager. Changes in window size and other settings are saved and used in subsequent invocations of
PGDBG. To prevent this, uncheck the Save Settings on Exit item under the Settings menu. For information on
the Settings menu, refer to “Main Window Menus,” on page 11.

As illustrated in Figure 2.1, the main PGDBG GUI window consists of three panels: Source panel, Thread/
Process panel, and the Command/Focus panel. You can control the size of these windows by moving the
horizontal divider bars or by clicking on the small up/down or left/right arrow icons.

The GUI remembers which control panels are visible when you exit and redisplays them when you reopen
PGDBG.

A second window named the Program I/0 window is displayed when PGDBG is started. Any input or output
performed by the target program is entered and/or displayed in this window.When you first start PGDBG, this
window includes information on the version of PGDBG that you are running as well as copyright information.

On Windows platforms, to maintain input focus in the main window, the Program I/0 window is instantiated
behind the DBG main window.

Main Window

Figure 2.1. Default Appearance of PGDBG GUI

Menus
Source panel

PR Te P nE Snp

Cibe Samsiimip | (it YWAHdoes Cuvitrnl o Dytiens

e B 3N ﬂ:ﬂIWilm t:|:|llln'_r|

el Vv |

Toolbar_g

f

[rn.-...-.] B

T e
gty axtdimate -
| | CRnl W R
g B FOEY |
r T T T
g pal paraltal
] I
i Hie mild g
¥ fardi=a ¥ « BEOOOT ww] } I
i LRI S T BT
1] L L LT B TR
1y PrimTT("RELED B ™ e EntE] ks wrt o]
Process %
fThread 1 v
iw RPEAERL . .. WECh RH b TRewas i)
ﬂﬂn_EI- . L LAl il

Fil I

al = i

ufisnmpn] tocus |

FiEs Seo i) (RTRite o, § Froieis)

Efpar i ght, 5880008, The Foriland Gromip, Ing. 85T Kights Pruarved;

e T Mote=Jiks, Fnmn e Toes 810 Figes Erenre

(T g YT T

[

- - g
LI i |
E. -=.|__.

|-l-l|r|lr|."-l-*rn1 t
'_\ . X
Information bar Command / Focus panel

PGDBG Main Window Components
Figure 2.1 illustrates the major components of the main PGDBG window, which includes these three panels:

o Command/Focus Panel
e Process/Thread Panel

¢ Source Panel
The window also contains menus, a toolbar, and three combo boxes that are labeled in Figure 2.2.

 Apply selector
¢ Context selector

¢ Source File selector

For more information on the menus, refer to “Main Window Menus,” on page 11.

Chapter 2. The PGDBG Graphical User Interface

For more information on the toolbar, refer to “Toolbar,” on page 16.

For more information on the combo boxes, refer to “Main Window Combo Boxes,” on page 17.

Figure 2.2. PGDBG GUI Components

Apply Context Source File
Selector Selector Selector

:'l' TaNE - X004 el e |

Cile SenlE SEe ESidue Gy =25 & g

a . - ﬂ o 'ﬂ i] "J- ﬁ ||-'|.||.|||-,|.|| ||—r'||||1n.t Frfwad E[mr —_— B

) v i l1"':ll| i
¥ minl | DiEBIE"' mode tabhs
e BRI

] SRR e Thread o0 Sl

b dnrasas eap Barat il

@ [
12 Lo S

2 Foe ey | o FO0OI0; el

11 > e = 0w |'|l HPE A, P [

W Pl ey el

Process
L3 FEFTTE MELLD 3, B g tu il pa i) £
fThrEﬂl:l - '] L n* oprrui b ert}
grid 7" ;
i grirgtl®, .- fiale, oa e TREVEE 045
x retiitng

Stack Frame Selector

1
o1 e Tiper 1F o Teapan® saarean) Deedt R
Jiammod = |
— - ! T =
r:|-‘ & AL] = ThiAe
e e 1] ||.-| SarEidn widn, MIE
i Prief e . w4t
<t | [poiea Fet1] B T Veeppes = GawdiERR, fumctinn wiin, 1 oas.e. Ypoh 84 =
k 1Lkl TE || WE = i et o nadinanil; [¥
- |
—_— T o s i
. W s g e A L
hypyes B e 1 paern e iineE w e gt ey I’)'

Cnmménd tab of Command J Focus panel

Let us begin by looking at how you use the panels.

Command/Focus Panel

The Command/Focus panel has two tabs: the Command tab and the Focus tab.

Command tab

Selecting the Command tab displays the Command panel and provides an interface in which to use the PGDBG
command language. Commands entered in this panel are executed, and the results are displayed. For a list of
commands that you can enter, refer to “Command Summary,” on page 38.

Command/Focus Panel

The GUI also supports a “free-floating” version of the Command panel, that is, a version that is not anchored
to a particular location on the screen. To use the free-floating command prompt window, select the Command
Window check box under the Window menu, as described in “Window Menu,” on page 13.

Focus tab

Selecting the Focus tab in a parallel debugging session provides access to the Focus panel in which you

can specify subsets of processes and/or threads known as p/t-sets. P/t-sets allow application of debugger
commands to a subset of threads and/or processes. Figure 2.3 displays p/t-sets in the table labeled Focus. In
this illustration the Focus table contains one p/t-set called Al | that represents all processes/threads. For more
information on p/t-sets, refer to “‘p/t-set Notation,” on page 68.

Figure 2.3. PGDBG GUI Main Window with Focus Tab Selected

— PGDBG - The Portland Group
File Settings [ata MWindew Contrel Options Help

|?] [Context: Thread 0 |?] [File: amp.e |?]

o P MAFY HIFA [Applytu:AII

Event | PC | /trmp/OMPfomp.c
#include <stdio. hx

naing{

@ printt("one thread ... \n");

1
2
2
4
5 char buf[81];
[
7
8

#pragma onp parallel
int myid,i;
Tor{i=0; 1 < 1000000; 4++i)

myid = omp_get_thread_num{J;
For(i=051<2;i+34

REINTTCHELLD %d, %dvn®, getpid(),myid);

K
¥

printf("... back to one thread.\n"l;

return;

ol

[¥]

#0 main 1ine: 13 in "omp.c" address: Ox401kE0 m
;| Command @
d Marne pit-set
| all "
] DN

Stopped at line 13 (address 0x401060) infile fmpfOMPfompe

Within the PGDBG GUI, to select a p/t set, use a left mouse click on the desired group in the Focus table. The
selected group is known as the Current Focus. By default, the Current Focus is set to all processes/threads.

For non-MPI applications, p/t-sets are used only for distinguishing threads.

Note

The Focus tab has no use in serial debugging, debugging one single-threaded process.

Chapter 2. The PGDBG Graphical User Interface

Process/Thread Panel

The Process/Thread panel is another component of the interface used for parallel debugging. This panel has
two tabs: the Process/Thread Grid tab and the Summary tab.

Use the slider at the bottom of the grid to zoom in and out on the grid. If the slider is not visible, increase the
size of the Process/Thread grid’s panel.

Process/Thread Grid tab

When you select the Process/Thread Grid tab, all active target processes and threads are represented as a grid.

o If the target application consists of multiple processes, the tab label is Process Grid.

* If the target application is a single multi-threaded process, the tab label is Thread Grid.

Note

On Windows platforms, the Process/Thread Grid is used only for distinguishing threads.

The colors of each element in the grid represent the state of the corresponding component of the target
application; for example, green means running and red means stopped. Table 2.1 lists the colors and their
meanings.

Table 2.1. Colors Describing Thread State

Option Description
Stopped Red

Signaled Blue
Running Green
Terminated Black

In the Process/Thread Grid, each element is labeled with a numeric process identifier, as described in
“Process-only Debugging,” on page 67, and represents a single process. Each element is a button that can

be pushed to select the corresponding process as the Current Process. The Current Process is highlighted with
a thick black border.

For single-process/multi-threaded (e.g., OpenMP) targets, the grid is called the Thread Grid. Each element in
the thread grid is labeled with a numeric thread identifier, as described in “Threads-only Debugging,” on page
67. As with the process grid, clicking on an element in the thread grid selects that element as the Current
Thread, which is highlighted with a thick black border.

For multi-process/multi-threaded (hybrid) targets, the grid is labeled the Process Grid. Selecting a process in
the grid reveals an inner thread grid as illustrated in Figure 2.4.

Source Panel

Figure 2.4. Process Grid with Inner Thread Grid

o m»

Eile Settings Data ‘Windew Centrel Options

SR

o &40

B

(Apply to: All

[«

« [T [®

IL:J__/l

PJ [Cuntex‘t:.ess.ﬂ'rr:ead o ’Fﬂ [File: Srprphe

10T myrank, threadrank;
a9 char hrame [32];

i int 13

WPI_Tnit(&argo, &argy)3

14 gethostnameChnane, 323 ;
15 WPI_Camm_rank{MPI_COMM_WORLD, &myvrank) ;

#pragna onp parallel

19) int 1;
20 » Tor(1=0s1<33 1460

21 BrIRETE "Hs s el n ", hname, myrank, onpoget_thread_num{li;

22 +

23 #pragna omp-barrier

24 3

o WET_Finalize(y;

éS return;

3_0 FAfmAT RS
4 Il [}
#0 main Tine: 20 9n "onpepd .o address: Oxd0sd72 F][@)

‘Camma Focus

podbig [a11] O ([0.1] Mew Thread)

i New Thiread)

New Thread))))

Stopped at Gwd06072, function main, T11e ompopi.e, Tine 20
for(i=01c3; 14+k01

podby [2177 0.0

I

[

Stopped at line 20 (address (40607 2) Ik file (home/danb/testfompmplf ompmpl.o

In Figure 2.4 process 0 has four threads labeled 0.0, 0.1, 0.2, and 0.3; where the integer to the left of the

decimal point is the process identifier and the integer to the right of the decimal point is the thread identifier.

See “Multilevel Debugging,” on page 67 for more information on processes/thread identifiers.

Summary tab

When you select the Summary tab of the Process/Thread panel, you see a textual representation of the Process/
Thread grid. This text representation is essentially the output of the t hr eads debugger command, discussed

in “Process Control,” on page 87. By default, a summary of all the processes/threads displays.

Source Panel

The Source Panel displays the source code for the current location. You use the source panel to control the
debug session, step through source files, set breakpoints, and browse source code.

10

Chapter 2. The PGDBG Graphical User Interface

Source Panel Components

The Source panel has a number of visual aids that allow you to know more about the execution of your code.

* The tab-like section of the panel is a label that defines the process or thread currently being debugged.

* The Display Mode tabs allow you to choose the format for displaying the code: source, assembly language,
or mixed - a mix of source and assembly - as described in the following section: “Display Mode tabs”.

e The arrow icon under the PC column marks the current location.
¢ The Line No. column lists source line numbers.

e Figure 2.3 shows some of the line numbers grayed-out. A grayed-out line number indicates that its
respective source line is non-executable. Some examples of non-executable source lines are comments,
non-applicable preprocessed code, some routine prologues, and some variable declarations.

* A line number in a black font represents an executable source line.

* The Event column indicates where specific events, such as breakpoints or watchpoints exist.

For example, Figure 2.2 shows a breakpoint at line 7, indicated by the stop sign icon. Breakpoints may be
set at any executable source line by clicking the left mouse button under the Event column of the source
line. An existing breakpoint may be deleted by clicking the left mouse button on the stop sign icon. For
more information on events, refer to “Source Panel Events,” on page 18.

* The Stack Selector, at the bottom of the panel, as illustrated in Figure 2.3, displays the scope of the current
Program Counter (PC). Open the combo box and select a different scope from the list or use the up and
down buttons located on the right of the combo box. The up button is equivalent to the up debugger
command and the down button is equivalent to the down debugger command. For more information on
these commands, refer to the up and down commands in “Scope,” on page 116.

Display Mode tabs

You use the Display Mode Selector to select three different source display modes: Source, Disassembly, and
Mixed.

¢ Source mode shows the source code of the current source file indicated by the File Selector. This is the
default display mode if the source file is available.

¢ Disassembly mode shows the assembly-level instructions of the current routine. This is the default display
mode if the source file is not available.

¢ Mixed mode shows assembly-level instructions annotated with source code. This mode is available only if

the source file is available.

Main Window Menus

The main window menu bar includes seven menus: File, Settings, Data, Window, Control, Options and Help.
Below is a summary of each menu in the main window. Some descriptions contain keyboard shortcuts that are
indicated by keystroke combinations (e.g., Control P) enclosed in parentheses.

11

Main Window Menus

File Menu

Open Target. ..
Select this option to begin a new debugging session. After selecting this option, select the program to
debug (the target) from the file chooser dialog. The current target is closed and replaced with the target
that you selected from the file chooser. Press the Cancel button in the file chooser to abort the operation.
For more information, see the command “debug,” on page 98.

Attach to Target. ..
Select this option to attach to a running process. You can attach to a target running on a local or a remote
host. For more information, refer to the command” “attach,” on page 98.

Detach Target
Select this option to end the current debug session. This command does not terminate the target
application. For more information, refer to the command” “detach,” on page 98.

Exit
End the current debug session and close all the windows.

Settings Menu

Font...
This option displays the font chooser dialog box. Use this dialog box to select the font and size used in the
Command Prompt Panel, Focus Panel, and Source Panel. The default font is named monospace and the
default size is 72.

Show Tool Tips — Select this check box to enable tool tips. Tool tips are small temporary messages that
pop-up when you position the mouse pointer over a component in the GUL They provide additional
information on the functionality of the component. Deselect this check box to turn them off.

Restore Factory Settings
Select this option to restore the GUI to its initial state illustrated in Figure 2.1, “Default Appearance of
PGDBG GUI,” on page 6.

Restore Saved Settings
Select this option to restore the GUI to the state that it was in at the start of the debug session.

Save Settings on Exit
By default, the PGDBG saves the state (size and settings) of the GUI when you exit. Uncheck this option
to prevent PGDBG from saving the GUI state. This option must be unchecked prior to every exit since
PGDBG always defaults to saving GUI state. When PGDBG saves state, it stores the size of the main window,
the location of the main window on the desktop, the location of each control panel divider, the tool tips
preference, the font and size used. The GUI state is not shared across host machines.

Data Menu

The items under this menu are enabled when a data item is selected in the source panel. Selecting and printing
data in the source panel is explained in detail in “Source Panel Pop-Up Menus,” on page 18. For more
information on printing, also refer to “Printing Variables and Expressions,” on page 110.

12

Chapter 2. The PGDBG Graphical User Interface

Print
Print the value of the selected item. (Control P).

Print *
Dereference and print the value of the selected item.

String

Treat the selected value as a string and print its value.
Bin

Print the binary value of the selected item.

Oct
Print the octal value of the selected item.

Hex
Print the hexadecimal value of the selected item.

Dec
Print the decimal value of the selected item.

Ascii
Print the ASCII value of the selected item.

Addr
Print the address of the selected item.

Type Of

Print data type information for the selected item.

Window Menu

The items under this menu select various subwindows associated with the target application. Subwindows are
explained in greater detail in “Source Panel Pop-Up Menus,” on page 18.

Registers
Display the registers subwindow. For more information, refer to the command: “regs,” on page 117.

Stack
Display the stack subwindow. For more information, refer to the command

EEINTS

stacktrace,” on page 110.

Locals
Display a list of local variables that are currently in scope. For more information, refer to the command
“names,” on page 116.

Custom
Bring up a custom subwindow.

Disassembler
Bring up the PGDBG Disassembler subwindow.

Memory
Bring up the memory dumper subwindow.

13

Main Window Menus

Messages
[MPI Debugging Only| Display the MPI message queues. For more information on MPI message queues,
refer to “MPI Message Queues,” on page 88.

Events
Display a list of currently active breakpoints, watchpoints, etc.

Command Window
When this menu item’s check box is selected, the GUI displays a “free-floating” version of the command
prompt window. See Chapter 13, “PGDBG Command Reference” for a description of each command that
can be entered in the command prompt.

Control Menu

14

The items under this menu control the execution of the target application. Many of the items under this menu
have a corresponding button associated with them, described in “Toolbar,” on page 16. When a control key
is available, it is shown in parenthesis.

Arrive
Display the current program location in the Source panel. For more information, refer to the command:
“arrive,” on page 108.

Up
Enter the scope of routine up one level in the call stack. For more information, refer to the command:
“up,” on page 117 (Control U).

Down
Enter the scope of routine down one level in the call stack. For more information, refer to the command”
“down,” on page 116 (Control D).

Run
Run or Rerun the target application. For more information, refer to the commands “run,” on page 99
and “rerun,” on page 99 (Control R).

Run Arguments
Opens a dialog box that allows adding to or modifying the target’s runtime arguments.

Halt
Halt the running processes or threads. For more information, refer to the command: “halt,” on page
99 (Control H).

Call...
Open a dialog box to request a routine to call. For more information, refer to the command “call,” on
page 113.

Cont
Continue execution from the current location. For more information, refer to the command: “cont,” on
page 98 (Control G).

Step
Continue and stop after executing one source line, stepping into called routines. For more information,
refer to the command: “step,” on page 100 (Control S).

Chapter 2. The PGDBG Graphical User Interface

Next
Continue and stop after executing one source line, stepping over called routines. For more information,
refer to the command: “next,” on page 99 (Control N).

Step Out
Continue and stop after returning to the caller of the current routine. For more information, refer to the
command: “stepout,” on page 100 (Control 0).

Stepi
Continue and stop after executing one assembly-level instruction, stepping into called routines. For more
information, refer to the command: “stepi,” on page 100 (Control I).

Nexti
Continue and stop after executing one assembly-level instruction, stepping over called routines. For more
information, refer to the command: “nexti,” on page 99 (Control T).

Options Menu

This menu contains additional items that assist in the debug process.

Search Forward. ..
Select this option to perform a forward string search in the currently displayed source file (Control F).

Search Backward. ..
Select this option to perform a backward string search in the currently displayed source file (Control B).

Search Again
Select this option to repeat the last search that was performed on the source panel (Control E).

Locate Routine. ..
When this option is selected, PGDBG queries for the name of the routine that you wish to find. If PGDBG
has symbol and source information for that routine, it displays the routine in the source panel. Refer to
“Source Panel Pop-Up Menus,” on page 18.

Set Breakpoint. ...
When this option is selected, PGDBG queries for the name of a routine on which to set a breakpoint. The
GUI then sets a breakpoint at the first executable source line in the specified routine.

Disassemble
Disassemble the data selected in the source panel. For more information, refer to the command:
“disasm,” on page 108.

Cascade Windows
If one or more subwindows are open, this option can be used to automatically stack subwindows in the
upper left-hand corner of the desktop (Control W).

Refresh
Repaint the process/thread grid and source panels (Control L).

15

Toolbar

Help Menu

PGDBG Help. ..
This option starts up PGDBG’s integrated help utility as illustrated in Figure 2.5. The help utility includes
a summary of every PGDBG command. To find 2 command, use one of the following tabs in the left panel:
The “book” tab presents a table of contents, the “index” tab presents an index of commands, and the
“magnifying glass” tab presents a search engine. Each help page, displayed on the right, may contain
hyperlinks, denoted in underlined blue, to terms referenced elsewhere in the help engine. Use the arrow
buttons to navigate between visited pages. Use the printer buttons to print the current help page.

About PGDBG ...
This option displays a dialog box with version and copyright information on PGDBG. It also contains sales
and support points of contact.

Figure 2.5. PGDBG Help Utility

% PGDBG Help BEEE

L E)E]

" 1R
' PGDBG Help

o= Ij Process Control :

¢ [JProcess, Thread Sets

| Commands are broker up into the following list of topics;

o] Events 2
¢ [JProgram Locations e # Process Control
o 1 Printing 3 @ Process (Thread Sets

o 3 Symbols and Expressi|: @ Events _
o 3 Scope : & Program Locations

o] Register Access = Printing .
® Symbols and Expressions
o [J Memory Access e Scope

o] Conversions

) & Register Access
o] Miscellaneous £

& Memory Access
& COMversions
= Miscellaneous

~|Unless otherwise noted, the user can assurne that every
“|comrmand listed here can be executed through the cormmand
i prompt. Instructions for executing an equivalent set of
comrnands in the Graphical User Interface (GUIY are also
“lincluded if they are available.

Toolbar

There are nine buttons located on the main window toolbar. Figure 2.6 illustrates the toolbar.

16

Chapter 2. The PGDBG Graphical User Interface

Figure 2.6. PGDBG Toolbar

Far Cart MNext Stepl Back
l Halt. l skap iStep Dut_i Mest i

® B> AT HBTO

Except for the Back button, these buttons have a corresponding menu item on the Control menu, described in
“Control Menu”. The functionality from the toolbar is exactly the same as selecting the menu item.

The Back button resets the source panel view to the current PC location, denoted by the left arrow icon under
the PC column.

Main Window Combo Boxes

As illustrated in Figure 2.3 the main window contains three Combo boxes. A combo box is a combination text
field and list component. In its closed or default state, it presents a text field of information with a small down
arrow icon to its right. When the down arrow icon is selected by a left mouse click, the box opens and presents
a list of choices that can be selected.

In Figure 2.3 the combo boxes contain the values: All, Thread 0, omp.c, These combo boxes, described in the
following paragraphs, are named: Apply Selector, Context Selector, and Source File Selector.

e Use the Apply Selector to select the set of processes and/or threads on which to operate. Any command
entered in the source panel is applied to this set of processes/threads. These commands include setting
breakpoints, selecting items under the Control menu, pressing one of the nine buttons mentioned
in“Toolbar,” on page 16, and so on. Depending on whether you are debugging a multi-threaded, multi-
process, or multi-process/multi-threaded (hybrid) target, the following options may be available:

All
All processes/threads receive commands entered in the source panel (default).

Current Thread
Commands are applied to the current thread ID only.

Current Process
Commands are applied to all threads that are associated with the current process.

Current Process.Thread
MPI only. Commands are applied to the current thread in the current process only.

Focus

Commands are applied to the focus group selected in the Focus Panel, described in “Command/Focus
Panel,” on page 7). Refer to “Process/Thread Sets,” on page 68 for more information on this
advanced feature.

This combo box is not displayed when debugging a serial program.

17

Source Panel Messages

e The function of the Context Selector is the same as for the Process/Thread Grid - to select the current
Process, Thread, or Process.Thread. The current Process, Thread, or Proceess.Thread controls the display
in the source panel; it can also be used as a selection for control and display operations. This combo box is
not accessible when debugging a serial program.

e By default, the Source File Selector displays the source file that contains the current target location. It can
be used to select another file for viewing in the Source Panel. When this combo box is closed, it displays the
name of the source file displayed in the Source Panel. To select a different source file, open the combo box
and select a file from the list. If the source file is available, the source file appears in the Source Panel.

Source Panel Messages

The source panel contains two message areas. The top center indicates the current process/thread ID (e.g.,
Thread 0 in Figure 2.7) and the bottom left displays status messages (e.g., Stopped at line 12... in Figure 2.7).

Source Panel Events

Breakpoints are displayed under the Event column in the source panel. The stop sign icon denotes a
breakpoint. Breakpoints are added through the source panel by clicking the left mouse button on the desired
source line under the Event column. Clicking the left mouse button over a stop sign deletes the corresponding
breakpoint. Selecting the Events item under the Window menu displays a global list of Events, such as
breakpoints, watchpoints, and so on.

Source Panel Pop-Up Menus

The PGDBG source panel supports two pop-up menus to provide quick access to commonly used features.

¢ One pop-up menu is used to invoke subwindows. It is accessed using a right mouse-click in a blank or
vacant area of the source panel. See “Subwindows,” on page 20 for more information on invoking
subwindows using a pop-up menu.

e The other pop-up menu is accessed by first highlighting some text in the source panel, then using a right
mouse click to bring up the menu. The selections offered by this pop-up menu take the selected text as
input.

To select text in the source panel:

1. Click on the line of source containing the text.

This action results in the display of a box surrounding the source line.
2. Hold down the left mouse button and drag the cursor, or mouse pointer, across the text to be selected.

The text should then be highlighted.

18

Chapter 2. The PGDBG Graphical User Interface

Figure 2.7. Opening a Subwindow with a Pop-up Menu

PGDEG - The Portland|Group

® H»r

5 IR

IC

«J]

Fila Settings [Data Window Control Options

Help
’.j aﬁ 0 [Appl\,ur to: All ’i] [Cuntext: Thread O ’i] [File: amp.c ’i]
lisadGad summary | ¢

Disassembly | Mixed

Lina Mo, | Evant |PC|!tmp!OMP!omp.c

[[B, I S PV I

#include <stdio.h> -

maing){

Begistars
char hut[E1]; Stack
. Locals
printf("One thread ... “n");
Custom

#pragna omp parallel

Dizassemblar
int mwid,di; Mermory

for(i=0; i < 1000000; ++i} Messages
myid = omp_get_thread_numil; Rafresh
Tor(i=0;i<2;i+0{

printf{"HELLD %d, %dsn",getpid(d,mwidd;
¥

1
printf{"... bhack to one thread.“n"J);
return;

¥

=

#2 main 1ine: 13 1n

"omp.c" address: Ox401bG0

;| Command @

Marme pft-set

“|all

[

T

Stopped at line 13 (address 0x401060) in file tmp/OMPomp.c

Once the text is highlighted, menu selections from the Source Panel menus or from the Source Panel pop-up
menu use the highlighted text as input. In Figure 2.8 the variable myi d is highlighted and the pop-up menu is
used to print its value as a decimal integer. The data type of selected data items may also be displayed using the

pop-up menu.

19

Subwindows

Figure 2.8. Data Pop-up Menu

PGDBG - The Portland|Group

File Settings Data Window Contral Options Help
o H»r MAT® AN [Applytu:AII ’?][Cuntext:ThreadO ’?][File:omp.c ’?]
Disassembly | Mixed
Lina Mo, | Evant | P |,ftmp,fOMP,fomp.c
1 #include <stdio.h>
_ 2
- 3 maing{
4
|| 5 char but[81];
&8
7 @ printf{"One thread ... “n");
8 #pragma omp parallel
9 {
10 int mwid,qi;
11
12 for(i=0; 1 < 1000000; ++i)
13 D myid = omp_get_thread_numii; Brint Ii
14 Tor{i=0;i<2;i+{ S - -
15 prinTTCHELLD %d, %dyn',getpq Print Optiens B Print ™
16 ¥ Type of String
1; 3 Locate Routine | Bin
19 printf(*... back to one thread,y Set Breakpeint | Qet
3(13 ; return; Disassemble Hex
call... Dec
Asgii
Addr
1< [0
#0 main Tine: 13 in "omp.c" address: Ox401b&0 F]@
_—
| Command @
Marre plt-set
A= ["."1
i ol |
. =)) W)

Stopped at line 13 faddress 0x401060) in file tmp/OMPfomp.c

The pop-up menu shown in Figure 2.8 provides the Disassemble, Call, and Locate Routine selections, which
use selected routine names as input.

¢ The Disassemble item opens a disassembler subwindow for the selected routine.
e The Call item can be used to manually call the selected routine.

* The Locate Routine option displays the source code in which the selected routine is defined.
For more information on each of these selections, refer to “Main Window Menus,” on page 11.

Subwindows

PGDBG provides some features that are subwindows, that is, windows that are not connected to the main frame
of the PGDBG GUIL. One example of a subwindow is the Program I/0 window that is displayed at startup. Other
examples of subwindows can be found under the source panel’s Window menu. These include the Registers,

20

Chapter 2. The PGDBG Graphical User Interface

Stack, Locals, Custom, Disassembler, Memory, Messages, Events, and Command Window subwindows, as
shown in Figure 2.7, “Opening a Subwindow with a Pop-up Menu,” on page 19. With the exception of the
Command Window, all of these subwindows are controlled by similar mechanisms. The standard subwindow
control mechanisms are described in “Standard Subwindow Controls,” on page 21. Specific details of other
subwindows are described in subsequent sections. See the description of the Window menu, “Main Window
Menus,” on page 11 for more information on each subwindow.

The Window menu can be used to bring up a subwindow. You can invoke the same menu by clicking the right
mouse button over a blank spot in the source panel. Subwindows are specific to the current process and/

or thread. For example, in Figure 2.7, selecting Registers displays the registers subwindow for thread 0, the
current thread.

Standard Subwindow Controls

The PGDBG graphical user interface supports a number of subwindows for displaying detailed information
about the target application state. These subwindows include the memory subwindow, the disassembler
subwindow, the registers subwindow, the custom subwindow that is used for displaying the output of arbitrary
commands, and the messages subwindow that is used for displaying the MPI state.

Figure 2.9 shows the Memory subwindow. This subwindow shows all of the possible controls that are available
in 2 PGDBG subwindow. Not all subwindows have all of the components shown in this figure. However, nearly
all have the following components: File menu, Options menu, Reset button, Close Button, Update button, and
the Lock/Unlock toggle button.

The File menu contains the following items:

Save. ..
Save the text in this subwindow to a file.

Close
Close the subwindow.

The Options menu contains the following items:

Update
Clear and regenerate the data displayed in the subwindow.

Stop
Interrupt processing. This option comes in handy during long listings that can occur in the Disassembler
and Memory subwindows. Control C is a hot key mapped to this menu item.

Reset
Clear the subwindow.

The Reset, Close, and Update buttons are synonymous with their menu item counterparts.

The contents of subwindows are generally updated whenever a process or thread stops, such as after a step,
next, cont, or halt command. You can control updating by using the Lock/Unlock button. Whenever a
subwindow is "Locked", its contents are not updated. Figure 2.10 shows a subwindow in the "Locked" state,
with the Lock/Unlock button labeled "Unlock". Clicking this button toggles the state of the subwindow to

21

Subwindows

"Unlocked", with the button labeled "Lock", as shown in Figure 2.9. In the "Unlocked" state, the subwindow
contents are updated whenever processes or threads stop.

In addition to the subwindow capabilities previously described, subwindows may also have one to three input
fields. If the subwindow has one or more input fields, then it also contains Stop and Clear buttons. The Stop
button is synonymous with the Stop item in the Options menu described above. The Clear button erases the
input field(s).

For target applications with more than one process and/or thread, a Context Selector displays in the bottom
center illustrated in Figure 2.9. You can use the Context Selector to view data specific to a particular process/
thread or a subset of process/threads when selecting Focus. Refer to “Process/Thread Sets,” on page 68 for
more information on Focus.

Memory Subwindow

Figure 2.9. Memory Subwindow

- PGDEG Memory Dump = |Ofx]

File Options

Addreses [fjac]
Count= [12]

Formats [%f

)
T

0] dump fjac, 12, "#f"
#7FBFFFEASD: 0000000
#7FBFFFEASL: 1000000
#FFBFFFEAGE: 0000000
#7FBFFFEAGC: 1.000000
¥7FBFFFEATOL 0000000
#7FBFFFEATA: 1000000
#7FBFFFEATE: 0000000
#7FBFFFEATC: 1.000000
#7FBFFFEASD: 0000000
#FFBFFFEAS4: 1000000
#7FBFFFEASE: 0000000
¥7FBFFFEASC: 1.000000

|'Reset |’Close | Thread 0 : |'Update [Lock

The memory subwindow displays a region of memory using a format descriptor like that of the printf routine
from the Standard C Library. In the Memory subwindow, inputs include the starting address in the Address
field, the number of items in the Count field, and a printf-like format string in the Format field. See the
explanation of the PGDBG dump command (“Memory Access,” on page 118) for a description of supported
format strings. The Address field accepts a numeric address or a symbolic variable name.

Disassembler Subwindow

22

Figure 2.10 shows the Disassembler subwindow. Use this subwindow to disassemble a routine (or a text
address) specified in the Request> input field. PGDBG defaults to the current routine if you specify nothing

in the Request> input field. After a request is made to the Disassembler, the GUI asks if you want to “Display
Disassembly in the Source window”. Choosing “yes” causes the Disassembler window to disappear and

the disassembly to appear in the source panel. Viewing the disassembly in the source panel allows setting
breakpoints at the assembly-level instruction level. Choosing “no” dumps the disassembly in the Disassembler
subwindow illustrated in Figure 2.10.

Chapter 2. The PGDBG Graphical User Interface

Figure 2.10. Disassembler Subwindow

— PGDEG Disassembler

File Options
Request= [|
Stop || Clear |
"ATnpOMP S Test. U ERain |=]
Tine 5:10
int main() { =
float fiac[N]; |
int i;
Wpragma omp parallel
Oxd01s80: 55 pushg Hrbp
Oxd01a81: 48 89 ES Mg Hrep,Hrbp
Oxd0lssd: 48 53 EC 60 subg $0xBE0, %rsp
OxdQ1A88: 50 pushyg Hrax
OxdQ1a88: 50 pushg Hrax
OudQlpdn: F AE 1C 24 stmEcsr Hrspd
00188 58 popy Hrax
Oxd018AF: 48 83 (3 40 arg x40, %rax <
(o) (@8R e | (D)

Specifying a text address, rather than a routine name, in the Request> field causes PGDBG to disassemble
address locations until it runs out of memory or hits an invalid op code. This may cause very large machine
language listings. For that case, the subwindow provides a Stop button. Press the Stop button to interrupt
long listings that may occur with the Disassembler. Specify a count after the text address to limit the number
of instructions dumped to the subwindow. For example, entering Oxabcdef, 16 tells PGDBG to dump up to
16 instructions following address Oxabcdef. The Request> field accepts the same arguments as the disasm
command described in “Program Locations,” on page 108.

Registers Subwindow

Figure 2.11 illustrates the Registers subwindow. You may view the registers on one or more processes and
threads using the Context Selector. The Registers subwindow is essentially a representation of the regs
debugger command, described in “Register Access,” on page 117.

Figure 2.11. Registers Subwindow

- PGDEG Registers

File Options

mxcsr OROOOOLTCO

[sls] Q0000000 D000 CO0000000000D0000M000 0

ol Q0000000 D0000000 CO0000000000D00000000 0

o2 00000000 DOOOO0C CO0000000000000NN00 0

o3 00000000 000000 0000000000000 4]

ol 00000000 000000 0000000000000 4]

o5 G000 QOO0 G000 0

s3] Q00000000 D0000000 C000000000000000000 0

o7 Q0000000 D000 CO0000000000D0000M000 0

(ms] Qx3TF 505

St [eF1] 4] |
T Q0 4]

Top [o¥(0] o]

rip [o¥(0] o] .
rdp 3] 0 -
Mm¥Csr OxlFCo 8128

mxCr_mask OxFFFF 65535 ||
frressc [

23

Subwindows

Custom Subwindow

Figure 2.12 illustrates the Custom subwindow. The Custom subwindow is useful for repeatedly executing a
sequence of debugger commands whenever a process/thread halts on a new location or when pressing the
Update button. The commands, entered in the edit box labeled “Command>", can be any debugger command

mentioned in “PGDBG Command Language”, including a semicolon-delimited list of commands.

Figure 2.12. Custom Subwindow

PGDEGCustom

File Sptions

Comnands: [pri mt fiac[0:11]

]
[Tstop) ([Fctear

[@] print Tjac[O:11] :

fiac[0:3] @ 0O 1 0 1
Tiac[4:7] : O 1 0 1
fiac[E:11] ¢ 0 1 o] 1

[Creser | [T Cinse

Messages Subwindow

You use the Messages subwindow for debugging MPI applications. Refer to “MPI Message Queues,” on page

88 for more information on the content and use of this subwindow.

24

Chapter 3. PGDBG Command Line
Options

As we stated in Chapter 1, “Getting Started with the PGDBG Debugger”, PGDBG can interpret command-
line options when present on the command line. This chapter describes these options and how they are
interpreted.

Command-Line Options Syntax

The pgdbg command accepts several command-line options.

These options must appear on the command line before the name of the program being debugged.

Command-Line Options

The valid PGDBG options are these:

-dbx
Start the debugger in dbx mode, which provides a dbx-like debugger command language.

-sstartup
Specify an alternate initialization file st ar t up.

The default initialization file is ~/ . pgdbgr c.

-¢ “command”
Execute the debugger command command, where the command must be in double quotes, before
executing the commands in the startup file.

T
Run the debugger without first waiting for a command. If the program being debugged runs successfully,
the debugger terminates. Otherwise, the debugger is invoked and stops when an exception occurs.

-mpi
Debug an MPI application (except for MPICH-1).

25

Command-Line Options

-text
Run the debugger using a command-line interface (CLI). The default is for the debugger to launch in
graphical user interface (GUI) mode.

—help
Display a list of command-line arguments (this list).

—I <directory>
Add <di r ect or y> to the list of directories that PGDBG uses to search for source files. You can use this
option multiple times to add multiple directories to the search path.

26

Chapter 4. PGDBG Command
Language

PGDBG supports a command language that is capable of evaluating complex expressions. The command

language is composed of commands, constants, symbols, locations, expressions, and statements.

You can use the command language by invoking the PGDBG command-line interface with the —t ext option,
or in the command prompt panel of the PGDBG graphical user interface, as described in “7he PGDBG
Graphical User Interface”.

Command Overview

Commands are named operations, which take zero or more arguments and perform some action. Commands
may also return values that may be used in expressions or as arguments to other commands.

Command Syntax
Commands are entered one line at a time.

e Lines are delimited by a carriage return.

e FEach line must consist of a command and its arguments, if any.

e You can place multiple commands on a single line by using the semi-colon (;) as a delimiter.
Command Modes

There are two command modes: pgi and dbx.

e The pgi command mode maintains the original PGDBG command interface.

e In dbx mode, the debugger uses commands compatible with the familiar dbx debugger.

PGI and dbx commands are available in both command modes, but some command behavior may be slightly
different depending on the mode. The mode can be set when PGDBG is invoked by using command-line
options, or while the debugger is running by using the pgienv command.

27

Constants

Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string
constants.

Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol table for

the target program. The symbol table contains symbols to represent source files, subprograms (functions,

and subroutines), types (including structure, union, pointer, array, and enumeration types), variables, and
arguments. The PGDBG command-line interface is case-sensitive with respect to symbol names; a symbol name
on the command line must match the name as it appears in the object file.

Scope Rules

Since several symbols in a single application may have the same name, scope rules are used to bind program
identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking up identifiers.
The search scope represents a routine, a source file, or global scope. When the user enters a name, PGDBG
first tries to find the symbol in the search scope. If the symbol is not found, the containing scope, (source file,
or global) is searched, and so forth, until either the symbol is located or the global scope is searched and the
symbol is not found.

Normally, the search scope is the same as the current scope, which is the routine where execution is currently
stopped. The current scope and the search scope are both set to the current routine each time execution of the
target program stops. However, you can use the enter command to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine with a
local variable i, then:

f@

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name with this
operator, for example:

"xyz.c" @

represents the variable i defined in file xyz.c.

Register Symbols

To provide access to the system registers, PGDBG maintains symbols for them. Register names generally begin
with § to avoid conflicts with program identifiers. Each register symbol has a default type associated with it,
and registers are treated like global variables of that type, except that their address may not be taken. See
“Register Symbols,” on page 51 for a complete list of the register symbols.

Source Code Locations

28

Some commands must refer to source code locations. Source file names must be enclosed in double quotes.
Source lines are indicated by number, and may be qualified by a quoted filename using the scope qualifier
operator. Further, a range of lines is indicated using the range operator ":". Here are some examples:

Chapter 4. PGDBG Command Language

break 37 sets a breakpoint at line 37 of the current source file.
break "xyz.c" @7 sets a breakpoint at line 37 of the source file xyz.c.
list 3:13 lists lines 3 through 13 of the current file.

list "xyz.c"@: 13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is not always
obvious whether a numeric constant should be interpreted as a line number or an address. The description
for these commands says which interpretation is used. However, PGDBG provides commands to convert
from source line to address and vice versa. The line command converts an address to a line, and the addr
command converts a line number to an address. Here are some examples:

l'ine 37 means “line 37"

addr 0x1000 means "address 0x1000"

addr {line 37} means "the address associated with line 37"
l'ine {addr 0x1000} means "the line associated with address 0x1000"

Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained by a lexical
block is used to indicate the start scope of the lexical block. In the following example, there are two variables
named var. One is declared in function main, and the other is declared in the lexical block starting at line 5.
The lexical block has the unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@5 has
the unique name "lex.c' @main@5@var. The output of the whereis command that follows shows how these
identifiers can be distinguished.

| ex. c:

1 main()

2 {

3 int var = 0;

4

5 int var = 1;

6 printf("var %\n", var);
7}

8 printf("var %\ n", var)
9}

pgdbg> n

St opped at 0x8048b10, function main, file
/ homre/ deno/ pgdbg/ ctest/ | ex. c,
line 6

#6: printf("var %\ n", var);
pgdbg> print var

1

pgdbg> whi ch var

"l ex.c" @mai n@@ar

pgdbg> wherei s var

vari abl e: "l ex.c" @mi n@ar
vari able: "l ex.c" @mi n@@ar
pgdbg> nanes "l ex.c" @mai n@®
var = 1

29

Statements

Statements

Although PGDBG command-line input is processed one line at a time, statement constructs allow multiple
commands per line, as well as conditional and iterative execution. The statement constructs roughly
correspond to the analogous C language constructs. Statements may be of the following forms.

o Simple Statement: A command and its arguments. For example:
print i

* Block Statement: One or more statements separated by semicolons and enclosed in curly braces. Note:
these may only be used as arguments to commands or as part of i f or whi | e statements. For example:
if(i>1) {print i; step }

o [f Statement: The keyword if, followed by a parenthesized expression, followed by a block statement,
followed by zero or more el se i f clauses, and at most one else clause. For example:
if(i>) {print i} else if(i<j) {print j} else {print "i==j"}

* While Statement: The keyword while, followed by a parenthesized expression, followed by a block
statement. For example:
whi | e(i ==0) {next}

Multiple statements may appear on a line separated by a semicolon. The following example sets breakpoints in
routines main and xyz, continues, and prints the new current location.

break main; break xyz; cont; where
However, since the where command does not wait until the target application has halted, this statement

displays the stack at some arbitrary execution point in the program. To control when the stack is printed,
insert a wait command, as shown in this example:

break main; break xyz; cont; wait; where

Note

Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. For more information, refer to “Parallel
Statements,” on page 81.

Events

Breakpoints, watchpoints, and other mechanisms used to define the response to certain conditions are
collectively called events.

* An event is defined by the conditions under which the event occurs and by the action taken when the event
occurs.

e A breakpoint occurs when execution reaches a particular address.

