PGI® User’s Guide

Parallel Fortran, C and C++ for Scientists and Engineers

The Portland Group®
STMicroelectronics
Two Centerpointe Drive
L ake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI® User's Guide
Copyright © 1998 — 2000 The Portland Group, Inc.
Copyright © 2000 — 2010 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America
First Printing: Release 1.7, Jun 1998
Second Printing: Release 3.0, Jan 1999
Third Printing: Release 3.1, Sep 1999
Fourth Printing: Release 3.2, Sep 2000
Fifth Printing: Release 4.0, May 2002
Sixth Printing: Release 5.0, Jun 2003
Seventh Printing: Release 5.1, Nov 2003
Eight Printing: Release 5.2, Jun 2004
Ninth Printing: Release 6.0, Mar 2005
Tenth Printing; Release 6.1, Dec 2005
Eleventh Printing; Release 6.2, August 2006
Twelfth printing: Release 7.0, December, 2006
Thirteenth printing: Release 7.1, October, 2007
Fourteenth printing: Release 7.2, May, 2008
Fourteenth printing: Release 8.0, November, 2008
Fifteenth printing: Release 9.0, June, 2009
Sixteenth printing: Release 2010, November, 2009
Seventeenth printing: Release 2010, 10.2, February, 2010
Eighteenth printing: Release 2010, 10.3, March, 2010
Nineteenth printing: Release 2010, 10.4, April, 2010

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

ID: 1096936

Contents

PLEFACE ..o Xxiii
AUAIENCE DESCIIPLONo.vveiieiiiiiieiti ettt sttt st e bttt e beenee Xxiii
Compatibility and Conformance to Standardsccocoviiiiiiiininiiiic Xxiii
OFZANIZALIONeveiiiiiiii ettt e e e e e e e XXiv
Hardware and Software CONSELAINLSccveruieriiiieriieie ettt XXVi
CONVEILIONSeeeiiiiiieeiiiit ettt et ettt e e sttt e e et e e e e st et e e st e e e et XXVi
Related PUDLCAONScc.ooiiiiiiiiiiieiiec et XXViii

1. GettiNG STATTEMc.oviiiiiiiicc s 1
OVEIVIEW ..eeiiiiiiiiiiiet ettt e e ettt e e e sttt e e e s sttt e e s e s st reeeeeeens 1
Invoking the Command-level PGI COMPILETSccoooviiiriiniriiiiiiiiiccccc e 2

CommANd-HNE SYNLAXc.oovviriiiiiiiiiiiiiiii e 2
COMMANA-TINE OPLONSevveiieeiieiieitieie ettt sttt ebe e e 3
Fortran Directives and C/C++ Pragmascoocveiiriiriirieniniiinieieeenese e 3
Filename CONVEMHONSooiuriiiiiiieiiieitie ettt ettt ettt e b e 4
INPUL FILES ... 4
OUEPUL FILES ...ttt ettt et et et sreebeene s 6
Fortran, C, and C++ DAtad TYPEScvveriieriiiiiiiieie ettt ettt ettt enee st 7
Parallel Programming Using the PGI COMPIETSccoevviriiriiriiniiiiiiicicieeccse e 7
Running SMP Parallel Programsccccooviiiiiiiiiniiiiiiiiicicnectecsec e 8
Running Data Parallel HPF Programsccccocoviriiiiiiiiiinieniie et 8
Platform-specific CONSIAEIAONSc.eeviiiiiiiiiiiiie ettt era e e 0
Using the PGI Compilers 0N LINUXcc.oovviiieriiiieiieiieiesiieie et 9
Using the PGI Compilers on WINAOWSccoerieririiiiiiniiiiiieieeesese e, 10