The default action for a breakpoint is simply to halt execution and prompt the user for commands.

o A watchpoint occurs when the value of an expression changes.

30

Chapter 4. PGDBG Command Language

e A hardware watchpoint occurs when the specified memory location is accessed or modified.

Event Commands

PGDBG supports six basic commands for defining events. Each command takes a required argument and may
also take one or more optional arguments. The basic commands are break, watch, hwatch, trace, track,
and do.

Event Command Descriptions

* The break command takes an argument specifying a breakpoint location. Execution stops when that
location is reached.

¢ The watch command takes an expression argument. Execution stops and the new value is printed when the
value of the expression changes.

* The hwatch command takes a data address argument, which can be either an identifier or a variable name.
Execution stops when memory at that address is written.

* The trace command activates source line tracing, as specified by the arguments you supply.
e The track command is like watch except that execution continues after the new value is printed.

* The do command takes a list of commands as an argument. The commands are executed whenever the
event occurs.

Event Command Arguments

The six event commands share a common set of optional arguments. The optional arguments provide the
ability to make the event definition more specific. They are:

atline
Event occurs at indicated line.

at addr
Event occurs at indicated address.

inroutine
Event occurs throughout indicated routine.

if (condi tion)
Event occurs only when condition is true.

do {commands}
When event occurs, execute commands.

The optional arguments may appear in any order after the required argument and should not be delimited by
commas.

Event Command Examples

Here are some event definition examples:

31

Events

watch i at 37 if(y>1) This event definition says to stop and print the value
of I whenever line 37 is executed and the value of y is
greater than 1.

do {print xyz} in f This event definition says that at each line in the routine
f print the value of xyz.
bgeak funcl if (' ==37) ’ This event definition says to print the value of a[37]
o {print a[37]: stack} and do a stack trace when i is equal to 37 in routine
funcl.

Event Command Action

It is useful to know when events take place.

e Event commands that do not explicitly define a location occur at each source line in the program. Here are

some examples:

do {where} prints the current location at the start of each source line.

trace a.b prints the value of a.b each time the value has changed.

track a.b prints the value of a.b at the start of each source line if the
value has changed.

Note

Events that occur at every line can be useful, but they can make program execution very slow.
Restricting an event to a particular address minimizes the impact on program execution speed, and
restricting an event that occurs at every line to a single routine causes execution to be slowed only
when that routine is executed.

e PGDBG supports instruction-level versions of several commands, such as breaki, watchi, tracei, tracki,

32

and doi. The basic difference in the instruction-level version is that these commands interpret integers as
addresses rather than line numbers, and events occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions are taken before the prompt for input.
Defining event actions that resume execution is allowed but discouraged, since continuing execution may
prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:
break 37 do {continue}

break 37 do {print i}

With this sequence, it is not clear whether i should ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and other
commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example, the following command sets a breakpoint at line 37 in the current file.

Chapter 4. PGDBG Command Language

break 37
The following command tracks the value of whatever variable i is currently in scope.
track i

Ifi is alocal variable, then it is wise to add a location modifier (at or in) to restrict the event to a scope
where i is defined. Scope qualifiers can also specify lines or variables that are not currently in scope. Events
can be parallelized across multiple threads of execution. See “Parallel Events,” on page 80 for details.

Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands that return
values, and operators.

The following rules apply:

e To use a value returned by a command in an expression, the command and arguments must be enclosed in
curly braces.

For example, the following command invokes the pc command to compute the current address, adds 8 to
it, and sets a breakpoint at that address.

breaki {pc}+8

Similarly, the following command compares the start address of the current routine with the start address of
routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr xyz}

* The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as the

nn

C language field selection operators "." and "->" .

» PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. The
precedence of ;' is between 'll' and '=".

Here are a few examples that use the range operator:

print a[1:10] prints elements 1 through 10 of the array a.
list 5:10 lists source lines 5 through 10.
list "xyz.c"@:10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is [lo : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.

step is the step size between elements.

* An expression can be evaluated across many threads of execution by using a prefix p/t-set. For more details,
refer to “Current vs. Prefix p/t-set,” on page 70.

33

Control-C

Table 4.1, “PGDBG Operators” shows the C language operators that PGDBG supports. The PGDBG operator
precedence is the same as in the C language.

Table 4.1. PGDBG Operators

Operator |Description Operator |Description

* indirection <= less than or equal
direct field selection >= greater than or equal

-> indirect field selection I= not equal

[] “C” array index && logical and

0 routine call I logical or

& address of ! logical not

+ add I bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide A bitwise exclusive or

* multiply << left shift

= assignment >> right shift

== comparison 0 FORTRAN array index

<< left shift % FORTRAN field selector

>> right shift

Control-C

34

If the target application is not running, control-C can be used to interrupt long-running PGDBG commands.
For example, a command requesting disassembly of thousands of instructions might run for a long time, and it
can be interrupted by control-C. In such cases the target application is not affected.

If the target application is running, entering control-C at the PGDBG command prompt halts execution of the
target. This is useful in cases where the target “hangs” due to an infinite loop or deadlock.

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads, by calling
omp_set_num_threads() or entering a parallel region, may kill some of the threads if the signal is sent before
each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the number of threads
employed by a program is large, thread initialization may take a while.

Sending SIGINT (control-C) to a running MPICH-1 program is not recommended. See “MPI Listener
Processes,” on page 89, for details. Use the PGDBG halt command as an alternative to sending SIGINT to

a running program. The PGDBG command prompt must be available in order to issue a halt command. The
PGDBG command prompt is available while threads are running if pgienv threadwait none is set.

As described in “Invoking PGDBG for MPI Debugging,” on page 90, when debugging an MPI job via the
following command, PGDBG spawns the job in a manner that prevents console-generated interrupts from
directly reaching the MPI job launcher or any of the MPI processes.

Chapter 4. PGDBG Command Language

pgdbg -npi ...

In this case, typing Control-C only interrupts PGDBG, leaving the MPI processes running. When PGDBG’s
thread wait mode is not set to none, you can halt the MPI job after using Control-C by entering PGDBG’s halt
command, even if no PGDBG prompt is generated.

35

36

Chapter 5. PGDBG Command
Summary

This chapter contains a brief summary of the PGDBG debugger commands. For a detailed description of each
command, grouped by category of use, refer to Chapter 13, “PGDBG Command Reference”.

If you are viewing an online version of this manual, you can select the hyperlink under the selection category to
jump to that section in the manual.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

e Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(1.

* Argument names are chosen to indicate what kind of argument is expected.

e Arguments enclosed in brackets([]) are optional.

¢ Two or more arguments separated by a vertical line (1) indicate that any one of the arguments is acceptable.
e An ellipsis (...) indicates an arbitrarily long list of arguments.

e Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command list may be abbreviated to lis, and that it can
be invoked without any arguments or with one of the following arguments: an integer count, a line range, a
routine name, or a line and a count.

lis[t] [count | lo:hi | routine | |ine,count]

37

Command Summary

Command Summary

38

Table 5.1. PGDBG Commands

Name Arguments Category
adl[dr] [nlline n | routine | var | arg | “Conversions,” on page 120
Creates an address conversion under certain conditions.
allias] [name [string] “Miscellaneous,” on page 121
Create or print aliases.
arrifve] “Program Locations,” on page 108
Print location information for the current location.
asclii] exp [,...exp] “Printing Variables and Expressions,” on
page 110
Evaluate and print as an ascii character.
as[sign] var=exp “Symbols and Expressions,” on page
113
Set variable var to the value of the expression exp.
attlach] pid [exe [host]] “Process Control,” on page 98
Attach to a running process with process ID pid. If the process is not running on
the local host, then specify the absolute path of the executable file exe and the host
machine name.
bin exp [,...exp] “Printing Variables and Expressions,” on
page 110
Evaluate and print the expressions. Integer values are printed in binary.
b[reak] [line | routine] [if (condition)] [do “Events,” on page 102
{commands}]
When arguments are specified, sets a breakpoint at the indicated line or routine. When
no arguments are specified, prints the current breakpoints.
breaki [addr | routine] [if (condition)] [do “Events,” on page 102
{commands}]
When arguments are specified, sets a breakpoint at the indicated address or routine.
When no arguments are specified, prints the current breakpoints.
breaks “Events,” on page 102
Displays all the existing breakpoints
call routine [(exp,...)] “Symbols and Expressions,” on page

113

Call the named routine.

Chapter 5. PGDBG Command Summary

Name Arguments Category

catch [number [,number...]] “Events,” on page 102
With arguments, catches the signals and runs target as though signal was not sent. With
no arguments, prints the list of signals being caught.

cd [dir] “Program Locations,” on page 108
Change to the SHOME directory or to the specified directory dir.

clear [all | routine | line | addr {addr}] “Events,” on page 102
With arguments, clears the indicated breakpoints. When no arguments are specified,
this command clears all breakpoints at the current location.

c[ont] “Process Control,” on page 98
Continue execution from the current location.

crlead] addr “Memory Access,” on page 118
Fetch and return an 8-bit signed integer (character) from the specified address.

de[bug] [target [argl _ argn]] “Process Control,” on page 98
Load the specified target program with optional command-line arguments.

dec exp [,...exp] “Printing Variables and Expressions,” on

page 110

Evaluate and print the expressions. Integer values are printed in decimal

decl[aration] |name “Symbols and Expressions,” on page
Print the declaration for the symbol based on its type according to symbol table.

decls [routine | "sourcefile" | {global}] “Scope,” on page 116
Print the declarations of all identifiers defined in the indicated scope. If no scope is
given, print the declarations for global scope

defset name [p/t-set] “Process-Thread Sets,” on page 101
Assign a name to a process/thread set. Define a named set.

del[ete] event-number | all | 0 | event-number “Events,” on page 102
[,.event-number. |
Delete the event event-number or all events (delete 0 is the same as delete all).
Multiple event numbers can be supplied if they are separated by commas.

det[ach] “Process Control,” on page 98
Detach from the current running process.

dir[ectory] [pathname] “Miscellaneous,” on page 121

Add the directory pathname to the search path for source files. If no argument is
specified, the currently defined directories are printed.

39

Command Summary

40

Name Arguments Category

dis[asm] [count | lo:hi | routine | addr, count] “Program Locations,” on page 108
Disassemble memory. If no argument is given, disassemble four instructions starting at
the current address.

disab[le] event-number | all “Printing Variables and Expressions,” on

page 110

With arguments, disables the event event - nunber or all events. When no arguments
are specified, prints both enabled and disabled events.

display exp [,...exp] “Printing Variables and Expressions,” on

page 110

With an argument or several arguments, print expression exp at every breakpoint.
Without arguments, list the expressions for PGDBG to automatically display at
breakpoints.

do {commands} [at line | in routine] [if “Events,” on page 102
(condition) |
Define a do event. Without the optional arguments at or in, the commands are
executed at each line in the program.

doi {commands} [at addr | in routine] [if “Events,” on page 102
(condition) |
Define a doi event. If neither the at or in argument is specified, then the commands are
executed at each instruction in the program.

down “Scope,” on page 116
Enter scope of routine down one level or number levels on the call stack.

dr[ead] addr “Memory Access,” on page 118
Fetch and return a 64 bit double from the specified address.

du[mp] address, count, "format-string" “Memory Access,” on page 118
Dumps the contents of a region of memory. The output is formatted according to a
printf-like format descriptor.

edit [filename | routine] “Program Locations,” on page 108
Edit the specified file or file containing the routine. If no argument is supplied, edit the
current file starting at the current location.

enab|[le] event-number | all “Events,” on page 102
With arguments, this command enables the event event - nunber or all events. When
no arguments are specified, prints both enabled and disabled events.

en|ter] routine | "sourcefile" | {global} “Scope,” on page 116

Set the search scope to be the indicated symbol, which may be a routine, source file or
global. Using no argument is the same as using enter global

Chapter 5. PGDBG Command Summary

Name Arguments Category
entr[y] routine “Symbols and Expressions,” on page
113
Return the address of the first executable statement in the program or specified
routine.
filfe] “Program Locations,” on page 108
Change the source file to the file filename and change the scope accordingly. With no
argument, print the current file.
files “Scope,” on page 116
Return the list of known source files used to create the executable file
focus [p/t-set] “Process-Thread Sets,” on page 101
Set the target process/thread set for commands. Subsequent commands are applied to
the members of this set by default.
b “Register Access,” on page 117
Return the current value of the frame pointer.
fr[ead] addr “Memory Access,” on page 118
Fetch and print a 32-bit float from the specified address.
func[tion] [addr | line] “Conversions,” on page 120
Return a routine symbol. If no argument is specified, return the current routine.
glob[al] “Global Commands,” on page 75
Return a symbol representing global scope.
balt [command] “Process Control,” on page 98
Halt the running process or thread.
he[lp] “Miscellaneous,” on page 121
If no argument is specified, print a brief summary of all the commands. If a command
name is specified, print more detailed information about the use of that command.
hex Exp [,...exp] “Printing Variables and Expressions,” on
page 110
Evaluate and print expressions as hexadecimal integers.
hi[story] [num] “Miscellaneous,” on page 121
List the most recently executed commands. With the num argument, resize the history
list to hold num commands.
bwatch addr | var [if (condition)] [do “Events,” on page 102
{commands}]

Define a hardware watchpoint.

41

Command Summary

Name Arguments Category

hwatchb[oth] addr | var [if (condition)] [do “Events,” on page 102
{commands}]
Define a hardware read/write watchpoint.

hwatchr[ead] addr | var [if (condition)] [do “Events,” on page 102
{commands}]
Define a hardware read watchpoint.

ignore [number [,number...]] “Events,” on page 102
Ignores the specified signals and does not deliver them to the target. When no
arguments are specified, prints the list of signals being ignored.

irfead] addr “Memory Access,” on page 118
Fetch and print a signed integer from the specified address.

language “Miscellaneous,” on page 121
Print the name of the language of the current file.

linfe] [n | routine | addr] “Conversions,” on page 120
Create a source line conversion. If no argument is given, return the current source
line.

lines routine “Program Locations,” on page 108
Print the lines table for the specified routine.

lis[t] [count | line,count | lo:hi | routine] “Program Locations,” on page 108
With no argument, list 10 lines centered at the current source line. If an argument is
specified, lists lines based on information requested.

Ir[ead] addr “Memory Access,” on page 118
Fetch and print an address from the specified address.

log filename “Miscellaneous,” on page 121
Keep a log of all commands entered by the user and store it in the named file.

lvlal] exp “Symbols and Expressions,” on page

113

Return the Ivalue of the expression expr.

mq[dump] “Memory Access,” on page 118
Dump MPI message queue information for the current process.

names [routine | "sourcefile" | {global}] “Scope,” on page 116
Print the names of all identifiers defined in the indicated scope. If no scope is
specified, use the search scope.

42

Chapter 5. PGDBG Command Summary

Name Arguments Category
nfext] [count] “Process Control,” on page 98
Stop after executing one or count source line(s) in the current routine.
nexti [count] “Process Control,” on page 98
Stop after executing one or count instruction(s) in the current routine.
nop[rint] exp “Miscellaneous,” on page 121
Evaluate the expression but do not print the result.
oct exp [,...exp] “Printing Variables and Expressions,” on
page 110
Evaluate and print expressions as octal integers.
pc “Register Access,” on page 117
Return the current program address.
pgienv [command] “Miscellaneous,” on page 121
Define the debugger environment. With no arguments, display the debugger settings.
plrint] expl [,...expn] “Printing Variables and Expressions,” on
page 110
Evaluate and print one or more expressions.
printf "format_string", expr,...expr “Printing Variables and Expressions,” on
page 110
Print expressions in the format indicated by the format string.
proc [id] “Process Control,” on page 98
Set the current process to the process identified by id. When issued with no argument,
proc lists the location of the current thread of the current process in the current
program.
procs “Process Control,” on page 98
Print the status of all active processes, listing each process by its logical process ID.
pwd “Program Locations,” on page 108
Print the current working directory.
qluit] “Process Control,” on page 98
Terminate the debugging session.
regs [xIfld] “Register Access,” on page 117
Print a formatted display of the names and values of the integer, float, and double
registers. If the format parameter is omitted, then PGDBG prints all of the registers.
rep[eat] [first, last] | [first: last:n] | [num] | [-num] | “Miscellaneous,” on page 121

Repeat the execution of one or more previous history list commands.

43

Command Summary

44

Name Arguments Category
rer[un] [arg0 argl ... argn] [< inputfile] [[> | >&|“Process Control,” on page 98
| >> | >>&] outputfile]
Like the run command, except if no args are specified, the previously used target
arguments are not re-used.
ret [addr] “Register Access,” on page 117
Return the current return address.
rufn] [arg0 argl ... argn] [< inputfile] [> “Process Control,” on page 98
outputfile]
Execute program from the beginning. If arguments arg0, argl, and so on are specified,
they are set up as the command-line arguments of the program.
rvfal] expr “Symbols and Expressions,” on page
113
Return the rvalue of the expression expr.
sco[pe] “Scope,” on page 116
Return a symbol for the search scope.
scrlipt] filename “Miscellaneous,” on page 121
Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of the
environment variable HOME.
set var = ep “Symbols and Expressions,” on page
113
Set variable var to the value of expression.
setenv name | name value “Miscellaneous,” on page 121
Print value of environment variable name. With a specified value, set name to value.
shlell] arg0 [... argn] “Miscellaneous,” on page 121
Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell
is sh). Without arguments, invokes an interactive shell, and executes until 2 "~D" is
entered.
sizfeof] name “Symbols and Expressions,” on page
113
Return the size, in bytes, of the variable type name; o, if the name refers to a routine,
returns the size in bytes of the subprogram.
slefep] time “Miscellaneous,” on page 121
Pause for time seconds. If no time is specified, pause for one second
source filename “Miscellaneous,” on page 121

Open the indicated file and execute the contents as though they were entered as
commands. If you use ~ before the filename, it is expanded to the value of $HOME.

Chapter 5. PGDBG Command Summary

Name Arguments Category

sp “Register Access,” on page 117
Return the current stack pointer address.

srlead] addr “Memory Access,” on page 118
Fetch and print a short signed integer from the specified address

stackd[ump] [count] “Program Locations,” on page 108
Print a formatted dump of the stack. This command displays a hex dump of the stack
frame for each active routine.

stack[trace] [count] “Program Locations,” on page 108
Print a stacktrace. For each active routine print the routine name, source file, line
number, current address, provided that information is available.

stat[us] “Events,” on page 102
Display all the event definitions, including an event number by which the event can be
identified.

s[tep] [count | up] “Process Control,” on page 98
Step into the current routine and stop after executing one or count source line(s). If
the up argument is specified, stops execution after stepping out of the current routine.

stepi [count | up] “Process Control,” on page 98
Step into the current routine and stop after executing one or count source line(s). If
the up argument is specified, stops execution after stepping out of the current routine.

stepo[ut] “Process Control,” on page 98
Stop after returning to the caller of the current routine.

stop [at line | in routine] [var] [if (condition)] |“Events,” on page 102
[do {commands}]
Set a breakpoint at the indicated routine or line. Break when the value of the indicated
variable var changes.

stopi [at addr | in routine] [var] [if (condition)] |“Events,” on page 102
[do {commands}]
Set a breakpoint at the indicated address or routine. Break when the value of the
indicated variable var changes.

sync [routine | line] “Process Control,” on page 98
Advance the current process/thread to a specific program location, ignoring any user-
defined events.

synci [routine | addr] “Process Control,” on page 98

Advance the current process/thread to a specific program location, ignoring any user-
defined events.

45

Command Summary

46

Name Arguments Category
strfing] exp [,...exp] “Printing Variables and Expressions,” on
page 110
Evaluate and print expressions as null-terminated character strings, up to 2 maximum
of 70 characters.
thread number “Process Control,” on page 98
Set the current thread to the thread identified by number; where number is a logical
thread id in the current process’ active thread list. When issued with no argument,
thread lists the current program location of the currently active thread.
threads “Process Control,” on page 98
Prints the status of all active threads, grouped by process.
trace [at line | in routine] [var | routine] [if “Events,” on page 102
(condition) | do {commands}
Activates source line tracing as specified by the arguments supplied.
tracei [at addr | in routine] [var] [if (condition)] |“Events,” on page 102
do {commands}
Activates instruction tracing as specified by the arguments supplied.
track expression [at line | in routine] [if “Events,” on page 102
(condition)] [do {commands}]
Define a track event.
tracki expression [at addr | in routine] [if “Events,” on page 102
(condition)] [do {commands}]
Define an assembly-level track event.
type expr “Symbols and Expressions,” on page
113
Return the type of the expression.
unalfias| name “Miscellaneous,” on page 121
Remove the alias definition for name, if one exists.
undefset [name | -all | “Process-Thread Sets,” on page 101
Remove a previously defined process/thread set from the list of process/thread sets.
undisplay [alll0lexp] “Printing Variables and Expressions,” on

page 110

Remove all expressions specified by previous display commands. With an argument or
several arguments, remove the expression exp from the list of display expressions.

Chapter 5. PGDBG Command Summary

Name Arguments Category
unb[reak] line | routine | all “Events,” on page 102
Remove a breakpoint from the statement line, the routine r out i ne, or remove all
breakpoints.
unbreaki addr | routine | all “Events,” on page 102
Remove a breakpoint from the address addr, the routine r out i ne, or remove all
breakpoints.
up “Scope,” on page 116
Enter scope of routine up one level or number levels on the call stack.
use [dir] “Miscellaneous,” on page 121
Print the current list of directories or add dir to the list of directories to search. If the
first character in pathname is ~, the value of $HOME is substituted for this character.
viewset name “Process-Thread Sets,” on page 101
List the members of a process/thread set that currently exist as active threads or list
defined p/t-sets.
wait [any | all | none] “Process Control,” on page 98
Inserts explicit wait points in 2 command stream.
waftch] expression [at line | in routine] [if “Events,” on page 102
(condition)] [do {commands}]
Define a watch event. The given expression is evaluated, and subsequently, each time
the value of the expression changes, the program stops and the new value is printed.
watchi expression [at addr | in routine] “Events,” on page 102
[if (condition)] [do {commands}]
Define an assembly-level watch event.
whatis [name] “Symbols and Expressions,” on page
113
With no arguments, prints the declaration for the current routine. With argument
name, prints the declaration for the symbol name.
when [at line | in routine] [if (condition)] do “Events,” on page 102
{commands}
Execute commands at every line in the program, at a specified line in the program or
in the specified routine.
wheni [at addr | in routine] [if(condition)] do |“Events,” on page 102
{commands}

Execute commands at each address in the program. If an addr is specified, the
commands are executed each time the address is reached.

47

Command Summary

Name Arguments Category

w/here] [count] “Program Locations,” on page 108

Print a stacktrace. For each active routine print the routine name, routine arguments,
source file, line number, current address, provided that information is available.

whereis name “Symbols and Expressions,” on page
113

Print all declarations for name.

which name “Scope,” on page 116

Print full scope qualification of symbol name.

whichsets [p/t-set] “Process-Thread Sets,” on page 101

List all defined p/t-sets to which the members of a process/thread set belong.

/ / [string] / “Program Locations,” on page 108

Search forward for a string (st ri ng) of characters in the current source file

? ?[string] ? “Program Locations,” on page 108

Search backward for a string (st ri ng) of characters in the current source file.

! History modification “Miscellaneous,” on page 121

Executes a command from the command history list. The command executed depends
on the information that follows the !.

A History modification “Miscellaneous,” on page 121

Quick history command substitution *old”new” <modifier> this is equivalent to !:s/
old/new/

48

Chapter 6. PGDBG Assembly-Level
Debugging

This section provides information about PGDBG assembly-level debugging, including an overview and what to
expect if you are using assembly-level debugging or if you did not compile your program for debugging.

Assembly-Level Debugging Overview

PGDBG does not require that the program under debug be compiled with debugging information, using - g.
It can debug code that is lacking debug information, but because it is missing information about symbols and
line numbers, it can only access the program at the assembly level.

As described in “Building Applications for Debug,” on page 1, the most information is available when the
program is compiled using - g or - gopt with no optimization. When a program is compiled at higher levels
of optimization, less information about source-level symbols and line numbers is available, even if the program
was compiled with - g or - gopt . In such cases, if you want to find the source of a problem without rebuilding
the program, you may need to debug at the assembly level.

If a program has been "stripped" of all symbols, either by the linker or a separate utility, then debugging is at
the assembly level. PGDBG is only able to examine or control the program in terms of memory addresses and
registers.

Assembly-Level Debugging on Microsoft Windows Systems

When applications are built without - g on Windows systems, the resulting binary, the . exe file, does not
contain any symbol information. Microsoft stores symbol information in a program database, a . pdb file.
To generate a . pdb file using the PGI compiler drivers, you must use - g during the link step. You can do
this even if you did not use - g during the compile step. Having this . pdb file available provides PGDBG with
enough symbol information to map addresses to routine names.

Assembly-Level Debugging with Fortran

To refer to Fortran symbol names when debugging at the assembly level, you must translate the names to use
the naming convention that matches the calling convention in use by the compiler. For code compiled by the

49

Assembly-Level Debugging Overview

PGI compilers, in most cases this means translating to lower case and appending an underbar. For example, a
routine that appears in the source code as "VADD" would be referred to in the debugger as "vadd_".

On 32-bit Windows systems there are alternative calling conventions. The one described above matches the
convention used when the compiler is invoked with - Muni x' For details of other 32-bit Windows calling
conventions, refer to the PGI User's Guide.

Note

Name translation is only necessary for assembly-level debugging. When debugging at the source level,
you may refer to symbol names as they appear in the source.

A special symbol, MAI N_, is created by PGI Fortran to refer to the main program. PGI Fortran generates this
special symbol whether or not there is a PROGRAM statement. One way to run to the beginning of a Fortran
program is to set a breakpoint on MAIN_, then run.

Assembly-Level Debugging with C++

C++ symbol names are "mangled" names. For the names of C++ methods, the names are modified to include
not only the name as it appears in the source code, but information about the enclosing class hierarchy,
argument and return types, and other information. The names are long and arcane. At the source level these
names are translated by PGDBG to the names as they appear in the source. At the assembly level, these names
are in the mangled form. Translation is not easy and not recommended. If you have no other alternative, you
can find information about name mangling in the PGI User's Guide.

Assembly-Level Debugging Using the PGDBG GUI

This section describes some basic operations for assembly-level debugging using the PGDBG GUI. When you
invoke PGDBG using the following command, you are presented with a dialog telling you that PGDBG " Can' t
find main function conpiled -g".No sourceis displayed.

pgdbg nyprog

To get into the program, you can select the Options | Set Breakpoint... menu option. To stop at program entry,
for example, in Fortran you could enter MAI N_ in response to the dialog query; in C or C++ you could enter
mai n.

Assembly-Level PGDBG Menu Options

PGDBG menu options that are useful in assembly-level debugging:

Window | Registers Window | Memory
Display all the registers Display memory locations
Window | Stack Window | Disassembly
Display a stack traceback Display disassembly

If disassembly is not automatically displayed in the code panel when the program stops at a breakpoint or after
a single step, use Window | Disassembly and enter the name of the routine of interest. Answer "Yes" when
asked if you want to display disassembly in the source window.

50

Chapter 6. PGDBG Assembly-Level Debugging

Assembly-Level Debugging Using the PGDBG Command-line Interface

This section describes some basic operations for assembly-level debugging using the PGDBG command-line
interface. When you invoke PGDBG using this command:

pgdbg -text myprog
you are presented with a message telling you that PGDBG " Can' t find mai n function conpiled -
g".

To get into the program, you can set a breakpoint at a named routine. To stop at program entry, for example, in
Fortran you could use
break MAI N_

and in C/C++ you could use
break main

Some useful commands for assembly-level debugging using the PGDBG command-line interface include:

run
run the program from the beginning

cont
continue program execution from the current point

nexti
single-step one instruction, stepping over calls

stepi
single-step one instruction, stepping into calls

breaki
set a breakpoint at a given address

regs
display the registers

print $<regname>
display the value of the specified register

For more information on register names, refer to “Register Symbols,” on page 51.

dump
dump memory locations

stacktrace
display a stack traceback

stackdump
display a traceback/dump of stack frame

Register Symbols

This section describes the register symbols defined for X86 processors and Intel 64/AMDG64 processors
operating in compatibility or legacy mode.

51

Register Symbols

X86 Register Symbols

This section describes the X86 register symbols.

Table 6.1. General Registers

Name Type Description
$edi unsigned General purpose
$esi unsigned General purpose
$eax unsigned General purpose
$ebx unsigned General purpose
$ecx unsigned General purpose
$edx unsigned General purpose
Table 6.2. x87 Floating-Point Stack Registers
Name Type Description
$do - $d7 80-bit IEEE Floating-point
Table 6.3. Segment Registers
Name Type Description
$gs 16-bit unsigned Segment register
$fs 16-bit unsigned Segment register
$es 16-bit unsigned Segment register
$ds 16-bit unsigned Segment register
$ss 16-bit unsigned Segment register
$cs 16-bit unsigned Segment register
Table 6.4. Special Purpose Registers
Name Type Description
$ebp 32-bit unsigned Frame pointer
$efl 32-bit unsigned Flags register
$eip 32-bit unsigned Instruction pointer
$esp 32-bit unsigned Privileged-mode stack pointer
$uesp 32-bit unsigned User-mode stack pointer

52

Chapter 6. PGDBG Assembly-Level Debugging

AMDG4/EM64T Register Symbols

This section describes the register symbols defined for AMD64/EM6O4T processors operating in 64-bit mode.

Table 6.5. General Registers

Name Type Description
$r8 - $r15 64-bit unsigned General purpose
$rdi 64-bit unsigned General purpose
$rsi 64-bit unsigned General purpose
$rax 64-bit unsigned General purpose
$rbx 64-bit unsigned General purpose
$rex 64-bit unsigned General purpose
$rdx 64-bit unsigned General purpose
Table 6.6. Floating-Point Registers
Name Type Description
$d0 - $d7 80-bit IEEE Floating-point
Table 6.7. Segment Registers
Name Type Description
$gs 16-bit unsigned Segment register
$fs 16-bit unsigned Segment register
$es 16-bit unsigned Segment register
$ds 16-bit unsigned Segment register
$ss 16-bit unsigned Segment register
$cs 16-bit unsigned Segment register
Table 6.8. Special Purpose Registers
Name Type Description
$ebp 64-bit unsigned Frame pointer
$rip 64-bit unsigned Instruction pointer
$rsp 64-bit unsigned Stack pointer
$eflags 64-bit unsigned Flags register

53

Register Symbols

Table 6.9. SSE Registers

Name Type Description
$mxcsr 64-bit unsigned SIMD floating-point control
$xmm0 - $xmm15 Packed 4x32-bit IEEE |SSE floating-point registers
Packed 2x64-bit IEEE
SSE Register Symbols

54

On AMD64/EM64T, Pentium III, and compatible processors, an additional set of SSE (Streaming SIMD
Enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register may contain four IEEE 754 compliant 32-bit single-precision floating-point values. The
PGDBG regs command reports these values individually in both hexadecimal and floating-point format. PGDBG
provides syntax to refer to these values individually, as members of a range, or all together. There is no support
for SSE2 or packed integers.

The component values of each SSE register can be accessed using the same syntax that is used for array
subscripting. Pictorially, the SSE registers can be thought of as follows:
127 96 95 64 63 3231 0
$xmmO0(3) $xmmO0(2) $xmmO0(1) $xmmO0(0)
$xmm1(3) $xmm1(2) $xmm1(1) $xmm1(0)
$xmm?7(3) $xmm7(2) |$xmm7(1) |$xmm7(0)

To access a $xmm0(3), the 32-bit single-precision floating point value that occupies bits 96 — 127 of SSE
register 0, use the following PGDBG command:

pgdbg> print $xmm0(3)

To set $xmm2(0) to the value of $xmm3(2), use the following PGDBG command:
pgdbg> set $xmmR2(3) = $xmMB(2)

SSE registers can be subscripted with range expressions to specify runs of consecutive component values, and
access an SSE register as a whole. For example, the following are legal PGDBG commands:

pgdbg> set $xmD(0:1) = $xmil(2: 3)
pgdbg> set $xmmb = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmmO0 to the values in elements 2 and 3 respectively
in $xmm1. The second command above initializes all four elements of $xmm6 to the constant 1.0/3.0
evaluated as a 32-bit floating-point constant.

In most cases, PGDBG detects when the target environment supports the SSE registers. In the the event PGDBG
does not allow access to SSE registers on a system that should have them, set the PGDBG_SSE environment
variable to “on’ to enable SSE support.

Chapter 7. PGDBG Source-Level
Debugging

This chapter describes source-level debugging, including debugging Fortran and Debugging C++.

Debugging Fortran

Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran character
types, which are treated as arrays of the C type char.

Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention, denoting
subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (AMD64 or Intel 64) support large arrays (arrays with an
aggregate size greater than 2GB). You can enable large array support by compiling using these options: —
mcnodel =nedi um —M ar ge_ar r ays. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts that are
used in the target application.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is used
in the target application.

Operators

In general, PGDBG uses C language style operators in expressions and supports the Fortran array index
selector “()” and the Fortran field selector “%” for derived types. However, . eq. , . ne. , and so forth are not
supported. You must use the analogous C operators ==, !=, and so on, instead.

99

Debugging Fortran

Note

The precedence of operators matches the C language, which may in some cases be different than for
Fortran.

See Table 5.1, “PGDBG Commands” for a complete list of operators and their definition.

Name of the Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the program statement. You can
always use the following command to set a breakpoint at the start of the main routine.

break MAI N

Common Blocks

Each subprogram that defines a common block has a local static variable symbol to define the common.
The address of the variable is the address of the common block. The type of the variable is a locally-defined
structure type with fields defined for each element of the common block. The name of the variable is the
common block name, if the common block has a name, or _BLNK_ otherwise.

For each member of the common block, a local static variable is declared which represents the common block
variable. Thus given declarations:

conmon /xyz/ a, b
i nteger a
i nteger b

then the entire common block can be printed out using,

print xyz

Individual elements can be accessed by name. For example:,

print a, b

Internal Procedures

56

To unambiguously reference an internal procedure, qualify its name with the name of its host using the scoping
operator @.

For example:

subroutine subl ()
call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in subl"
end subroutine internal _proc
end subroutine

subroutine sub2 ()

call internal _proc ()
cont ai ns
subroutine internal _proc ()
print *, "internal _proc in sub2"

end subroutine internal _proc

Chapter 7. PGDBG Source-Level Debugging

end subroutine
pr ogram mai n
call subl ()
call sub2 ()
end program

pgdbg> wherei s internal _proc
function: "/path/ip.f90" @ubl@ nternal _proc
function: "/path/ip.f90" @ub2@ nt er nal _proc

pgdbg> break subl@ nternal proc
(1) breakpoint set at: internal_proc line: "ip.f90"@ address: 0x401E3C 1
pgdbg> break sub2@ nternal _proc
(2) breakpoint set at: internal_proc line: "ip.f90" @3 address: Ox401EEC 2

Modules

A member of a Fortran 90 module can be accessed during debugging.

nodul e nod
i nteger i Md
end nodul e
subrouti ne useMd()
use nod
i Mod = 1000
end subroutine
pr ogram mai n
call useMbd()
end program

e If the module is in the current scope, no qualification is required to access the module's members.

pgdbg> b uselbd
(1) breakpoint set at: usenmod line: "nodv.f90"@ address: 0x401CC4
1

Br eakpoi nt at 0x401CC4, function usenod, file nodv.f90, line 7
#7: i Mod = 1000

pgdbg> p i Mod
0

e If the module is not in the current scope, use the scoping operator @ to qualify the member's name.

Br eakpoi nt at 0x401CFO, function nmain, file nodv.f90, |ine 11
#11: call useMbod()

pgdbg> p i Mbd
"i Mod" is not defined in the current scope

pgdbg> p nod@ Mod
0

Module Procedures

A module procedure is a subroutine contained within a module. A module procedure itself can contain
internal procedures. The scoping operator @ can be used when working with these types of subprograms to
prevent ambiguity.

o7

Debugging C++

nodul e nod
cont ai ns
subroutine nod_procl()
call internal proc()
cont ai ns
subroutine internal _proc()

print *, "internal _proc in nod_procl"
end subroutine
end subroutine
subrouti ne nod_proc2()

call internal proc()
cont ai ns
subroutine internal _proc()
print *, "internal _proc in nod_proc2"

end subroutine
end subroutine
end nodul e

program mai n
use nod
call nod_procl
cal |l nod_proc2
end program

pgdbg> wherei s internal _proc
function: "/ pat h/ nodp. f 90" @mod@od_procl@ nt er nal _proc
function: "/ pat h/ nodp. f 90" @od@od_proc2@ nt er nal _proc

pgdbg> break nod@mwd_procl@ nternal _proc

(1) breakpoint set at: internal _proc |ine: "nodp.f90"@ address: 0x401E3C
1

pgdbg> break nod@mwd_proc2@ nt er nal _proc

(2) breakpoint set at: internal _proc |line: "nodp.f90"@4 address: O0x401EEC
2

Debugging C++

Calling C++ Instance Methods

58

To use the call command to call a C++ instance method, the object must be explicitly passed as the first
parameter to the call. For example, suppose you were given the following definition of class Person and the
appropriate implementation of its methods:

cl ass Person

{
publi c:
char nange[10] ;
Person(char * inNane);
void print();

int main ()

Person * pierre

pierre = new Person("Pierre");
pierre->print();

return O;

Chapter 7. PGDBG Source-Level Debugging

Call the instance method print on object pi er r e as follows:

pgdbg> cal | Person::print(pierre)

Notice that pi er r e must be explicitly passed into the method because it is the #his pointer. You can also
specify the class name to remove ambiguity.

59

60

Chapter 8. PGDBG Platform-Specific
Features

This chapter describes the PGDBG features that are specific to particular platforms, such as pathname
conventions, debugging with core files, and signals.

Pathname Conventions

PGDBG uses the forward slash character (/) as the path component separator on all platforms. The backslash
(\) is used as the escape character in the PGDBG command language.

On Windows systems, a drive letter specifier may be used whenever specifying a full path, but the forward slash
separator convention is still in effect. For example, to add the Windows pathname "C:\Temp\src" to the list of
searched source directories, use the command:

pgdbg> dir C./Tenp/src
To set a breakpoint at line 10 of the source file specified by the relative path sub1\ mai n. c, use this
command:

pgdbg> break "subl/main.c":10

Debugging with Core Files

PGDBG supports debugging of core files on the linux86 and linux86-64 platforms. To invoke PGDBG for core
file debugging, use the following options:

$ pgdbg —core coreFil eNanme prograniName

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,
one common exception is the segmentation violation, which can be caused by referencing an invalid memory
address. The memory and register states of the program are written into a core file so that they can be
examined by a debugger.

The shell environment in which the application runs must be set up to allow core file creation. On many
systems, the default user setting ul i ni t does not allow core file creation.

Check the ul i mi t as follows:

61

Debugging with Core Files

62

For sh/bash users:
$ulimt -c

For csh/tcsh users:
%limt coredunpsize

If the core file size limit is zero or something too small for the application, it can be set to unlimited as follows:

For sh/bash users:
$ulinmt -c unlimted
For csh/tcsh users:

%limt coredunpsize unlimted

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits on core
file creation.

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,
one common exception is the segmentation violation, which can be caused by referencing an invalid memory
address. The memory and register states of the program are written into a core file so that they can be
examined by a debugger.

The core file is normally written into the current directory of the faulting application. It is usually named cor e
or cor e. pi d where pid is the process ID of the faulting thread. If the shell environment is set correctly and a
core file is not generated in the expected location, the system core dump policy may require configuration by a
system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are
written to the core file in most modern implementations of Linux. In some new versions of Linux, if more than
one thread faults, then each thread’s state is written to separate core files using the cor e. pi d file naming
convention previously described. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.s0), as most programs on
Linux do, then accurate core file debugging requires that the program be debugged on the system where the
core file was created. Otherwise, slight differences in the version of a shared library or the dynamic linker
can cause erroneous information to be presented by the debugger. Sometimes a core file can be debugged
successfully on a different system, particularly on more modern linux systems, but you should take care when
attempting this.

When debugging core files, PGDBG:
e Supports all non-control commands.
e Performs any command that does not cause the program to run.

* Generates an error message in PGDBG for any command that causes the program to run.

e May provide the status of multiple threads, depending on the type of core file created.

PGDBG does not support multi-process core file debugging.

Chapter 8. PGDBG Platform-Specific Features

Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on
according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands), except
for signals that cannot be intercepted or signals used internally by PGDBG.

Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG. Management of
these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG (via catch and ignore)
result in undefined behavior.

Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT?3 to communicate among threads internally. Other Linux
thread libraries, on systems that do not have support for real-time signals in the kernel, use SIGUSR1 and
SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) result in undefined
behavior.

Target applications built for sample-based profiling (compiled with ‘-pg’) generate numerous SIGPROF signals.
Although SIGPROF can be handled by PGDBG, debugging of applications built for sample-based profiling is not
recommended.

63

64

Chapter 9. PGDBG Parallel
Debugging Overview

This chapter provides an overview of how to use PGDBG to debug parallel applications. It includes important
definitions and background information on how PGDBG represents processes and threads.

Overview of Parallel Debugging Capability

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread
and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes.

For specific information on Multi-thread and OpenMP debugging, refer to Chapter 10, “PGDBG - Parallel
Debugging with OpenMP”.

For specific information on Multi-process MPI debugging, refer to Chapter 11, “PGDBG Parallel Debugging
with MPI.
Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail in
“The PGDBG Graphical User Interface”.

Basic Process and Thread Naming

Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-
threaded/multi-process applications, it provides a convention for uniquely identifying each thread in each
process. This section gives a brief overview of this naming convention and how it is used to provide adequate
background for the subsequent sections. A more detailed discussion of this convention, including advanced
techniques for applying it, is provided in “Thread and Process Grouping and Naming,” on page 60.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG assigns
arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

65

Thread and Process Grouping and Naming

PGDBG identifies processes in an MPI application using MPI rank (in communicator MPI_COMM_WORLD).
Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of process
creation. Process IDs are unique across all active processes.

In 2 multi-threaded/multi-process application, each thread can be uniquely identified across all processes by
prefixing its thread ID with the process ID of its parent process. For example, thread 1.4 identifies the thread
with ID 4 in the process with ID 1.

An OpenMP application (single-process) logically runs as a collection of threads with a single process, process
0, as the parent process. In this context, a thread is uniquely identified by its thread ID. The process ID prefix
is implicit and optional. For more information on debugging threads, refer to “Threads-only Debugging,” on
page 67.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.
Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and thread ID
is implicit and optional. For more information on process debugging, refer to “Process-only Debugging,” on
page 67.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to uniquely
identify a particular thread. For more information on multilevel debugging, refer to “Multilevel Debugging,” on
page 67.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0. The
use of thread IDs and process IDs is allowed but unnecessary.

Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes into sets, and how to
apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes

66

PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming threads and
processes. The debug mode is set automatically or by the pgienv command.

Table 9.1. PGDBG Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution
Multilevel Multiple processes, at least one process employing multiple threads of execution

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be ignored in
serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. For a
description of the PGDBG prompt, refer to “The PGDBG Command Prompt,” on page 79.

Chapter 9. PGDBG Parallel Debugging Overview

The debug mode can be changed at any time during a debug session.

To change debug mode manually, use the pgienv command.

pgi env node [serial |thread| process|nultilevel]

Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the
process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial debug
mode when it detects and attaches to new threads.

Example 9.1. Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*. 1)
i All threads of process 0 (*. *)
0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on context.

Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded processes. As a convenience,
the thread ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial debug
mode when the target program returns from MPIL_Init.

Example 9.2. Process IDs in process-only debug mode

0 All threads of process 0 (0.*)
All threads of all processes (*.*)

1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending on context.

Multilevel Debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process ID. This forms
a unique name for each thread across all processes. This naming scheme is valid in all debug modes. PGDBG
changes automatically to multilevel debug mode from process-only debug mode or threads-only debug mode
when at least one MPI process creates multiple threads.

Example 9.3. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0
0.* All threads of process 0
B All threads of all processes

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context.

67

Process/Thread Sets

Process/Thread Sets

You use a process/thread set (p/t-set) to restrict a debugger command to apply to just a particular set of
threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/t-set
notation (described in “p/t-set Notation,” on page 68) to define a p/t-set.

Named p/t-sets

In the following sections, you will notice frequent references to three named p/t-sets:

e The target p/t-set is the set of processes and threads to which a debugger command is applied. The target
p/t-set is initially defined by the debugger to be the set [all] which describes all threads of all processes.

e A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the prefixed
command, the target p/t-set is the prefix p/t-set.

 The current p/t-set is the p/t set currently set in the PGDBG environment. You can use the focus
command to define the current p/t-set. Unless a prefix p/t-set overrides it, the current p/t set is used as the
target p/t-set.

p/t-set Notation
The following rules describe how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:
[p/t-set prefix] conmmand parn0, parnil, ..

Use a prefix p/t-set with a compound command:

[p/t-set prefix] sinple-comand [;sinple-command ...]
p/t-id:
{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect. For more information,
refer to the pgienv command.

p/t-range:
p/t-id:p/t-id

p/t-list:
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set
[[']{p/t-list]|set-nane}]

Example 9.4. p/t-sets in Threads-only Debug Mode

[0, 4: 6] Threads 0,4,5, and 6
[*] All threads

68

Chapter 9. PGDBG Parallel Debugging Overview

[*. 1] Thread 1. Multilevel notation is valid in threads-only mode
[*.*] All threads

Example 9.5. p/t-sets in Process-only Debug Mode

[0, 2:3] Processes 0, 2, and 3 (equivalent to [0.%,2:3.%])

[*] All processes (equivalent to [*.*])

[0] Process 0 (equivalent to [0.*])

[*.0] Process (0. Multilevel syntax is valid in process-only mode.

[0:2.%] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

Example 9.6. p/t-sets in Multilevel Debug Mode

[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic
p/t-set are those active threads described by the p/t-set at the time that the p/t-set is used. By default, a p/t-
set is dynamic. Threads and processes are created and destroyed as the target program runs and, therefore,
membership in a dynamic set varies as the target program executes.

Example 9.7. Defining a Dynamic p/t-set

defset clients [*.1:3] |Definesanamed setcl i ent s whose members are threads 1, 2, and
3 of all processes that are currently active when cl i ent s is used.
Membership in cl i ent s changes as processes are created and
destroyed.

Membership in a static set is fixed at definition time. The members of a static p/t-set are those threads
described by that p/t-set when it is defined. Use a ! to specify a static set.

Example 9.8. Defining a Static p/t-set

defset clients [!*.1:3] |Defines a named set cl i ent s whose members are threads 1, 2, and 3
of those processes that are currently active at the time of the definition.

Note

p/t-sets defined with defset are not mode-dependent and are valid in any debug mode.

69

Process/Thread Sets

Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt and
depends on debug mode. For a description of the PGDBG prompt, refer to “The PGDBG Command Prompt,”
on page 79. You can use a p/t-set to prefix a command that overrides the current p/t-set. The prefix p/t-set
becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be affected by
a command.

e In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

e In contrast, a prefix p/t-set is used in the following command so that the target p/t-set is the prefix p/t-set,
shown in this example in bold:

pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all] is
the target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set. The
continue command is applied to all active threads in the target p/t-set. Also, using a prefix p/t-set does not
change the current p/t-set.

p/t-set Commands
You can use the following commands to collect threads and processes into logical groups.

* Use defset and undefset to manage a list of named p/t-sets.
e Use focus to set the current p/t-set.
 Use viewset to view the active members described by a particular p/t-set, or to list all the defined p/t-sets.

» Use whichsets to describe the p/t-sets to which a particular process/thread belongs.

Table 9.2. p/t-set Commands

Command Description

defset Define 2 named p/t-set. This set can later be referred to by name. A list of
named sets is stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent commands are
applied to the members of this set by default.

undefset Undefine a previously defined process/thread set. The set is removed from the
list. The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads,
or list all the defined p/t-sets.

whichsets List all defined p/t-sets to which the members of a process/thread set belongs.

Examples of the p/t-set commands in the previous table follow.

70

Chapter 9. PGDBG Parallel Debugging Overview

Use defset to define the p/t-set initial to contain only thread 0:

pgdbg [all] 0> defset initial [O]

"initial" [0] : [0]

Use the focus command to change the current p/t-set to initial:

pgdbg [all] 0> focus [initial]

[initial] : [0]

[0]

Advance the thread. Currently the code is not using a prefix p/t-set, and the target p/t-set is the current p/t-set,
which is initial:

pgdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 bel ongs to:

al |

initial

The viewset command displays all threads that are active and are members of defined p/t-sets:

pgdbg [initial] 0> viewset
“all" [*.*] : [0.0,0.1,0.2,0.3]
“initial" [0] : [0O]

You can use the focus command to set the current p/t-set back to [all]:

pgdbg [initial] 0> focus [all]
[all] : [0.0,0.1,0.2,0.3]
[*.~]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set nane "initial" del eted.

The previous examples illustrate how to manage named p/t-sets using the command-line interface. A similar

capability is available in the PGDBG GUL. “Command/Focus Panel,” on page 7 contains information about the
Focus Panel. This panel, shown in Figure 2.3, “PGDBG GUI Main Window with Focus Tab Selected ,” on page
8, contains a table labeled Focus with two columns: 2 Name column and a p/t-set column. The entries in this
table are p/t-sets exactly like the p/t-sets used in the command-line interface.

Operations on p/t set

You can create, select, modify and remove p/t sets.
Create a p/t set

To create a p/t set in the Focus Panel:

1. Click the Add button. This opens a dialog box similar to the one in Figure 9.1.
2. Enter the name of the p/t-set in the Focus Name text field and enter the p/t-set in the p/t-set text field.
3. Click the left mouse button on the OK button to add the p/t-set.

The new p/t-set appears in the Focus Table. Clicking the Cancel button or closing the dialog box aborts the
operation. The Clear button clears the Focus Name and p/t-set text fields.

71

Process/Thread Sets

Select a p/t set

To select a p/t-set, click the left mouse button on the desired p/t-set in the table. The selected p/t-set is also
known as the Current Focus. PGDBG applies all commands entered in the Source Panel to the Current Focus
when you choose Focus in the Apply Selector (“Main Window Combo Boxes,” on page 17). Current Focus can
also be used in a GUI subwindow. Choose Current Focus in a subwindow’s Context Selector (“Subwindows,” on
page 20) to display data for the Current Focus only.

Modify a p/t set

To modify an existing p/t-set, select the desired group in the Focus Table and click the Modify button. A dialog
box similar to that in Figure 9.1 appears, except that the Focus Name and p/t-set text fields contain the selected
group’s name and p/t-set respectively. You can edit the information in these text fields and click OK to save the
changes.

Remove a p/t set

To remove an existing p/t-set, select the desired item in the Focus Table and click the Remove button. PGDBG
displays a dialog box asking for confirmation of the request for removal of the selected p/t-set. Click either the
Yes button to confirm or the No button to cancel the operation.

p/t set Usage

Note

p/t-sets defined in the Focus Panel of the PGDBG GUI are only used by the Apply and View Selectors
in the GUL They do not affect focus in the Command Prompt Panel. Conversely, focus changes made
in the Command Prompt Panel affect only the Command Prompt Panel and not the rest of the PGDBG
GUL

For example, in Figure 9.1 there is a p/t-set named “process 0 odd numbered threads”. The p/t-set is [0.1,
0.3] which indicates threads 1 and 3 in process 0.

Figure 9.1. Focus Group Dialog Box
- PGDEG pjt-set Editor BEE

Enter Focus Name and pAt-set.
Example p/t-sets:

[0.1,0.2,0.3] - thread 1, 2, and 3 of process 0

[0.*] - all threads of process O

.1, 2.1 - thread 1 of processes 1 and 2

[1:2.1] - thread 1 of processes 1 and 2
Focus Name>[F‘rocess O odd numbered threads]
nAT-SETs [[0.1,0.3]]

|’ Clear]|' Ok][’Cancel]

Figure 9.2 shows this p/t-set in the Focus Table. We also chose Focus in the Apply Selector. Any command
issued in the Source Panel is applied to the Current Focus, or thread 1 and 3 on process 0 only. All other

72

threads remain idle until either the All p/t-set is selected in the Focus Panel or All is selected in the Apply
Selector. Note that “process 0 odd numbered threads” is not available in the Command Prompt Panel.

Chapter 9. PGDBG Parallel Debugging Overview

Figure 9.2. Focus in the GUI

'GDBG = The Portland Group:

Eile Settings Data Window. Contrel Options

eom» MI\ HFA

{Apply to: Foous

[T [+

-

!J [Cun‘tex‘t:ess.'l'hﬁead o1 ’ij [File: ampmpiL e ’E]J

8 irt myrank; threadrank;

a char hnana [32];

i int 1

11

12 @ WEL_TriT(&argc, @argy)3

i}

14 gethostnaneChnane, 323}

15 WP _Comm_rankMPI_COMM_WORLD, &myrank);
16

#pragma omp parallel

18

;9 int 1; o

20) Torii=0;i=3;1+34

21 3 PNt Esssd sl hnane, iy rank, onpoget_thread_num(]y;
22 }

23 #pragna omp-barrier

24

25

26 WPI_Finalizeld;

28 return;

0 YA maine S =

4] il |

[»] |

B————-I N

main 1ine: 21 9n "onpnpd .o address: Oxd06dZa I?J[@
T = T T T T T T T OO
| Cammand W ICUS.
hlarme pft-gat
all "
prosgss Oodd numberad threads [8,1,0.3]
) Wy) @R

Stopped at line 21 {address Dxd06daa) In file {home/donb/Test fompmpi ompmpl.c

Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets

according to how each command reacts to the current p/t-set. Process level and thread level commands can be
parallelized. Global commands cannot be parallelized.

Table 9.3. PGDBG Parallel Commands

Commands

Action

Process Level Commands Parallel by current p/t-set or prefix p/t-set

Thread Level Commands

Parallel by prefix p/t-set only; current p/t-set is ignored.

Global Commands

Non-parallel commands

Process Level Commands

The process level commands are the PGDBG control commands.

73

Command Set

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set can be
used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1: 2]
pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:

pgdbg [all] 0.0> [0.3] n

Thread Level Commands

74

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used, these
commands execute in the context of the current thread of the current process by default. That is, thread level
commands ignore the current p/t-set. Thread level commands can be applied to multiple threads by using a
prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed in the context of each
active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if present, or the current
thread (not the current p/t-set) if no prefix p/t set exists.

The thread level commands are:

addr do hwatch print stack

ascii doi iread regs stackdump
assign dread line retaddr string

bin dump lines rval track
break* entry Ival scope tracki
cread fp noprint set watch

dec fread oct sizeof watchi
decl func pc sp whatis
disasm hex pf sread where

* breakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:
e The threads described by the prefix are sorted per process by thread ID in increasing order.

e The processes are sorted by process ID in increasing order, and duplicates are removed.

* The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the current
process, thread 0.0, printing rank 0:

Chapter 9. PGDBG Parallel Debugging Overview

pgdbg [all] 0.0> print nyrank
0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print
command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*,1:2.*] print myrank
[1.0] print nyrank:

[12. 0] print nyrank:
[22. 1] print nyrank:
[22. 2] print nyrank:
[23. 0] print myrank:
?3. 2] print nyrank:
?3. 1] print myrank:
3

Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads across
all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

? / alias arrive ‘ breaks
call catch cd ‘ debug defset
delete directory disable display edit
enable files focus funcs help
history ignore log pgienv proc
procs pwd quit repeat rerun
run script shell source status
thread threads unalias unbreak undefset
use viewset wait whereis whichsets

Process and Thread Control

PGDBG supports thread and process control everywhere in the program. Threads and processes can be
advanced in groups anywhere in the program.

The PGDBG control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

75

Configurable Stop Mode

A thread inherits the control operation of the current thread when it is created. If the current thread single-
steps over an _mp_init call (found at the beginning of every OpenMP parallel region) using the next
command, then all threads created by _np_i ni t step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So if the current process
returns from a call to MPI_Init under the control of a cont command, the new process does the same.

Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG defines
two pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines two stop modes,
synchronous (sync) and asynchronous (async).

Table 9.4. PGDBG Stop Modes

Command Result

sync Synchronous stop mode; when one thread stops at a breakpoint (event),
all other threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other
threads. One thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgi env t hreadstop [sync|async]

Process stop mode is set using the pgienv command as follows:
pgi env procstop [sync|async]
PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging

an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and
asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfig and procstopconfig can be set to automatic (auto) or user
defined (user) to enable or disable this behavior:

pgi env t hreadst opconfig [auto|user]
pgi env procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.
Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode

76

Wait mode describes when PGDBG accepts the next command. The wait mode is defined in terms of the
execution state of the program. Wait mode describes to the debugger which threads/processes must be
stopped before it will accept the next command.

In certain situations, it is desirable to be able to enter commands while the program is running and not
stopped at an event. The PGDBG prompt does not appear until all processes/threads are stopped. However, a
prompt may be available before all processes/threads have stopped. Pressing <enter> at the command line

Chapter 9. PGDBG Parallel Debugging Overview

brings up a prompt if it is available. The availability of the prompt is determined by the current wait mode and
any pending wait commands.

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence of semicolon-
separated commands, which are processed immediately in order.

The wait mode describes when to accept the next compound statement. PGDBG supports three wait modes,
which can be applied to processes and/or threads.

Table 9.5. PGDBG Wait Modes

Command Result

all The prompt is available only after all threads have stopped since the
last control command.

any The prompt is available only after at least one thread has stopped
since the last control command.

none The prompt is available immediately after a control command is
issued.

e Thread wait mode describes which threads PGDBG waits for before accepting new commands.
Thread wait mode is set using the pgienv command as follows:
pgi env threadwait [any]|all|none]

* Process wait mode describes which processes PGDBG waits for before accepting new commands.

Process wait mode is set using the pgienv command as follows:

pgi env procwait [any|all|none]
If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode, PGDBG defaults to:

threadwai t al
procwait any

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG. The
pgienv environment variable threadwaitconfig can be set to automatic (auto) or user defined (user) to enable
or disable this behavior.

pgi env t hreadst opconfig [auto| user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.
Automatic wait mode is the default thread wait mode.

PGDBG defaults to the following in GUI mode:

t hreadwai t none

"7

Configurable Wait Mode

78

procwait none

Setting the wait mode may be necessary when invoking the debugger using the - s (script file) option in GUI
mode (to ensure that the necessary threads are stopped before the next command is processed).

PGDBG also provides a wait command that can be used to insert explicit wait points in a command stream.
Wait uses the target p/t-set by default, which can be set to wait for any combination of processes/threads. You
can use the wait command to insert wait points between the commands of 2 compound command.

The threadwait and procwait pgienv variables can be used to configure the behavior of wait. For more
information, refer to pgienv usage in “Configurable Wait Mode,” on page 76.

Table 9.6, “PGDBG Wait Behavior” describes the behavior of wait.

Suppose S is the target p/t-set. In the table,

e Pis the set of all processes described by S.
e p is a single process.
e Tis the set of all threads described by S.

e t is asingle thread.

Table 9.6. PGDBG Wait Behavior

Command |threadwait |procwait |Wait Set
wait all all Wait for T
any
none
wait all any Wait for all threads in at least one p in P
none
wait any any Wait for all tin T for at least one p in P
none none
wait all all all Wait for T
any
none
wait all all any Wait for all threads of at least one p in P
none
wait all any any Wait for all tin T for at least one p in P
none none
wait any all all Wait for at least one thread for each process p in P
wait any all any Wait for at least one tin T
any none
none
wait any any all Wait for at least one thread in T for each process p in P
none

Chapter 9. PGDBG Parallel Debugging Overview

Command |threadwait

procwait |Wait Set

wait none

all
any
none

all Wait for no threads
any
none

Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be useful in text

mode in the absence of the graphical aids provided by the GUI. Use the pgienv command to enable or disable

the types of status messages produced by setting the verbose environment variable to an integer-valued bit

mask using pgienv:

pgi env verbose <bitmask>

The values for the bit mask, listed in the following table, control the type of status messages desired.

Table 9.7. PGDBG Status Messages

Value

Type

Information

0x1

Standard

Report status information on current process/thread only. A
message is printed when the current thread stops and when threads
and processes are created and destroyed. Standard messaging is the
default and cannot be disabled.

0x2

Thread

Report status information on all threads of current processes. A
message is reported each time a thread stops. If process messaging
is also enabled, then a message is reported for each thread across
all processes. Otherwise, messages are reported for threads of the
current process only.

0x4

Process

Report status information on all processes. A message is reported
each time a process stops. If thread messaging is also enabled,
then a message is reported for each thread across all processes.
Otherwise, messages are reported for the current thread only of
each process.

0x8

SMP

Report SMP events. A message is printed when a process enters or
exits a parallel region, or when the threads synchronize. The PGDBG
OpenMP handler must be enabled.

0x16

Parallel

Report process-parallel events (default).

0x32

Symbolic debug
information

Report any errors encountered while processing symbolic debug
information (e.g. ELF, DWARF2).

The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode, as described in “PGDBG Debug Modes,” on

page 66.

In serial debug mode, the PGDBG prompt looks like this:

79

Parallel Events

pgdbg>
In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread:

pgdbg [all] 0>
Current thread is O

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current process:

pgdbg [all] 0>
Current process is O

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the
current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the current
p/t-set at the prompt.

Parallel Events

80

This section describes how to use a p/t-set to define an event across multiple threads and processes. Events,
such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-level commands,
described in “Thread Level Commands,” on page 74.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set
breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (ii) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.
By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user

events on specific processes and threads. For example:

i) pgdbg [all] 0> watch gl ob
ii) pgdbg [all] 0> [*] watch gl ob

(i) sets a data breakpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are
currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or thread.
All other events must be defined explicitly after the process or thread is created. All processes must be stopped
to add, enable, or disable a user event.

Events may contain if and do clauses. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint fires. The if and do
clauses execute in the context of a single thread. The conditional in the if clause and the body of the do execute

Chapter 9. PGDBG Parallel Debugging Overview

in the context of a single thread, the thread that triggered the event. The conditional definition as above can be
restated as follows:

[0] if (glob!l=0) {[0] set f
[1] if (glob!=0) {[1] set f

0}
0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is bound
in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only well
defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current process.
For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

i f conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, the following
command is illegal:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

The body of a do statement cannot be parallelized.

Parallel Statements

This section describes how to use a p/t-set to define a statement that executes for multiple threads and
processes.

Parallel Compound/Block Statements

Each command in a compound statement is executed in order. The target p/t-set is applied to all statements in
a compound statement. The following two examples (i) and (i) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print f@l@
ii) pgdbg [all] O0>[*] break main; [*]cont; [*]wait; [*]print f@Al@

Use the wait command if subsequent commands require threads to be stopped, as the print command in the
example does.

The threadwait and procwait environment variables do not affect how commands within a compound statement
are processed. These pgienv environment variables describe to PGDBG under what conditions (runstate of
program) it should accept the next (compound) statement.

Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the current
thread by default. The following example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

is equivalent to the following pseudo-code:

81

Parallel Statements

for the subset of [*] where (i==1)
break func; c; wait; for the subset of [*] where (i!=1) sync func2

Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of the
current thread by default. The following example:

pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

| oop:

if the subset of [*] is the enpty set
got o done

endi f

for the subset [s] of [*] where (i<10)
[s]n; [s]wait; [s]print i;

endf or

goto | oop

The while statement terminates when either the subset of the target p/t-set matching the while condition is the
empty set, or a return statement is executed in the body of the while.

Return Statements

82

The return statement is defined only in serial context since it cannot return multiple values. When return is
used in a parallel statement, it returns the last value evaluated.

Chapter 10. PGDBG - Parallel
Debugging with OpenMP

This chapter provides information on how to use PGDBG to debug OpenMP applications. Before reading this
chapter, review the information in Chapter 9, “PGDBG Parallel Debugging Overview”.

OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a single
thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering scheme for
OpenMP applications; for other types of multi-threaded applications thread numbering is arbitrary. OpenMP
PRIVATE data can be accessed accurately for each thread. PGDBG provides understandable status displays
regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger operation
that is concurrent with application execution.

Multi-Thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution. PGDBG reports
when a new thread is created and the thread ID of the new thread is printed.

([1] New Thr ead)

The system ID of the freshly created thread is available through the threads command. You can use the procs
command to display information about the parent process.

PGDBG maintains a conceptual current thread. The current thread is chosen by using the thread command
when the debugger is operating in text mode (invoked with the -text option), or by clicking in the thread
grid when the GUI interface is in use (the default). A subset of PGDBG commands known as thread-level
commands, when executed, apply only to the current thread. See “Thread Level Commands,” on page 74, for
more information.

The threads command lists all threads currently employed by an active program. The threads command
displays each thread’s unique thread ID, system ID (OS process ID), execution state (running, stopped,
signaled, exited, or killed), signal information and reason for stopping, and the current location (if stopped or

83

Debugging OpenMP Private Data

signaled). An arrow (=>) indicates the current thread. The process ID of the parent is printed in the top left
corner. The threads command does not change the current thread.

pgdbg [all] 2> thread 3

pgdbg [all] 3> threads
0 I D PI D STATE Sl GNAL LOCATI ON
=> 3 18399 Stopped SIGIRAP nain line: 31 in "onp.c" address: 0x80490ab
2 18398 Stopped SIGIRAP nmain line: 32 in "onp.c" address: 0x80490cf

1 18397 Stopped SIGIRAP main line: 31 in "onp.c" address: 0x80490ab

0 18395 Stopped SIGIRAP f line: 5 in "onp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Table 10.1. Thread State Is Described Using Color

Thread State Description Color

Stopped If all threads are stopped at breakpoints, or were |Red
directed to stop by PGDBG

Signaled If at least one thread is stopped due to delivery of a | Blue
signal

Running If at least one thread is running Green

Exited or Killed If all threads have been killed or exited Black

Debugging OpenMP Private Data

84

PGDBG supports debugging of OpenMP private data for all supported languages. When an object is declared
private in the context of an OpenMP parallel region, it essentially means that each thread team has its own copy
of the object. This capability is shown in the following Fortran and C/C++ examples, where the loop index
variable i is private by default.

FORTRAN example:

program onp_pri vat e_dat a

i nteger array(8)

call onp_set_numt hreads(2)
| $OMP PARALLEL DO

do i=1,8

array(i) =

enddo

1 $OMP END PARALLEL DO

print *, array

end

C/C++ example:

#i ncl ude <onp. h>

int main ()
{ . .

int i;

int array[8];
onp_set _num t hr eads(2);
#pragma onp parall el

{
#pragma onp for

Chapter 10. PGDBG - Parallel Debugging with OpenMP

for (i =0; i <8 ++) {

array[i] =i;

}

}

for (i =0; i < 8; ++i) {
printf("array[%] = %@\n",i, array[i]);
}

}

Display of OpenMP private data when the above examples are built with a PGI compiler and displayed by
PGDBG is as follows:

pgdbg [all] 0> [*] print i
[0] print i:
1

[1] print i:
5

The example specifies [*] for the p/t-set to execute the print command on all threads. Figure 10.1 shows the
values for i in the PGDBG GUI using a Custom Window.

Note

All Threads is selected in the Context Selector to display the value on both threads.

Figure 10.1. OpenMP Private Data in PGDBG GUI

PGDEG Custom

Eile Sptions

Commanch= [hrirrt i]

[] print 1:
i
17 print q:
4

Thread O

Current Thread

@Reser J(@8mse | [wimhveass [F] (psiere] (eek)

Note

All Threads is selected in the Context Selector to display the value on both threads.

85

86

Chapter 11. PGDBG Parallel
Debugging with MPI

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread
and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate
between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/multi-thread debugging
is supported. This section gives an overview of how to use PGDBG to debug parallel MPI applications. It
provides some important definitions and background information on how PGDBG represents processes and
threads.

MPI and Multi-Process Support

PGDBG supports debugging of multi-process MPI applications, whether running on a single system or
distributed on multiple systems. MPI applications can be started under debugger control using the mpirun
command, or PGDBG can attach to a running, distributed MPI application. In either case all processes

are automatically brought under debugger control. Process identification uses the MPI rank within
MPI_COMM_WORLD.

MPI debugging is supported on Linux and Windows platforms.

Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed multi-threaded
applications. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as it is created.
See “Multi-Process MPI Debugging,” on page 90 to get started.

Here are some things to consider when debugging an MPI program:

e Use p/t-sets to focus on a set of processes. Be mindful of process dependencies.
e For a running process to receive a message, the sending process must be allowed to run.

e Process synchronization points, such as MPI_Barrier, do not return until all processes have hit the sync
point.

87

Process Synchronization

e MPI_Finalize acts as an implicit barrier, though on MPICH-1 process 0 returns while Processes 1 through
n-1 exit.

You can apply a control command, such as cont or step, to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that process
and is ignored by its running threads. Those threads held by the OpenMP event handler also ignore the control
command in most situations.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process. See the
pgienv command and “Configurable Wait Mode,” on page 76 for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging MPI
programs since MPIRUN passes arguments to the program that must be included. After MPI debugging is shut
down, PGDBG cleans up all of its MPI processes.

Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the program. The
following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI_Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:
pgdbg [all] 0.0> [0:1.*] sync MPl_Finalize

A synchronize command only successfully syncs the target processes if the sync address is well defined for
each member of the target process set, and all process dependencies are satisfied. If these conditions are not
met, for example, a member could wait forever for a message. The debugger cannot predict if a text address is
in the path of an executing process.

MPI Message Queues

88

PGDBG can dump the MPI message queues through the mqdump command, described in “Memory Access,”
on page 118. In the PGDBG GUI, the message queues can be viewed by selecting the Messages item under the
Windows menu. This command can also have a p/t-set prefix to specify a subset of processes and/or threads.
When using the GUI, a subwindow is displayed with the message queue output illustrated in Figure 11.1 (the
PGDBG text debugger produces the same output). Within the subwindow, you can select which process/threads
to display with the Context Selector combo box located at the bottom of the subwindow (e.g., Process 1 in
Figure 11.1).

The following error message may display if you invoke mqdump:

ERROR: MPI Message Queue library not found.
Try setting ‘' PGDBG MJS_LI B_OVERRI DE' envi ronnment vari abl e
or set via the PGDBG command: pgienv ngslib <path>.

If this message is displayed, then the PGDBG_MQS_LIB_OVERRIDE environment variable should be set to the
absolute path of libtvmpich.so or another shared object that is compatible with the version of MPI being used.

Note

The default path can be overwritten via the mgslib variant of the pgienv PGDBG command.

Chapter 11. PGDBG Parallel Debugging with MPI

Note

mqdump is currently not supported on Windows.

Figure 11.1. Messages Subwindow

Eile Options

FETTLTTILY ETass TTaTTE —
Fending receiwves: naone —
Unexpected messages: nange

MPI_COMM_WORLD_collective -

Comn_size 2
Camm_rank 1
Fending sends: naone

Fending receives:

]

Mon-blocking send

status Fending
Source 0 {/honedonbLest anpmpi S Sopi.0)
Tag 2 C0H00000002 7

User Buffer OxFFFFOLEC41ES
Buffer Length 4 (Om00000004% —

Unexpected messages: none

MPI_COMM_SELF

Conm_size 1 —
Comm rank 0 '
|'Reset |'Close |Process 1 : |'Update |'L0c|<
MPI Groups
PGDBG identifies each process by its MPI_COMM_WORLD rank. In general, PGDBG currently ignores MPI
groups.

MPI Listener Processes

Entering Control-C (~C) from the PGDBG command line can be used to halt all running processes. This is not
the preferred method, however, to use while debugging an MPICH-1 program. Entering ~C at the command
line sends a SIGINT signal to the debugger’s children. This signal is never received by the MPI processes listed
by the procs command (i.e., the initial and attached processes); SIGINT is intercepted in each case by PGDBG.
However, PGDBG does not attach to the MPI listener processes paired with each MPI process. These listener
processes receive a ~C from the command line, which kills these processes and results in undefined program
behavior. For this reason, PGDBG automatically switches to process wait mode none (pgienv procwait none) as
soon as it attaches to its first MPI process.

Setting 'pgienv procwait none' allows commands to be entered while there are running processes, which
allows the use of the halt command to stop running processes without the use of ~C.

Note

halt cannot interrupt a wait command. ~C must be used for this.

In MPI debugging, wait should be used with care.

89

SSH and RSH

SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also use
ssh for secure environments. The environment variable PGRSH should be set to ssh or r sh, to indicate the
desired communication method.

If you use SSH as the mechanism for launching the remote components of PGDBG, you may want to do some
additional configuration. The default configuration of ssh can result in a password prompt for each remote
cluster node on which the debugger runs. You should check with your network administrator to make sure
that you comply with your local security policies when configuring ssh. The following set of steps provide one
way to configure SSH to eliminate this prompt.

$ ssh-keygen -t dsa

$ eval “ssh-agent -s°

$ ssh-add

<nmeke sure that $HOME i s not group-witable>
$ cd $HOVE/ . ssh

$ cp id_dsa.pub authorized_keys

Then for each cluster node you use in debugging, use:
$ ssh <host >

A few things that are important related to this example are these:

e The ssh-keygen command prompts for a passphrase. that is used to authenticate to the ssh-agent during
future sessions. The passphrase can be anything you choose.

¢ Once you answer the prompts to make the initial connection, subsequent connections should not require
further prompting.

e This example uses 'ssh-agent -s', which is correct for the sh or bash shells. For csh shells, use 'ssh-agent -

C.

After logging out and logging back in, the ssh-agent must be restarted and reauthorized. For example, in a bash
shell, this is accomplished as follows:
$ eval “ssh-agent -s°

$ ssh-add

You must enter the passphrase that was initially given to ssh-add to authenticate to the ssh-agent.

For further information, consult your SSH documentation.

Multi-Process MPI Debugging

When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports multi-
process MPI debugging. The PGI CDK contains versions of MPICH, MPICH2, and MVAPICH pre-configured to
support debugging cluster applications with PGDBG. Non-CDK MPI software must be configured to support
PGDBG; see http://www.pgroup.com/support/faq.htm for more information.

Invoking PGDBG for MPI Debugging

The command used to start MPI debugging under MPICH-1 using the PGDBG GUI is:

90

Chapter 11. PGDBG Parallel Debugging with MPI

% npi run -np Nprocs -dbg=pgdbg executable [argl,...argn]

For TEXT mode debugging, be certain that the DISPLAY variable is undefined in the shell that is invoking
mpirun. If this variable is set, you can undefine it by using one of the following commands:

For sh/bash users, use this command:

$ unset DI SPLAY

For csh/tcsh users, use this command:

% unset env DI SPLAY

To launch and debug an MPICH-2, MVAPICH, MSMPI, or HPMPI job, use this command:

% pgdbg [-text] -npi[:<launcher>] <mpiexec_args> [-programargs argl,...argn]

The default setting for <I auncher > in - npi : <l auncher > is npi exec.

Note

If the path for <I auncher > is not part of the PATH environment variable, then you must specify the
full path to the <I auncher > command.

% pgdbg [-text] -npi:npiexec] <npiexec_args> [-programargs argl,...argn]
e For HPMPI, <I auncher > is npi r un, so the need to instead specify - npi : npi r un

e For MVAPICH, <I auncher > is npi r un_r sh, so you specify - npi : npi run_r sh

When debugging an MPI job by invoking PGDBG with the -mpi option, each process is stopped before the first
assembly instruction in the program. Continuing execution using st ep or next is not appropriate; instead,
use the cont command.

Another way to invoke PGDBG for debugging an MPI job applies only to MPICH-2, though this invocation
currently does not support TEXT mode:

% npi exec -np nprocs -pgi executable [argl,...argn]

Note

You cannot restart an MPI application from within PGDBG. You must exit the debugger and start a new
debug session.

Newer versions of the Linux kernel supports a security feature that allows shared objects to be loaded at
randomized addresses. Older versions of PGDBG assumed that a shared object loaded by an MPI application
would be loaded at the same address for each process of an MPI job; thus incorrect mapping of symbols in
shared objects could occur when this mode is enabled.

PGDBG now supports debugging of MPI jobs running on Linux kernels when this address randomization
mode is enabled. However, when this mode is enabled, the current implementation of PGDBG does not share
symbol table information associated with shared objects that are loaded by each process of an MPI job, which
increases memory usage by PGDBG. Therefore, PGI recommends that this kernel mode be disabled on Linux
clusters where PGDBG is used to debug MPI applications.

91

Multi-Process MPI Debugging

You can disable randomization mode by executing the following command as root on each node of the
clusters:

sysctl -w kernel.random ze_va_space=0

Note

PGDBG emits a warning whenever it detects that it is being invoked on a multi-process MPI job when
this kernel mode is enabled.

Using PGDBG for MPI Debugging

92

PGDBG automatically attaches to new MPI processes as they are created by the running MPI application.
PGDBG displays an informational message as it attaches to the freshly created processes.

([1] New Process)

The MPI global rank is printed with the message. You can use the procs command to list the host and the PID
of each process by rank. The current process is indicated by an arrow (=>). You can use the proc command

to change the current process by process ID.
pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPl.c, line 30
#30: aft=time(&aft);
ID IPID STATE THREADS HOST
0 24765 Stopped 1 | oca
=> 1 17890 Stopped 1 red2. wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. See
Table 10.1, “Thread State Is Described Using Color,” on page 84 for a description of how thread state is
represented in the GUL

The PGDBG command prompt displays the current process and the current thread. In the above example, the
current process was changed to process 1 by the proc 1 command and the current thread of process 1 is 0;
this is written as 1.0:

pgdbg [all] 1.0>
See “Process and Thread Control,” on page 75 for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:

e PGDBG maintains a conceptual current process and current thread.
e Each active process has a thread set of size >=1.

¢ The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. See “Process Level
Commands,” on page 73 and “Thread Level Commands,” on page 74 for more information.

A license file distributed with PGDBG restricts the total number of MPI processes that can be debugged. There
are internal limits on the number of threads per process that can be debugged.

Chapter 11. PGDBG Parallel Debugging with MPI

Debugging Support for MPICH-1

PGDBG supports redirecting stdin, stdout, and stderr with the following MPICH switches:

Table 11.1. MPICH Support

Command Output

-stdout <file> Redirect standard output to <file>
-stdin <file> Redirect standard input from <file>
-stderr <file> Redirect standard error to <file>

PGDBG also provides support for the following MPICH switches:

Command Output
-nol ocal PGDBG runs locally, but no MPI processes run locally
-all-local PGDBG runs locally, all MPI processes run locally

For information about how to configure an arbitrary installation of MPICH to use PGDBG, see the PGDBG

online FAQ at http://www.pgroup.com/support/faq.htm.

When PGDBG is invoked via mpirun the following PGDBG command-line arguments are not accessible. A
workaround is listed for each.

Argument Workaround
- dbx Include 'pgienv dbx on' in .pgdbgrc file.
-s startup Use .pgdbgrc default script file and the script command.

-c¢ "comand"

Use .pgdbgrc default script file and the script command.

-t ext

Clear your DISPLAY environment variable before invoking npi r un.

-t <target>

Add to the beginning of the PATH environment variable a path to the
appropriate PGDBG.

93

94

Chapter 12. PGDBG Parallel
Debugging of Hybrid Applications

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-
thread and OpenMP applications, as well as hybrid multi-thread/multi-process applications that use MPI to
communicate between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/multi-
thread debugging is supported. This section concentrates on parallel debugging of hybrid applications.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,
and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the
supported types of applications regardless of how well the number of threads match the number of CPUs or
how well the number of processes match the number of cluster nodes.

PGDBG Multilevel Debug Mode

As described in “PGDBG Debug Modes,” on page 66, PGDBG can operate in four debug modes. The mode
determines a short form for uniquely naming threads and processes. The debug mode is set automatically or
by the pgienv command.

For multilevel debugging, you use the pgienv command to set the debug mode to multilevel.

pgi env node mul til evel

Multilevel Debugging

[Linux Only] The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process
ID. This forms a unique name for each thread across all processes. This naming scheme is valid in all debug
modes. PGDBG changes automatically to multilevel debug mode from process-only debug mode or threads-
only debug mode when at least one MPI process creates multiple threads.

Example 12.1. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0
0.* All threads of process 0
B All threads of all processes

95

Multilevel Debugging

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on
context. Further, in multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by
the ID of the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

For more information on p/t sets, refer to “Process/Thread Sets,” on page 68.

96

Chapter 13. PGDBG Command
Reference

This chapter describes the PGDBG command set in detail, grouping the commands by these categories:

Process Control Program Locations Scope Conversions

Process-Thread Sets Printing Variables and Register Access Miscellaneous
Expressions

Events Symbols and Expressions ~ Memory Access

For an alphabetical listing of all the commands, with a brief description of each, refer to “Command
Summary,” on page 38 in “PGDBG Command Summary”.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the
command accepts one.

e Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

(1D).

e Argument names are italicized.

 Argument names are chosen to indicate what kind of argument is expected.

e Arguments enclosed in brackets([]) are optional.

* Two or more arguments separated by a vertical line (|) indicate that any one of the arguments is acceptable.
e An ellipsis (...) indicates an arbitrarily long list of arguments.

e Other punctuation, such as commas and quotes, must be entered as shown.

97

Process Control

Example 13.1. Syntax examples

Example 1:

lis[t] [count | lo:hi | routine | |ine,count]

This syntax indicates that the command list may be abbreviated to lis, and that it can be invoked without any
arguments or with one of the following: an integer count, a line range, a routine name, or a line and a count.

Example 2:
att[ach] pid [exe [host]]

This syntax indicates that the command attach may be abbreviated to att, and, when invoked, must have a
process ID argument, pid. Optionally you can specify an executable file, exe, or both an executable file and a
host name, host.

Process Control

The following commands, together with the breakpoints described in the next section, control the execution
of the target program. PGDBG lets you easily group and control multiple threads and processes. See “Basic
Process and Thread Naming,” on page 65 for more details.

attach
att[ach] pid [exe [host]]

Attach to a running process with process ID pid. If the process is not running on the local host, then specify
the absolute path of the executable file exe and the host machine name. For example, at t ach 1234
attempts to attach to a running process whose process ID is 1234 on the local host. On a remote host, you
may enter something like at t ach 1234 / home/ deno/ a. out nyhost . In this example, PGDBG tries to
attach to a process ID 1234 called / home/ deno/ a. out on a host named nyhost .

PGDBG attempts to infer the arguments of the attached target application. If PGDBG fails to infer the argument
list, then the program behavior is undefined if the run or rerun command is executed on the attached
process. This means that run and rerun should not be used for most attached MPI programs.

The stdio channel of the attached process remains at the terminal from which the program was originally
invoked.

cont
c[ont]
Continue execution from the current location.
debug
de[bug] [target [argl _ argn]]
Load the specified target program with optional command-line arguments.

detach

det [ach]

98

Chapter 13. PGDBG Command Reference

Detach from the current running process.

halt

halt [comrand]

Halt the running process or thread.

next

n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines. The
count argument stops execution only after executing count source lines.

nexti
nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines. The
count argument stops execution only after executing count instructions.

proc
proc [id]

Set the current process to the process identified by id. When issued with no argument, proc lists the location
of the current thread of the current process in the current program. For information on how processes are
numbered, refer to “Multi-Process MPI Debugging,” on page 90.

procs

procs

Print the status of all active processes, listing each process by its logical process ID.
quit

gl uit]

Terminate the debugging session.

rerun

rer[un] [argO
argl ... argn] [<inputfile] [[>| >&| >>| >>&] outputfile]

The rerun command is the same as run except if no args are specified, the previously used target arguments
are not re-used.

run

ru[n] [arg0 argl
argn] [<inputfile] [[>| >&| >> | >>&] outputfile]

99

Process Control

Execute program from the beginning. If arguments arg0, argl, and so on are specified, they are set up as the
command-line arguments of the program. Otherwise, the arguments for the previous run command are used.
Standard input and standard output for the target program can be redirected using < or > and an input or
output filename.

step

s[tep] [count | count]

Stop after executing one source line. This command steps into called routines. The count argument stops
execution after executing count source lines. The up argument stops execution after stepping out of the current
routine (see stepout).

stepi
stepi [count | up]

Stop after executing one instruction. This command steps into called routines. The count argument stops
execution after executing count instructions. The up argument stops the execution after stepping out of the
current routine (see stepout).

stepout

st epo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the current return
address, and does a continue. To work correctly, it must be possible to compute the value of the return
address. Some routines, particularly terminal (or leaf) routines at higher optimization levels, may not set up

a stack frame. Executing stepout from such a routine causes the breakpoint to be set in the caller of the most
recent routine that set up a stack frame. This command halts execution immediately upon return to the calling
routine.

sync
sy[nc] line | func

Advance to the specified source location, either the specified line or the first line in the specified function,
ignoring any user-defined events.