PGI on the Windows DeSKLOPcc.ooviiiiiiiiiiiiieiecie e 12
Using the PGI Compilers on SUA and SFUcccooeiiiiiiniiiiiiiccce e, 13
Using the PGI Compilers 0n Mac OS Xcocviriiiiiiiiniiiiiiciiccecee e 14
Site-specific Customization of the COMPIIETScccveriiiiiiiiiiiiie e 15
USING SIEIC FIIESoovviiiiiiiiiiiiii e 15
USING USET TC FAleSc.viiiiiiiiiiiiiiicicctce s 15
Common Development TASKSccovruiiieiiiiiiieie ettt 16
2. Using Command Line OPtionscccoccoeviiiinininieiccseeeenes 19

Command Line OPHON OVEIVIEWcoouiiruiiiiieiiieiiieniie et ettt ettt e site sttt e e e e 19

Command-line OPtioNS SYNLAXcoveruiiiiiiiniiiiiit ettt 19
Command-line SUDOPLONScc.eoiiriiiiiiiiiii e 20
Command-line Conflicting OPONScovevviriiriiiiiiiiiieeres s 20

Help with Command-line OPtionScccooiiiiiiiiiiiiii e 20
Getting Started with Performanceccccocoviiiiiiiiiiii e 21
Using —fast and —fastsse OPHONSc.eoeruiriiiiiiiiiierieete e 22
Other Performance-related OPHONScccooiririiiiiiiiieeee s 22
Targeting Multiple Systems - Using the -tp OPtioncoceeviiiiiniiiniiiiiiiiceee 23
Frequently-used OPLONScc.oviiriiiiiiiiiietie et 23
3. Optimizing & Parallelizing ... 25
Overview Of OPHMIZALONcovertiriiiiiiiiiieiete et 26
LOCAL OPUMUZAONevivviieiiiet e 26
Global OPHMIZALONc..eviiiiiiieiieieicie et 26

Loop Optimization: Unrolling, Vectorization, and Parallelizationccccooniiin, 26
Interprocedural Analysis (IPA) and OPHMIZAHONccoevveriiriniriniiiiicieeeee e 26
FUNCHON TNHNING ..ottt 26
Profile-Feedback Optimization (PFO)ccevieriiiiiiiieieeie et 27
Getting Started with OPtHMIZAONScocviriiiiiiiiiice e 27
Common Compiler Feedback Format (CCFF)ccoooiiiieiiiiriiiieiiiie e 29
Local and Global Optimization USING -0coevviriiriiiiiiieice e 29
Scalar SSE Code GeNerationcoceevirieriiiiinieniieieneee e 30
Loop Unrolling using —Munrollcc.cocuiiiiniiiiiiiiiiiec s 31
Vectorization using —MVECEcccciiiiiiiiiiiiiiiiii 32
Vectorization SUD-OPHONSc..cooviiiiiiiiiiiii e 32
Vectorization Example Using SSE/SSE2 INStIUCHONSccvevvivieriieniiniiniieiciiciceiceic, 34
Auto-Parallelization using -MCONCULcoouiriiriiiiiiiii et 37
Auto-parallelization SUD-OPHONScceriiiiiiiiiiiii e 37
Loops That Fail to Parallelizeccocooiiiiiiiiiiiiii 38
Processor-Specific Optimization & the Unified BIinarycocoooiviiiiiincnininicen 40
Interprocedural Analysis and Optimization uSing —MiPacc.ccoverieriiiiniiiniiicecee 41
Building a Program Without IPA — Single Stepc.cccoeviiiiiiiiiiiiiiccce 41
Building a Program Without IPA - Several Stepscccevvieriiiiiriieniiiiiicncce, 42
Building a Program Without IPA Using Makec..cocceviiiiiiiniiiniiiiiceicecc 42
Building a Program with IPAc.oooiiiiiiiiii e 43
Building a Program with IPA - Single Stepcocooviriiiiiiiiiiiniicc 43
Building a Program with IPA - Several Stepsc..cccevvviniiiiiiiniiiiicece 44
Building a Program with IPA Using Makecccocoviiiiiiiiiiiniiiccccicccecee 44
QuESHIONS ADOUL TPAoiiiiiiiiiiii it 44
Profile-Feedback Optimization using —Mpfi/—MpPfococeririiiniiiiiiiiii e, 46
Default Optimization LEVELSccoviriiriiriiiiiiiiiii e 46
Local Optimization Using Directives and Pragmascoceoieviiriininiiniienieeiienceieseea 47
Execution Timing and Instruction COUNLNGcoevvviriiniiiiiniiiiiicne e 47
Portability of Multi-Threaded Programs on LINUXccooeririiiniiiiiiieieecee e 48
TOPGDINA ... 48