SyNci
synci addr | func

Advance to the specified address, or to the first address in the specified function, ignoring any user-defined
events.

thread

thread [nunber]

Set the current thread to the thread identified by number; where number is a logical thread id in the current
process’ active thread list. When issued with no argument, thread lists the current program location of the
currently active thread.

100

Chapter 13. PGDBG Command Reference

threads
t hr eads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical
process id. Each thread is listed by its logical thread id.

wait
wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

Process-Thread Sets

The following commands deal with defining and managing process thread sets. See “Process/Thread Sets,” on
page 68, for a detailed discussion of process-thread sets.

defset
def set name [p/t-set]

Assign a name to a process/thread set. Define a named set. This set can later be referred to by name. A list of
named sets is stored by PGDBG.

focus
focus [p/t-set]

Set the target process/thread set for commands. Subsequent commands are applied to the members of this set
by default.

undefset
undefset [nane | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-defined p/t-
set [all] cannot be removed.

viewset
vi ewset [nane]

List the active members of the named process/thread set. If no process/thread set is given, list the active
members of all defined process/thread sets.

whichsets
whi chsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no process/thread set is
specified, the target process/thread set is used.

101

Events

Events

The following commands deal with defining and managing events. See “Parallel Events,” on page 80, for a
general discussion of events and the optional arguments.

break

b[reak]
b[reak] line [if condition)] [do {commands}]
b[reak] routine [if(condition)] [do {conmands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise, set

a breakpoint at the indicated line or routine. If a routine is specified, and the routine was compiled for
debugging, then the breakpoint is set at the start of the first statement in the routine (after the routine’s
prologue code). If the routine was not compiled for debugging, then the breakpoint is set at the first
instruction of the routine, prior to any prologue code. This command interprets integer constants as line
numbers. To set a breakpoint at an address, use the addr command to convert the constant to an address, or
use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified condition is true. If do is
specified with a command or several commands as an argument, the command or commands are executed
when the breakpoint occurs.

The following table provides examples of using break to set breakpoints at various locations.

This break command... Sets breakpoints...

break 37 at line 37 in the current file

break "xyz.c" @7 at line 37 in the file xyz. ¢

break main at the first executable line of routine main
break {addr Oxf0400608} at address Oxf 0400608

break {line} at the current line

break {pc} at the current address,

The following more sophisticated command stops when routine xyz is entered only if the argument n is
greater than 10.

break xyz if(xyz@ > 10)

The next command prints the value of n and performs a stack trace every time line 100 in the current file is
reached.

break 100 do {print n; stack}

breaki

102

br eaki
breaki routine [if (condition)] [do {conmands}]
breaki addr [if (condition)] [do {conmmands}]

When no arguments are specified, the breaki command prints the current breakpoints. Otherwise, this
command sets a breakpoint at the indicated address or routine.

Chapter 13. PGDBG Command Reference

* If a routine is specified, the breakpoint is set at the first address of the routine. This means that when the
program stops at this breakpoint the prologue code which sets up the stack frame will not yet have been
executed, so values of stack arguments may not yet be correct.

* Integer constants are interpreted as addresses.

* To specify a line, use the line command to convert the constant to a line number, or use the break
command.

e The if and do arguments are interpreted in the same way as for the break command. T

The following table provides examples of setting breakpoints using breaki.

This break command... Sets breakpoints...

breaki 0xf 0400608 at address Oxf 0400608

breaki {line 37} at line 37 in the current file

breaki "xyz.c" @7 at line 37 in the file xyz. ¢

breaki main at the first executable address of routine
main

breaki {line} at the current line

breaki {pc} at the current address,

In the following slightly more complex example, when n is greater than 3, the following command stops and
prints the new value of n at address 0x6480:

breaki 0x6480 if(n>3) do {print "n=", n}

breaks

br eaks

Display all the existing breakpoints.

catch
catch [sig:sig] [sig][, sig...]1]

When no arguments are specified, the catch command prints the list of signals being caught. With the sig:sig
argument, this command catches the specified range of signals. With a list, catch signals with the specified
number(s). When signals are caught, PGDBG intercepts the signal and does not deliver it to the target
application. The target runs as though the signal was never sent.

clear

clear [all | routine|] |ine | {addr addr}]

Clear breakpoints. With al | argument, clear all breakpoints. With a r out i ne argument, clear all
breakpoints from the first statement in the specified routine, r out i ne. With a line number argument, clear
all breakpoints from the specified line number in the current source file. With an address argument, clear
breakpoints from the specified address addr .

103

Events

When no arguments are specified, the clear command clears all breakpoints at the current location.

delete

del[ete] [event-nunber | 0| all | event-nunber [, event-nunber...]]

Delete the event event - nunber or all events. delete 0 is the same as delete all. To specify multiple event
numbers, separate the even numbers by commas.

When no arguments are given, the delete command lists all defined events by event number.

disable

do

doi

di sab[le] [event-nunber | all]
When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command disables the event event - nunber or all events. Disabling an event definition
suppresses actions associated with the event, but leaves the event defined so that it can be used later.

do {conmands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it defines
a list of commands to be executed. Without the optional arguments at or i n, the commands are executed
at each line in the program. The at argument with a line specifies the commands to be executed each time
that line is reached. The i n argument with a routine specifies the commands are executed at each line in the
routine. The if option has the same meaning as in watch. If a condition is specified, the do commands are
executed only when the condition is true.

doi {conmands} [if (condition)]
doi {conmands} at addr [if (condition)]
doi {conmands} in routine [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an expression, it defines
a list of commands to be executed. If an address (addr) is specified, then the commands are executed each
time that the specified address is reached. If a routine (routine) is specified, then the commands are executed
at each instruction in the routine. If neither an address nor a routine is specified, then the commands are
executed at each instruction in the program. The if option has the same meaning as for the do command,
described in the previous section.

enable

104

enab[le] [event-nunber | all]
When no arguments are specified, the enable command prints both enabled and disabled events.

With arguments, this command enables the event event - nunber or all events.

Chapter 13. PGDBG Command Reference

hwatch

hwat ch addr | var [if (condition)] [do {comuands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a particular
address or variable. The event is triggered by hardware when the byte at the given address is written. This
command is only supported on systems that provide the necessary hardware and software support.

Note

Only one hardware watchpoint can be defined at a time.
When the if option is specified, the event action is only triggered if the expression is true. When the do option

is specified, then the commands are executed when the event occurs.

hwatchread

hwat chr[ead] addr | var [if (condition)] [do {comrands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given address or
variable is read. As with hwatch, system hardware and software support must exist for this command to be
supported. The if and do options have the same meaning as for the hwatch command.

hwatchboth

hwat chb[ot h] addr | var [if (condition)] [do {comrands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given

address or variable is either read or written. As with hwatch, system hardware and software support must exist

for this command to be supported. The if and do options have the same meaning as for the hwatch command.
ignore

ignore [sig:sig]l [sig [, sig...]]

When no arguments are specified, the ignore command prints the list of signals being ignored. With the sig:sig
argument this command ignores the specified range of signals. With a list of signals the command ignores
signals with the specified number.

When a particular signal number is ignored, signals with that number sent to the target application are not
intercepted by PGDBG; rather, the signals are delivered to the target.

For information on intercepting signals, refer to “catch,” on page 103.

status
stat[us]

Display all the event definitions, including an event number by which the event can be identified.

stop

stop var

105

Events

stop at line [if (condition)][do {commands}]
stop in routine [if(condition)][do {commands}]
stop if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated routine or line.
The at keyword and a number specifies a line number. The i n keyword and a routine name specifies the first
statement of the specified routine. With the i f keyword, the debugger stops when the condition is true.

stopi

stopi var

stopi at address [if (condition)][do {conmmands}]
stopi in routine [if (condition)][do {conmands}]
stopi if (condition)

Break when the value of the indicated variable var changes. Set a breakpoint at the indicated address or
routine. The at keyword and a number specifies an address at which to stop. The iz keyword and a routine
name specifies the first address of the specified routine at which to stop. With the if keyword, the debugger
stops when condition is true.

trace

trace var [if (condition)][do {commands}]

trace routine [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in routine [if (condition)][do {conmands}]

With the var argument, activate source line tracing when var changes. When a routine is specified, activate
source line tracing and trace when in subprogram routine. With the at keyword, activate source line tracing

to display the specified line each time it is executed. With in, activate source line tracing when in the specified
routine. If condi t i on is specified, trace is on only if the condition evaluates to true. The do keyword defines
a list of commands to execute at each trace point. Use the command pgi env speed secs to set the time in
seconds between trace points. Use the clear command to remove tracing for a line or routine.

tracei

tracei var [if (condition)][do {comands}]

tracei routine [if (condition)][do {comands}]
tracei at addr [if (condition)][do {commands}]
tracei in routine [if (condition)][do {conmands}]

With the var argument, activate instruction tracing when var changes. When a r out i ne is specified, activate
instruction tracing and trace when in subprogram r out i ne. With the at keyword, activate instruction tracing
to display the specified line each time it is executed. With i n, activate instruction tracing when in the specified
routine. If condi t i on is specified, trace is on only if the condition evaluates to true. The do keyword defines
a list of commands to execute at each trace point.

Use the command pgi env speed secs to set the time in seconds between trace points. Use the cl ear
command to remove tracing for a line or routine.

track

track expression [at line | in func] [if (condition)][do {commands}]

106

Chapter 13. PGDBG Command Reference

Define a track event. This command is equivalent to watch except that execution resumes after the new value of
the expression is printed.

tracki
tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that execution resumes after
the new value of the expression is printed.

unbreak
unb[reak] line | routine|l all

Remove a breakpoint from the statement line, the routine r out i ne, or remove all breakpoints.

unbreaki
unbreaki addr | routine | all

Remove a breakpoint from the address addr , the routine r out i ne, or remove all breakpoints.

watch

wa[tch] expression

wa[tch] expression [if (condition)][do {comands}]

wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {comrands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the
expression changes, the program stops and the new value is printed. If a particular line is specified, the
expression is only evaluated at that line. If a routine r out i ne is specified, the expression is evaluated at each
line in the routine. If no location is specified, the expression is evaluated at each line in the program. If a
condition is specified, the expression is evaluated only when the condition is true. If commands are specified,
they are executed whenever the expression is evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a routine or
address is specified to ensure that the variable is only evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in options speeds up execution by reducing the amount of single-stepping and expression
evaluation that must be performed to watch the expression. For example:

watch i at 40
barely slows program execution at all, while
wat ch i

slows execution considerably.

107

Program Locations

watchi

when

when

wat chi expr essi on

wat chi expression [if (condition)][do {commands}]

wat chi expression at addr [if (condition)][do {conmands}]
wat chi expression in routine [if (condition)][do {comuands}]

Define an assembly-level watch event. This is just like the watch command except that the at option interprets
integers as addresses rather than line numbers and the expr essi on is evaluated at every instruction rather
than at every line.

This command is useful if line number information is limited (i.e. code not compiled ‘-g’ or assembly code). It
causes programs to execute more slowly than watch.

when do {commands} [if (condition)]
when at |ine do {commands} [if (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program or in the specified routine.
If the optional condition is specified, conmands are executed only when the expression evaluates to true.

i

wheni do {conmmands} [if (condition)]

wheni at addr do {conmands} [if (condition)]

wheni in routine do {comuands} [if (condition)]

Execute commands at each address in the program. If an addr is specified, the commands are executed each
time the address is reached. If a routine is specified, the commands are executed at each line in the routine. If
the optional condi t i on is specified, commands are executed whenever the expression is evaluated true.

Events can be parallelized across multiple threads of execution. See “Parallel Events,” on page 80, for details.

Program Locations

This section describes PGDBG program location commands.

arrive

cd

disas

108

arri[ve]

Print location information for the current location.

cd [dir]
Change to the $HOME directory or to the specified directory dir.

m

dis[asn] [count | lo:hi | routine | addr, count]

edit

file

lines

list

pwd

Chapter 13. PGDBG Command Reference

Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If an integer count is
given, disassemble count instructions starting at the current address. If an address range (lo:hi) is given,
disassemble the memory in the range. If a routine name is given, disassemble the entire routine. If the routine
was compiled for debugging (- g), and source code is available, the source code is interleaved with the
disassembly. If an address and a count are given, disassemble count instructions starting at address addr.

edit

edit fil enanme
edit routine
Edit a file.

If no argument is supplied, edit the current file starting at the current location. With a filename argument, edit
the specified file filename. With the func argument, edit the file containing routine r out i ne.

This command uses the editor specified by the environment variable $EDITOR.

In the PGDBG GUI, command-line editors like v7 are launched in the Program I/0 Window. On Windows
platforms, arguments to the editor may need to be quoted to account for spaces in pathnames.

file [fil enane]

Change the source file to the file filename and change the scope accordingly. With no argument, print the
current file.

lines routine

Print the lines table for the specified routine.

lis[t] [count | line,num| lo:hi | routine[,num]
Lists source code.

With no argument, list 10 lines centered at the current source line. If a count is given, list count lines centered
at the current source line. If a line and count are given, list number lines starting at line number line. In dbx
mode, this option lists lines from start to number. If a line range is given, list the indicated source lines in the
current source file (this option is not valid in the dbx environment). If a routine name is given, list the source
code for the indicated routine. If a number is specified with routine, list the first num lines of the source code
for the indicated routine.

pwd

109

Printing Variables and Expressions

Print the current working directory.

stacktrace

stack[trace] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if
that information is available). This command also prints the names and values of the arguments, if available. If
a count is specified, display 2 maximum of count stack frames.

stackdump
st ackd[unp] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for each active
routine. This command is an assembly-level version of the stacktrace command. If a count is specified, display
a maximum of count stack frames.

where
w here] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if
that information is available). This command also prints the names and values of the arguments, if available. If
a count is specified, display 2 maximum of count stack frames.

/ (search forward)
[[string] [/]

Search forward for a string (st ri ng) of characters in the current source file. With just / , search for the next
occurrence of string in the current source file.

? (search backward)
?[string] [?]

Search backward for a string (st ri ng) of characters in the current source file. With just ?, search for the
previous occurrence of string in the current source file.

Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables. The primary print commands
are print and printf, described at the beginning of this section. The remainder of the commands are alternate
commands that provide similar functionality to the print and printf commands.

print
plrint] expl [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of
command input. Values are printed in a format appropriate to their type. For values of structure type, each

110

Chapter 13. PGDBG Command Reference

field name and value is printed. Character pointers are printed as a hex address followed by the character
string.

Character string constants print out literally using a comma-separated list. For example:
pgdbg> print "The value of i is ", i
Prints this:

"The value of i is", 37

The array sub-range operator : prints a range of an array. The following examples print elements 0 through 9
of the array a:

C/C++ example 1:
pgdbg> print a[0: 9]
a[0:4]: 0123 4
a[5:9]: 567 89
FORTRAN example 1:

pgdbg> print a(0:9)
a(0:4): 01234
a(5:9): 567 89

Note that the output is formatted and annotated with index information. PGDBG formats array output into
columns. For each row, the first column prints an index expression which summarizes the elements printed
in that row. Elements associated with each index expression are then printed in order. This is especially useful
when printing slices of large multidimensional arrays.

PGDBG also supports strided array expressions. Below are examples for G/C++ and FORTRAN.

C/C++ example 2:

pgdbg> print af0:9: 2]
a[0:8] 02 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 02 46 8

The print statement may be used to display members of derived types in FORTRAN or structures in C/C++.
Below are examples.

C/C++ example 3:

typedef struct tt {

int a[10];

}TT;

TT d = {0,1,2,3,4,5,6,7,8, 9};
TT * p = &d;

pgdbg> print d.a[0:9: 2]
d.a[0:8:2]: 02 46 8

pgdbg> print p->a[0:9: 2]

1M

Printing Variables and Expressions

printf

ascii

bin

dec

p->a[0:7:2]: 02 46
p->a[8]: 8

FORTRAN example 3:

type tt

integer, dinmension(0:9) :: a

end type

type (tt) :: d

data d% / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9/

pgdbg> print d%a(0: 9: 2)
d¥%a(0:8:2): 0 2 46 8

printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. Behaves like the C library function printf. For
example:

pgdbg> printf "f[%] =", i, f[i]
f[3]=3. 14

The pgienv command with the stringlen argument sets the maximum number of characters that print with a
print command. For example, the char declaration below:

char *c="a whol e bunch of chars over 1000 chars long....";

By default, the print ¢ command only prints the first 512 (or stringlen) bytes. Printing of C strings is usually
terminated by the terminating null character. This limit is a safeguard against unterminated C strings.

ascl[ii] exp [,...exp]

Evaluate and print as an ascii character. Control characters are prefixed with the '*' character; for example, 3
prints as ~c. Otherwise, values that cannot be printed as characters are printed as integer values prefixed by
\". For example, 250 prints as \250.

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in binary.

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display

112

display [exp [,...exp]]

Chapter 13. PGDBG Command Reference

Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With an argument
or several arguments, print expression exp at every breakpoint. For more information, refer to the undisplay

command.
hex
hex exp [, ...exp]
Evaluate and print expressions as hexadecimal integers.
oct
oct exp [,...exp]
Evaluate and print expressions as octal integers.
string
string] exp [,...exp]
Evaluate and print expressions as null-terminated character strings. This command prints a maximum of 70
characters.
undisplay
undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several arguments,
remove the expression exp from the list of display expressions.

Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

assign
as[sign] var = exp

Set variable var to the value of the expression exp. The variable var can be any valid identifier accessed
properly for the current scope. For example, given a C variable declared ‘int * i’, you can use the following
command to assign the value 9999 to it.

as *i = 9999
call

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered during execution
of the routine are ignored. Fortran functions and subroutines can be called, but the argument values are
passed according to C conventions. PGDBG may not always be able to access the return value of a Fortran
function if the return value is an array. In the example below, PGDBG calls the routine f oo with four
arguments:

113

Symbols and Expressions

pgdbg> cal | foo(1,2, 3, 4)

If a signal is caught during execution of the called routine, PGDBG stops the execution and asks if you want to
cancel the call command. For example, suppose a command is issued to call f oo as shown above, and for
some reason a signal is sent to the process while it is executing the call to f oo. In this case, PGDBG prints the
following prompt:

PGDBG Message: Thread [0] was signalled while executing a function
reachabl e fromthe nost recent PGDBG conmand line call to foo. Wuld you

like to cancel this command line call? Answering yes will revert the register
state of Thread [0] back to the state it had prior to the last call to foo
fromthe command line. Answering no will |eave Thread [0] stopped in the call

to foo fromthe command | i ne.
Pl ease enter 'y' or 'n' >y
Command line call to foo cancell ed

Answering yes to this question returns the register state of each thread back to the state they had before
invoking the call command. Answering no to this question leaves each thread at the point they were at when
the signal occurred.

Note

Answering no to this question and continuing execution of the called routine may produce
unpredictable results.

declaration
decl [arati on] nane

Print the declaration for the symbol based on its type according to symbol table. The symbol must be a
variable, argument, enumeration constant, routine, a structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

the decl command provides the following output:

pgdbg> decl |
int i

pgdbg> decl i ar
int iar[10]
pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
int a;

char b[4];
struct abc *c;

H

entry

entr[y] [routine]

114

lval

rval

set

Chapter 13. PGDBG Command Reference

Return the address of the first executable statement in the program or specified routine. This is the first
address after the routine's prologue code.

Iv[al] expr

Return the Ivalue of the expression expr. The lvalue of an expression is the value it would have if it appeared
on the left hand of an assignment statement. Roughly speaking, an Ivalue is a location to which a value can be
assigned. This may be an address, a stack offset, or a register.

rvial] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it appeared
on the right hand of an assignment statement. The type of the expression may be any scalar, pointer, structure,
or function type.

set var=expression

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly for the
current scope. For example, given a C variable declared ‘int * i, the command ‘set *i = 9999’ could be used
to assign the value 9999 to it.

sizeof

type

si z[eof] name

Return the size, in bytes, of the variable type name. If name refers to a routine, si zeof returns the size in
bytes of the subprogram.

type expr

Return the type of the expression. The expression may contain structure reference operators (. , and ->),
dereference (*), and array index ([|) expressions. For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}val;

the type command provides the following output:

pgdbg> type i

i nt

pgdbg> type iar
int [10]

pgdbg> type val
struct abc

115

Scope

pgdbg> type val . a
i nt

pgdbg> type val . abc- >b[2]
char

pgdbg> whati s
whati s nanme

With no arguments, print the declaration for the current routine.

With argument name, print the declaration for the symbol name.

Scope
The following commands deal with program scope. See “Scope”, for a discussion of scope meaning and
conventions.

decls
decls [routine | "sourcefile" | {global}]

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for the current search scope.

down
down [nunber]

Enter scope of routine down one level or number levels on the call stack.

enter
en[ter] [routine | "sourcefile" | {global}]

Set the search scope to be the indicated symbol, which may be a routine, source file or global. Using enter with
no argument is the same as using enter global.

files
files

Return the list of known source files used to create the executable file.

global
gl ob[al |

Return a symbol representing global scope. This command is useful in combination with the scope operator @
to specify symbols with global scope.

names

names [routine | "sourcefile" | {global}]

116

Chapter 13. PGDBG Command Reference

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search scope.

scope

scol pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program
execution stops. It may also be set using the enter command. The search scope is always searched first for
symbols.

up
up [nunber]
Enter scope of routine up one level or number levels on the call stack.
whereis
wher ei s nane
Print all declarations for name.
which
whi ch nane
Print full scope qualification of symbol name.
Register Access
System registers can be accessed by name. See “Register Symbols,” on page 51, for the complete set of
registers and how to refer to them in PGDBG. A few commands exist for convenient access to common
registers.
fp
fp
Return the current value of the frame pointer.
pc
pcC
Return the current program address.
regs

regs [format]

Print a formatted display of the names and values of the integer, float, and double registers. If the format
parameter is omitted, then PGDBG prints all of the registers. Otherwise, regs accepts the following optional
parameters:

117

Memory Access

Print floats as single precision values (default)
Print floats as double precision values

Add hexadecimal representation of float values

retaddr
ret[addr]

Return the current return address.
Sp

sp

Return the current value of the stack pointer.

Memory Access

The following commands display the contents of arbitrary memory locations. Note that for each of these
commands, the addr argument may be a variable or identifier.

cread
cr [ead] addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread
dr [ead] addr

Fetch and return a 64 bit double from the specified address.

dump

du[mp] address, count, "format-string"

This command dumps the contents of a region of memory. The output is formatted according to a printf-like
format descriptor. Starting at the indicated address, values are fetched from memory and displayed according

to the format descriptor. This process is repeated count times.
Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.

The meaning of the recognized format descriptors is as follows:

%, O, %, %O X, WK %W, %W

118

Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is machine dependent. The
size of the item read can be modified by either inserting 'h', or '1' before the format character to indicate half

Chapter 13. PGDBG Command Reference

word or long word. For example, if your machine’s default size is 32-bit, then %hd represents a 16-bit quantity.
Alternatively, a 1, 2, or 4 after the format character can be used to specify the number of bytes to read.

%

Fetch and print a character.
%, %, %, % %, %

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.
%

Fetch and print a null terminated string.

%<f or mat - char s>

Interpret the next object as a pointer to an item specified by the following format characters. The pointed-to
item is fetched and displayed. Examples:

Y%px

Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents of the pointed-to
address, which is printed using hexadecimal format.

%

Fetch an instruction and disassemble it.
o, 9V

Display address about to be dumped.
%Z<n>, 9%<n>, %<-n>, %<-n>

Display nothing but advance or decrement current address by n bytes.

%a<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.

fread
fr[ead] addr

Fetch and print a 32-bit float from the specified address.

iread
ir[ead] addr

Fetch and print a signed integer from the specified address.

Iread
Ir[ead] addr

Fetch and print an address from the specified address.

119

Conversions

mqgdump
ng[dunp]

Dump MPI message queue information for the current process. For more information on mqdum, refer to
“MPI Message Queues,” on page 88.

sread
sr [ead] addr

Fetch and print a short signed integer from the specified address.

Conversions

The commands in this section are useful for converting between different kinds of values. These commands
accept a variety of arguments, and return a value of a particular kind.

addr

ad[dr] [n | {line n} | routine | var | arg]

Create an address conversion under these conditions:

e If an integer is given return an address with the same value.
e If aline is given, return the address corresponding to the start of that line.
e If a routine is given, return the first address of the routine.

e If a variable or argument is given, return the address where that variable or argument is stored.

For example,

breaki {line {addr 0x22f0}}

function
func[tion] [[addr...] | [line...]]

Return a routine symbol. If no argument is specified, return the current routine. If an address is given, return
the routine containing addr. An integer argument is interpreted as an address. If a line is specified, return the
routine containing that line.

line
linfe] [n| routine | addr]

Create a source line conversion. If no argument is given, return the current source line. If an integer n is given,
return it as a line number. If a routine is given, return the first line of the routine. If an address addr is given,
return the line containing that address.

For example, the following command returns the line number of the specified address:

120

Chapter 13. PGDBG Command Reference

| i ne {addr 0x22f 0}

Miscellaneous

The following commands provide shortcuts, mechanisms for querying, customizing and managing the PGDBG
environment, and access to operating system features.

alias
al[ias] [name [string]]

Create or print aliases.

e If no arguments are given print all the currently defined aliases.
e If just a name is given, print the alias for that name.

e If both 2 name and string are given, make name an alias for string. Subsequently, whenever name is
encountered it is replaced by string.

Although string may be an arbitrary string, name must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x=",x,"y=",y,"z=",z;
cont

Now whenever xyz is typed, PGDBG responds as though the following command was typed:

print "x=",x,"y=",y,"z= ", z,
cont

directory
dir[ectory] [pathnane]
Add the directory pathname to the search path for source files.

If no argument is specified, the currently defined directories are printed. This command assists in finding
source code that may have been moved or is otherwise not found by the default PGDBG search mechanisms.

For example, the following statement adds the directory mor est uf f to the list of directories to be searched.
dir norestuff

Now, source files stored in mor est uf f are accessible to PGDBG.

If the first character in pathname is ~, then $HOME replaces that character.

help
hel p [command]

If no argument is specified, print a brief summary of all the commands. If a command name is specified, print
more detailed information about the use of that command.

121

Miscellaneous

history
history [num

List the most recently executed commands. With the num argument, resize the history list to hold num
commands.

History allows several characters for command substitution:

I' [modifier] Execute the previous command
! num [modifier] Execute command number num
I-num [modifier] Execute command -num from the most current command
Istring [modifier] Execute the most recent command starting with string
I?string? [modifier] Execute the most recent command containing string
A Quick history command substitution

Aold*new” <modifier> this is equivalent to !:s/old/new/

The history modifiers may be:

:s/old/new/
Substitute the value new for the value old.

P
Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number. The command
pgienv history on tells the debugger to display the history record number.

language
| anguage

Print the name of the language of the current file.

log

log fil enane

Keep a log of all commands entered by the user and store it in the named file. This command may be used in
conjunction with the script command to record and replay debug sessions.

noprint

nop[rint] exp

Evaluate the expression but do not print the result.
pgienv

pgi env [command]

122

Chapter 13. PGDBG Command Reference

Define the debugger environment. With no arguments, display the debugger settings.

Table 13.1. pgienv Commands

Use this command...

To do this...

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands
pgienv dbx off Set the debugger to use pgi style commands
pgienv history on Display the “history' record number with prompt
pgienv history off Do NOT display the “history' number with prompt
pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab

Digest executable’s native symbol table (typeless)

pgienv exe demand

Digest executable’s symbolic debug information incrementally on
command

pgienv exe force

Digest executable’s symbolic debug information when executable is
loaded

pgienv solibs none

Ignore symbolic debug information from shared libraries

pgienv solibs symtab

Digest native symbol table (typeless) from each shared library

pgienv solibs demand

Digest symbolic debug information from shared libraries
incrementally on demand

pgienv solibs force

Digest symbolic debug information from each shared library at load
time

pgienv mode serial

Single thread of execution (implicit use of p/t-sets)

pgienv mode thread

Debug multiple threads (condensed p/t-set syntax)

pgienv mode process

Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel

Debug multiple processes and multiple threads

pgienv omp [onloff]

Enable/Disable the PGDBG OpenMP event handler. This option

is disabled by default. The PGDBG OpenMP event handler, when
enabled, sets breakpoints at the beginning and end of each parallel
region. Breakpoints are also set at each thread synchronization
point. The handler coordinates threads across parallel constructs to
maintain source level debugging. This option, when enabled, may
significantly slow down program performance. Enabling this option
is recommended for localized debugging of a particular parallel
region only.

pgienv prompt <name>

Set the command-line prompt to <name>

pgienv promptlen <num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs>

Set the time in seconds <secs> between trace points

123

Miscellaneous

Use this command...

To do this...

pgienv stringlen <num>

Set the maximum # of chars printed for “char *'s

pgienv termwidth <num>

Set the character width of the display terminal.

pgienv logfile <name>

Close logfile (if any) and open new logfile <name>

pgienv threadstop sync

When one thread stops, the rest are halted in place

pgienv threadstop async

Threads stop independently (asynchronously)

pgienv procstop sync

When one process stops, the rest are halted in place

pgienv procstop async

Processes stop independently (asynchronously)

pgienv threadstopconfig auto

For each process, debugger sets thread stopping mode to 'sync' in
serial regions, and 'async' in parallel regions

pgienv threadstopconfig user

Thread stopping mode is user defined and remains unchanged by
the debugger.

pgienv procstopconfig auto

Not currently used.

pgienv procstopconfig user

Process stop mode is user defined and remains unchanged by the
debugger.

pgienv threadwait none Prompt available immediately; no wait for running threads
pgienv threadwait any Prompt available when at least a single thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; no wait for running processes
pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto

For each process, the debugger sets the thread wait mode to ‘all’ in
serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user

The thread wait mode is user-defined and remains unchanged by the
debugger.

pgienv mgslib default

Determine MPI message queue debug library by inspecting
executable.

pgienv mgslib <path>

Determine MPI message queue debug library to <path>.

Chapter 13. PGDBG Command Reference

Use this command... To do this...

pgienv verbose <bitmask> Choose which debug status messages to report. Accepts an integer
valued bit mask of the following values:

 0x1 - Standard messaging (default). Report status information on
current process/thread only.

 (x2 - Thread messaging. Report status information on all threads
of (current) processes.

* (x4 - Process messaging. Report status information on all
processes.

* (x8 - OpenMP messaging (default). Report OpenMP events.
 0x10 - Parallel messaging (default). Report parallel events.

 (x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information (e.g.
STABS, DWARF). Pass 0x0 to disable all messages.

e Pass 0x0 to disable all messages.

repeat
rep[eat] [first, |ast]
rep[eat] [first,:last:n]
rep[eat] [num]
rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num argument, re-execute the
command number num, or with -num, the last num commands. With the first and last arguments, re-execute
commands number first to last (optionally n times).

script
scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of the environment variable $HOME.

setenv
setenv nane | nane val ue

Print value of environment variable name. With a specified value, set name to value.

shell
shell [arg0O, argl,... argn]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell is sh). If no arguments
are specified, an interactive shell is invoked, and executes until 2 "AD" is entered.

125

Miscellaneous

sleep
sle[ep] [tine]

Pause for time seconds. If no time is specified, pause for one second.

source

sou[rce] filenane

Open the indicated file and execute the contents as though they were entered as commands. If you use ~
before the filename, it is expanded to the value of $HOME.

unalias

unal [ias] nane

Remove the alias definition for name, if one exists.
use

use [dir]

Print the current list of directories or add dir to the list of directories to search. If the first character in
pathname is ~, then the value of $HOME replaces that character.

126

Part | 1. PGPROF Profiler

In Part I you learned how to use the PGI debugger, PGDBG. Part II of the PGI Tools Guide is about the PGPROF
profiler. The information in this part describes PGPROF, a tool that analyzes data generated during execution of
specially compiled C, C++, F77, F95, and HPF programs. The PGPROF profiler displays information about which
routines and lines were executed, how often they were executed, and how much of the total execution time they
consumed.

e Chapter 14, “Getting Started with the PGPROF Profiler,” starting on page 127, contains information on how to
start using the profiler, including a description of the profiling process, as well as how to invoke and initialize the
profiler.

e Chapter 15, “Using PGPROF ,” starting on page 133, describes how to choose a profiling method, build your
program, and execute it to collect profile data.

e Chapter 16, “Compiler Options for Profiling,” starting on page 155, describes the compiler options used for
profiling, and howthey are interpreted.

e Chapter 17, “PGPROF Command Line Options for Profiling,” starting on page 161, describes PGPROF command-
line options used for profiling, and provides sample invocations and startup commands.

e Chapter 18, “PGPROF Environment Variables,” starting on page 165, contains information on environment
variables that you can set to control the way profiling is performed in PGPROF.

e Chapter 19, “PGPROF Data and Precision,” starting on page 167, contains descriptions of the profiling mechanism
that measures time, how statistics are collected, and the precision of the profiling results.

e Chapter 20, “PGPROF Reference,” starting on page 171, provides reference information about each of the features
of the PGPROF performance profiler.

e Chapter 21, “The PGPROF Command Line Interface,” starting on page 191, describes the PGPROF profiler
command line interface, providing both a summary table and then more details about the commands. The table
includes the command name, the arguments for the command, as well as a brief description of the command.

e Chapter 22, “pgcollect Reference,” starting on page 197, describes the PGPROF command line options and how to
use them to configure and control collection of application performance data.

Chapter 14. Getting Started with the
PGPROF Profiler

This chapter describes the PGPROF profiler. PGPROF provides a way to visualize and diagnose the performance
of the components of your program. Using tables and graphs, PGPROF associates execution time with the
source code and instructions of your program, allowing you to see where and how execution time is spent.
Through resource utilization data and compiler feedback information, PGPROF also provides features for
helping you to understand why certain parts of your program have high execution times.

You can also use the PGPROF profiler to profile parallel programs, including multiprocess MPI programs,
multi-threaded programs such as OpenMP programs, or a combination of both. PGPROF provides views of
the performance data for analysis of MPI communication, multiprocess and multi-thread load balancing, and
scalability.

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information about how your
program was optimized, or why a particular optimization was not made. PGPROF can extract this information
and associate it with source code and other performance data, allowing you to view all of this information
simultaneously. PGPROF also supports a feedbackonly mode, which allows you to browse Compiler Feedback
in the absence of a performance profile.

Each performance profile depends on the resources of the system where it is run. PGPROF provides a
summary of the processor(s) and operating system(s) used by the application during any given performance
experiment.

Basic Profiling

Performance profiling can be considered a two-stage process.

* In the first stage, you collect performance data when your application runs using typical input.

e In the second stage, you analyze the performance data using PGPROF.

There are a variety of ways to collect performance data from your application. For basic execution-time
profiling, we recommend that you use the pgcollect tool, which has several attributes that make it a good
choice:

127

Methods of Collecting Performance Data

You don't have to recompile or relink your application.

Data collection overhead is low.

It is simple to use.

It supports multi-threaded programs.

It supports shared objects, DLLs, and dynamic libraries.

Note

In release 2010, PGI's performance data collection tools are in transition. To verify if PGI supports
pgcollect on your platform, refer to the release notes for your PGI software or run the following
command:

pgcol | ect -help

If pgeollect is not supported in your PGI installation, check www.pgroup.com for updates.
To profile your application named 'mypr og', you execute the following commands:

$ pgcol | ect nyprog
$ pgprof -exe myprog

The information available to you when you analyze your application's performance can be significantly
enhanced if you compile and link your program using the —M nf o=ccf f option. This option saves
information about the compilation of your program, compiler feedback, for use by PGPROE For more
information on compiler feedback, refer to “Compiler Feedback,” on page 139.

For 2 more complete analysis, our command execution might look similar to this:

$ pgf90 -fast -M nfo=ccff -o myprog myprog. 90
$ pgcol | ect nyprog
$ pgprof -exe myprog

Methods of Collecting Performance Data

PGI provides a number of methods for collecting performance data in addition to the basic pgcollect method
described in the previous section. Some of these have advantages or capabilities not found in the basic
pgcollect method. We divide these methods into two categories: instrumentation-based profiling and sample-
based profiling.

Instrumentation-based Profiling

128

Instrumentation-based profiling is one way to measure time spent executing the functions or source lines
of your program. The compiler inserts timer calls at key points in your program and does the bookkeeping
necessary to track the execution time and execution counts for routines and source lines. This method is
available on all platforms on which PGI compilers are supported.

Instrumentation-based profiling:

¢ Provides exact call counts.

Chapter 14. Getting Started with the PGPROF Profiler

e Provides exact line/block execution counts.
* Reports time attributable to only the code in a routine.

* Reports time attributable to the code in a routine and all the routines it called.
This method requires that you recompile and relink your program using one of these compiler options:

e Use - Mpr of =f unc for routine-level profiling.

Routine-level profiling can be useful in identifying which portions of code to analyze with line-level
profiling.

* Use - Mpr of =I i nes for source line-level profiling.

The overhead of using line-level profiling can be high, so it is more suited for fine-grained analysis of small
pieces of code, rather than for analysis of large, long-running applications.

Sample-based Profiling

Sample-based profiling uses statistical methods to determine the execution time and resource utilization of
the routines, source lines, and assembly instructions of the program. Sample-based profiling is less intrusive
than instrumentation-based profiling, so profiling runs take much less time. Further, in some cases it is not
necessary to rebuild the program.

Note

The basic pgcollect method described earlier in “Basic Profiling” is a time-based sampling method.
Pgcollect also supports event-based profiling on linux86-64.

The following sections describe both time-based and event-based sampling. For information on the differences
in how instrumentation- and sample- based profiling measure time, refer to “Measuring Time,” on page 167.

Time-based Sampling

With time-based sampling the program's current instruction address (program counter) is read, and tracked,
at statistically significant intervals. Instruction addresses where a lot of time is spent during execution are read
numerous times. The profiler can map these addresses to source lines and/or functions in your program,
providing an easy way to navigate from the function where the most time is spent, to the line, to the assembly
instruction.

You can build your program using the -Mprof=time compiler option for time-based sampling of single-
threaded Linux programs. When using -Mprof=time, you are required only to re-link your program. However,
unless you compile with -Minfo=ccff, compiler feedback will not be available.

* As described previously in “Basic Profiling”, we recommend using pgcollect for time-based profiling.
Building with- M nf o=ccf f is not required, but will improve the profile information available by including
compiler feedback.

* You can build your program using the - Mpr of =t i me compiler option for time-based sampling of single-
threaded Linux programs. When using - Mpr of =t i me, you are required only to re-link your program.
However, compiler feedback is available only if you compile with - M nf o=ccf f .

129

Choose Profile Method

Event-based Sampling

As well as reading the program's instruction address, event-based sampling uses various methods to read and
track the values of selected hardware counters. These counters track processor events such as data cache
misses and floating point operations. You can use this information to help determine not just that time is being
spent in a particular block of code, but why so much time is spent there. If there is bottleneck related to a
particular resource, such as the L2 data cache, these counters can help you discover where the bottleneck is
occurring.

Event-based sampling requires that certain system software be co-installed with the PGI software on the Linux
system. Either the Linux kernel must have been built to support PAPI (the Performance API), or the kernel
must have a performance tool named OProfile installed and operational.

OProfile is a performance profiling utility for Linux systems. It runs in the background collecting information
at a low overhead and providing profiles of code based on processor hardware events. When installed,
pgcollect collects this type of performance data for analysis with PGPROE. For more information on OProfile,
see http://oprofile.sourceforge.net/.

PAPI, Performance Application Programming Interface, provides the tool designer and application engineer
with a consistent interface and methodology for use of the performance counter hardware found in most
major microprocessors. PAPI enables software engineers to collect low level performance metrics, such

as instruction counts, clock cycles, and cache misses, of computer systems running UNIX/Linux operating
systems.

e Use - Mpr of =hwct s for event-based sampling with PAPI

* Run your program using the pgcollect command for event-based sampling with OProfile.

Note

MPI performance data may be collected in concert with all of these methods except pgcollect
sampling.

Choose Profile Method

130

Use the following guidelines to decide which performance data collection method to use:

* A good starting point for any performance analysis is to use time-based sampling with pgcollect, as
described in “Basic Profiling,” on page 127.

e If you are profiling an MPI application on Linux, build your application using - Mpr of =t i me, <npi >,
where <mpi> is the supported MPI distribution that you are using, for example, mpich1.

e If your MPI application also uses OpenMP or multiple threads per process and you want to determine
where the majority of time is spent, build with - Mpr of =f unc, <npi >. Then build that portion of the
program with - Mpr of =l i nes, <npi > to isolate the performance problem.

e If you want exact execution counts, build with - Mpr of =f unc or - Mpr of =1 i nes.

e On Linux86-64 platforms on which either PAPI or OProfile is installed, once you have collected a time-
based profile using either instrumentation- or sampling-based profiling, consider further examining the
resource utilization of those portions of code where the most time is spent. Do this with event-based

Chapter 14. Getting Started with the PGPROF Profiler

sampling, using either the - Mpr of =hwct s compiler option with PAPI or the pgcollect command with
event-based sampling options , as described in Chapter 22, “pgcollect Reference”.

Collect Performance Data
To obtain the performance data required for PGPROE you must run your program.

e If you use any method other than the pgcollect command to collect data, run your program normally using
a representative input data set.

e If you use the pgcollect command to collect data, refer to “Basic Profiling,” on page 127 for information
of how to execute a profiling run of your program. For specific details on pgcollect, refer to Chapter 22,
“pgcollect Reference”

Profiling Output File

In all profiling methods, once the program's profiling run is complete, a file named pgpr of . out is written
to the program's working directory. This file contains the performance data used by the PGPROF profiler to
analyze the program's performance.

Using System Environment Variables

You can use system environment variables to change the way profiling is performed. For more information on
these variables, refer to Chapter 18, “PGPROF Environment Variables”.