PGI® User's Guide

BDIUMA oo 49

4. Using Function INHMNGc.coocooiiiiniiiiinii e 51
Invoking Function INJNINGcocoeriiiiiiiiniiiii e 51
Using an Inline LIDIArYccooiiiiiiiiiiiiiiiiiicc e 52
Creating an Inline LiDrarycccooiiiiiiiiii 53
Working with Inline LIDIariescocoviiiiiiiiiiniiiiiicc e 54
Updating Inline Libraries - Makefilesc..ccovviiiiiiiiniiiiiiicc 54
Error Detection during INNInGccooviiiiiiiiiiiiiiiiiiiicc e 55
EXQAMPLES ...t 55
Restrictions 0n INHMINGooviiiiriiiiiiiii s 55
5. USING OPEnMP ... 57
OPENMP OVEIVIEWooiiiiiiiiiiiiiiiiiiiii i 57
OpenMP Shared-Memory Parallel Programming Modelcc.ocoviiniiiiniiniiiien 57
TErMINOLOZYc..eouviiiiiiiiii it 58
OpenMP EXAMPIEooviiiiiiiiiiiiiic e 59

TASK OVEIVIEW ..ottt ettt 60
Fortran Parallelization DIireCtiVESccoeriiriiiiiriiniiiiiiieie et 61
C/C++ Parallelization Pragmascocoeviiiiiiiiiiniinieie e 61
Directive and Pragma ReCOZNILONcouiviiriiiriiiiiiiiiiicrt e 62
Directive and Pragma Summary Tableccccooiiiiiiiiiiiniiii e 62
Directive and Pragma ClAUSEScccooviiiiiiiiiiiiiiiii e 64
Run-time Library ROUNEScccoviiiiiiiiiiiiiiiiecic e 67
Environment VAriablescoooiiiiiiiiiiiiiiiiiii e 72
0. USING MPIcooooiiiiiiiiie e 75
MPIL OVEIVIEWovviiiiiiiiiiiiiiiiiii e 75
Compiling and Linking MPI APPliCAtIONSccceevviviiriiniiiiiiicicceet e 76
Debugging MPI APPLCAtONSccveveriiiiiiiiitiiiiee e 76
Profiling MPT APPIICAHONSc.veveriiiiiiiiitiitieiieeet e 77
Using MPICH-1 0n LINUXoooiiiiiiiiiiiiiiiii i, 77
Using MPICH-2 0n LINUXoooiiiiiiiiiiiiiiiii 78
Using MVAPICH 0N LINUXcccooiiiiiiiiiiiiiiiiii 78
USING HP-MPI 011 LIIUXovvviiiieiiiiiiiiiciie ettt ettt e et e e e s 79
Using OpenMPI on LIUXcooooiiiiiiiiiiiiiii 79
Compiling using OPENMPIcoiiiiiiiiiiiiiiii e 79
Generate MPI Profile DA@c.coeviriiriiiiiiiiiiccee e 80
Using MSMPI 00 WINAOWScc.viriiiiiiiiiiiiiiit ittt 80
MSMPI ENVIFONMENEooooiiiiiiiiiiiiiiiiiiiiiii i 80
Compiling USING MSMPIc.ooiiiiiiiiiiiii et 80
Generate MPI Profile DA@cc.coeviiriiiiiiiiiiiiiccecee e 80
Using OpenMPI on Mac OS Xcoooiiiiiiiiiiiiiiiiiii 81
Compiling using OPENMPIc.ooiiiiiiiiiiiiiiiie e 81
Generate MPI Profile DAAc..coeviriiriiiiiiiiiiceee e 81
Site-Specific CUSLOMIZALONeiuiiiiiiiiiiieeit et 81