Profiling MPI and Multi-threaded Programs

MPI profiling is available only on Linux and Windows HPC Server. To learn more about profiling MPI
programs, refer to “Profiling MPI Programs”.

To learn more about profiling multi-threaded programs, refer to “Profiling Multi-threaded Programs”.

Profiling with Hardware Event Counters

You can also profile using hardware event counters. For more specific information on this type of profiling,
refer to “Profiling Resource Utilization with Hardware Event Counters,” on page 146.

Profiler Invocation and Initialization

The PGPROF profiler is invoked as follows:
% pgprof . exe [options] [datafil e]

If invoked without any options or arguments, the PGPROF profiler attempts to open a data file named

pgpr of . out , and assumes that application source files are in the current directory. The program executable
name, specified when the program was run, is usually stored in the profile data file. If all program-related
activity occurs in a single directory, the PGPROF profiler needs no options.

Probably the most common method to invoke the profiler is this:

% pgpr of -exe <execname>

When you use this command to launch PGPROF:

131

Application Tuning

e Ifapgprof. out file exists in the current directory, PGPROF tries to open it and use <execname>.
Further, the GUI is populated according to profile data, if valid.

e Ifno pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
Further, when the user selects the menu Fi | e | New Profiling Session...,then the Text Field
for Execut abl e is set with <execname> in the dialog.

For information on all available profiler options and how they are interpreted, refer to Chapter 16, “Compiler
Options for Profiling”. For information on the command line options for the Profiler, refer to Chapter 17,
“PGPROF Command Line Options”. For sample launch commands; refer to “Profiler Invocation and Startup,”
on page 162.

Application Tuning
So how do you make your program faster? Tuning your program ranges from simple to complex.

e In the simple case, you may be able to easily tune the application and improve performance dramatically
simply by adding a compiler option when you build. The Compiler Feedback and System Information tabs in
the PGPROF user interface contain information that can help identify these situations.

* In aslightly more challenging scenario, you may need to restructure part of your code to allow the compiler
to optimize it more effectively. For instance, the Compiler Feedback for a given loop may provide a hint
to remove a call from the loop. If the call can be moved out of the loop or inlined, the loop might be
vectorized by the next compile.

* More difficult cases involve memory alignment and algorithm restructuring. These issues are beyond the
scope of this manual.

Troubleshooting

If you are having trouble during invocation or the initialization process, use the following sections for tips on
what might be causing your problem.

Selecting a Version of Java

PGPROF (both GUI and command line) depends on Java. PGPROF requires that the Java Virtual Machine be

a specific minimum version or above. For the MAC OS X, PGPROF uses the JAVA that comes with the system.
For all other systems, by default, PGPROF uses the version of Java installed with your PGI software. If you
chose not to install Java when installing your PGI software, PGPROF looks for Java on your PATH. These default
Java executables can be overridden by setting the PGI_JAVA environment variable to the full path of the Java
executable you wish to use.

For example, on a Linux system using the bash shell, use this command to specify the location of Java:
$ export PG _JAVA=/ hone/ myuser/ nyj aval/ bi n/j ava

Slow Network

If you are viewing a profile across a slow network connection, of a connection that does not support remote
display of Java GUI, consider using the PGPROF command-line interface, described in Chapter 21, “The
PGPROF Command Line Interface,” on page 191.

132

Chapter 15. Using PGPROF

In Chapter 14, “Getting Started with the PGPROF Profiler” you learned how to choose a profiling method,
build your program, and execute it to collect profile data. This chapter provides a more detailed description of
how to use the features of PGPROF, in particular:

e Profile navigation

¢ HotSpot navigation

e Sorting profile data

¢ Compiler Feedback

e Profiling parallel programs, including multi-threaded and MPI programs
e Scalability comparison

e Profiling resource utilization with hardware event counters

e Profiling accelerator programs

133

PGPROF Tabs and Icons Overview

Figure 15.1. PGPROF Overview

Menus

Sle Tatnngd- Brodegces Yeew o S0 Seargh 1-1L_E|'|
8 5 v Finat: HiblSpot SPLECLE _AMHALTED
Tnnlharﬂa a4 [[El & @ [Hosp = 1] ¥
hnl.n:‘:.l-clllI &= PU LR B T ED DATA, CACHE MESES OATA CAlHE FEHLLL T80, [DATA, CACHE KT ‘I.I:l
wa_ta_liperre_nnibon | EFEREE RODOUONE 7 0 0 M TOITRGONETE s
£ _mhhbinn EDMAMG0.000 - 1Y B MNi4amods MOF MM s MO OB 0700]
b mwit 1 A EFL0000 = X | Aram e A By, I Iy e M B WA=
T I 4Rl O W) T BT, Py = L | LAt X B T Y) =
T ovarsyan | S0 WO O s P 166 100 = U 16, MG, T = O Vo HE S = 1
P ol F AT 410,000 = i Moo, 0 = 1% Ml 50 s X Il O -
Statistics - hine 1,501, 840,000 = 1% ¥, 666,100 = 1% W50 . 18 | 200 .
TﬂhIE L S M R T 40T i - TE 20000 = 20X 4,01, 0 -
L deriil LATE 0000 - X 6o = R I B0 = R
Nl R = T PR TR 15,007, 100 = WX | 1 17, 00 -
Fu_undits esdps L0, 810,600 - i N ATE S - 1N 0,100 0 - 1R] 19, e 100 =
T rlirtd S AR M - .50 - OX #1155 - o 4, B30 =
el T, PESL000 = O o5, M) - 0 &%, Oy - 0 R0 -
FEn, I'nh' ne TR0, 000 - O PRl e 199500 = O 0%, N6 -
BT, Ted, 200 - 0% 1, 185 0 - 00 LT 0 - A0 - |
| @i , z
E— |] }
k. Sort By CPUCLE Ut T ED
| oispiay Thraant, || Fraeo e
frezes (P L LRTAMLTED DAT & CACHT, WSS [EAT A LAl EE_SEFILLE FROM) i DAT A CACHIL FEFLLE FRD:
0 e "'H oo, .
Focus <
panel
Focus
I]ﬂ"EI Sary iy U CLE I RALTES
tﬂh5 I'I:'ll'm|r!l|| i ﬂi I'JIIIFI'II Fﬁrl:ﬂluﬂL I i-:-lrm hilulrru!lqn | A.l.'u :'Iﬂu'l:ur :.

| Profiluet Jammp on T O8E 1 Al wmooies | 'Pymhile Lol 1Tain

-‘\"'\ Information bar

PGPROF Tabs and Icons Overview

Before we describe how to navigate within PGPROE, it is useful to have some common terminology for the tabs
and icons that you see within the application.

Closeable and Non-closeable Tabs

PGPROF displays both closeable and non-closeable tabs. For example, when you first invoke PGPROE you see
a window with a non-closeable tab. Then, to access profiling data specific to a given function, you double-click
on it and a closeable tab opens with source code and profiling statistics for that function. this closeable tab
navigation approach provides a way for you to easily view a variety of information quickly.

PGPROF Common Icons

Table 15.1 provides a summary of the common icons you see during profile navigation.

134

Chapter 15. Using PGPROF

Table 15.1. PGPROF Icon Summary

Click this icon... |to...

@ Display the corresponding assembly code for this line.

@ Hide the corresponding assembly code for this line.

3 Close the tab on which it is displayed.

@ Display the CCFF, common compiler feedback format, information for this line.

Profile Navigation

When you first invoke PGPROF, it displays top-level profiling information in a non-closeable tab, as illustrated
in Figure 15.2.

Figure 15.2. PGPROF Initial View

-

pgprof. =15

File Settings Processes Miew Sort Search Help

= [Find: IE] P P [HDtSput: Seconds IE] R Q¥
Function Seconds

@ e DT AGE = 42

@ cffe3 DL 0548 = 35%

@ fropde b] 13,0548 = 11%

@ wranic] 9.9589 = 9%
__mth_i_dint 1.3835% = 1%
__mth_i_dpowi 1.30137 = 1%
__Tmth_i_dexp 0.849315 = 1%
__Tmth_i_dpowd 0,013699 = OX
__register_printt_function 0.013698 = 0%

Sort By Seconds

B

Seconds
..——
Sort By Seconds

FParallelism I Histogram l @Cumpiler Feedback l System Information l Accelerator J

Profiled: ./ f_omp_fftpde on Mon Nov 02 13:55:27 CET 2009 |Pr|:|fi|e: ./pgprof.out

This tab shows the Statistics Table containing a routine list in the Function column and performance data
associated with each routine in the Time column. This list is sorted by the Time value, assuming there is

135

Profile Navigation

such a value in the profile data. Time values may include hardware counters associated with time, such as
CPU_CLK_UNHALTED.

To access profiling data specific to a given function, you double-click on it and a closeable tab opens with
source code and profiling statistics for that function.

By default, PGI compilers include enough symbol information in executables to allow PGPROF to display
performance data at the source line level as well as at the routine level. However, if you compiled with the
option —Mnhodwar f , or if you built your program using another compiler, you may only be able to access the
routine-level view.

* To zoom in to the line level for a particular routine, double-click the function name.

This action opens a tab that displays profiling data specific to the given function. The tab label is the
function name followed by an x. You use the x to close the tab when you no longer want to view that

information.

In this tab, PGPROF displays the source code for that routine, together with the performance data for each
line. For example, is you double-click on the function f f t , PGPROF displays a new tab labelled f f t x that
contains the source code for that function, as illustrated in Figure 15.3.

136

-

Figure 15.3. Source

paprof

File Settings Processes Miew Sort Search

(Fine: Fl @

Line

Code View

@ [HDtSth: Seconds

F & %9

Halp

fitpde.F

Seconds

®

ee @ e

506
507
508
S09
510
511
512
513
514
515
516
517
518
519
520
521
522
523

C
10

do 30 9t = 1,1iter
n=1
nxp = nxp2
nxpe = nxps2
do 20 m = 1,nxp2
if(inverse) then
wk = conjgiwinid
else
Wk = win)
end if
do 10 mxp = hxp, hE, nEp
Jl = m¥p - n¥p + m
j2 = 31 + nxp2
= x(jl) - ®(j2)
w(Jly = w(j1) + x(382
(320 = tHak
wotit=' it m=',m, !
continue

print ¥ p=

amxp, ' Jl=',71,"

0.424658 = 1%

0.287671 = 1%

0.808219 = 2%

= 20%
= 50%

1.15068 = 2%

Sort By Line

-

-

Seconds

S0rt By

Line

Parallelism I Histogram l @Cumpiler Feedhack l System Information l Acc

elerator J

Profiled: ./ f_omp_fftpde on Mon Nov 02 13:55:27 CET 2009 |Prufi|e: ./pgprof.out

Chapter 15. Using PGPROF

Because your program is probably optimized, you may notice that performance data is only shown for a
subset of the source lines. For example, a multi-line loop may only have line-level data for the first line of
the loop.

In the optimization process, the compiler may significantly reorder the assembly instructions used to
implement the loop, making it impossible to associate any given instruction with a line in the loop. However,
it is possible to associate all of a loop's instructions with that loop, so all of the performance data for the
loop is associated with a single "line". For example, in Figure 15.3, “Source Code View,” on page 1306, line
516 contains the information for the entire do loop.

To zoom in to the assembly level for a particular source line, click the plus symbol (+) in the row of the
Statistics Table containing that source line.

PGPROF displays the routine with assembly code interspersed with the source lines with which that
assembly code is associated, as Figure 15.4 illustrates for the else portion of the code in the function f f t .

Figure 15.4. Assembly Level View

= pgprof =101}
File Settings Processes Miew Sort Search Halp
& d ¢ [Find: |?'] db gp [HutSpnt: Seconds |'v] o
paprotout [uffigiil cs = |
Line |fftpde.F Seconds
507 n=1 Z
S0E nxp = nxpe
505 nNxpe = nxps2
® s10 do 20 m = 1,nxp2 0.287671 = 1%
511 if{ inverse) then
512 wk, = conjo(wind] |
® s13 else
513 Dx403IF0O0: 48 63 45 O movslg -84 CErbpd, Hrax 0.246575 = 1% |-
513 0x403F04: 48 8B 55 ES mowy -24(%rbpd,Hrdx 0.068493 = 0%
513 Dx403F0E: F3 F 10 64 2 FC movss -4 ke, rax, 8, %emng | 0.493151 = 1% |
513 0xd403F0E: F3 F 10 5C 2 F8 movss =S Hrdx,¥rax, 80, Hxnn3
514 k= win
©® 515 end if] 6 = 20%
® =16 do 10 mEp = nEp.nE, REp B, 7 = 50%
517 J1 = mxp - nxp + 0
518 j2 = i1 + nxpd
519 T = ®{J1y - x(j2) ||
320 W31y = ®(J1) + x(32) R
Sort By Line
T
Secands
Sort By Line
FParallelism I Histogram l l@Cl:lmpiler Feedback l System Information l Accelerator J
Profiled: ./ f_omp_fftpde on Mon Nowv 02 13:33:27 CET 2009 |Prufi|e: ./pgprof.out

PGPROF displays performance data associated with a specific assembly instruction in the row of the
Statistics Table containing that instruction.

137

HotSpot Navigation

e To return to a previous view, use the Back button ("<") in the Toolbar, just below the Menus.

Figure 15.5. View The Back and Forward buttons work much like those
Navigation Buttons found in web browsers, moving to previous and next
views, respectively.
Back Forward

€79~
v

Down Arrows

e To select and jump to a specific view, use the down arrow on each of the Forward and Back buttons.

Note

You can have multiple function views open at a time, as illustrated in Figure 15.4, where tabs for both
functions f ft and cf f t 3 are displayed.

HotSpot Navigation

In addition to the HotSpot navigation controls on the toolbar, illustrated in Figure 15.6, you can find the
performance-critical parts of your program using the Histogram tab which shows clickable bar graphs of the
performance data plotted against the address range of the program.

Figure 15.6. HotSpot Navigation Controls

Cropdown List HotSpot one higher
of Performance than where you are
Measurements

Hottest MNeaxt Lower
HotSpat HotSpot

(H otSpot: Tirme

PRy

* The HotSpot navigation controls in the Toolbar are usually the quickest way to locate a hot spot. By hot
spot we mean a program location that has a high value for some performance measurement such as Time,
Count, and so on.

To locate the hotspot, select the desired performance measurement in the HotSpot drop-down menu in the
Toolbar, then click on the "Hottest" button ("<<+") to select the highest value for that measurement in the
current view.

e To find a HotSpot using the Histogram, click on the Histogram tab. In the histogram for the measurement
you are interested in, click on the tallest bar. The corresponding row in the Statistics Table will be selected.

138

Chapter 15. Using PGPROF

Sorting Profile Data

PGPROF maintains a consistent sort order for the Statistics Table and the Histogram tab. Changing the sort
order for any one of these changes it for all of them. The sort order can be changed by using the Sort Menu, as
described in “Sort Menu,” on page 177 or by clicking the column header in the Statistics Table or the row
header in the Histogram tab.

The current sort order, such as sorting by the CPU Clock time, is displayed at the bottom of each table. For
example, the message Sort By CPU_CLK_UNHALTEDis present at the bottom of both tables in Figure 15.7.

Figure 15.7. Sort View

- pgprofi<2> ==
Fila Settings Processes Miew Sort Search Help
B & ¢ - [Find: F] ® @ [Hotspot: CPU_CLK_UNHALTED] '
Function Scale CPU_CLK.UNHALTED DATACACHE MISSES DAT;\CACHE REFILL
mn_Tv_update_nonhon 0.4 [N s §0 = B4% D32,] = =~
£_nonkon 0. 44 [|18 ?2? 100,000 = 9% 425 905,000 = 7% 432,502,000 4|
a_next N 0.1 16,400,800,000 = 7% 112,033,000 = 2% 105, 216,000 o
tpac I 0.4 14,721,500,000 = 7% 118,324,000 = 2% 123,300,000 -
f_torsion | 0.4 8,410,480,000 = 4% 27,005,400 = 0% 26,939,700 4=
f_angle I .43 §,000,380,000 = 3% 50,043,400 = 1% 50, 306,400 -
£_hond B 0.4 4,433,320,000 = 2% 49,517,300 = 1% 45,539, 200 -
f_ho B | 0.5 2,702,740,000 = 1% 24,000,100 = 0% 24,002,400 =
fy_update_nonban B | 0.5 2,420,840,000 = 1% 33,756,800 = 1% 33,669,100 =
f_hwhrid R 0.4 1,652,550,000 = 1% 10,784,600 = 0% 10,083,200 <
a_n_serial 0.25/m 1,571,010,000 = 1% 526,080 = 0% 723,360 -
_init 0.4/ 1,028,710,000 = 0% 6,904,800 = 0% 95,987, 700 -
eval I -0.12 286,275,000 = 0% 569,920 = 0% 328,800 -
read_eval_do | 0.28 241,997,000 = 0% 284,960 = 0% 241,120 -
v_nonkon] -0.15 114,861,000 = 0% 1,139,840 = 0% 1,183,680 4|
aton N 67,075,200 = 0% 657,600 = 0% 569,920 47|
q] [[»]
Sart By CPU_CLK_UNHALTED
S
Display Cucess][Thread]E&ss Threads]
Thread | CPU_CLK_UNHALTED |DATA_CACHE_MISSES |DAT A_CACHE_REFILLS_FROM..|DAT A_CACHE_REFILLS_FRO... |
0 (mm_fv_ R, 000,000 = 33% MEE, 170,000 = 32% W, 190,000 = 32% D, 563,000 = 29%
2 (mm_fv_ FEERYA70,000,000 = 26% |WENEEYS,600,000 = 26% WG, 100,000 = 26% R, 615,000 = 26%
1 (nm_fv_u. .. [EOEEL 174,500,000 = 22% |WWEL13,B90,000 = 22% WS4, 780,000 = 22% 1,572,000 = 23%
3 (mm_fv_ WEE, 606,200,000 = 20% |MEEMI3G, 250,000 = 21% WEW17,020,000 = 21% W7, 188,000 = 23%
Sart By CPU_CLK_UNHALTED
I Parallelism l Histogram l @Cumpiler Feedhack l System Information l Accelerator J
|Pr|:|fi|ed: Jammp on Tue Oct 07 00:17:29 CEST 2008 for 100.469309 seconds |Pr|:|fi|e: ./pgprof-4T.out

Compiler Feedback

The PGI compilers generate a special kind of information that is saved inside the executable file so that it is
available to tools, such as PGPROF, to help with program analysis. A compiler discovers a lot about a program
during the build process. Most compilers use such information for compilation, then discard it. However,
when the —Mpr of or —M nf o=ccf f options are used, the PGI compilers save this information in the object
and executable files using the Common Compiler Feedback Format, or CCFE

Feedback messages provide information about what the compiler did in optimizing the code, as well as
describe obstacles to optimization. Most feedback messages have associated explanations or hints that explain

139

Profiling Parallel Programs

what the message means in more detail. Further, these messages sometimes provide suggestions for improving
the performance of the program.

{ @ The informational icon indicates that CCFF information is available.
-

In PGPROF you can access Compiler Feedback using the Compiler Feedback tab in the Focus Panel.
Messages are categorized according to the type of information that they contain.

For more information on the Compiler Feedback tab, refer to “PGPROF Focus Panel,” on page
185. For more information on the Common Compiler Feedback Format (CCFF), refer to the
website:www. pgr oup. coml ccf f/

Special Feedback Messages

There are some Compiler Feedback messages that deserve some explanation, specifically intensity messages
and messages for inlined routines.

Intensity Messages

Computational intensity has been defined as the number of arithmetic operations performed per memory
transfer."The key idea is this: a high compute intensity value means that the time spent on data transfer is low
compared to the time spent on arithmetic; a low compute intensity value suggests that memory traffic involving
data transfer may dominate the overall time used by the computer.

The PGI Compiler emphasizes floating point operations, if they are present, to calculate the compute intensity
ratio within a particular loop. If floating point operations are not present, the PGI compiler uses integer
operations.

In some cases it is necessary to build programs using profile-guided optimization by building with —Mpf i or—
Mpf o, as described in the section Profile-Feedback Optimization using -Mpfi/Mpfo in the Optimizing and
Parallelizing chapter of the PGI User’s Guide. Profile-guided optimization can often determine loop counts and
other information needed to calculate the Compute Intensity for a given statement or loop.

Messages for Inlined Routines

Inlined functions are identified by CCFF messages. These Compiler Feedback messages for routines that have
been inlined are associated with the source line where the routine is called. Further, these messages are
prefixed with the routine and line number, and are indented to show the level of inlining. Currently there is not
a way to view the source code of that inlined instance of the routine.

Profiling Parallel Programs

You can use PGPROF to analyze the performance of parallel programs, including multi-threaded and OpenMP
programs, multi-process MPI programs, and programs that are a combination of the two. PGPROF also
provides a Scalability Analysis feature that allows you to compare two profiling runs, and thus determine how
well different parts of your program scale as the number of threads or processes changes.

'R.W. Hockney and C. R. Jesshope, Parallel Computers 2: Architecture, Programming and Algorithms 1988

140

Chapter 15. Using PGPROF

Profiling Multi-threaded Programs

Multi-threaded programs that you can profile using PGPROF include OpenMP programs that are built with —
np, auto-parallelized programs that are built with —~Mconcur , and programs that use native thread libraries
such as pthreads.

Collecting Data from Multi-Threaded Programs

Some methods of performance data collection work better with multi-threaded programs than others. As
always, the recommended approach is to use pgcollect, initially with time-based sampling, optionally
followed by event-based sampling. Building with —M nf o=ccf f is always a good idea when using pgcollect.
Alternatively, building with one of the compiler options —Mpr of =I i nes or —Mpr of =hwct s creates a
program that collects accurate multi-threaded performance profiles.

Alternatively, on Linux systems that support OProfile, described in“Event-based Sampling,” on page 130,
you can build the program using —Mpr of =dwar f —M nf o=ccf f , and collect data using the pgcollect
command.

The —Mpr of =f unc option works with multi-threaded programs. However, routines that contain one or more
parallel regions appear to be run on a single thread; because when the parallelism is not active, the data
collection is at the entry and exit of the routine.

The —Mpr of =t i me and —pg options generate programs that only collect data on a single thread.

To collect data, run your program normally. Upon successful termination, a pgpr of . out file is created.

Analyzing the Performance of Multi-Threaded Programs

The display of profile data for a multi-threaded program differs from that of a single-threaded program in a
couple of ways, as illustrated in Figure 15.7, “Sort View ,” on page 139.

e In the Statistics Table, the data shown is the maximum value for any single thread in the process.

e The Parallelism tab shows the thread-specific performance data for the row selected in the Statistics Table,
whether the Statistics Table is in the routine-level, line-level, or assembly-level view.

You can use thread-specific data to determine how well-balanced the application is. Ideally, each thread
would spend exactly the same amount of time on a given part of the program. If there are large disparities
in the time spent by the various threads, this points to a load imbalance, where some threads are left idle
while other threads are working. In this case, the resources of the system are not being used with 100%

efficiency.
Display WMES ((Thread | Pﬁeﬁsﬁremﬂs ||
Thread |CPL_CLK_ UNHALTED | DATA_CACHE_MISSES | DAT A CACHE REFILLS FROM..| DAT A CACHE REFILLS FRO.. |
0 Com_fyv_u, .. [WIEEREZD,000,000 = 33% |[EEE, 170,000 = 33% [ENEE, 190,000 = 32% |G, 563,000 = 29%
2 (mm_fv_u ENE379,000,000 = 264 | 05,600,000 = 26% (|DEEEEE, 100,000 = 26% R, 515,000 = 26%
1 {mm_fv_u... |5 174, 500,000 = 224 | SREL13,800, 000 = 224 || e TR0, 000 = 224 e 1,572,000 = 22%
I e ,200,000 = 20% |[PNEED39,250,000 = 21% |(NEDL7,020,000 = 21% [OOSR, 188,000 = 23%

Sort By CPU_CLE_UNHALTED l

- ~
Parallelism | Histogram | &0 Coampiler Fesdback | System Information | Accelerator |

141

Profiling Parallel Programs

For example, in the program illustrated here, we can see that thread 0 spent 33% of the time in the
routine, while thread 3 spent only 20% of the time there. Performance might improve if the work could be
distributed more evenly.

Profiling MPI Programs

You can profile MPI programs using PGI compilers and tools by building with the - Mpr of option, which
allows you to specify the implementation of MPI you want to use - MPICH-1 (using the included version of
MPICH-1), HP-MPI for Linux, MPICH-2, or MVAPICH. For the latest list of supported MPI implementations and
MPI profiling options, refer to the PGI Release Notes.

For example, to build for time-based profiling with MPICH-1 profiling on Linux, use the following command:
$ pgf90 -fast -Morof=tinme, mpi chl nmyprog.f90

PGPROF MPI profiling collects counts of the number of messages and bytes sent and received. You can then
use this information to analyze a program's message passing behavior.

OpenMPI Profiling

PGI provides performance profiling of MPI message passing support for OpenMPI applications on Linux and
Mac OS X. On Apple systems, no special configuration is necessary. On Linux systems you must configure the
OpenMPI installation to work with the PGI profiling system.

Once your system has been configured for OpenMPI profiling, you can follow these steps to build your
program, run it, and invoke the profile.

Note

For information on how to build and install PGI-built OpenMPI and how to configure OpenMPI for
PGI profiling, refer to the PGI Workstation Installation Guide.

On Linux

142

1. Build your program using the OpenMPI compiler wrappers (mpicc, mpic++, mpif77, and/or mpif90)
with one of the PGI profiling options.

Note

When you build with - Mpr of =t i ne| I i nes| f unc| hwct s, MPI profiling is included
automatically.

2. Run your program as you normally would. One or more files named pgpr of . out is created in your

working directory.

3. Invoke the profiler to see the results of your profiling run.

pgpr of -exe your_program

Chapter 15. Using PGPROF

On Apple OS X

Note

On Apple OS X, there is no need to install or configure OpenMPI. PGI Workstation for Apple includes a
pre-configured version of OpenMPI.

1. Build your program using the OpenMPI compiler wrappers (mpicc, mpic++, mpif77, and/or mpif90)
with one of the PGI profiling options.

Note

When you build with - Mpr of =I i nes| f unc, MPI profiling is included automatically.

2. Run your program as you normally would. One or more files named pgpr of . out is created in your
working directory.

3. Invoke the profiler to see the results of your profiling run.

pgpr of -exe your_program

Collecting Data from MPI Programs

PGI provides performance profiling of MPI message passing support for OpenMPI applications on Linux and
Mac OS X. On Apple systems, no special configuration is necessary. On Linux systems you must configure the
OpenMPI installation to work with the PGI profiling system.

To collect MPI performance data, you must build your program using one of the MPI suboptions to the option
- Mpr of . These suboptions include:

e - Mprof =npi chl (Linux only)
e - Mpr of =npi ch2 (Linux only)

e - Mr of =nvapi chl (Linux only)

- Mpr of =hpnpi (Linux only)
e - Mrof =nsnpi (Windows only)

Important

The MPI profiling options cannot be used alone. They may only be used in concert with another
suboption of - Mpr of , such as lines, func, time, and hwcts.

For example, to do time-based sampling of an MPICH-2 Fortran program on Linux, you might build with the
following command:

pgf 95 -fast -Mrof=tine, npich2 -o nyprog nyprog.f90

To collect MPI profile data, run your program normally. On successful program termination, one profile data
file is created for each MPI process. The master profile data file is named pgpr of . out . The other files have
names similar to pgpr of . out , but they are numbered.

143

Scalability Comparison

Analyzing the Performance of MPI Programs

Figure 15.8 illustrates an MPI profile.

Figure 15.8. Sample MPI Profile

File Settings Processes “iew Sort Search Healp

= & 4 [Find: |E] db ap [HutSput: Massages ’?J ¥y

Function |Prc|cess |Messages Messages recwid B\,Aes B"yTES sEnt Bntes recvd
@& nain e] - 16 =l00EE 0 16 =100EN

|4 I []
Sart By Function

B T T T T
Display | Thread || Processes. Threads |

Processes |Messages |M sages recwd |thes |B\ﬂes sent |B\ﬂes recvd

0 (maind CEN= 40% ____ E¥EE] EE= 40 e = 40 e = 40

1 (maind o 3= 20% I : - 22 1A = 20% 8 = 20% 8 = 204

2 (maind 3 = 20% Il : - 22 18 = 20% B = 204 B = 20%

3 (maind 3= 20% - - 22 1A = 20% 8 = 20% 8 = 204

Sort By

I Hara”elllsm ! Histogram l I@'Eumpiler Feedback 1 System Information 1 Accelerator J
| Profiled: .fcpi on Tue Nowv 03 10:57:12 PST 2009 with 4 processes | Profile: ./pgprof.out

For MPI profiles, the Statistics Table displays an extra column, titled Process. The values in this column
denote whether the other values shown in the Statistics Table are the max, min, or avg values. You can use the
Processes menu, described in “Processes Menu,” on page 175, to customize the display of max, min, or avg
values.

The Parallelism tab for MPI programs is used in the same way that it is used for multi-threaded programs, as
described in “Analyzing the Performance of Multi-Threaded Programs,” on page 141.

You can use the send and receive counts for messages, and the byte counts to identify potential communication
bottlenecks, and use the process-specific data to find load imbalances.

Scalability Comparison

144

PGPROF provides a Scalability Comparison feature that measures changes in the program's performance
between multiple executions of an application. Generally this information is used to measure the performance
of the program when it is run with a varying number of processes or threads. To use scalability comparison,
first generate two or more profiles for a given application. For best results, compare profiles from the same
application using the same input data.

Scalability is computed using the maximum time spent in each thread/process. Depending on how you profiled
your program, this measurement may be displayed in the Statistics Table in a column with one of these heading
titles:

Chapter 15. Using PGPROF

Time if you used - Mpr of =f unc, - Mpr of =l i nes, or - Mpr of =t i me
CPU_CLK_UNHALTED if you used pgcollect

TOT_CYC if you used - Mpr of =hwct s

Important

Profiling multi-process MPI programs with the pgcollect command is not supported.

The number of processes and/or threads used in each execution can be different. After generating two or more
profiles, load one of them into PGPROE Select the Scalability Comparison item under the File menu, described
in“File Menu,” on page 172, or click the Scalability comparison button in the Toolbar. Choose a second

profile for comparison. A new instance of PGPROF appears, with a column named Scal e in the Statistics
Table.

Figure 15.9 shows the profile of a run that used four threads with Scalability Comparison to the same program
run with a single thread.

Figure 15.9. Profile of an Application Run with 4 Threads

pgprof <2=

File Settings Processes Miew Sort Search Help
B & ¢ - [Fina F] & @ [Hotspot: CPU_CLK_UNHALTED 5 &
Function Scale CPL_CLK_UNHALTED DATA_CACHE_MISSES DAT A_CACHE_REFILLS
mn_Tv_update_nonban 0.4 - 141 (80 = 54% 5] i
f_nonbon 0. 44 [W 18,727,100,000 = 8% W 425,905,000 = 7% W 432,502,000 =
a_next B o.ic 1 16,067,400,000 = 7% 95,067,000 = 2% 101,731,000 =
Tpac [1 14,721,500,000 = 7% 115,324,000 = 2% 123,300,000 =
f_torsion B .41 8,410,480,000 = 4% 27,005,400 = 0% 26,939,700 = |=
f_angle B -0.42 6,000,380,000 = 3% 50,043,400 = 1% 501, 306,400 =
f_hond B 0.44 4,433,320,000 = 2% 49,517,300 = 1% 49,539, 200 =
f_hox B | o5 2,702,740,000 = 1% 24,090,100 = 0% 24,002,400 = [—
fy_update_nonbon B | s 2,420,840,000 = 1% 33,756,800 = 1% 33,669,100 =
_init 0.4 [2,057,420,000 = 1% 13,809,600 = 0% 191,975,400 =
f_hvhrid N 0.4 1,652,550,000 = 1% 10,784,600 = 0% 10,083,200 =
a_m_serial 0.25 1,570,790,000 = 1% 526,080 = 0% 723,360 =
_a_m_serialEND .43 666,806,000 = 0% 33,932,200 = 1% 6,970,560 =
eval 286,275,000 = 0% 569,920 = 0% 326,800 =
read_eval_do B 0.28 241,907,000 = 0% 284,960 = 0% 241,120 = ||
IV lnonbon Il 0,15 114,861,000 = 0% 1,139,840 =| o 1,183,680 = |~
q [Y
Sort By CPU_CLK_UNHALTED
B R

isplay Eucess -Sss.Threads

Thread |CPU_CLK_UNHALTED |DAT A_CACHE_MISSES |DATA_CACHE_REFILLS_FRO... |DATA CACHE_REFILLS_FRO... |

0 (mm_fv_upd. .. AR, 000,000 = 33K L 170,000 = 32% DR, 190,000 = 32% DN, 563, 000 = 20K
2 (mm_fv_upd. .. [DEEENETD, 000,000 = 26% , 600,000 = 26% DA, 100,000 = 28% DEER, B15, 000 = 26%
1 (mm_fv_upd. .. 174,500,000 = 22% |[DOEWEL13,E800,000 = 22% DEDE4, TEO,000 = 22% DL, 572,000 = 23%
3 (mm_fv_upd. .. [00EE,696,200,000 = 203 |DOE039, 230,000 = 21% DEILT, 020,000 = 21% DERT, 188, 000 = 23%

Gort By CPU_CLE_UNHALTED

l Fara”e”sm l Histogram l @ Compiler Feedback l System Information J

|Pr|:|fi|ed: Jammp on Tue Oct 07 00:17:29 CEST 2008 for 101.091278 seconds |Pr|:|fi|e: ./pgprof-4T.out

Each profile entry that has timing information has a Scale value. The scale value measures how well these parts
of the program scaled, or improved their performance as a result of parallelism.

145

Profiling Resource Utilization with Hardware Event Counters

e A scale value of zero indicates no change in the execution time between the two runs.

e A scale value of one means that part of the program achieved perfect scalability. For example, if a routine
had a Time value of 100 seconds with one thread, and 25 seconds with four threads, it would have a Scale
value of one.

* A negative value is the relative slowdown without taking the number of threads or processes into account. If
a routine takes 20% more time to execute using four threads than it took using one thread, the Scale value
is -0.2.

e A question mark ('?') in the Scale column indicates that PGPROF is unable to perform the scalability
comparison for this profile entry. For example, scalability comparison may not be possible if the two
profiles do not share the same executable or input data.

Profiling Resource Utilization with Hardware Event Counters

Important

Profiling with hardware counters is available only on Linux.

Modern x86 and x64 processors provide low-level hardware counters that can be used to track the resource
utilization of a program. Tracking this information can be useful in tuning program performance because it
allows you to go beyond just knowing where the program is spending the most time and examine why it is
spending time there.

Linux systems do not provide hardware counter support by default. These systems must either have the
OProfile package installed or have a kernel patch that enables PAPI, as described in “Profiling with Hardware
Event Counters using PAPL,” on page 147

Profiling with Hardware Event Counters (Linux Only)

PGPROF supports two methods of hardware counter data collection:

* Execution of the program under the control of the pgcollect command.

Collection of profile data using pgcollect may be done on any linux86 or linux86_64 system where
Oprofile is installed. OProfile is included as an install-time option with most Linux distributions; it may also
be downloaded from http.//oprofile.sourceforge.net/.

e Building the program with the - Mpr of =hwct s compiler option and executing it independently.

Profiling by compiling with the - Mpr of =hwct s option is only available on linux86_064 systems where PAPI
has been installed. PAPI is available for download from http.//icl.cs.utk.edu/papi/.

Profiling with Hardware Event Counters using pgcollect

146

You can use PGPROF to display time-based and hardware event-based profiles generated via the OProfile
package, which is available on most current Linux distributions.

No special build options are required to enable event-based profiling with pgcollect, although building with
the option —M nf o=ccf f may provide useful compiler feedback.

Chapter 15. Using PGPROF

For specific information on using PGPROF with hardware event counters, refer to Chapter 22, “pgcollect
Reference,” on page 197.

Profiling with Hardware Event Counters using PAPI

To use PAPI-style profiling, PAPI must be installed. Installation of PAPI requires rebuilding the Linux kernel.
PGI compiler and tools releases are built with the version of PAPI that is current at the time of the PGI release.
Normally, the profiling support code for - Mpr of =hwct s supports profiling against that current version and
the previous version of PAPI, though a warning message is generated if the previous version is used.

To bypass the version check, set the environment variable PGPROF_PAPI_VER to m.n where m and n
respectively are the major and minor numbers associated with your PAPI library.

To profile using hardware counters, compile with the option - Mpr of =hwet s. This option adds the PAPI and
PGI profiling libraries to the application’s linker command. By default, this option uses the PAPI_TOT_CYC
counter to profile total CPU cycles executed by the application. PGPROF converts the cycle counts into CPU
time (seconds). The PGPROF_EVENTS environment variable can be set to specify up to four counters to use.
The format for the PGPROF_EVENTS variable is this:

event O[. over] [: event 1[. over]]

The event field is the name of the event or hardware counter and the optional over field specifies the overflow
value. The overflow value is the number of events to be counted before collecting profile information. Overflow
provides some control on the sampling rate of the profiling mechanism. The default overflow is 1000000.

Determine Available Hardware Counters

To determine which hardware counters are available on the system, compile and run the following simple
program. This program uses the PAPI and PGI libraries to dump the available hardware counters to standard
output.
int main(int argc, char *argv[]) {

__pgevents();

exit(0);
}

This program uses the PAPI and PGI libraries to dump the available hardware counters to standard output.

Display Available Events
Save the code in the previous example in a file called pgevent s. ¢ and compile it as follows:
pgcc pgeventc.c -o pgevents -l pgnod_prof _papi -I papi

To display the available events, run the newly created program called pgevent s. The pgevents utility shows
the format of the PGPROF_EVENTS environment variable, the list of PAPI preset events, and the list of native (or
processor specific) events.

The following example, which uses tcsh or csh shell, specifies four events with the PGPROF_EVENTS
environment variable:

% set env PGPROF_EVENTS PAPI _TOT_CYC. 1593262939: PAPI _FP_OPS: PAPI L1 _DCM PAPI L2 | CM

147

Profiling Resource Utilization with Hardware Event Counters

To specify the same four events using the sh or bash shell, use this command:

$ set PGPROF_EVENTS=PAPI TOT_CYC. 1593262939: PAPI _FP_OPS: PAPI _L1_DCM PAPI L2 | CM
$ export PGPROF_EVENTS

If PGPROF_EVENTS is not defined, then, by default, the profiling mechanism counts CPU cycles
(PAPL_TOT_CYC event).

The following example shows a partial output from pgevents:

Example 15.1. Partial Output from pgevents

Sel ecting Events

Har dwar e | nf or mati on
cpus/ node - 4

nodes - 1

total cpus - 4
vendor - Aut henti cAVMD
nodel - AMD K8 Revision C
speed 1593. 262939nhz
event counters 4
Preset Events

PAPI L1 DCM - Level
PAPI L1 ICM - Level
PAPI L2 DCM - Level
PAPI L2 ICM - Level
PAPI L1 TCM - Level
PAPI L2 TCM - Level

data cache mi sses
instruction cache nisses
data cache mni sses
instruction cache ni sses
cache ni sses

cache ni sses

NFENNPE P

PAPI _TOT_CYC - Total Cycles

Native Events

FP_ADD PI PE - Di spatched FPU ops - Revision B

and later revisions - Add pi pe ops excluding junk ops.
FP_MULT_PI PE - Di spatched FPU ops - Revision B

and later revisions - Miltiply pipe ops excluding junk ops.

CPU_CLK_UNHALTED - Cycl es processor is running
(not in HLT or STPCLK st ate)

Analyzing Event Counter Profiles

If you compiled your program with the —Vpr of =hwct s option or executed your program under the control
of pgeollect, then you can profile up to four event counters and view them in PGPROE

Figure 15.10 shows a profile of four event counters: CPU_CLK_UNHALTED, DATA_CACHE_MISSES,
DATA_CACHE_REFILLS _FROM_L2, DATA_CACHE_REFILLS _ FROM_SYSTEM.

In this example, the routine using the most time is also getting many cache misses. Investigating the memory
access behavior in that routine, and looking at the Compiler Feedback, may offer some clues for improving its
performance.

148

Chapter 15. Using PGPROF

Figure 15.10. Profile with Hardware Event Counter

- pgprof =15]*]
File Sattings Processes Miew Sort Search Halp
B @< - [Fina [F] @ @ [Hotspot: CPU_CLK_UNHALTED) »
Function CPU_CLE_UNHALTED DAT A_CACHE_MISSES DATA_ CACHE_REFILLS _FRO... |DATA_CACHE_REFILL
mn_fy_update_nonbon | 22 00 E E] L5 = 330, 322, OO
T_nonhon W33,016,300,000 = 11% | 253,439,000 TH] 254,162,000 T W E1,A73,900 = |
a_next 8,873,000,000 = 3% 67,973,000 = 2% 63,326,000 = 2% 0 58,789,400 =
Tpac 5,847,700,000 = 3% F4,067,700 = 2% TT,E3IF,000 = 2% W 71,831,800 =
T_tarsiaon 5,000,390,000 = 2% 16,681,100 = 0¥ 16,790,700 = 0¥ 7,058,240 =|
T_angle 3,443,410,000 = 1% 30,800,300 = 1% 31,104,500 = 1% 21,284,300 = |
T_hand 2,503,040,000 = 1% 30,666,100 = 1% 30,271,500 = 1% 22,709,100 =
_init 1,734,000,000 = 1% 4,077,120 = 0% 71,261,800 = 2% 4,011,360 =
a_m_serial 1,572,320,000 = 1% 372,640 = 0% 328,800 = 0%
T_hox 1,359,040,000 = 0% 14,864,500 = 0% 15,037,100 = 0% 16,374,200 = ||
Tv_update_nanhon 1,214,810,000 = 0% 20,473,300 = 1% 21,100,000 = 1% 19, 706,100 =
T_hwhbrid 050,438,000 = 0% 6,597,920 = 0¥ 6,115,680 = 0% 4,822,400 =
eyval 250,765,000 = 0% 65,760 = 0% 65,7680 = 0% 21,920 =
read_eval_do 174,483,000 = OX 219,200 = 0% 109,600 = 0¥ 65,760 =
w_nonhon 97,763,200 = Ok 1,161,760 = O 1,117,920 = OX 328,800 =| |
Tisvariahle 69,267,200 = Ok |
[« i [[v]
Sort By CPU_CLK_UNHALTED
e R L T T R R

isplay | Thread | Process.Threads |
Process K_UMHALTED DATA_ CACHE_MISSES
O Cmm_fv_upd. ..

FRO..
25, 04 E 3

3, 290, 810, 000 A 3,197, 80 330,327 0 =100

Sort By CPU_CLE_UNHALTED

l Parallelism l Histogram l @ Compiler Feedhack 1 System Information l Accelerator J
| Profiled: .fammp on Tue Oct 07 00:39:11 CEST 2008 for 134.674266 seconds |Pr|:|fi|e: fpgprof-1T.out

Profiling Accelerator Programs

You can use PGPROF to analyze the performance of accelerator programs. Accelerator performance data is
included in the profile, pgpr of . out , when an accelerator program is run using pgcollect. The profiling
procedure is the same as for host-only programs, except that PGPROF provides an Accelerator tab that allows
you to review profiling information provided by the accelerator. You do not need to build with any special
options to collect accelerator performance data.

Here is an example of the commands you might use in a simple accelerator profiling session:
$ pgfortran -ta=nvidia -o myprog nyprog.f90

$ pgcol lect -time ./nyprog
$ pgprof -exe ./nyprog

Note

You can build your program to print accelerator performance data to the standard output by using the
t i me suboption to the target accelerator option - t a' . For example, you can use this command:

$ pgfortran -ta=nvidia,time myprog.f90

The t i me suboption has no effect on pgcol | ect or PGPROF profiling.

149

Profiling Accelerator Programs

For more information on using PGI compilers to build programs for accelerators and on related terminology,
refer to Chapter 7, “Using an Accelerator,” in the PGI User's Guide.

For more information on pgcollect, refer to Chapter 22, “pgcollect Reference”.

Analyzing Accelerator Performance Data

This section provides a description of how to examine accelerator performance data using PGPROE

Note

A comprehensive guide to tuning accelerator programs is beyond the scope of this manual.

Function-Level Analysis

When you invoke PGPROF on the profile of an accelerator program, the initial view displays a function list
showing host times in the Seconds column and accelerator times in the Accelerator Region Time column
and Accelerator Kernel Time column. Figure 15.11 illustrates a routine-level view with the routine j acobi
selected and the Accelerator tab chosen in the Focus Panel.

Figure 15.11. Accelerator Performance Data for Routine-Level Profiling Example

Eile Settings Processes Wiew Sort Search Help
Fl = g [Find: |?] b g [HDtSput: Seconds |?J B R F
Function Seconds Accelerator Region Time Accelerator Kernel Time |
[Swsten_Time] 4.278941 = 02%
__C_mzerod 0.132353 = I
ssthk 0.085235 = 2%
__gettineofday_internal 0058824 = 1%
__lihc_pause 0029412 = 1%
initmt 0.029412 = 1%
jacohi 0.014706 = 0% = 75
acc_init T 401922 = 25%
Sart By Seconds
A T T
Accelerator Initialization Time (secs) Q000001 = 0%
Accelerator kernels Time (secs) = 97%
Diata Transfer Time {secs) 0.132602 = 3%

Parallelism l Histogram l @ Compiler Feedback J_ System Information

| Profiled: ./himeno.exe on Wed Mov 04 17:38:12 CET 2009 | Profile: ./ pgprof.out

150

Chapter 15. Using PGPROF

One of the first things to look at in tuning an accelerator program is whether the Data Transfer Time is large
relative to the Accelerator Kernels Time. In the example illustrated in Figure 15.11, the Accelerator Kernels
Time of 4.134521 seconds is much larger than the Data Transfer Time of 0.132602 seconds, so we have
efficient use of the accelerator.

If data transfer time is taking a significant portion of the total time, you would want to investigate if transfer
time could be reduced using data regions, described in Chapter 7, Using an Accelerator, of the PGI User’s
Guide.

If data transfer time is relatively high and you have already considered data regions, you might want to examine
the Compiler Feedback. You must compile with—-M nf o=ccf f to be able to do this. Check if the compiler is
generating copyi n/ copyout operations that use slices of your arrays,. If so, you may want to override the
compiler to copyi n/ copyout the entire array.

For more information on compiler feedback, refer to “Compiler Feedback,” on page 139.

Region-Level Analysis

As with host-only profiles, you can drill down to the source code level by double-clicking on the routine name
in the Function column. For an accelerator program, the display centers on the accelerator region directive for
the longest-executing region. The Accelerator tab shows a breakdown of timing statistics for the region and the
accelerator kernels it contains.

Note

A routine can contain more than one accelerator region.

Figure 15.12 shows an example of a source-level view with an accelerator region directive selected.

Note

In this illustration, if you want to see the Seconds column, you could scroll to the right in the Statistics
Table.

151

Profiling Accelerator Programs

Figure 15.12. Source-Level Profiling for an Accelerator Region

File Seftings Processes Yiew Sort Search Halp
B S a8 € [Find: m &b [HutSput: Seconds |?] Ry

Line fhomefdeldon/Demos,/accelerate/himenofhimeno. FS0 Accelerator Region Time |Accelerator Kernel Time

O T T T —

367 [Lfacc region &
368 [1facc copyin{alil:mimax,lamimax, 1:mknax))
368 [Lfacc copwin{azl:mimax, laminax, 1:mknax))
370 Vfacc comin(a3limimax, 1onjmax, 1nknax))
371 Vfacc copvin(ad(l:mimax, 1omjmax, 1:nknax))
372 V%acc copinChlll:mimax, 1omjmax, 1:nknax))
373 Mfacc copinCh2Clmimax, 1omimax, 1:nknax)
374 Vfacc copyinCh3Climimax, 1amimax, 1:nknax)
375 [1facc copyin{clil:mimax, lamimax, 1:mknax))
376 [Vfacc copwin{c2fl:mimax, Lamimax, 1:mknax))
377 Vfacc comin(c3(limimax, 1onjmax, 1nknax))
378 [1facc copwing pllimimase, l:mimax, 1:mknax))
2379 Mfacc copvinChnd{Llimimax, limimax, Linknax)) &
280 Vfacc copvinQarklil:imimax, Limjmax, Linknax)) &
381 Vfacc copvoutipdlimimax, 1amimax, Lrnknax)y &
382 [Lfacc copyout{wrk2 (limimax, Lemjmax, Linknax)) &
383 [1facc copwout{gosatmpllmimax, Lmjmas, 12 nknaxid
384 |1$acc do host

® 385 | do Toop=1,nn ||
386 1facc do parallel -

[4] [Dl
Sart By Line

fo Qoo o Bo Qe o GooQo G oo

Accelerator Initialization Time {secs) 0, 000001
Accelerator Kernels Time {secs)
Diata Transfer Time {secs) | 0,132602
Accelerator Region Execution Caunt 2

Maxirmurm tirme spent in Accelerator Region wio Init Time (secs) 4. 180485
Minimum time spent in Accelerator Region wjfo Init Time {secs) 0. 0EAA3E
Awerage time spent in Accelerator Region wio Init Time (secs) 2.133541

Parallelism J_ Histogram l @ Compiler Feedback J_ System Information

Profiled: ./ himeno.exe on Wed Nov 04 17:38:12 CET 2009 | Profile: ./pgprof.out

Kernel-Level Analysis

152

Since an accelerator region can contain multiple distinct kernels, you may want to examine performance data
for an individual kernel. You do this by selecting the first source line of the kernel.

In the source-level view, the first line of a kernel has data listed in the Accelerator Kernel Time column.

To navigate to the longest-executing kernel:

Select Accelerator Kernel Time in the HotSpot selector in the upper-right portion of the user interface.

Click the double left arrow (<<) located next to the HotSpot selector.

Chapter 15. Using PGPROF

Figure 15.13. Source-Level Profiling for an Accelerator Kernel

Parallelism l Histogram 1 @ Compiler Feedback l System Information ccelerator

File Settings Processes Miew Sort Search Healp
B &g [Find: m &b [HntSpnt: Acealerator Kernel Time m ¥
Line JhomejfdeldonfDemosfaccelerate fhimeno/himeno. F30 Arcelerator Region Time |Acceleratar Kernel Time

383 |l%acc copvout{gosatmpdl:mimax, linjmax, 1imkmax)) =
384 |Lfacc do host
® 385 | do Toop=1,nn
386 [Lfacc do parallel
|7 do k=2, knax-1,2
388 |l%acc do parallel vector(3)
tie] do 3=2,imax-1 N
390 [Lfacc do wector{f4) =
3691 do i=2,imax-1
302 =0=a1(I,],K3%p(I+1,1,K) & u
303 +22 (1, 1, k3% (T, J+1,K) &
304 +23 (1, 1, k3% (I, 1, kK+10 &
395 +010T, 3, kD% (p T+, J+1, KD -pi. ..
395 —piI-1, 141, K1+0. ..
97 +h20T, 1, K% (T, 1+, K+ -pf. ..
=] —pi L, I+, K-10+p. ..
=) +030L, 1, K% (p I+, 1, k410 -pi. ..
400 -piI+1, 1, K-10+p. ..
401 +C1(I,1,K3%p(I-1,1,K) &
402 40201, 1, K%L, 1-1,K) & =
Arm= A2 T 1 EZNAT] Kl el © —
[o] [[»]
Sort By Line
e
Accelerator Kernel Execution Count (S0
Grid Size [E3x42]
Elock Size [B4x3]
Maximum time spent in Accelerator Kernel (secs) 0.005163
Minimum time spent in Accelerator Kernel {secsh 0L 00a03
Awerage time spent in ACcelerator Kernel (secs) 0. O0E0SE

| Profiled: . /himeno.exe on Wed Nov 04 17:38:12 CET 2009 | Profile: ./ pgprof.out

In this illustration the selected line in the main Statistics Table has a value only in the Accelerator Kernel Time.

The Accelerator tab displays all the details for the Accelerator Kernel performance data.

Note

To see the Seconds column, you would scroll to the right in the Statistics Table.

For more information on tuning accelerator programs, refer to Chapter 7, Using an Accelerator, of the PGI

User’s Guide.

153

154

Chapter 16. Compiler Options for
Profiling

This chapter describes the PGI compiler options that are used to control profiling and how they are
interpreted.

-Mprof Syntax

You can use the following compiler options to control data collection. Most of these options are related to -
Mpr of , for which the syntax is:
- Mpr of [=option[, option,...]]

You use - Mpr of to set performance profiling options. Use of these options causes the resulting executable to
create a performance profile that can be viewed and analyzed with the PGPROF performance profiler.

Profiling Compilation Options

In the descriptions that follow, PGI-style profiling implies compiler-generated source instrumentation. MPICH-
style profiling implies the use of instrumented wrappers for MPI library routines.

—Minfo=ccff
Generate compiler feedback information and store it in object and executable files for later access by
performance tools. Use =M nf o=ccf f when collecting performance data using pgcollect. All —-Mpr of
options except —Mpr of =dwar f imply —M nf o=ccff.

—Mprof=dwarf
Generate a subset of DWARF symbol information adequate for viewing source line information with most
performance profilers.

In the PGI compilers —Mpr of =dwar f is on by default. You can use the —~Mhodwar f option to disable it.
Source-level information is not available if you profile a program built with—vnhodwar f .

—Mprof=func
Perform routine-level instrumentation-based profiling.

—Mprof=hpmpi
[Linux only] Use the profiled HPMPI communication library. Implies —Mpi =hpnpi .

155

Configuration Files for OpenMPI Profiling

—Mprof=hwcts
[linux86_64 Only - PAPI must be installed] Generate a profile using event-based sampling of hardware
counters via the PAPI interface. Compiling and linking with this option produces an executable that
generates a pgpr of . out file which contains routine, line, and assembly-level profiling data. See
“Profiling with Hardware Event Counters using PAPL” on page 147 for more information on profiling with
hardware counters.

—Mprof=lines
Perform PGI-style line-level profiling.

—Mprof=mpich1
Perform MPICH-style profiling for MPICH-1. Implies —Mhpi =npi chl.

—Mprof=mpich2
Perform MPICH-style profiling for MPICH-2. Implies —Mhpi =npi ch2.

—Mprof=msmpi
[Microsoft HPC Server only] Perform MPICH-style profiling for Microsoft MSMPI. Implies option —
Mrpi =nsnpi .

For —Mpr of =nenpi to work, the CCP_SDK environment variable must be set. This variable is typically
set when the Microsoft HPC Server SDK is installed.

—Mprof=mvapich1
[Linux only] Perform MPICH-style profiling for MVAPICH-1. Implies —Mpi =mvapi chl.

—Mprof=time
[Linux only] Generate a profile using time-based assembly-level statistical sampling. This is equivalent to -
pg except the profile is saved in a file named pgpr of . out rather than in gnon. out .

—Pg
[Linux Only] Enable gprof-style (sample-based) profiling. Running an executable compiled with this
option produces a gnon. out profile file which contains routine, line, and assembly-level profiling data.

Configuration Files for OpenMPI Profiling

For OpenMPI profiling on Linux, the OpenMPI installation must be properly built and configured to work with
the PGI profiling system. The Installation Guide contains complete instructions on how to build the OpenMPI
software distribution with PGI compilers and install it. It also includes the information required to modify
some configuration files, which we refer to as compiler wrapper data files. This section provides information
about these wrappers.

Once these compiler wrapper data files are modified, your system is ready for OpenMPI profiling, as described
in “OpenMPI Profiling,” on page 142.

Compiler Wrapper Data Files

156

The compiler wrapper data files are located in the / shar e/ opennpi directory of your OpenMPI installation.
Sample compiler wrapper data files located in your PGI '/ et c¢' directory are available for you to direct
modifications of the wrapper data files generated when you built OpenMPI.

The wrapper file names are:

Chapter 16. Compiler Options for Profiling

npi cc- wr apper - dat a. t xt
npi c++- wr apper - dat a. t xt
nmpi f 77- wr apper - dat a. t xt
nmpi f 90- wr apper - dat a. t xt

A sample wrapper file includes a block of data similar to the following:

Note

The lines in bold are ones that must be modified to configure your OpenMPI installation for PGI
profiling.

conpi | er _args=

pr oj ect =Cpen MPI

pr oj ect _short=0OW
version=1.2.8

| anguage=C
conpi | er _env=CC

conpi | er _fl ags_env=CFLAGS
conpi | er =pgcc
extra_i ncl udes=
preprocessor _fl ags=- D_REENTRANT
conpi l er_fl ags=

l'i nker _fl ags=
i bs=-Inpi -lopen-rte -Iopen-pa
-lrt -1dl -W,--export-dynamc -Insl -lutil -Ipthread -Idl

required_file=
i ncl udedi r=%{i ncl udedi r}
l'i bdi r=${1i bdir}
Configure OpenMPI for PGI Profiling

To configure OpenMPI for PGI profiling, you edit the compiler wrapper data files.

Note

The lines that you modify are in bold in the sample wrapper data file in the previous section.

Important

Before you begin, make backup copies of your original wrapper data files.

Make these modifications:

1. Add the line conpi | er _ar gs= before any other configuration lines.
2. Copy the entire data block in the sample file fwice.

You need a data block for each of these compiler options:

e —Morof =func||ines

e —Mprof =time| hwets (hwets is linux86-64 only)

3. In the second data block, modify the conpi | er _ar gs=and the conpi | er _f | ags= lines. The PGI
profiling options are shown just to the right of the equal sign. The compiler flags you select immediately
follow the equal sign, with a space between each flag.

157

Configuration Files for OpenMPI Profiling

Your lines should look similar to these:

conpi | er _ar gs=- Mor of =f unc; - Mpr of =l i nes

conpi l er_fl ags=

4. In the third data block, modify the conpi | er _ar gs=and the conpi | er _f | ags= lines. The PGI
profiling options are shown just to the right of the equal sign. The compiler flags in this data block should
include: -W0, -profile, lines at the beginning of the list of flags you select.

Your lines should look similar to these:

conpi | er _ar gs=- Mpr of =t i ne; - Mpr of =hwct s

conpi l er_flags=-W), -profile,lines

5. In both the second and third data blocks, modify the | i bs= line so that - | pgnod_pr of _opennpi

comes just before - | npi .

Note

Do not modify any other lib values.

The new | i bs= line looks similar to this:

|'i bs=-1 pgnod_pr of _opennpi
-1 dl

- | npi

-W, --export-dynamc -lnsl -lutil

Modified Compiler Wrapper Data File Sample

158

-l open-rte
-l pthread -1dl

-1 open-pal -Irt

When you complete your modifications, your new wrapper data file has three data blocks that look similar to

these. The lines you modified are in bold.

conpi | er _args=

pr oj ect =Cpen MPI

pr oj ect _short =0wPI

version=1.2.8

| anguage=C

conpi | er _env=CC

conpi | er _fl ags_env=CFLAGS

conpi | er =pgcc

extra_includes=

pr eprocessor _fl ags=- D REENTRANT

conpi | er_fl ags=

I'i nker _flags=

libs=-1npi -lopen-rte -|open-pal
-l pthread -1dl

required_fil e=

i ncl udedi r=${i ncl udedi r}

l'i bdi r=${li bdir}

-lrt -1dl

conpi | er _ar gs=- Mpr of =f unc; - Mpr of =I i nes
pr oj ect =Cpen MPI

pr oj ect _short =0OwPI

version=1.2.8

| anguage=C

-W, --export-dynamic -lnsl -lutil

conpi | er _env=CC

conpi | er _fl ags_env=CFLAGS

conpi | er =pgcc

extra_incl udes=

pr eprocessor _fl ags=- D REENTRANT
conpi | er_fl ags=

I'i nker _flags=

| i bs=-1 pgnod_pr of _opennpi

-l npi -lopen-rte -lopen-pal -lrt -Idl
-lutil -lpthread -1dl
required_fil e=

i ncl udedi r =${i ncl udedi r}

I'i bdir=%${libdir}

conpi | er _ar gs=- Mpr of =t i ne; - Mpr of =hwct s
pr oj ect =Cpen MPI

pr oj ect _short =0OwPI

version=1.2.8

| anguage=C

conpi | er _env=CC

conpi | er _fl ags_env=CFLAGS

conpi | er =pgcc

extra_includes=

pr eprocessor _fl ags=- D REENTRANT

conpi l er_flags=-W), -profile,lines

I'i nker _flags=

| i bs=-1 pgnod_pr of _opennpi

-l npi -lopen-rte -lopen-pal -lrt -Ildl
-lutil -lpthread -1dl

required_fil e=

i ncl udedi r =${i ncl udedi r}

l'i bdir=%${libdir}

Chapter 16. Compiler Options for Profiling

-W, --export-dynanm c -1 nsl

-W, --export-dynan c -1 nsl

159

160

Chapter 17. PGPROF Command
Line Options

This chapter describes the PGPROF command-line options and how they are interpreted.As we stated in
Chapter 14, “Getting Started with the PGPROF Profiler”, PGPROF can interpret command-line options when
present on the command line.

Command Line Option Descriptions

The following list describes the options and how PGPROF interprets them.

datafile
A single datafile name may be specified on the command line. For profiled MPI applications, the specified
datafile should be that of the initial MPI process. Access to the profile data for all MPI processes is
available in that case, and data may be filtered to allow inspection of the data from a subset of the
processes.

The default datafile name is pgpr of . out . If no datafile argument is used, PGPROF attempts to use
pgpr of . out in the current directory.

—exe <filename>
Set the executable to filename. The default filename is a. out .

—feedbackonly (Linux only)
Only browse source code and Compiler Feedback information. Do not load any performance data from
profile runs.

—help
Prints a list of available command-line arguments.

—I <srcpath>
Specify the source file search path. The PGPROF profiler always looks for a program source file in the
current directory first. If it does not find the source file in the current directory, it consults the search path
specified in sr cpat h. The sr cpat h argument is a string containing one or more directories separated
by a path separator. The path separator is platform dependent: on Linux and MAC OS X, it is a colon (:),
and on Windows it is a semicolon (;). Directories in the path are then searched in order from left-to-

161

Profiler Invocation and Startup

right. When a directory with a filename that matches a source file is found, that directory is used. Below is
an example for Linux and MAG OS X.

-l ../src: STEPS

In the example above, the profiler first looks for source files in the current directory, then in the ../src
directory, followed by the STEPS directory. The following is the same example for Windows:

-1 ..\src; STEPS

For more information, see the New Profiling Session. .. item in the description of the “File Menu,” on page
172.

—jarg, argl [, arg2,..., argn]
Pass specified arguments, separated by commas, to java. For example, the following option passes the
argument - Xmx256mto java.

-jarg, -Xnx256m

This option is provided for troubleshooting purposes and is expected to rarely be used. If you do use this
option, be certain not to forget the comma between the option and the first argument.

—scale “file(s)”
Compare scalability of datafile with one or more files. A list of files may be specified by enclosing the list
within quotes and separating each filename with a space. For example:

—scal e one. out two. out

This example compares the profiles one.out and two.out with datafile (or pgprof.out by default). If only
one file is specified quotes are not required.

For sample based profiles (e.g., gmon.out) specified with this option, PGPROF assumes that all profile
data was generated by the same executable. For information on how to specify multiple executables in a
sample-based scalability comparison, see the Scalability Comparison. .. item in the description of the “File
Menu,” on page 172.

—text
Use the PGPROF Command-Line Interface (CLI).

-V

Print version information.

Profiler Invocation and Startup
Let’s take a look at some common ways to invoke the profiler, describing what each launch command means.

% pgprof
e Ifapgprof. out file exists in the current directory, PGPROF tries to open it.

e If an executable name can be determined from the pgpr of . out file, the GUI is populated
according to profile data, if valid.

e If an executable name can NOT be determined from the pgpr of . out file, then a dialog is opened
on top of the main window with following message:

162

Chapter 17. PGPROF Command Line Options

Can't determ ne executable for file 'pgprof.out'Please use 'File |
New Profiling Session...' nenu to specify one

e Ifno pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
% pgprof -exe <execname>

e Ifapgprof. out file exists in the current directory, PGPROF tries to open it and use <execname>.
Further, the GUI is populated according to profile data, if valid.

e Ifno pgpr of . out file exists in the current directory, the GUI is not populated and no dialog appears.
Further, when the user selects the menu Fi | e | New Profiling Session...,then the Text
Field for Execut abl e is set with <execname> in the dialog.

% pgprof -exe <execname> <profilename>
PGPROF tries to open the profile <profilename> using <execname> for the executable name. Further,
the GUI is populated according to profile data, if valid.

% pgprof -feedbackonly

e Ifaa. out file exists in the current directory, PGPROF tries to open it.Further, if a. out is an
executable with valid DWARF/ELF/CCFF info, then PGPROF populates the GUI. You are then in feedback-
only mode.

e Ifno a. out file exists in the current directory, the GUI is not populated and no dialog appears. Further,
when the user selects the menu Fil e | New Profiling Session...,thenthe Feedback
onl y checkbox is selected in the dialog.

% pgprof -exe <execname> -feedbackonly
PGPROF tries to open the executable <execname>. Further, if the executable <execname> is valid with
DWAREF/ELF/CCFF info, then PGPROF populates the GUL You are then in feedback-only mode.

% pgprof -exe <execname> -feedbackonly <profilename>

Note

<profilename> is ignored without warning

PGPROF tries to open the executable <execname>. Further, if the executable is valid with DWARF/ELF/
CCFF¥ info, then PGPROF populates the GUI. You are then in feedback-only mode.

163

164

Chapter 18. PGPROF Environment
Variables

This chapter describes the system environment variables that you can set to change the way profiling is
performed.

System Environment Variables

As you learned in “Basic Profiling,” on page 127, a profiled program collects call counts and/or time data.
When the program terminates, a profile data file is generated. Depending on the profiling method used, this
data file is called pgprof.out or gmon.out.

You can set the following system environment variables to change the way profiling is performed:

* GMON_ARCS — Use this environment variable to set the maximum number of arcs (caller/callee pairs).

The default is 4096. This option only applies to gprof style profiling, this is, programs compiled with the —
pg option.

e PGPROF_DEPTH — Use this environment variable to change the maximum routine call depth for PGPROF
profiled programs.

The default is 4096 and is applied to programs compiled with any of the following options: —Mpr of =f unc,
—Mor of =l i nes, —Mpr of =hwct s, or —Mpr of =t i ne.

e PGPROF_EVENTS — Use this environment variable to specify hardware (event) counters from which to
collect data.

This variable is applied to programs compiled either with the —Mpr of =hwct s option or executed with
the pgcollect command. The use of hardware (event) counters is discussed in further detail in “Profiling
Resource Utilization with Hardware Event Counters,” on page 146.

e PGPROF_NAME — Use this environment variable to change the name of the output file intended for PGPROE

The default is pgpr of . out . This option is only applied to programs compiled with any of the following
options: —Mpr of =[func | hwcts | lines | MPI | tine].]Ifaprogram is compiled with the —
pg option, then the output file is always called gnon. out .

165

166

Chapter 19. PGPROF Data and
Precision

This chapter contains descriptions of the profiling mechanism that measures time, how statistics are collected,
and the precision of the profiling results.

Measuring Time

The sample-based profiling mechanism collects total CPU time for programs that are compiled with options
—pg and —Mpr of =t i ne, as described in “Sample-based Profiling,” on page 129. The profiling mechanism
collects cycle counts for programs compiled with —Mpr of =hwct s or run under the control of pgcollect.
PGPROF automatically converts CPU cycles into CPU time.

Programs compiled for instrumentation-based profiling with —Mpr of =I i nes or —Mpr of =f unc employ
avirtual timer for measuring the elapsed time of each running process/thread. This data collection method
employs a single timer that starts at zero (0) and is incremented at a fixed rate while the active program is
being profiled. For multiprocessor programs, there is a timer on each processor, and the profiler’s summary
data (minimum, maximum and per processor) is based on each processor’s time executing in a function.
How the timer is incremented and at what frequency depends on the target machine. The timer is read from
within the data collection functions and is used to accumulate COST and TIME values for each line, function,
and the total execution time. The line level data is based on source lines; however, in some cases, there may be
multiple statements on a line and the profiler shows data for each statement.

NOTE

For instrumentation-based profiling, information provided for longer running functions are more
accurate than for functions that only execute for a short time relative to the overhead of the individual
timer calls. Refer to “Caveats (Precision of Profiling Results),” on page 168 for more information
about profiler accuracy.

Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

167

Caveats (Precision of Profiling Results)

BYTES
For MPI profiles only. This is the number of message bytes sent and received.

BYTES RECEIVED
For MPI profiles only. This is the number of bytes received in a data transfer.

BYTES SENT
For MPI profiles only. This is the number of bytes sent.

CALLS
The number of times a function is called.

COST
The sum of the differences between the timer value entering and exiting a function. This includes time
spent on behalf of the current function in all children whether profiled or not. PGPROF can provide cost
information when you compile your program with either the —Mpr of =cost or the —~Mpr of =I i nes
option. For more information, refer to“Basic Profiling,” on page 127.

COUNT
The number of times a line or function is executed.

LINE NUMBER
For line mode, this is the line number for that line. For function mode, this is the line number of the
first line of the function. PGPROF sometimes generates multiple statements for a single source line; thus
multiple profiling entries might appear for a single source line. To distinguish them, PGPROF uses the
notation: /ineNo.statementNo

MESSAGES
For MPI profiles only. This is the number of messages sent and received by the function or line.

RECEIVES
For MPI profiles only. This is the number of messages received by the function or line.

SENDS
For MPI profiles only. This is the number of messages sent by the function or line.

TIME
The time spent only within the function or executing the line. The TIME does not include time spent in
functions called from this function or line. TIME may be displayed in seconds or as a percent of the total
time.

Caveats (Precision of Profiling Results)

Accuracy of Performance Data

The collection of performance data always introduces some overhead, or intrusion, that can affect the
behavior of the application being monitored. How this overhead affects the accuracy of the performance data
depends on the performance monitoring method chosen, system software and hardware attributes, and the
idiosyncrasies of the profiled application. Although the PGPROF implementation attempts to minimize intrusion
and maximize accuracy, it would be unwise to assume the data is beyond question.

168

Chapter 19. PGPROF Data and Precision

Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these

circumstances, a routine must consume at least a few seconds of CPU time to generate meaningful line level
times.

Source Code Correlation

At higher optimization levels, and especially with highly vectorized code, significant code reorganization may
occur within functions. The PGPROF profiler allows line profiling at any optimization level. In some cases, the
correlation between source and data may at times appear inconsistent. Compiling at a lower optimization level
or examining the assembly language source may help you interpret the data in these cases.

169

170

Chapter 20. PGPROF Reference

This chapter provides a reference guide to the features of the PGPROF performance profiler.
For information about how to invoke PGPROE refer to “Profiler Invocation and Initialization,” on page 131.

For information about using the PGPROF text-based command-line interface, refer to Chapter 16, “Compiler
Options for Profiling”.

For information about how to choose a profiling method, build your program, and execute it to collect profile
data, refer to Chapter 14, “Getting Started with the PGPROF Profiler”.

PGPROF User Interface Overview

On startup, PGPROF, the profiler, attempts to load the profile datafile specified on the command line (or the
default pgprof.out). If no file is found, a file chooser dialog box is displayed. Choose a profile datafile from the
list or select Cancel.

When a profile datafile is opened, PGPROF populates the user interface, as illustrated and labeled in
Figure 20.1.

Menu Bar
Contains these menus: File, Settings, Processes, View, Sort, Search and Help.

Toolbar
Provides navigation shortcuts and controls for frequently performed operations.

Statistics Table
Displays profile summary information for each profile entry. Information can be displayed at up to three
levels - routine, line, or assembly - depending on the type of profile data collected, how the program
was built, and whether the PGPROF source file search path has been set to include the program source
directories. The initial view is the routine level view.

Focus Panel
Consists of four tabbed panes labeled Parallelism, Histogram, Compiler Feedback, and System
Information.

171

PGPROF Menus

Information Bar
Displays the profile summary information such as the name of the executable, the time and date of the
profile run, execution time, number of processes, if more than one, and the datafile name.

The following sections describe each of these components in more detail.

Figure 20.1. PGPROF User Interface

Menus
/ Elw Setrmme Brocwiier s Segt Seargh Halp
Toolbar ples@ <- - [fna B & % [(Hospor cru_ce onnaL T Flswr
r qepatod = 1 E. kst
L i 'ill'r"|i_l.‘]‘.III.'I_'I.I"IIT_|_:.'III|.' [e SRR AN | (R A nGe CPU LR P TES .::JTJ-_- Vi
1L EFY AL0SATE = HILL] -
¢ 113 (derrir ("Cawet Al 1eCEe sy AR Tomnndonll Pelurg 40k JP3, 000 & 0N
LR E
[] WK forl vel) v imaar, Teel | 40, W40 = 0% | 4|
iz { |
H H i Crmroma VI] = a it (i)l
Statistics i
Table $18 wprugesoun peeal) SefuuttCmiee ahamrme{dinleereic, Tmddn, _mod. ..
8 |
< iN AR = A Smbar
o]
Al Wpragss onp Tur echedu) pigutie
o i3 fari = Pz bp tmmal 1ew) i 7005000 - am @ T, T
aad |
in ' Nk T -
o Al = PaSimal 11010z - =
Lt [
o Ty Lime
Driaglay m Thrs Ty Thur
Frocee CFR LM UNMAEL T \CoaT e, DM B5ES (DT & CRCHE_FTFILLS_HIOM | DAT & CaTHILFEILLY FFD
0 gt} R -
Focus o
panel
Sort iy,

Focus

Hixtagram [9 Comypiler Feedack | Systom Intormation | Accolerarg,

{]ﬂﬂE' Finfilak . Jammg on Tus Ut] i geconds | Profile ._!'.I-II]FTUI"IT.DLH-
tabs g\
Information bar
PGPROF Menus

There are six menus in the GUI: File, Settings, Processes, View, Sort, and Help. This section describes each
menu in detail. Keyboard shortcuts, when available, are listed next to menu items.

File Menu
The File menu contains the following items:

e New Window (control N) — Select this option to create a copy of the current profiler window on your
screen.

e New Profile Session... — Select this option to begin analyzing a different profile. A dialog box like the
one in Figure 20.2 appears, requesting information about the profile data file (default pgpr of . out), the

172

Chapter 20. PGPROF Reference

executable file, and the location of the source files. A new profile session is started using the information
specified in the dialog box.

If Source Path is the only parameter change from current session parameters, then current session uses
new Source Path to search for sources.

Figure 20.2. New Profile Session dialog box

Profiling session parameters

Praofile : [.,’pgprof—l'l'.m.lt|] "ﬁ'hwse]
Executahle : {] |ﬁrﬂwse J
Seurce Path z [} |[.¥Kdl:l }

Feedhack Only Mode : [

ok] T €ance!]

e Scalability Comparison... — Select this option to open another profile for scalability comparison. Like
you did for the New Profile Session. .. option described above, provide information about the profile data
file, the executable file, and the location of the source files. Notice that the new profile contains a Scale
column in its Statistics table.

Note

Another method to open profiles for scalability comparison is by using the —scal e command-line
option explained in “Profiler Invocation and Initialization,” on page 131.

For more information on scalability, refer to “Scalability Comparison,” on page 144.

e Print... — Select this option to make a hard copy of the current profile data. The profiler processes data
from the Statistics table and sends the output to a printer. A printer dialog box appears.

You can select a printer from the Print Service Name combo box. Click the Print To File check box to send
the output to a file. Other print options may be available; however, they are dependent on the specific
printer and the Java Runtime Environment (JRE).

e Print to File... — Option, output is not sent to printer, but is formatted as an editable text file. After
selecting this menu item, a save file dialog box appears. Enter or choose an output file in the dialog box.
Click Cancel to abort the print operation.

 Close... — Select this option to close the current profiling session.

e Exit... — Select this option to end the profiling session and exit the profiler.

Settings Menu

Use the Settings menu to change the look and feel of the PGPROF user interface, such as fonts and chart

colors. This menu contains the following items:
173

PGPROF Menus

e Bar Chart Colors... — This menu option opens a color chooser dialog box and a bar chart preview panel.

Figure 20.3 illustrates the bar chart bar colors, and the three bar chart attributes.

Figure 20.3. Bar Chart Color Dialog Box

pgprof Bar chart colors el L2l Kl

Bar Chart Styles

l Swatches I HSE | RGE |

Recent:

® Bar Start Color O < Bar End Color
I Filled Text Color [| O Unfilled Text Color
© Background Color []

o) e |

e The bar chart bars are 'gradient filled', meaning that the color of the bar gradually transitions from the
Bar Start Color to the Bar End Color. To have solid colored bars without gradient fill, simply set both of
these colors to the same color.

e The Filled Text Color attribute represents the text color inside the filled portion of the bar chart.

* The Unfilled Text Color attribute represents the text color outside the filled portion of the bar chart.

* The Background Color attribute represents the color of the unfilled portion of the bar chart.

* The Reset button allows you to reset the selected bar chart or attribute to its previously selected color.

e The OK button accepts your changes and closes the dialog box.

Note

Closing the dialog box is the same as choosing OK.

To modify a bar chart or attribute color:
1. Click the radio button.
2. Choose a color from the Swatches, HSB, or RGB pane.

3. Click the OK button to accept the changes and close the dialog box.

174

Chapter 20. PGPROF Reference

PGPROF saves color selections for subsequent runs unless the Save Settings on Exit box is unchecked, as
described later in this section.

e Font... — This menu option opens the Font Chooser dialog box illustrated in Figure 20.4.

You may choose a new font from the list of fonts in this dialog’s top combo box. You may also choose a new
font size from the list of sizes in this dialog’s bottom combo box. As you change the font, you can preview
the changes in the Sample Text pane.

Figure 20.4. Font Chooser Dialog Box

Statistics table font

Font name [Bitstriea'm' Charter |:

J
Font size [12 FJ

garnple Text

@ox) @Gancel)

To change the font you must click the OK button is selected.

Click Cancel or close the dialog box to abort any changes.

 Show Tool Tips - Select this check box to enable tool tips. Tool tips are small temporary messages that
pop-up when the mouse pointer is positioned over a component, such as a button, in the user interface.
Tool tips provide a summary or hint about what a particular component does. Deselect this check box to
turn tool tips off.

* Restore Factory Settings...- Use this option to restore the default look and feel of the user interface to
the original settings.

* Restore Saved Settings. .. - Use this option to restore the look and feel of the GUI to the previously saved
settings. See the Save Settings on Exit option for more information.

e Save Settings on Exit - When this check box is selected, PGPROF saves the current look and feel settings
on exit. These settings include the size of the main window, position of the horizontal dividers, the bar chart
colors, the selected font, the tool tips preference, and the options selected in the View menu. When PGPROF
is started again on the same host machine, these saved settings are used. To prevent saving these settings on
exit, uncheck this check box.

Processes Menu

Use the Processes menu to report process values. This menu is enabled for multi-process programs only. This
menu contains three check boxes: Min, Max, and Avg. They represent the minimum process value, maximum
process value, and average process value respectively.

175

PGPROF Menus

By default, Max is selected. Selecting more than one check box is allowed. When only one check box is
selected, it can't be deselected, thus guaranteeing at least one criteria to be displayed.

e When Max is selected, the highest value for any profile data in the Statistics Table is reported. For example,
when reporting Time, the longest time for each profile entry gets reported when Max is selected.

e When Min is selected, the lowest value for any profile data is reported in the Right Table. AVG reports the
average value between all of the processes.

Note

If the Process check box under the View menu is selected, then each row of data in the Statistics Table
is labeled max, avg, and min respectively.

View Menu

176

Use the View menu to select which columns of data to view in the Statistics Table and Focus Panel tables. This
selection also affects the way that tables are printed to a file and a printer, as described in the Print selection of
“File Menu,” on page 172.

The View menu contains the following items:

 Configure... - Invokes a dialog box that allows you to select the columns of the Statistics Table to be
displayed, and how the data in the columns should be displayed. As illustrated in Figure 20.5, an example of
this dialog box, your choices are: Value, Percent, Bar, or All.

Figure 20.5. View | Configure Dialog Box

pgprof View column settings el L2 Kl

Configure columns view

;|
1]
=

All Walue Percent
All
Count
Time
Cost
Messages
Messages sent
Messages recvd
Bytes
Bytes sent
Bytes recvd
CPU_CLKE_UNHALTED
DATA_CACHE_MISSES
DATA_CACHE_REFILLS_FROM_L2_OR_SYSTEM
DATA_CACHE_REFILLS_FROM_SYSTEM
Filename

EEEENOOOOOO0OOOR
EEEENOOOOOO0OOOR

Function
Line
Source
Process

OOEEEONEEEOOOODOOOOOOOR
OOEEEONEEEOO0OOOOOOOR

|

]|'°~pplv] |'3"EE']

Scale

i
o]
-

Chapter 20. PGPROF Reference

e Processes... (control P) - Allows you to select individual processes for viewing in the Focus Panel table.
This menu item is enabled only when profiling an application with more than one process.

When this item is selected, a dialog box appears with a text field. In this text field, you can enter individual
processes or a range of processes for viewing. Individual processes must be separated with 2 comma. A
range of processes must be entered in the form: [start]-[end]; where start represents the first process of
the range and end represents the last process of the range.

For example, the following entry tells the profiler to display information for process 0, processes 2 through
16, and process 31. These changes remain active until they are changed again or until the profiler session is
terminated.

0, 2-16, 31

This entry tells the profiler to display information for process 0, processes 2 through 16, and process 31.
These changes remain active until they are changed again or until the profiler session is terminated.

To view all of the processes in the View tab, leave the text field blank.

e Threads... (control T) - Allows you to select individual threads for viewing in the Focus Panel table. This
menu item is enabled only when profiling an application with more than one thread.

When this item is selected, a dialog box appears with a text field. In this text field you can enter individual
threads or a range of threads for viewing. Individual threads must be separated with a comma. A range of
threads must be entered in the form: [start]-[end]; where start represents the first thread of the range and
end represents the last thread of the range. For example:

0, 2-16, 31

This entry tells the profiler to display information for thread 0, threads 2 through 16, and thread 31. These
changes remain active until they are changed again or until the profiler session is terminated.

To view all of the threads in the View tab, leave the text field blank.

Sort Menu

Use the sort menu to alter the order in which profile entries appear in the Statistics Table, the Focus Panel |
Parallelism and in the Focus Panel | Histogram. The current sort order is displayed at the bottom of each table.

In Figure 20.1, “PGPROF User Interface”, the tables have a "Sort by" clause followed with "Line No" or
"Process". This indicates the sort order is by source line number or by process number respectively.

The default sort order is by Time for function-level profiling and by Line No (source line number) for line-
level profiling. The sort is performed in descending order, from highest to lowest value, except when sorting
by filename, function name, or line number. Filename, function name, and line number sorting is performed
in ascending order; lowest to highest value. Sorting is explained in greater detail in “Sorting Profile Data,” on
page 139.

Search Menu

Use the search menu to perform a text search within the Source table.

177

PGPROF Menus

The search menu contains the following items:

Forward Search. .. (control F)

Backward Search... (control B)

Search Again (control G)

Clear Search (control Q)

PGPROF displays a dialog box when you invoke the Forward Search... or Backward Search. .. menu items.
The dialog box prompts for the text to be located. Once the text is entered and the OK button selected, PGPROF
searches for the text in the function list, source code, or assembly code displayed in the Statistics Table.
Matching text is displayed in red.

e To scroll forward to the next occurrence of the text entered in the dialog box, select the Forward Search...
menu item.

e To scroll backwards to the first previous occurrence of the text in the Source table, select the Backward
Search... menu item.

e To repeat a search, select the Search Again menu item.
* To clear the search and turn the color of all matching text back to black, select the Clear Search menu item.

¢ To abort the search, select Cancel.

Note

You can also use the Find: box in the toolbar to invoke the PGPROF search facility.

Help Menu

The Help menu contains the following items:

e PGPROF Help... — This option invokes PGPROF’s integrated help utility illustrated in Figure 20.6, “PGPROF
Help”. The help utility includes an abridged version of this manual. To find a help topic, use one of the tabs
in the left panel:

* The book tab presents a table of contents.
e The index tab presents an index of commands.

o The magnifying glass tab presents a search engine.