Vi

Use Alternate MPICH INSEALALIONceoevieeiieeee et e e e e e e 81

Use Alternate MVAPICH INStallationcccoovviviiiiiiiiiieeiiiiiiieeeeee et 82

Use Alternate HPMPI INStAllAtioncoooviviiivviiiiiiiiiiiiiiiieeeeee et 82

Use Alternate MSMPI INStallationccccccvvviiiiiiiiiiiiiiiiieeeee et 82

7. USING AN ACCELEIALOL ..o 85
OVBTVIEW ..oovuniiiiie e ettt et e et e e ettt e e e et e e e et e e e e et e e e e st e e e abt e e s astaeeeeastaeeesraneeesnes 85
COMPONEIILSovviiiiiiiiiiiiiiiii e 85
AVAHIADILILYcvooceoeeee e 86
User-directed Accelerator Programmingcoccocverieriinienieniiniieniecsiene e 86
Features Not Covered or Implementedcccooieviiniiiniiniiiiiie e 86
TELMUNOLOZY ...ttt bbbttt ettt ettt 86
System ReqUITEMENTSccoiiiiiiiiiiiiiiiiiiii 88
Supported Processors and GPUSccooiiiiiiiiriiiiiieiicene et 88
Installation and LICENSINGooueeiiriiiiiiiiieiie e 88
ReqUIred Filesc.ooviiiiiiiiiiiiii e 88
Command Line FIAGc.cooiiiiiiiiiiiiei s 89
EXECULON MOAELoovvveiiieeiiiieieeeeeeeeeeeeeeeeee ettt e e e e e e eeeeeeeees 89
HOSE FUINCHONS ©.ovveiiiniiie et e e e e e et e e et eees 89
Levels Of PATALELISINveeeeeeeeee et 90
MEMOTY MOAEL ... et 90
Separate Host and Accelerator Memory Considerationscoccuevvuieiiieiiionieniieeniennens 90
ACCELETAOr MEMOTYeouiiiiiieiie ittt ettt ettt ettt ettt e e e 91
Cache MANAGEMENLc..iiiiiiiiieiie ittt ettt e e e anee s 91
Running an Accelerator Programcccccovieviiiiinioniiiinieecese e 91
ACCELErAtOr DITECHVES ...coeeeveiiiiiiieeeei e 92
Enable ACCelerator DIFECHVEScoovveeeeeeeieee e 92
203410 N 92

(O3 D) (T 5 (< PR 93
Free-Form FOrtran Dir€CtVESovivuniiiiiiiii et 93
Fixed-FOIm FOrtran DITECHVESuuuueereeerseeeeeeteeeseeeesessaesesesesesesesenasaseaeessseeeeeeeeseneneane 94
Accelerator Directive SUMMATYccocoiuieiiiiiianiieiie et 94
Accelerator DIreCtive CLAUSESoovvvviiiiiiiiiiie e 97
PGI Accelerator Compilers Runtime LiDIariesccoooieiiiiiiiiiiiiieiiece e 99
Runtime Library Definitionsccoviiiiiiiieiiiiiiieie e 99
Runtime Library ROULNESc.cocviriiiiiiiiiiiiiiicicc e 100
Environment VALIADIESoooviiiiiiiiiiiiiiii e 100
Applicable Command Line OPLONScc.covvirieriiiiiiniiiiie et 101
PGI Unified Binary for ACCELEratorsccooviiiiiirieniiiiiiiicite e 102
Multiple ProceSSOr TATZELSc..eouveriieiiriiiiieie ittt 103
Profiling Accelerator Kernelscocooiiiiiiiiiiiiiiicii e 104
Related Accelerator Programming TOOLSccccooviiiiiiiiiiiiiiicc e 104
PGPROF PGCOLLECEccviiiiiiiniieiicit e 104
NVIDIA CUDA PLOfIleovvviiiiiiiieeeee et 104