178

Chapter 20. PGPROF Reference

Figure 20.6. PGPROF Help

=) jﬂ
O[T a

PGl P_erfurmanl:e Prufiler)
. Ij Introduction Getting Started with the PGPROF Profiler
o[Command Line Opt:
¢ [J Using PGPROF |:
o] PGPROF Graphical I|:| PGPROF provides a way to visualize and diagnose the
o 9 PGPROF Data and Al performance of the components of your program.
o I pgcollect Reference Using tables and graphs, PCPROF associates execution
| time with the source code and instructions of your
prograrm, allowing wou to see where and how exacution
time is spent. Through resource utilization data and
compiler feedback information, PCPROF also provides
features for helping you to understand why certain
parts of your program have high execution times,

[»

[System Environmer|

You can also use the PGPROF profiler to profile parallel
programs, including multiprocess MPI programs,
multi-threaded programs such as QpenMP programs,
or a combination of both. PGPROF provides views of the
performance data for analysis of MPl communication,
multiprocess and multi-thread load balancing, and
scalability.

F] i » Using the Common Compiler Feedback Format (CCFF),

[«]

Each help page, displayed on the right, may contain hyperlinks, denoted in underlined blue, to terms
referenced elsewhere in the help engine.

Use the arrow buttons to navigate between visited pages.

Use the printer buttons to print the current help page.

 About PGPROF. .. — This option opens a dialog box with version and contact information for PGPROE

PGPROF Toolbar

As illustrated in Figure 20.7, the PGPROF toolbar provides navigation shortcuts and controls for frequently

performed operations.
Figure 20.7. PGPROF Toolbar
Dropdown List HotSpot ane higher
Scalability of Parformance than where yau ara
Analysis Forward Find Entry Measurements
i g S Bk iy Memig Hottest Maxt Lowar
l l Nt Biovitis HotSpaft HotSpot
i ' + + [= =
2 & @ ¢d- [Fin [*| & @ [Hotspat: Tirre =] & %¢ %
R = e ~
N N
g =R
Prifile Search Controls HotSpot controls
Sessian

179

PGPROF Toolbar

180

The toolbar includes these buttons and controls:

* New Profile Session button - clicking this button is the same as selecting File | New Profile Session. ..

from the menu bar.
Print button - clicking this button is the same as selecting File | Print. .. from the menu bar.

Scalability Analysis button - clicking this button is the same as selecting File | Scalability Comparison. ..
from the menu bar.

e Forward and Back buttons - click these buttons to navigate forward and back to previous and subsequent

views, respectively.

Use the down-arrow to display the full list of views, and to select a view to jump to. These lists use a notation
to describe the profile views as follows:

profile_data file@ource_file@outi ne@i ne@ddress

The address field is omitted for line-level views, and both the line and address fields are omitted for routine-
level views. For example, the following item in a list would describe a view that uses profile data from
pgpr of . out , and is displaying line 370 in the routine named sol ver in source file mai n. f .

pgpr of . out @rai n. f @ol ver @70
Search controls - use these to locate information. The controls include:

* A text box labeled Find:. Entering a search string here and hitting Ent er is the same as using the dialog
box invoked from the Search | Forward Search. .. menu bar item.

e Two buttons labeled with down and up arrows, respectively. These buttons provide Search Next and
Search Previous operations, similar to Search | Search Again. Search Next searches for the next
occurrence of the last search string below the current location, and Search Previous searches for the
next occurrence above.

HotSpot Navigation controls - use these to navigate to the most significant measurements taken in the
profiling run. The controls include:

e A drop-down menu labeled HotSpot:, which you use to select the specific performance measurement of
interest.

e Three navigation buttons, containing Forward and Back icons with associated plus (+) and minus (-)
signs.

When the profile is first displayed, the Statistics Table selects the row for the routine with the highest
measured Time as though you had clicked on that row. To navigate to the row with the next-highest Time,
you click on the button labeled with the Forward icon and the minus (-) sign, denoting the next Time
HotSpot lower than the current one. Once you have navigated to this second HotSpot, the Back HotSpot
buttons are activated, allowing you to navigate to the hottest HotSpot using the "<<" button, or to the
next higher Time, using the "<" button.

You can use the HotSpot drop-down menu to change the measurement used to identify the HotSpots. The
default selection in the HotSpot menu is 7ime, assuming that Time is one of the available measurements.
You can click on the down-arrow in the drop-down menu to select any other metric listed in the menu,

Chapter 20. PGPROF Reference

then click the "Hottest" button to navigate to the row showing the routine with the highest measured
value for that metric.

PGPROF Statistics Table

This section describes the PGPROF Statistics Table. The Statistics Table displays an overview of the
performance data, and correlates it with the associated source code or assembly instructions. This is where
you should start when analyzing performance data with PGPROF.

The Statistics Table displays information at up to three levels, depending on the type of profile data collected,
how the program was built, and whether the PGPROF source file search path has been set to include the
program source directories.

Performance Data Views

The Statistics Table allows you to zoom in and out on the components of your program by providing several
views: the routine-level view, the line-level view, and the assembly-level view.

e The initial view when you invoke PGPROF is the routine-level view.

* To navigate to the line level from the function level, click on the Statistics Table row corresponding to the
function of interest.

* To navigate to the assembly code level from the line level, click the assembly code icon, the plus (+)
symbol, on the Statistics Table row that corresponds to the source line of interest.

Note

You can use the View | Configure. .. menu option to configure the data shown in the Statistics Table.

Routine-level view

The routine-level view shows a list of the functions or subprograms in your application, with the performance
data for that routine in the same row of the table. In addition, if there is any compiler feedback information for
the routine, a round button containing the letter 'i' is at the far left of the row. Clicking that button populates
the Compiler Feedback tab with the compiler feedback relating to that routine.

181

PGPROF Statistics Table

Line-level View

Figure 20.8. Routine-level View

File Settings Processes Yiew Sort Search Help
BsSd ¢~ [Find: |i] db gp [HntSpnt: Time |i] 5
Function Time
@ Perl_pp_rand | 0.111111 = 23%
@ Perl_pp_modulo - 0.083859 = 18%
@ Perl_runops_standard (I 0.044444 = 9%
@ Perl_pp_and | 0.033333 = 7%
® Perl_sv_setiv] 0,033333 = 7Y%
@ Perl_pp_ot] 0.033333 = 7%
® Perl_pp_srand] 0.033333 = 7Y%
® Perl_pp_predec] 0,022222 = 9%
@ Perl_pp_nextstate [0.022222 = 5%
@ Perl_pp_next m 0,022222 = 5%
® Perl_pp_concat m 0.022222 = 9%
__C_nhsetd] 0.011111 = 2%
@ Perl_sv_setuy] 0.011111 = 2%
Sor By Time

Display @| Thread || Process.Threads |

Process Tirme
O (Perl_pp_rand)

Sort By Time

m Histogram l @Cnmpiler Feedback l System Information l Accelerator J
| Profiled: . /perlbmk on Mon Nov 02 16:48:39 CET 2009 for 0.488889 seconds
| Profile: ./ pgprof.out

You access the line-level view of a routine, illustrated in Figure 20.9, “Line-level View”, by clicking that

routine's row in the routine-level view. PGPROF opens a new tab showing the line-level information for the
routine. The tab label is the routine name and the tab contains an x which allows you to close the tab when you
are done viewing the source code. The Statistics Table in the new tab shows the source code for the selected

function, with performance data and Compiler Feedback buttons as with the routine-level view.

182

Chapter 20. PGPROF Reference

Figure 20.9. Line-level View

File Settings Processes Miew Sort Search Hzlp
== B [Find: |?] db gp [HutSput: Tirme |?] ¥
Line srofppoc Tirme -
@ 1618 die("Hew!l Call srand firstl"); ||
1619 B
® 1620 if (value » 1.0) {
1621 AYowarni"Making number O-¥uwnindex ##u of ®Huvn", (unsian...
1622 numidx, nuRnums; *F
@ 1623 value = (doublel{randnums [numidx] ¥ (unsigned intivaluel; 0.111111 =]
1624 } oelse { A% and This is a *real® hack */
1625 A% The range of the number is (for a 32-hit machinel 2A3...
1626 A% S5ince the numbers should have heen generated on a 32-...
1627 (lowest common denominator, don'cha know), we Can jus...
1628 by the maximum unsigned value to get a number in the ...
1620 0-1. Because we know the maximnum, there's no need to...
1630 modulus or something Tike that.]
1631 s
1632 AYowalue = (doublel{randnums [numidx] % 4000000% /40000005 */
1633 AYowarnl"Making number O-1\nindex #u of ¥usn", numids, ... -
@ 1634 value = {Cdoublelrandnums fnumidx]) / 4294967295.0;
1635 H
® 1836 numidi += stride;
1637 numidx = numidx ¥ numnums; -
1635 it (numidx == numnums) A% Start over!l */
@ 16359 numidx ¥= numnums; =
@ aza nucn 1 Bl
[«] [| [»]
Sort By Line
s
Display | Thread || Process.Threads |
Process |Time
0 (1623)
Sort By Time
m Histogram l @Cumpiler Feedback l System Information l Accelerator J
| Profiled: ./perlbmk on Mon Nov 02 16:48:39 CET 2009 for 0.488889 seconds
| Profile: ./pgprof.out

Assembly-level View

You access the assembly-level view of a source line or routine, illustrated in Figure 20.10, “Assembly-level
View”, by clicking the assembly code icon, the plus (+) symbol, on the Statistics Table row that corresponds
to the row of interest in the line-level view. The table changes to show the assembly code, interspersed with the
source lines that were compiled to generate the code.

Note

You can use the View | Configure. .. menu option to configure the data shown in the Statistics Table.

183

PGPROF Statistics Table

Figure 20.10. Assembly-level View

- pgprof =1E1%]
File Settings Processes Miew Sort Search Help
==Y S T F] ® @ [Hotspot: Time NMEX Y
Line Jfsrofpp.c Time
® 1618 die("Hey!l Call srand firstl"); (=]
1619 1
® 1620 if {wvalue » 1.00 {
1621 SYowarn"Making number O-%¥usnindex ##0 of ¥uwn', {unsign...
1622 numidis, numnumsy; ¥
@ 1623 walue = (doublel (randnums[numidx] ¥ {unsigned intivaluel;
1623 Oxd42F67B: F2 48 F 2C FO cuttsd2si ¥xmmd, ¥rsi

1623 Dx42F687: 48 8B D 92 DE 1
1623 Ox42F680: 48 63 5 B9 DE 1

movy Ox17DESZ2{%rip),%rox 0.111111 =]

70
7o movslg Ox17DEBS (%ripd, ¥rax

1623 OxdZFe8E: 31 D2 ®arl Hedy, Hedy

1623 Dxd2FE00: BB 4 51 mowl (rcx, ¥rax, 43, ¥eax —

1623 Ox42FE593: 89 F6 mowl Hesi,Hesi

1623 Oxd2FE95: F7 F& divl Mesi, ¥eax

1623 OwdZFe97: F2 48 F 28 2 cutsided Hrdx, mmnd =

1623 Dx42FE0C: EEB 1D Jmp 0x1Dh <Ox42FEBE>

1623 OxdZFE0E: &6 90 nap

1624 + oelse { /% and this is a *real® hack */ ||

1625 A% The range of the number is (for a 32-bit machine) 243...

1626 A% 5ince the numhers should have been generated on a 32-...

1627 (TowesT common denominator, don'cha know), we can jus...

16258 by the maxinum unsigned value Lo get a number in the ...

16259 0-1. Because we know the maximum, there's no need to... =

PP ol lin 1ilen et Bud
[4]] | [+]

Sort By Line

o

Display M| Thread || Process.Threads |

Frocess |Time
0 (1623) |

Sort By Time

l Parallelism l Histogram l @Cumpiler Feedback l System Information l Accelerator J
| Profiled: ./perlbmk on Mon Nov 02 16:48:39 CET 2009 for 0.488889 seconds
| Profile: . /pgprof.out

Source Code Line Numbering

184

In the optimization process, the compiler may reorder the assembly instructions such that they can no longer
be associated with a single line. Therefore, for optimized code, a source line may actually be a code block
consisting of multiple source lines. This occurrence is common, and expected, and should not interfere with
the tuning process when using PGPROE

PGPROF sometimes shows multiple rows in the Statistics Table for a single source line. The line numbers for

such lines are shown in the Statistics Table using the notation
l'i ne. st at enent

There are several situations where this line numbering can occur:

e When there is more than one statement in a source line, as in a C/C++ program where one line contains
multiple statements, separated by semicolons (;).

e When the compiler generates multiple alternative implementations of a loop. The compiler may create
alternate versions to handle differences in the data and how it is stored in memory.

* When there is a complicated or conditional loop setup.

For these cases, it is generally safe to sum the times and counts of all the lines. However, take care, particularly
with call counts, not to double-count measurements.

Chapter 20. PGPROF Reference

PGPROF Focus Panel

The Focus Panel consists of a number of tabs that allow you to select the focus of your attention as you view the

profile data.

Figure 20.11. Focus Panel Tabs

L
I' Parallelism 1 Histogram l @ Compiler Feedback l System Information l Accelerator J

e Parallelism tab - Displays a table with detailed profile information for the current profile entry.

Figure 20.12. Parallelism Tab of Focus Panel

e L L L

Display |':‘r|:|cess][Thread][-Dcess.Threads]

Thread |CPU_CLK_UNHALTED |DATACACHE_MISSI5 |DATKCACHE_REFILI5_FRO... |DATRCACHE_REFILI5_FRO...
0 (mm_fv_u... RN, 000, Q00 = 33 IEE, 170,000 = 32 IR, 190,000 = 32 WA, 563,000 = 20%
2 (mm_fv_u... 7O, 000,000 = 26% DS, 600,000 = 26% G, 100,000 = 26% WEER, 615,000 = 26%
1 (mm_fv_u EE] 174,500,000 = 22% 13,800,000 = 22% B4, 70,000 = 22% 01,572,000 = 23%
3 {(mm_fv_u oE, 596, 200,000 = 20% W13, 250,000 = 21% IMI17,020,000 = 21% W7, 188,000 = 23%

Sort By CPU_CLK_UMHALTED

Parallelism 1 Histogram l @ Compiler Feedback l System Information l Accelerator J

e For a multi-process application, this table contains a profile entry for each application process.

e For a multi-threaded or multi-process/multi-threaded application, the Parallelism table provides the
option to view process- and/or thread-level profile information. Three buttons labeled Process, Thread,
and Process.Threads are available for you to use to toggle between these views when such views are

available. We refer to these buttons as the Process/Thread Selector buttons.

The default heading for the leftmost column is Process(es). When profiling a multi-threaded application,
the heading in the leftmost column reflects whatever is selected by the Process/Thread Selector buttons.
When the leftmost column is displaying processes or threads, denoted Pr ocess(es) . Thr eads in

the column heading, each entry is displayed using the notation (Process_ID).(Thread_ID). Following

the process/thread ID, the filename, routine name, or line number display is displayed, enclosed in
parentheses. This display provides additional ownership information of the process/thread, as well as acting
as a secondary key for sorting. For more information on sorting, refer to “Sort Menu,” on page 177.

 Histogram tab — Displays a histogram of one or more profiled data items. The performance
measurements displayed are the same as those selected in the View menu, described in “View Menu,” on

page 176.

185

PGPROF Focus Panel

Figure 20.13. Histogram Tab of Focus Panel

Time I

Cost
e N - | 1 |

Count I

FParallelism l Histogram Cumpiler Feedhack l System Information l Accelerator J

Sort By Time

Each bar graph corresponds to one of the performance measurements.
Each vertical bar corresponds to a profile entry.

The bars are sorted in the order specified in the Sort menu, described in “Sort Menu,” on page 177.
Further, the sort order of the Statistics table is reflected in the sort order of the histogram.

Clicking on a bar displays information for the corresponding profile item in the Statistics Table.

Double-clicking on a bar drills down into the profile for the portion of the program corresponding to the
bar.

Selected bars are highlighted in blue.

e Compiler Feedback tab - Displays information provided by the compiler regarding the characteristics
of a selected piece of the program, including optimization and parallelization information, obstacles to
optimization or parallelization, and hints about how to improve the performance of that portion of the code.
Such information is available at the line level and the function list level.

To access the information, click on an #nfo button displayed at the far left of the Statistics Table. If any
information is available, round, blue buttons, containing a lower-case 'i', are displayed.

1.

2.

3.

4.

3.

6.

20 fhome /deldon/Demos,/accelerate/himeno/himeno.F90 was compiled
Parallelism | Histogram | (@) Compiler Feedhack System Information l Accelerator J

Figure 20.14. Compiler Feedback Tab of Focus Panel

[»

Intansity = 1,18

4 loop=carried redundant expressions ramoved with 4 operations and 2 arrays
Cenerated 3 alternate loops for the loop

Cenerated wactor sse code for the leop

Generated 8 prefetch instructions for the loop

Cenerated 20 prefetches in scalar leop

4]

186

Chapter 20. PGPROF Reference

The information is separated into these categories of information about:

o A source line o Variables referenced inside a routine

¢ Routines referenced inside another routine ¢ How a file was compiled

Each category is represented by a wide bar that functions like a button. Clicking the bar expands the display
to show the information in that category. If no information is available in a given category, that category is
not listed.

This information is only available if the program was compiled and also linked using either the —Mpr of

or the =M nf o=ccf f option. In some cases it is necessary to build programs using profile-guided
optimization by building with —Mpf i or—Mpf o, as described in the section Profile-Feedback Optimization
using -Mpfi/Mpfo in the Optimizing and Parallelizing chapter of the PGI User’s Guide. Profile-guided
optimization can often determine loop counts and other information needed to calculate the Compute
Intensity for a given statement or loop.

System Information tab - Displays a panel containing information about the system on which the profile
run was executed. If the profile run was executed on multiple systems, there may be information for
multiple systems. As illustrated in Figure 20.15, the information can include:

Figure 20.15. System Information Tab of Focus Panel

Systarn Info for Process(ash O
- Manufacturer: AuthenticAMD
- Processor: kB-E4e

- 05 Target: linux86-54

- Cores per socket: 1

- Frequency: 2600 MHz

| Parallelism l Histogram l @ Compiler Feedbackf System Information 1 Accelerator |

* Process(es) - the process number(s), or MPI rank(s), of the processes that executed on the specified
system in the profiling run.

* Manufacturer - the processor manufacturer

e Processor - the cpu architecture on which the profiling run was executed, specified using the
architecture name used with the PGI compilers' '-tp' option. See the PGI User's Guide for more
information.

e OS Target - the operating system platform that the executable was built for. Note that although the
processor may be a 64-bit processor, the executable may target a 32-bit platform.

e Total cores - the total number of processor cores on the system

e Cores per socket - the number of processor cores per CPU. If the total cores value is 16, and the cores
per socket value is 4, then you know you are using a quad-core processor.

* Frequency - the processor frequency

187

PGPROF Focus Panel

e Accelerator tab - Displays profiling information provided by the accelerator. This information is available

in the file pgpr of . out and is collected by using pgcollect on an executable binary compiled for an
accelerator target. For more information on pgcollect, refer to Chapter 22, “pgcollect Reference’.

The profiling information is relative either to an Accelerator Region or to an Accelerator Kernel.

Accelerator Region
An accelerator region is a region of code that has been executed on the accelerator device. An
accelerator region might transfer data between the host and the accelerator device. Further, an
accelerator region can be split into several accelerator kernels.

Accelerator Kernel
An accelerator kernel is a compute intensive, highly parallel portion of code executed on an accelerator

device. Each compiler-generated kernel is code executed by a block of threads mapped into a grid of
blocks.

Figure 20.16 illustrates one possible display for the Accelerator tab, one that is relative to the Accelerator
Kernel:

Figure 20.16. Accelerator Tab of Focus Panel

Arcelerator Kernel Execution Count G603

Grid Size [E3xdZ2]
Block Size [Bdx3]
Maximum time spent in Acceleratar Kernel isecs) 0, 00a14a3
Minirumm time spent in Accalarator Kernel (secs) 0. 00E03
Awerage time spent in Accelerator Kermel (secs) 0, QOEOSE

| Parallelism l Histogram l @ Compiler Feedback l System Information | Accelerator]

PGPROF displays two Accelerator events in the Statistic table:
* Accelerator Region Time - the time, in seconds, spent in the Accelerator region

e Accelerator Kernel Time - the time, in seconds, spent in the Accelerator kernel.

When a user selects a line for which one of these events is non-zero, the table in the Accelerator tab
contains details about that event. The information displayed depends on the selection.

If a user selects a line in which both events are non-zero, then the Accelerator tab displays only Accelerator
Initialization Time, Accelerator Region Time, and Accelerator Kernel Time.

Accelerator Region Timing Information

188

When you select 2 non-zero Accelerator Region Timing item, you see the following information in the
Accelerator tab:

e Accelerator Initialization Time - the time, in seconds, spent in accelerator initialization for the selected
region.

e Accelerator Kernel Time - the time, in seconds, spent in compute kernel(s) for the selected region.

Chapter 20. PGPROF Reference

Data Transfer Time - the time, in seconds, spent in data transfer between host and accelerator memory.
Accelerator Execution Count - execution count for the selected region.

Maximum time spent in accelerator region (w/o init) - the maximum time, in seconds, spent in a
single execution of selected region.

Minimum time spent in accelerator region (w/o init) - the minimum time, in seconds, spent in a
single execution of selected region.

Average time spent in accelerator region (w/o init) - the average time, in seconds, spent per execution
of selected region.

Note

The table does not contain values that are not relevant, such as zero values or values that cannot
be computed. For example, in a routine-level profile, a routine can execute multiple accelerator
regions. In this instance, only time spent in Initialization, in the Region, and in the Kernel can be
accurately computed so other values are not displayed in the Accelerator tab.

Accelerator Kernel Timing Information

When you select a non-zero Accelerator Kernel Timing item, you see the following information in the
Accelerator tab:

Kernel Execution Count - execution count for the selected kernel.

Grid Size - the size, in 1D [X] or 2D [XxY], of the grid used to execute blocks of threads for the selected
kernel.

Block Size - the size, in 1D [X], 2D [XxY] or 2D [XxYxZ], of the grid used to execute blocks of threads
for the selected kernel.

Maximum time spent in accelerator kernel - the maximum time, in seconds, spent in a single
execution of selected kernel.

Minimum time spent in accelerator kernel - the minimum time, in seconds, spent in a single execution
of selected kernel.

Average time spent in accelerator kernel - the average time, in seconds, spent per execution of selected
kernel.

Note

When there are multiple invocations of the same kernel in which the grid-size and/or block-size
changes, the size information displayed in the Accelerator tab is expressed as a range. For example,
if the same kernel could be executed with a 2D-block of size [2,64] and a 2D-block of size [4,32],
then the size displayed in Accelerator tab is the range: [2-4, 32-64].

189

190

Chapter 21. The PGPROF
Command Line Interface

The user interface for non-GUI (Win32) versions of the PGPROF profiler is a simple command language.
This command language is available in the profiler through the —t ext option. The language is composed
of commands and arguments separated by white space. A pgprof> prompt is issued unless input is being
redirected.

This chapter describes the PGPROF profiler command line interface, providing both a summary and then more
details about the commands.

Command Description Syntax

This chapter describes the profiler’s command set.

e Command names are printed in bold and may be abbreviated as indicated.
 Arguments enclosed by brackets (‘[*']’) are optional.

e Separating two or more arguments by ‘I’ indicates that any one is acceptable.
 Argument names in italics are chosen to indicate what kind of argument is expected.

 Argument names that are not in italics are keywords and should be entered as they appear.

PGPROF Command Summary

Table 21.1 summarizes the commands for use in the non-GUI version of PGPROF, providing the applicable
arguments and a brief description of the use of each command. The next section provides more details about
each command.

191

PGPROF Command Summary

192

Table 21.1. PGPROF Commands

Name Arguments Usage
d[isplay] [display options] | all | none Specify display information.
he[lp] [command] Provide brief command synopsis.
h[istory] [size] Display the history list, which stores
previous commands in 2 manner similar
to that available with csh or dbx.
I[ines] function [[>] filename] Print (display) the line level data together
with the source for the specified function.
a[sm] routine [[>] filename] Print (display) the instruction and line
level data together with the source and
assembly for the specified routine.
lo[ad] [datafile] Load a new dataset. With no arguments
reloads the current dataset.
m|[erge] datafile Merge the profile data from the named
datafile into the current loaded dataset.
pro[cess] processor_num For multi-process profiles, specify the
processor number of the data to display.
plrint] [[>] filename] Print (display) the currently selected
function data.
q[uit] Exit the profiler.
sel[ect] calls | timecall | time | cost | cover | | Display data for a selected subset of the
all [[>] cutoff] functions.
so[rt] [by] [max | avg | min | proc | thread] |Function level data is displayed as a sorted
calls | cover | timecall | time | cost | |list.
name | msgs | msgs_sent | msgs_recv
| bytes | bytes_sent | bytes_recv | visits
| file]
src[dir] directory Set the source file search path.
s[tat] [no]minl[no]avgl[no]maxI[no]procl |Set which process fields to display (or
[no]thread|[no]all] not to display when using the arguments
beginning with “no”)
th[read] thread_num Specify a thread for a multi-threaded
process profile.
t[imes] raw | pct Specify whether time-related values
should be displayed as raw numbers or as
percentages. The default is pct.
! (history) !'I'num | -num | string Repeat recent commands

Chapter 21. The PGPROF Command Line Interface

Command Reference

asm

ccff

This section provides more details about the commands in the previous Command Summary Table.

a[sn] routine [[>] filenane]

Print (display) the instruction and line level data together with the source and assembly for the specified
routine. If the filename argument is present, the output is placed in the named file. The '>' means redirect
output, and is optional. This command is only available on platforms that support assembly-level profiling.

c[cff] file[@unction] [|ine_nunber]

Print compiler feedback for the specified file, function, or source line. PGI compilers can produce information
in the Common Compiler Feedback Format (CCFF) that provides details about the compiler's analysis and
optimization of your program. Often this information can illuminate ways in which to further optimize a
program.

The CCFF information is produced by default when using the —Mpr of ' compiler option, but if you are profiling
with the pgcollect command, you must build your program with the '-M nf o=ccf f ' compiler option to
produce this information.

display

help

dlisplay] [display options] | all | none

Specify display information. This includes information on minimum values, maximum values, average values,
or per processor/thread data. Below is a list of possible display options:

[no]calls [no]cover [no]time [no]timecall [no]cost [no]proc [no]thread [no]msgs [no]msgs_sent
[no]msgs_recv [no]bytes [no]bytes_sent [no]name [no]file [no]line [no]lineno [no]visits [no]scale
[no]stmtno

he[| p] [conmand]

Provide brief command synopsis. If the command argument is present, only information for that command is
displayed. The character "?" may be used as an alias for help.

history

lines

h[istory] [size]

Display the history list, which stores previous commands in a2 manner similar to that available with csh or dbx.
The optional size argument specifies the number of lines to store in the history list.

I[ines] function [[>] fil enane]

193

Command Reference

Print (display) the line level data together with the source for the specified function. If the filename argument
is present, the output is placed in the named file. The '>' means redirect output, and is optional.

load
| o[ad] [datafil e]
Load a new dataset. With no arguments reloads the current dataset. A single argument is interpreted as a new
data file. With two arguments, the first is interpreted as the program and the second as the data file.

merge
nf erge] datafile
Merge the profile data from the named datafile into the current loaded dataset. The datafile must be in
standard pgprof.out format, and must have been generated by the same executable file as the original dataset
(no datafiles are modified.)

process
pro[cess] processor_num
For multi-process profiles, specify the processor number of the data to display.

print
p[rint] [[>] filenane]
Print (display) the currently selected function data. If the filename argument is present, the output is placed in
the named file. The '>' means redirect output, and is optional.

quit
gl uit]
Exit the profiler.

select
sel[ect] calls | tinecall | tine | cost | cover | all [[>] cutoff]
Display data for a selected subset of the functions. This command is used to set the selection key and
establish a cutoff percentage or value. The cutoff value must be a positive integer, and for time related fields is
interpreted as a percentage. The '>' means greater than, and is optional. The default is all.

sort
so[rt] [by] [max | avg | min | proc | thread] calls | cover | tinecall | tinme
cost | name | nmsgs | msgs_sent | nsgs_recv | bytes | bytes_sent
bytes_recv | visits | file]
Function level data is displayed as a sorted list. This command establishes the basis for sorting. The default is
max time.

srcdir

src[dir] directory

194

Chapter 21. The PGPROF Command Line Interface

Set the source file search path.

stat
s[tat] [no] m n|[no]avg| [no] max| [no] proc| [no] t hread| [no] al |]
Set which process fields to display (or not to display when using the arguments beginning with “no”
thread
th{read] thread_num
Specify a thread for a multi-threaded process profile.
times
t[imes] raw | pct
Specify whether time-related values should be displayed as raw numbers or as percentages. The default is pct.
I'(history)

1
Repeat previous command.
I num

Repeat previous command numbered num in the history list.

I - num

Repeat the num-th previous command numbered num in the history list.

I string

Repeat most recent command starting with string from the history list.

195

196

Chapter 22. pgcollect Reference

The pgcollect command is a development tool used to control collection of performance data for analysis
using the pgprof performance profiler. This chapter describes how to use pgcollect.

pgcollect Overview

pgcollect runs the specified program with the supplied arguments. While the program runs, pgcollect gathers
performance statistics. When the program exits, the data that is gathered is written to a file. You can then use
this file in the PGPROF performance profiler to analyze and tune the performance of the program.

The pgcollect command supports two distinct methods of performance data collection:

Time-based sampling
Creates a time-based profile that correlates execution time to code, showing the amount of time spent in
each routine, each source line, and each assembly instruction in the program. For more information on
time-based profiling, refer to “Time-based Sampling,” on page 129.

Event-based sampling
Supported only on liinux86-64 systems, creates an event-based profile that correlates hardware events
to program source code. In this method, pgcollect uses hardware event counters supported by the
processor to gather resource utilization data, such as cache misses.

Note

This method requires co-installation of the open source performance tool OPr of i | e.

For more information on event-based profiles, refer to “Event-based Sampling,” on page 130.

Both forms of the pgcollect command gather performance data that can be correlated to individual threads,
including OpenMP threads, as well as to shared objects, dynamic libraries, and DLLs.

For current availability of pgcollect and pgcollect features on a given platform, refer to the PGI Release
Notes.

Invoke pgcollect

The command you use to invoke pgcollect depends on the type of profile you wish to create.

197

Build for pgcollect

Use the following command to invoke pgcollect for time-based sampling:
pgcol l ect [-tinme] program [program args]

Use the following command to invoke pgcollect for event-based sampling available on Linux86-64:
pgcol | ect [<event _options>] programor_script [programor_script_args]

progr amor progr am or _scri pt are either the filename of the program to be profiled, or the name of
a script that invokes the program. When applicable, you can provide arguments for the specified program or
script: program_args or program_or_script_args.

The following sections describe the pgcollect command-line options in more detail.

Build for pgcollect

If your program was built with PGI compilers, you do not need to use any special options to use pgcollect.
However, if your programs are built using the - M nf o=ccf f option, then PGPROF can correlate compiler
feedback and optimization hints with the source code and performance data.

If you built your program using a non-PGI compiler, consider building with debugging information so you can
view source-level performance data. Be aware, however, that building with debugging information may change
the performance of your program.

General Options

This section describes options that apply to all forms of the pgcollect command. For options specific to
controlling time-based or event-based profiling, refer to “Time-Based Profiling Options” and “Event-based
Profiling Options” respectively.

v
Display the version of pgcollect being run.

-help
Show pgcollect usage and switches.

Time-Based Profiling

Time-based profiling runs the program using time-based sampling. This form of pgcollect uses operating
system facilities for sampling the program counter at 10-millisecond intervals.

Time-Based Profiling Options

-time
Provide time-based sampling only. The sampling interval is 10 milliseconds. This option is the default.

When using pgcollect for time-based sampling, you can have multiple instances of pgcollect running
simultaneously, but doing so is not recommended, since this will probably skew your performance results.

Event-Based Profiling

You can use the pgcollect command on linux86-64 to drive an OProfile session. Event-based profiling
provides several predefined data collection options that gather data from commonly used counters.

198

Chapter 22. pgcollect Reference

For event-based sampling, the only required argument is the pr ogr am or _scri pt, which is either the
filename of the program to be profiled, or the name of a script that invokes the program. Using a script can
be useful if you want to produce an aggregated profile of several invocations of the program using different
data sets. In this situation, use the - exe option, which allows the data collection phase to determine which
program is being profiled.

When applicable, you can provide arguments for the specified program or script.

Since OProfile provides only system-wide profiling, when you invoke pgcollect it provides a locking
mechanism that allows only one invocation to be active at a time.

Note

The pgcollect locking mechanism is external to OProfile and does not prevent other profile runs
from invoking opcontrol through other mechanisms.

Root Privileges Requirement

When using pgcollect for event-based profiling, you control the OProfile kernel driver and the sample
collection daemon via the OProfile command opcontrol. This control requires root privileges for
management operations. Thus, invocations to opcontrol, performed by pgcollect, are executed via the sudo
command.

When using pgcollect, you control the OProfile kernel driver and the sample collection daemon via the
OProfile command opcontrol. This control requires root privileges for management operations. Thus,
invocations to opcontrol, which are performed when pgcollect is used, are executed via the sudo command.

One technique that requires minimal updates to the / et c/ sudoer s files is to assume that all users in a
group are allowed to execute opcontrol with group privileges. For example, you could make the following
changes to / et ¢/ sudoer s to permit all members of the group 'sw' to run opcontrol with root privileges.

User alias specification
User Alias SW= %w

SW ALI._.=N03ASSV\D: [usr/ bi n/ opcontr ol
Interrupted Profile Runs

pgcollect shuts down the OProfile daemon when interrupted. However, if the script is terminated with
SIGKILL, you must execute the following:

pgprof -collect -shutdown

Executing this command is important because if the OProfile daemon is left running, disk space on the root file
system is eventually exhausted.

Event-based Profiling Options

-check-events
Do not execute a profiling run, just check the event settings specified on the command line.

199

Defining Custom Event Specifications

-exe <exename>
Specify the program to be profiled. You only need to use - exe when the file argument is a script that
invokes the program.

-list-events
List profiling events supported by the system.

-shutdown
Shut down the profiling interface. You only need to use this option in rare cases when a profiling run was
interrupted and OProfile was not shut down properly.

Predefined Performance Data Collection Options

-allcache
Profile instruction, data, and branch cache misses

-dcache
Profile various sources of data cache misses

-imisses
Profile instruction cache-related misses.

-hwtime <millisecs>
Provide time-based sampling only. Specify the sampling interval in milliseconds.

User-Defined Performance Data Collection Options

-es-function <name>
Set profile events via a shell function.

-event <spec>
Manually add an event profile specification. An event profile specification is an opcontrol '--event'
argument; that is, the event profile specification provided on the command line is appended to '--event="'
and passed as an argument to opcontrol.

-post-function <name>

Execute a shell function after profiling is complete.

Defining Custom Event Specifications

The pgcol | ect ' - event =EVENTSPEC options are accumulated and used to specify events to be
measured. For more information about these events, refer to the opcontrol man page.

x04 processors provide numerous event counters that measure the usage of a variety of processor resources.
Not all processors support the same set of counters. To see which counters are supported on a given system,
use the following command:

pgcol l ect -list-events

The output of this command also provides information on event masks (the hex value in the event
specification) and minimum overflow values.

200

Chapter 22. pgcollect Reference

Here are two examples of shell functions providing event specifications to pgcollect. These functions would be
implemented in a . pgopr un file:

Example 22.1. Custom Event Example 1

This function specifies the events needed to calculate cycles per instruction (CPU_CLK_UNHALTED /
RETIRED_INSTRUCTIONS). The fewer cycles used per instruction, the more efficient a program is.
cpi _data () {

event [${ #event
event [${ #event

--event =CPU_CLK_UNHALTED: 500000: 0x00: 0: 1

[@
[@}]=--event =RETI RED_| NSTRUCTI ONS: 500000: 0x00: 0: 1

[

]:
]:
}

To use these events, invoke pgcollect with the following arguments:

-es-function cpi _data
Example 22.2. Custom Event Example 2
Example 2

This function specifies events needed to determine memory bandwidth:

mem bw _data () {

event [${#event[@}] =- - event =CPU_CLK_UNHALTED: 500000: 0x00: 0: 1

event [${#event[@}] =- - event =SYSTEM READ RESPONSES: 500000: 0x07: 0: 1
event [${#event[@}] =- - event =QUADWORD _V\RI TE_TRANSFERS: 500000: 0x00: 0: 1
event [${#event[@}] =- - event =DRAM _ACCESSES: 500000: 0x07}: 0: 1

}

To use these events, invoke pgcollect with the following arguments:

-es-functi on mem bw_dat a

201

202

Index

Symbols
.pdb file, 49
.pgdbgrc file

initialization, 3
$EDITOR, 109
32-bit Windows, 50
-allcache

pgcollect, 200
-check-events

pgcollect, 199
-dcache

pgcollect, 200
-es-function

pgcollect, 200
-event

pgcollect, 200
-exe

pgcollect, 200
-g option, -gopt option, 49
-help

pgcollect, 198
-hwtime

pgcollect, 200
-imisses

pgcollect, 200
-list-events

pgcollect, 200
-Minfo

ccff, 155
-Mprof

dwarf, 155

func, 155

hpmpi, 155

hwcts, 130, 130, 156
lines, 156
mpichl, 156
mpich2, 156
msmpi, 156
mvapich, 156
time, 130, 156
-pg, 156
-post-function
pgcollect, 200
-shutdown
pgcollect, 200
-time
pgcollect, 198
-V
pgcollect, 198

A

Accelerator
kernel, 188
kernel time, 188
region, 188
region time, 188

add

directory pathname, 121

addr
command, 120
address
32-bit float, 119
64-bit double, 118
conversion, 120
current, 118
current program, 117

disassemble locations, 23

fetch, 119

print, 13, 119

print integer, 119

print short integer, 120
read double, 118

read integer, 118
return, 115

set breakpoint, 106

short signed integer, 120
signed integer, 118, 119

alias
command, 121

create, 121
print, 121
remove, 126
AMDG4 Register Symbols, 53
Analyze
performance data, MPI programs,
144
performance data, multi-threaded
programs, 141
Application
terminate target, 12
tuning, 132
arguments
intepretation, 29
print name and value, 110
print names, 110
print values, 110, 110
target program, 2
arrays
Fortran, 55
large, 55
ranges, 55
subscripts, 55
arrive
command, 108
menu item, 14
ascii
command, 112
print, 13, 112
asm
PGPROF command, 193
assembly-level
debug with C++, 50
debug with Fortran, 49
debug with PGDBG GUI, 50
assign
command, 113
async command, 76
Attach
command, 98
running process, 12
Attribute
modify color, 174
Audience Description, xix

203

B
Background
color, 174
bin
command, 112
Binary
print, 13, 112
blocks
common, 56
Fortran, 56
lexical, 29
statements, 30
break
command, 31, 102, 102
conditional, 106
on variable change, 106, 106
breaki
command, 51, 102, 102
breakpoints
at address, 51
clear, 103
clear all, 103
display active, 14
display all, 103
display existing, 103
print, 102, 102
print current, 102, 102
remove, 107, 107
remove all, 107, 107
remove from address, 107
set, 15, 102, 102, 106, 106
set at address, 102
variable, 106, 106
breaks
command, 103
breaks command, 103
buttons
PGDBG, 16
Source panel, 16
Bytes
profile data, 168
received, 168
sent, 168

C
C++, 50

204

Instance Methods, 58
symbol names, 50
call
command, 58, 113
popup menu, 20
routine, 14
routine or function, 168
stack, 14
calling conventions, 50
Fortran, 49
cancel
call command, 113
Cascade Windows, 15
catch
command, 103
catch command, 103
Caveats, 168
CCFE, 127, 139
-Minfo, 155
PGPROF command, 193
CCP_SDK, 156
cd
command, 108
change
directories, 108
clear
breakpoints, 103
command, 103, 103
data, 21
search, 178
subwindow, 21
Clock
granularity, 169
resolution, 169
Close
File menu item, 21
PGPROF, 173
subwindow, 21
code
source locations, 28
Collect
performance data, MPI, 143

performance data, multi-threaded

programs, 141
Colors
background, 174

filled text, 174

modify attribute, 174

set in PGPROF, 174

unfilled text, 174
combo box

ALL selection, 17

Current Process.Thread selection,

17

Current Process selection, 17

Current Thread selection, 17

Foxus selection, 17

Source Panel, 17
command

argument interpretation, 29

blocks, 30

categories, 97

conditional execution, 108

constants, 28

control, 75

events, 31

Invoke PGDBG, 2

lists, 24

log, 122

menus, 14

modes, 27

notation, 37

PGDBG, 27

PGDBG set, 97

print use, 121

prompt, 79

prompts, PGDBG panel, 7

recently executed, 122

set, 73

Summary Table, 37

symbols, 28

syntax, 27
command line

PGDBG options, 25, 25

PGPROF options, 161
common blocks, 56
Compare

scalability, 144, 173
Compiler

feedback, 139

Feedback Format, 127
Configure

-es-function pgcollect option, 200

-event pgcollect option, 200
PGPROF, 176
-post-function pgcollect option,
200
stop mode, 76
wait mode, 77
Conformance to Standards, xix
constants, 28
cont command, 51, 98
Continue
cont command, 98
execution, 14, 14, 15, 15, 15
Control
menus, 14
control-B, 15
control-C, 21, 34
MPI use, 34
thread initialization issues, 34
control-D, 14
control-E, 15
control-E 15
control-G, 14
control-H, 14
control-I, 15
control-L, 15
Control menu, 15, 15, 15, 15
Arrive, 14
Call, 14
Cont, 14
Down, 14
Halt, 14
Run, 14
Run arguments, 14
Step, 14
Up, 14
control-N, 15
control-0, 15
control-P, 13
Control Panels
PGDBG GUI, 7, 8
control-R, 14
control-S, 14
control-T, 15
control-U, 14
control-W, 15

conventions

calling, 49

calling conventions, 50

in text, xxii
conversions, 120
convert

address, 120

address to line, 29

line to address, 29
Copyright

display, 16
core files

generation, 61

location, 62

name, 62

set size limit, 62
Cost

information in profile, 168
Count

line or function execution, 168
Counters

CPU_CLK_UNHALTED, 136
CPU

cycle count, 148
CPU_CLK_UNHALTED, 136
cread

command, 118
create

aliases, 121
Custom

subwindow, 24

D

Data
analysis, MPI programs, 144
analysis, multi-threaded
programs, 141
clear, 21
collection, 131
collection, MPI, 143
collection, multi-threaded
programs, 141
disassemble, 15
menus, 12
pop-up menu, 20
precsion, 167

Index

print type, 13

profile, 167
regenerate, 21

sort profile, 139
transfer time, 189
update, 21

view performance, 181

datafile

PGPROF command line option,
161

Data menu

addr, 13
ascii, 13
bin, 13
decimal, 13
hex, 13
oct, 13
print, 13
print *, 13
string, 13
Type of, 13

dbx

command mode, 27

debug

assemble-level with C++, 50
assemble-level with Fortran, 49
assemble-level with PGDBG GUI,
50

assembly-level, 49
assembly-level commands, 51
assembly-level menu options, 50
C++, 58

command, 98

command-line interface, 51
Fortran source, 55

-g option, 49

modes, 66

MPI, 87

multilevel, 95

name translation, 50

on Microsoft Windows systems,
49

on windows, 2

parallel, 65, 73

PGDBG features, 1, 1

using memory addresses, 49

205

using registers, 49
with core files, 61
with -Munix, 50
debug mode
multilevel, 95
process-only, 67
serial, 66
threads-only, 67
dec
command, 112
decimal
print, 13, 112
declaration command, 114
declarations
print, 116
symbol, 114
decls
command, 116
default
settings, 175
define
command list to execute, 104,
104
debugger environment, 123
do event, 104
doi event, 104
event, 105
instruction-level track event, 107
instruction-level watch event, 108
read/write watchpoint, 105
read watchpoint, 105
track event, 107
watchpoint, 105
defset
command, 70, 101
delete
command, 104
event number, 104
Detach
command, 99
end debug session, 12
directory
add pathname, 121
add to search list, 126
change, 108
command, 121

206

working, 110
disable
command, 104
event number, 104
tool tips, 12
disasm command, 109
disassemble
data, 15
Memory, 109
popup menu, 20
disassembler subwindow, 13, 22
disassembly
display, 50
display
active breakpoints, 14
breakpoints, 103, 103
command, 113
curent program counter scope,
11
current program counter scope,
11
debugger settings, 123
disassembly, 50
event definition, 105
event definitions, 105
expressions, 113
local variables, 13
memory locations, 50
MPI message queues, 14
OpenMP private data, 85
PGPROF command, 193
program location, 14
registers, 13, 50, 51
routine scope, 14, 14
source file name, 18
stack traceback, 50
stack window, 13
unique thread ID, 83
do
command, 31, 104
Documentation
accessing, Xix
location, xix
doi
command, 104
Down

command, 116
menu item, 14
dread
command, 118
dump
command, 51, 118
list, 21
memory contents, 118
MPI message queue, 120
dwarf
-Mprof, 155
Dynamic p/t-set, 69

E
edit
command, 109
file, 109
enable
command, 104
tool tips, 12
enter
command, 116
entry
command, 115
Environment
debugger, 123
define, 123
variables, PGPROF, 165
Environment varaibles
threadstoconfig, 77
Environment variables
$EDITOR, 109
CCP_SDK, 156
GMON_ARDCS, 165
HOME, 3
name, 125
PATH, 3
PGI_JAVA, 4, 132
PGPROE, 165
PGPROF_DEPTH, 165
PGPROF_EVENTS, 147, 147, 165
PGPROF_NAME, 165
set, 125
system, 165
using, 131
evaluate

without printing, 122
Event-based profiling, 198
Event counters

hardware, 148

using PAPI, 147

using PGPROF -pgcollect, 146
Events, 18, 30, 102

at address, 31

at line, 31

breakpoints, 18

commands, 31

conditional, 31

counters, 131, 146

counters, Linux, 146

custom specification, pgcollect,

200

definitions, 105

delete, 104

disable, 104, 104

enable, 104

hardware triggered, 105, 105,

105

in routine, 31

-Mprof=hwcts, 156

multiple at same location, 32

PAPI_TOT_CYC, 148

parallel, 80

print, 104, 104

profile, 200

profile specification, 200

program speed, 32

settings check, 199

status, 105

track, 107

tracki, 107

watch, 107

watchi, 108
exe

PGPROF command line option,

161
Execute

command, 108, 108

conditional, 108, 108

continue, 14

rerun command, 99

run command, 100

shell function after profile, 200

single line, 14, 15

single machine instruction, 15, 15
Exit

PGPROE 173

save settings, 175
Expressions, 33

evaluate, 122

Ivalue, 115

print, 110

print formatted, 112

print with pgienv, 112

rvalue, 115

type, 115

F
Feedback
CCFF, 127
compiler, 139
messages, 140
tab, Focus Panel, 186
feedbackonly
PGPROF command line option,
161
file command, 109
File menu, 21
Files
.exe, 49
.pdb, 49
.pgdbgre, 3
Attach to Target menu, 12
available, 18
change, 109
change source file, 109
command, 116
DetachTarget menu, 12
edit, 109
execute contents, 125, 126
Exit menu item, 12
initialization hierarchy, 3
menu, 12
open for debug, 12
Open Target menu, 12
print profile data, 173
profile output, 131
source file list, 116

Index

Source File selector, 18
source list, 18, 116
floating point
stack register symbols, 52
Focus
Accelerator tab
Accelerator, 188
Compiler Feedback tab
Compiler, 186
histogram tab
Historgram, 185
panel in PGPROF, 171, 185
parallelism tab
Parallelism, 185
PGDBG panel, 8
System Information tab
System, 187
focus command, 70
Fonts
change, 12
default in debugger, 12
select, 12
set, 175
fork
shell, 125
Fortran
debugging, 55
symbol names, 49
Fortran 90 modules, 57
fp
command, 117
frame pointer, 117
value, 117
fread
command, 119
function
command, 120

G

General Registers, 53
symbols, 52
Global
commands, PGDBG, 116
Global commands, 75
GMON_ARCS, 165
gmon.out, 156, 156

207

grid, 9
color meaning, 9
refresh, 15

group
selection, 17

GUI
control panels, 7, 8
PGDBG, 5

H
halt
command, 89, 99
control-C, 34
running processes, 14
running threads, 14
Hardware
counters, profile with, 146
event counters, 131, 148
read/write watchpoint, 105
read watchpoint, 105, 105
watchpoint, 105
Help
About PGDBG menu item, 16
menu, 16, 178
on PGDBG commands, 16
pgcollect, 198
PGDBG menu item, 16
PGPROF command, 193
PGPROF command line option,
161, 162
profiler usage, 198
utility, 16
window, 16
help
command, 121
Hex
print, 13
hex
command, 113
hexadecimal
print, 113
Histogram tab
PGPROE, 185
history
command, 122
modifiers, 122

208

PGPROF command, 193, 195
repeat command, 125
resize list, 122
HOME
environment variable, 3
Host
defined, 1
HotSpot
controls, 138
navigation, 180
HPF, xix
HPMPI
debug, 91
-Mprof, 155
hwatchboth command, 105
hwatch command, 31, 105
hwatchread command, 105, 105
hwcts
-Mprof, 156
hybrid applications
parallel debugging, 95

PGPROF command line option,
161
icons
stop sign, 18
ID
process, 99
Identifiers
numeric process, 9
numeric thread, 9, 9
identifiers
declarations, 116
if else
parallel statements, 81
if statement, 30
ignore
command, 105
signals, 105
ignore command, 105
Information
profile summary, 172
Initialization
PGDBG, 2

Initialize
PGDBG, 3
PGDBG file, 3
Inlining
routines, 140
instance
methods, 58
instruction
tracing, 106
integer
print as binary, 112
print as decimal, 112
print as hexadecimal, 113
print as octal, 113
Intensity
computational, 140
messages, 140
internal
procedures, 56, 56
interrupt
control-C, 34
Invocation
PGDBG, 2
Invoke
custom subwindow, 13
memory dumper subwindow, 13
pgcollect, 198, 198
PGDBG, 2
PGDBG Disassembler subwindow,
13
PGDBG for MPI debug, 90
profiler, 131
subwindows, 18
iread
command, 119

J

jarg
PGPROF command line option,
162

Java
-jarg, 162
PGPROF, 132
specify location, 4, 132
version selection, 4, 132

VM

Java, 132
Java and PGDBG, 4, 4

K

Kernels
accelerator, 188
accelerator time, 188

L
language

command, 122
Launch

profiler, 131
Lexical blocks, 29
Libraries

HPMPIL, 155

MPI routines, 144
line command, 120
lines

command, 109

PGPROF command, 193

Lines
-Mprof option, 156
numbering, 168, 184

profiling and optimization, 169

table, print, 109
Linux

profiles, 130
list

command, 109

source lines, 109
load

PGPROF command, 194

Locate
routine, 15
string, 110, 110
Locate Routine, 15
popup menu, 20
Location
change, 108
current, 108
program, 14
log
all commands, 122
command, 122, 122
Iread

command, 119
Ival

command, 115
Ivalue

defined, 115

M

machine language
listings, 23
Main routine
name, 56
Manual organization, xx
Measure
time, 167
Memory
access commands, 118
disassemble, 109
display locations, 50
dump, 13, 118
subwindow, 21, 22
Menu items
About PGDBG, 16
Addr, 13
Arrive, 14
ASCII, 13
Attach to Target, 12
Backward search, 178
Bar Chart Colors, 174
bin, 13
binary, 13
Call, 14
Cascade Windows, 15
Clear Search, 178
Close, 173
Configure..., 176
Cont, 14
Custom, 13
Dec, 13
decimal, 13
Detach Target, 12
Disassembler, 13, 15
Down, 14
Events, 14
Exit, 12, 173
Font, 12, 175
Forward search, 178

Halt, 14

Help, PGPROE, 178
Hex, 13
hexadecimal, 13
Locals, 13

Locate Routine, 15
Memory, 13
Messages, 14

new Window, 172
Next, 15

Nexti, 15

Oct, 13

octal, 13

Open Profile, 172
Open Target, 12
PGDBG Help, 16
PGPROF Help, 178
print, 13

Print, 173

print *, 13

Print to File, 173
Processes, 177
Refresh, 15
Registers, 13

Restore Factory Setting, 12

Index

Restore Factory Settings, 175, 175

Restore Saved Setting, 12
Restore Saved Settings, 175

Run, 14
Run arguments, 14

Save Settings on Exit, 12, 175

Scalability comparison, 173

Search Again, 15, 178
Serach Backward, 15
Serach Forward, 15
Set Breakpoint, 15
Show Tool Tips, 12, 175
Stack, 13

Step, 14

Stepi, 15

Step Out, 15

string, 13

Threads..., 177

type, 13

Up, 14

Menus

209

assembly-level options, 50
Command, 14
Control, 14
Data, 12
Data pop-up, 20
file, 12
File, 21
File, PGPROF, 172
Help, 16
Options, 15
PGPROF, 171, 172
pop-up, 18
Processes, PGPROF, 175
Settings, 173
Source Panel, 18
Window, 13
merge
PGPROF command, 194
Messages
areas, 18
debug
MPI application, 24
feedback, 140
inlined, 140
intensity, 140
MPI, 14, 88
MPI queue, 120
number received, 168
number sent, 168
queues, 88
received, 168, 168
sent, 168, 168
Source panel, 18
status, 79
status in PGDBG, 18
subwindow, 24
Microsoft Windows
debug, 49
Miscellaneous commands, 121
Modes
stop, 76
wait, 76
modules
debug access, 57
Fortran 90, 57
procedures, 57

210

MPI
data analysis, 144
data collection, 143
debug considerations, 87
Debugging, 88
debug multi-process, 87
global rank, 92
groups, 89
library routines, 144
Listener process, 89
listener processes, 89
local process, 92
message queue dump, 120
message queues, 14, 88, 88
MPICH-1, 93
multi-process debug, 90
parallel debug, 87
process, local, 92
sample profile, 144
MPI_COMM_WORLD, 89
MPICH
support, 93
MPICH-1
-Mprof option, 156
MPICH-2
debug, 91
-Mprof option, 156
mqdump
command, 120
MSMPI
debug, 91
-Mprof option, 156
multilevel
debugging, 95
error messages, 96
mode status, 96
multilevel debugging, 67
Multi-threaded
data analysis, 141
data collection, 141
profiling, 141
MVAPICH
debug, 91
-Mprof option, 156

N

Names

command, 117

declarations, 117

identifiers, 117

print declarations, 117

registers, 117

remove alias, 126

translation, 50
Navigation

HotSpot, 138, 180

jump to profile, 138

previous PGPROF view, 138

Profile, 135

select profile, 138
Network

slow connections, 132
Next

PGDBG command, 15
next

command, 99
Nexti

PGDBG command, 15
nexti

command, 51, 99
noprint

command, 122

O

oct

command, 113
Octal

print, 13, 113
OpenMP, xix

parallel debug, 83

private data debug, 84
Operators

@, 33, 50, 116

in expressions, 55

range, 33

scope, 56

scope qualifier @, 28
OProfile

pgcollect, 199, 199
Optimize

code, 2

-g use, 2

Options

command line, 25, 25, 25

-g, 2,49

-gopt, 49

menu, 15, 15, 15, 15, 15, 15
Disassembler, 15

menus, 15

-Minfo=ccff, 155

-Mprof, 143

-Mprof=dwarf, 155

-Mprof=func, 155, 155

-Mprof=hwcts, 156

-Mprof=lines, 156

-Mprof=mpich1, 156

-Mprof=mpich2, 156

-Mprof=msmpi, 156

-Mprof=mvapich, 156

-Mprof=time, 156

-Munix, 50

-00, 2

-pg, 156

options

MPI profile, 143

Options menu

Refresh, 15

p/t-sets, 68

commands, 70

create, 71, 71

current, 68, 70

define dynamic, 69

define static, 69

dynamic vs static, 69

Editor, 72

ignore, 74

modify, 72

multilevel debug mode, 69
multiple threads and processes,
80

notation, 68

override current, 74

prefix, 68, 70

process-only debug mode, 69
remove, 72

select, 72
target, 68
thread-only debug mode, 68
undefine, 71
Panels
PGDBG Command/Focus, 7
PGDBG Focus, 8
PGDBG GUI, 6
PGDBG Source, 10
source, 18
PAPI
event counters, 147
overview, 130
PAPI_TOT_CYC, 147
event, 148
Parallel
debug commands, 73
debugging, 65
debugging, overview, 65
debug hybrid apps, 95
debug with MPI, 87
events, 80
program profiles, 140
regions, stepi command, 100
statements, 81
statements, return, 82
PATH
environment variable, 3
pathname
add to search path, 121
pause, 126
pc
command, 117
Performance
-allcache pgcollect option, 200
API, 130
assembly-level view, 183
collect data, 131
data views, 181
-dcache pgcollect option, 200
displyed, 181
-dmisses pgcollect option, 200
line-level view, 182
MPI, 143
multi-threaded programs, 141
routine-level view, 181

Index

pgcollect, 146, 197

-allcache option, 200
-check-events option, 199
custom event specification, 200
-dcache option, 200
-es-function option, 200
event-based, 198

-event option, 200

-exe option, 200

help, 198

-hwtime option, 200
-imisses option, 200
invoking, 198, 198
-list-events option, 200
OProfile, 199, 199
-post-function option, 200
-shutdown option, 200
time-based, 198

-time option, 198

version, 198

-V option, 198

PGDBG

Assembly-level debugging, 49
Buttons, 16

C++ debugging, 58

Combo boxes, 17
Command/Focus panel, 7
Command-Line Arguments, 25,
25,25

Command menu, 14
Command prompt, 79
Commands, 27, 97
Commands Summary, 37
Control menu, 14
Conversions, 120

Custom Subwindow, 24

Data menu, 12

Debugger, 1, 1

Debug modes, 66, 95
Default GUI appearance, 6
Disassembler Subwindow, 22
Events, 30, 102

Expressions, 33

File Menu, 12

Focus panel, 8

Fortran arrays, 55

211

Fortran Common Blocks, 56
Fortran debugging, 55
Graphical user interface, 3, 5
GUI with All Control Panels, 7, 8
Help Menu, 16

Initialization, 2

initialize, 3

Internal Procedures, 56
Invocation, 2

Main Window, 5, 20

Memory access, 118

Memory Subwindow, 22
Messages Subwindow, 19
Miscellaneous commands, 121
Name of main routine, 56
Operators, 34, 55

Options menu, 15

Printing and setting variables, 110
Process commands, 73
Process control commands, 98
Program I/0 Window, 5
Program locations, 108
Register access, 117

Registers Subwindow, 23
Register symbols, 28

Scope, 116

Scope rules, 28

Settings Menu, 12

Source code locations, 28
Source panel, 10

Source panel buttons, 16

start session, 3

Statements, 30

Status messages, 79
Subwindows, 20

Symbols and expressions, 113
Thread commands, 74

Wait modes, 77

window components, 6
Window menu, 13

PGDBG Commands

addr, 120
alias, 121
arrive, 108
ascii, 112
assign, 113

212

attach, 38, 98

bin, 112

break, 102

break command, 102
breaki, 51, 102
breaki command, 102
breaks, 103

breaks command, 103
call, 113

catch, 103

catch command, 103
cd, 108

clear, 103

clear command, 103
cont, 51, 98

cread, 118

debug, 98

dec, 112
declaration, 114
decls, 116

defset, 70

defset command, 101
delete, 104

detach, 99

directory, 121
disable, 104

disasm, 109

display, 113

do, 104

doi, 104

down, 116

dread, 118

dump, 51, 118

edit, 109

enable, 104

enter, 116

entry, 115

file, 109

files, 116

focus, 70

focus command, 101
fp, 117

fread, 119

function, 120

global, 116

halt, 99

help, 121

hex, 113

history, 122
hwatch, 105
hwatchboth, 105
hwatchread, 105, 105
ignore, 105
iread, 119
language, 122
line, 120

lines, 109

list, 109

log, 122, 122
Iread, 119

Ival, 115
mqdump, 120
names, 117
next, 99

nexti, 51, 99
noprint, 122

oct, 113

pc, 117

pgienv, 123
print, 51, 110
printf, 112

proc, 99

procs, 99

pwd, 110

quit, 99

regs, 51, 117
repeat, 125, 125
rerun, 99
retaddr, 118
run, 51, 100
rval, 115

scope, 117
script, 125, 125
search backward, 110
search forward, 110
set, 115

setenv, 125, 125
shell, 125, 125
sizeof, 115
sleep, 126, 126
source, 126, 126
sp, 118

sread, 120

stackdump, 51, 110

stacktrace, 51, 110

status, 105

step, 100

stepi, 51, 100

stepout, 100

stop, 106

stopi, 106

string, 113

sync command, 100, 100

synci command, 100, 100

thread command, 100

threads command, 101

trace, 106

tracei, 106

track, 107

tracki, 107

type, 115

unalias, 126, 126

unbreak, 107

unbreaki, 107

undefset, 71

undefset command, 101

undisplay, 113

up, 117

use, 126, 126

viewset

viewset command, 70

viewset command, 101

wait command, 101

watch, 107

watchi, 108

when, 108

wheni, 108

where, 110

whereis, 117

which, 117

whichsets, 70

whichsets command, 101
PGDBG control commands, 75
PGDBG GUI

assembly-level debugging, 50

Command/Focus panel, 7

Focus panel, 8

Process/Thread Grid, 9

Source panel, 10

PGDBG Signals, 63
pgevents utility, 147

pgl

command mode, 27

PGL_JAVA

environment variable, 4, 132

pgieny, 106, 106, 123

command, 123

pgienv command arguments, 123
PGPROF

Command-line options, 161

commands, 191

command summary, 192

command syntax, 191

Compilation, 155

environment variables, 165

features reference, 171, 171

File menu, 172

focus panel, 171

Help, 178

information bar, 172

menu bar, 171

menus, 172

optimization, 169

overview, 127, 171

Overview, 127

Processes menu, 175

scalability comparison, 144

Search menu, 177

Settings Menu, 173

Sorting Profile Data, 139

Sort menu, 177

statistics table, 171

toobar, 171

toolbar, 179

Using, 133

View menu, 176
PGPROF_DEPTH, 165
PGPROF_EVENTS, 147, 147, 165
PGPROF_NAME, 165
pgprof.out, 131
PGPROF command line option, 161,
161, 162

-datafile, 161

-feedbackonly, 161

Index

help, 162
-help, 161
-jarg, 162
-text, 162
-V, 162

PGPROF Commands

! (history), 195
asm, 193
ccff, 193
display, 193
help, 193
history, 193
lines, 193
load, 194
merge, 194
print, 194
process, 194
quit, 194
select, 194
sort, 194
srcdir, 194
stat, 195
thread, 195
times, 195

Print

active threads, 101
address, 13, 119

aliases, 121

all registers, 117

arg values and names, 110
ascii, 13, 112

binary, 13, 112
breakpoints, 102, 102, 102, 102
command, 51, 110
command info, 121
command summary, 121
current, 109

current file, 109

current location, 108
current working directory, 110
data type, 13

data value, 13, 13

dec, 13

decimal, 112

defined aliases, 121
defined directories, 121

213

directory list, 126
envirnment variable name, 125
events, 104, 104
expressions, 110, 112, 113
formated stack dump, 110
formatted expressions, 112
formatted register names, 117
hex, 13

hexadecimal, 113
identifier declarations, 116
identifier names, 117
ignored signals, 105, 105
integer address, 119
language name, 122

lines table, 109

list of signals ignored, 105
location, 108

name declarations, 117
noprint, 122

octal, 13, 113

PGPROE, 173

PGPROF command, 194
procs command, 99
register info, 117

register value, 51

scope qualification, 117

scope qualified symbol name, 117

short integer address, 120
signals, 103, 103
stack dump, 110
stacktrace, 110, 110, 110

PGPROF command, 194

proc command, 99
process/thread set, 68

process and thread control, 75
process level commands, 73
process-only debugging, 67
stop mode, 76

wait mode, 77

Process/Thread

element color, 9
inner thread, 10
multi-process/multi-threaded, 9
numeric process identifier, 9
PGDBG

Process/Thread grid, 9
PGDBG grid, 9
selection areas, 6
single process, 9
text representation, 10

Processes

apply commands, 17, 17
current selection, 9
focus

commands, 17
MPI rank, 66
numeric identifier, 9
parallel debugging, 65
PGPROF, 177
print, 99
Process control, 87
Process-parallel debugging, 92

hardware counters, 146
line information, 168
MPI, 168, 168, 168, 168, 168,
168
pgcollect, 197
time, 168
Profiler
invoke, 131
sample launch, 131
Profiles
collect data, 131
Event-based, 130
Instrumentation-based, 128
MPI, 131
-Mprof, 130
multi-threaded programs, 131,
141
navigation, 135
open, 172
output file, 131
PAPI, 130
parallel programs, 140
platforms, 130
sample MPI, 144
search, 177
sort, 139, 177
Time-based, 129

use hardware event counters, 131

ProfilesL data, print, 173
Profiling
clock resolution, 169

string, 13
strings, 113
symbol declaration, 114
values, 110
values as change, 107
watched event values, 107
printf command, 112
proc
command, 99
procedures
Fortran 90 modules, 57
internal, 56, 56
process
assign name, 101
IDs, 67

214

Process-thread sets, 101
Processes/Threads
receive commands, 17
process set
list members, 101
membership, 101
remove, 101
set target, 101
procs command, 89
procwait, 77
Profile
calls, 168
cost information, 168
count executions, 168
data statistics, 167

Command-level interface, 191
compilation, 155
event-based, 156

HPMPI communication library,
155

line-level, 156
measurements, 180

MPICH, 156

MPICH-1, 156

MPICH-2, 156

MVAPICH-1, 156
optimization, 169

overhead, 168

PGPROE, 127, 165
routine-level, 155

sample-based, 156
time-based, 156
Virtual Timer, 167
profiling
event-based, 198
time-based, 198
Program execution
Using Hardware Event Counters,
131
program location
arrive, 14
sync command, 100, 100
synci command, 100, 100
thread command, 100
prologue code, 115
prompt
return, 101
pwd
command, 110

Q

Queues
message, 14
quit
command, 99
PGPROF command, 194

R
read
watchpoint, 105, 105
record session, 122, 122
Refresh
windows, 15
Region
accelerator, 188
accelerator time, 188
Registers
access, 117
display in window, 13
floating-point stack, 52
formatted names, 117
General, 52, 53
print info, 117
segment, 52
Segment, 52
special purpose, 52

Special Purpose, 52

subwindow, 23

symbols, 51, 54

view, 23
register symbols, 28

AMDG64/EM64T, 53

floating point stack, 52
regs

command, 51, 117
Related Publications, xxii
remove

alias definition, 126

all expressions, 113

breakpoint, 107, 107

expression from display list, 113
Repeat

command, 125

search, 15

sequence of commands, 24
replay debug session, 122, 122
Rerun

target application, 14
rerun command, 99
Reset

Bar Chart colors, 174

button, 21

Options menu item, 21
Resource

utilization, profiling, 146
Restore

factory settings, 12

factory settings for PGPROF, 175

saved settings, 12

saved settings, PGPROE, 175

settings, PGPROF, 175
retaddr

command, 118
return

address, 115

Ivalue, 115

routine, 120

rvalue, 115

size of var type name, 115

statement, 82

type of expression, 115
Routines

Index

breakpoint, 15
call, 113
clear breakpoints, 103
disassemble, 109
display in source panel, 15
edit, 109
enter scope, 117
execuation time, 168
first line, 120
inlined messages, 140
instruction tracing, 106
list source code, 109
locate, 15
main name, 56
-Mprof, 155
next, 15
print lines table, 109
print name, 110, 110, 110
request, 14
return, 120
scope, 14, 14, 116
set breakpoint, 106
setp into, 14
size of, 115
source line tracing, 106
step, 100
stepi, 100
step into, 15
stepout command, 100
step out of, 15
step over, 15
symbol, 120
rsh communication, 90
Run
arguments, 14
target application, 14
run command, 51, 100
Runtime
arguments, 14
rval
command, 115
rvalue
defined, 115

S
Sales

215

contact information, 16
Save
File menu item, 21
GUI settings, 12
settings, 175
settings on exit, PGPROE, 175
text to file, 21
Scalability
comparison, 144, 173
Scale

PGPROF command line option,

162

scope, 116
change, 11, 109
command, 117
current, 28
enter, 117
global, 116, 116
identifiers defined, 116
operator, 56
print identifier names, 117

print symbol name qualification,

117

qualifier operator, 28

routine, 14, 14, 116

rules, 28

Scope selector, 11

search, 28, 117

select, 11, 11

selector, 11

selector, purpose, 11, 11

set, 116

start, 29

up one level, 117
scrdir

PGPROF command, 194
script command, 125
Search

again, 178

backward, 110, 178

clear, 178

command, 110

for strings, 110, 110

forward, 110, 178

keyword, 15, 15

last keyword, 15

216

menu, PGPROE, 177
path, 121
scope, 28, 116
Search Again, 15
Search Backward, 15
command, 110
Search Forward, 15
Search Forward command, 110
Segment Registers, 52
Select
current thread, 9
PGPROF command, 194
text, 18

Selectors
Process/Thread grid, 6
Scope, 11, 11
Source File, 18
View, 18
Sessions
end debug, 12, 12
PGDBG, 3
terminate, 99
Set

breakpoints, 15, 15
colors in PGPROF, 174
command, 115
font, PGPROF, 175
search scope, 116
variable value, 113, 115
setenv command, 125
Settings
default, 175
display for debugger, 123
Font menu item, 12
PGPROE, 173
restore, 12, 12
Restore Factory Settings menu
item, 12
restore saved, PGPROEF, 175

Restore Saved Settings menu item,

12
saved, 12
save GUI state, 12

Save Settings on Exit menu item,

12
Show Tool Tips menu item, 12

shell
command, 125
invoke, 125
Show
tool tips, 12
signals, 63, 63
ignore, 105
ignored, 105, 105
interrupt, 103
Linux Libraries, 63
list, 103
PGDBG, 63
print, 103
Print, 105
SIGPROF, 63
size
variable, 115
sizeof
command, 115
sleep command, 126
Sort
menu, PGPROE 177
PGPROF command, 194
profile data, 139, 139
Source
buttons, 16
Command menu, 14
Control menu, 14
current, 120
Data menu, 12
line conversion, 120
line numbering, 184
list lines, 109
Options menu, 15
PGDBG panel, 10
Window menu, 13
source code
locations, 28
source command, 126
source file
change, 109
search path, 161
source file selector
purpose, 18
source line
conversion, 120

source line tracing, 106
Source Panel

events, 18

messages, 18
Sp

command, 118
Specify

custom events pgcollect, 200
sread

command, 120
SSE Register Symbols, 54
ssh communication, 90
stack

display frames, 110

display in window, 13

frame, 110

frames, display, 110

frames, display hex dump, 110

pointer, 118

pointer value, 118

print dump, 110

print stacktrace, 110

print trace, 110, 110

subwindows, 15

traceback, 50
stackdump

command, 51, 110
stack frames

display, 110
stacktrace

command, 51, 110
Start

debug session, 12

PGDBG debugger, 1, 1

PGDBG troubleshooting, 4
stat

PGPROF command, 195
statements

block, 30

compound, 81

constructs, 30

execution order, 81

if, 30

parallel, 81

parallel if else, 81

parallel while, 82

PGDBG, 30
return, 82
simple, 30
while, 30
static p/t-set, 69
Statistics
configure data, 181, 183
data profile, 167
table, PGPROE, 171
table in PGPROF, 181
status
command, 105
events, 105
messages, 18, 79
Step
into routines, 14, 15
out of routine, 15
over routines, 15, 15
step command, 100
Stepi, 15
stepi
command, 51, 100
Step into
called routines, 14, 15
stepout
command, 100
Step Out, 15
Step over
called routines, 15
step over
called routines, 15
Stop
after return to caller, 100
at value change, 107, 108
configure mode, 76
control-C, 21
execution, 100
modes, 76
Options menu item, 21
processing, 21
stop
command, 106
stopi
command, 106
string
command, 113

Index

Strings
locate, 110, 110
print, 13, 113
subroutines
nested, 56
subwindows
pop-up menu, 18
Subwindows
controls, 21
Custom, 24
Disassembler, 22
features, 20
Memory, 21, 22
messages, 24
Registers, 23
standard, 21
Support
information, 16
symbol
declarations, 114
name qualification, 117
symbol names
C++, 50
Fortran, 49
Symbols, 28
global scope, 116
MAIN_, 50
print declaration, 114
register, 28, 51
routine, 120
scope-qualified name, 117
search scope, 117
SSE register, 54
x80 register, 52
Symbols and Expressions, 113
sync
command, 100
sync command, 76, 88
synci command, 100, 100
System
environment, 131
variables, 131
System Requirements, xxiii

T
Tables

217

Focus Panel, PGPROE, 185
routine lines, 109
statistics in PGPROF, 171
tabs
Histogram, PGPROE, 185
Target
Application
run or rerun, 14
arguments to, 2
runtime arguments, 14
usage, 2
Terminology
PGDBG, 1
Terms, 1
text
address, 23
PGPROF command line option,
162
selection, 18
text mode debug, 91
Thread level commands, 74
Threads, 10
apply commands, 17
assign name, 101
command, 100
commands, 74
current, 9
current only, 17
current selection, 9
grouping, 66

IDs in multilevel debug mode, 95

inner, 10

location, 100

logical id, 101

multi, 9

naming, 66

naming convention, 65
naming scheme, 95
numeric identifier, 9
OpenMP, 65

parallel debugging, 65
PGPROF, 177

PGPROF command, 195
process/thread set, 68
stop mode, 76
threads-only debugging, 67

218

wait mode, 77
threads
command, 101
Threads, configure, 77
threads command, 83
thread set
list members, 101
membership, 101
remove, 101
set target, 101
threadstoconfig environment
variable, 77
threadwait, 77
Time
execution, 168
measure, 167
-Mprof option, 156
time-based profiling, 198
times
PGPROF command, 195
Toolbar
PGPROF, 171, 179
Tool tips
show, 175
trace
command, 31, 106
conditional, 106
source, 106
subprogram routines, 106
tracei
command, 106
conditional, 106
source, 106
subprogram routines, 106
track
command, 31, 107
event, 107
tracki
command, 107
event, 107
Troubleshoot
PGPROF, 132
Tune
application, 132
type

command, 115

U

unalias command, 126
unbreak command, 107
unbreaki

command, 107
undefset command, 71, 101
undisplay

command, 113
up

command, 117

menu item, 14
Update

data, 21

Options menu item, 21
use command, 126
Utilities

help, 16

\Y

\'
PGPROF command line option,
162

Variables
breakpoint, 106, 106
instruction tracing, 106
local, 13
set value, 113, 115
system environment, 131
trace changes, 106, 106

Versions
display, 16
-V option, 162

View
data in tables, 176
menu in PGPROF, 176
performance data, 181
previous profile, 138
profiles with hardware event
counters, 148
selector, 18
select profile, 138

view selector
purpose, 18

viewset command, 101

W
wait command, 78, 101
wait mode, 76, 77
process, 77
thread, 77
watch
command, 107
event, 107
watch command, 31
watchi
command, 108
event, 108
Watchpoints
define, 105, 105
display active, 14
hardware, 105

hardware read, 105, 105

when command, 108
wheni command, 108
where

command, 110
whereis

command, 117
which command, 117

whichsets command, 70, 101

while
parallel statements, 82
while statement, 30
Window
new, PGPROE 172
Windowa menu
Stack, 13
Window menu
Custom, 13
Disassembler, 13
Events, 14
Locals, 13
Memory, 13
Messages, 14
Windows
build for debug, 2
cascade, 15
help, 16

invoke custom subwindow, 13
invoke memory dumper

subwindow, 13

invoke PGDBG Disassembler
subwindow, 13
menus, 13
MPI message queues, 14
PGDBG GUI components, 6
PGDBG main, 5
PGDBG Program 1/0, 5
refresh, 15

Windows menu
Registers, 13

working directory
print, 110

write
watchpoiont, 105

X
X86 Register Symbols, 52

Index

219

220

	PGI® Tools Guide
	Contents
	Preface
	Intended Audience
	Supplementary Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications
	System Requirements

	Part I. PGDBG Debugger
	Chapter 1. Getting Started with the PGDBG Debugger
	Definition of Terms
	Building Applications for Debug
	Debugging Optimized Code
	Building for Debug on Windows

	PGDBG Invocation and Initialization
	Invoking PGDBG
	Initializing PGDBG
	Starting a Session

	Using Command Line Options
	PGDBG Graphical User Interface
	PGDBG Command Language
	Troubleshooting
	Selecting a Version of Java

	Chapter 2. The PGDBG Graphical User Interface
	Main Window
	PGDBG Main Window Components

	Command/Focus Panel
	Command tab
	Focus tab

	Process/Thread Panel
	Process/Thread Grid tab
	Summary tab

	Source Panel
	Source Panel Components
	Display Mode tabs

	Main Window Menus
	File Menu
	Settings Menu
	Data Menu
	Window Menu
	Control Menu
	Options Menu
	Help Menu

	Toolbar
	Main Window Combo Boxes
	Source Panel Messages
	Source Panel Events
	Source Panel Pop-Up Menus
	Subwindows
	Standard Subwindow Controls
	Memory Subwindow
	Disassembler Subwindow
	Registers Subwindow
	Custom Subwindow
	Messages Subwindow

	Chapter 3. PGDBG Command Line Options
	Command-Line Options Syntax
	Command-Line Options

	Chapter 4. PGDBG Command Language
	Command Overview
	Command Syntax
	Command Modes

	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Event Commands
	Event Command Action

	Expressions
	Control-C

	Chapter 5. PGDBG Command Summary
	Notation Used in Command Sections
	Command Summary

	Chapter 6. PGDBG Assembly-Level Debugging
	Assembly-Level Debugging Overview
	Assembly-Level Debugging on Microsoft Windows Systems
	Assembly-Level Debugging with Fortran
	Assembly-Level Debugging with C++
	Assembly-Level Debugging Using the PGDBG GUI
	Assembly-Level PGDBG Menu Options
	Assembly-Level Debugging Using the PGDBG Command-line Interface

	Register Symbols
	X86 Register Symbols
	AMD64/EM64T Register Symbols
	SSE Register Symbols

	Chapter 7. PGDBG Source-Level Debugging
	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Common Blocks
	Internal Procedures
	Modules
	Module Procedures

	Debugging C++
	Calling C++ Instance Methods

	Chapter 8. PGDBG Platform-Specific Features
	Pathname Conventions
	Debugging with Core Files
	Signals
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Chapter 9. PGDBG Parallel Debugging Overview
	Overview of Parallel Debugging Capability
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging

	Process/Thread Sets
	Named p/t-sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands
	Operations on p/t set
	p/t set Usage

	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	Chapter 10. PGDBG - Parallel Debugging with OpenMP
	OpenMP and Multi-thread Support
	Multi-Thread and OpenMP Debugging
	Debugging OpenMP Private Data

	Chapter 11. PGDBG Parallel Debugging with MPI
	MPI and Multi-Process Support
	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	MPI Listener Processes
	SSH and RSH
	Multi-Process MPI Debugging
	Invoking PGDBG for MPI Debugging
	Using PGDBG for MPI Debugging

	Debugging Support for MPICH-1

	Chapter 12. PGDBG Parallel Debugging of Hybrid Applications
	PGDBG Multilevel Debug Mode
	Multilevel Debugging

	Chapter 13. PGDBG Command Reference
	Notation Used in Command Sections
	Process Control
	attach
	cont
	debug
	detach
	halt
	next
	nexti
	proc
	procs
	quit
	rerun
	run
	step
	stepi
	stepout
	sync
	synci
	thread
	threads
	wait

	Process-Thread Sets
	defset
	focus
	undefset
	viewset
	whichsets

	Events
	break
	breaki
	breaks
	catch
	clear
	delete
	disable
	do
	doi
	enable
	hwatch
	hwatchread
	hwatchboth
	ignore
	status
	stop
	stopi
	trace
	tracei
	track
	tracki
	unbreak
	unbreaki
	watch
	watchi
	when
	wheni

	Program Locations
	arrive
	cd
	disasm
	edit
	file
	lines
	list
	pwd
	stacktrace
	stackdump
	where
	/ (search forward)
	? (search backward)

	Printing Variables and Expressions
	print
	printf
	ascii
	bin
	dec
	display
	hex
	oct
	string
	undisplay

	Symbols and Expressions
	assign
	call
	declaration
	entry
	lval
	rval
	set
	sizeof
	type

	Scope
	decls
	down
	enter
	files
	global
	names
	scope
	up
	whereis
	which

	Register Access
	fp
	pc
	regs
	retaddr
	sp

	Memory Access
	cread
	dread
	dump
	fread
	iread
	lread
	mqdump
	sread

	Conversions
	addr
	function
	line

	Miscellaneous
	alias
	directory
	help
	history
	language
	log
	noprint
	pgienv
	repeat
	script
	setenv
	shell
	sleep
	source
	unalias
	use

	Part II. PGPROF Profiler
	Chapter 14. Getting Started with the PGPROF Profiler
	Basic Profiling
	Methods of Collecting Performance Data
	Instrumentation-based Profiling
	Sample-based Profiling
	Time-based Sampling
	Event-based Sampling

	Choose Profile Method
	Collect Performance Data
	Profiling Output File
	Using System Environment Variables
	Profiling MPI and Multi-threaded Programs
	Profiling with Hardware Event Counters

	Profiler Invocation and Initialization
	Application Tuning
	Troubleshooting
	Selecting a Version of Java
	Slow Network

	Chapter 15. Using PGPROF
	PGPROF Tabs and Icons Overview
	Profile Navigation
	HotSpot Navigation
	Sorting Profile Data
	Compiler Feedback
	Special Feedback Messages
	Intensity Messages
	Messages for Inlined Routines

	Profiling Parallel Programs
	Profiling Multi-threaded Programs
	Collecting Data from Multi-Threaded Programs
	Analyzing the Performance of Multi-Threaded Programs

	Profiling MPI Programs
	OpenMPI Profiling
	Collecting Data from MPI Programs
	Analyzing the Performance of MPI Programs

	Scalability Comparison
	Profiling Resource Utilization with Hardware Event Counters
	Profiling with Hardware Event Counters (Linux Only)
	Profiling with Hardware Event Counters using pgcollect
	Profiling with Hardware Event Counters using PAPI
	Determine Available Hardware Counters
	Display Available Events

	Analyzing Event Counter Profiles

	Profiling Accelerator Programs
	Analyzing Accelerator Performance Data

	Chapter 16. Compiler Options for Profiling
	-Mprof Syntax
	Profiling Compilation Options
	Configuration Files for OpenMPI Profiling
	Compiler Wrapper Data Files
	Configure OpenMPI for PGI Profiling
	Modified Compiler Wrapper Data File Sample

	Chapter 17. PGPROF Command Line Options
	Command Line Option Descriptions
	Profiler Invocation and Startup

	Chapter 18. PGPROF Environment Variables
	System Environment Variables

	Chapter 19. PGPROF Data and Precision
	Measuring Time
	Profile Data
	Caveats (Precision of Profiling Results)
	Accuracy of Performance Data
	Clock Granularity
	Source Code Correlation

	Chapter 20. PGPROF Reference
	PGPROF User Interface Overview
	PGPROF Menus
	File Menu
	Settings Menu
	Processes Menu
	View Menu
	Sort Menu
	Search Menu
	Help Menu

	PGPROF Toolbar
	PGPROF Statistics Table
	Performance Data Views
	Source Code Line Numbering

	PGPROF Focus Panel

	Chapter 21. The PGPROF Command Line Interface
	Command Description Syntax
	PGPROF Command Summary
	Command Reference

	Chapter 22. pgcollect Reference
	pgcollect Overview
	Invoke pgcollect
	Build for pgcollect
	General Options
	Time-Based Profiling
	Time-Based Profiling Options

	Event-Based Profiling
	Root Privileges Requirement
	Interrupted Profile Runs
	Event-based Profiling Options

	Defining Custom Event Specifications

	Index