TAU - Tuning and Analysis ULcccooieriiiiiiiiiiii e 105
SUPPOTLEd INIIINSICS ...vovviiiiiieiiiiit et 105

PGI® User's Guide

Supported Fortran Intrinsics Summary Tablecccooiriiiniiiiniiniic, 105
Supported C Intrinsics Summary Tablecccooiiiiiiiiiiiii 106
References related to ACCEIEratorsooiriiriiiiiiiieieieee e 108
8. Using Directives and Pragmasc.cococovivininiiiiniiieeeeeenes 109
PGI Proprietary Fortran DIreCtivescccccooviiiiiiiiiiiii 109
PGI Proprietary G and C++ Pragmasoccueviieriiiiiiiiiiiieiieitec et 110
PGI Proprietary Optimization Directive and Pragma Summaryccccoovvevinvenienenieneenenn. 110
Scope of Fortran Directives and Command-Line Optionscccoveriiiiieierienieneneiineeeeies 112
Scope of C/C++ Pragmas and Command-Line OPHONSccvevveriereririiiiiiieieieesese i 113
Prefetch Directives and Pragmascoocoviviiiiiniininiiiiteiest e 115
Prefetch DIreCtive SYITAXcovirieriiiiiiiiiiiiit e 116
Prefetch Directive Format ReqUIr€MeNntscc.evververierieniiniinieieieienese e 116
Sample Usage of Prefetch DIreCtivecccooveviiiiiiiiiiieicescsc e 116
Prefetch Pragma SYNEAXccooviiriiiiiiiiiiiieceee e 117
Sample Usage of Prefetch Pragmacccocoviiiiiiiiiiiinecicseeeeee s 117
IDECS DEFECEVESvveeveeeeeeeeee ettt ettt ettt ettt et e et e et e et e e et e et e e st e e eeeeteeeaeas 117
Format ReqUirementscccccoeeiiiiiiiiiiiiiiii 117
SUMMATY TADIEoooiiiiiiiiiiiii e 117
CEPRAGMA C ..ottt ettt ettt ettt ettt b et se ettt se s ene b 118
9. Creating and Using Libraries ..., 119
Using builtin Math FUnCions in C/C++ooiviiiiiiiiiiiieiiieiee et 119
Using System Library ROULNEScouieiiriiiiiiiiniiiiiiiciiece e 120
Creating and Using Shared Object Files on LiInUXcccoceviiviiniiiniiiiniiiceccce, 120
Creating and Using Shared Object Files in SFU and 32-bit SUAccccoeviiiiiiiniiiieiieecee 122
Shared Object EXror MESSAZEcoveuiriiriiiiiieiiietesit ettt 122
Shared Object-Related Compiler SWItChesccccooveriiiiiiiiniiiiinice 122
Creating and Using Dynamic Libraries on Mac OS Xcocovivviiniiiniiiiiiiniiicccec e 123
PGI Runtime Libraries on WindOWScocooviiiiiiiiiiiiniiieese e 124
Creating and Using Static Libraries on Windowscccccocveviiiiniiniiiiiiiccee 124
A0 COMMANG ...ttt ettt 124
ranlib commAndc..ooiiiiiiiiii 125
Creating and Using Dynamic-Link Libraries on Windowscccccocevieniiiiiniieninicniccee, 126
USING LIB3E ...ttt bbbttt 133
LAPACK, BLAS Q0d FETSeiiiiiiiiiiiie ittt ettt 133
The C++ Standard Template LiDraryccccoooeviiiiiiiniii 133
10. Using Environment Variables ..., 135
Setting Environment VAriablesc..cooiviiiiiiiiiiiiiiiiiciec e 135
Setting Environment Variables on LinUXcccoceiiiiiiiiiniiiiccc 135
Setting Environment Variables on Windowsccccooiniiiiiniiniiniii 136
Setting Environment Variables on Mac OSXc.cccoviiiiiiiiniiiiiiicnicccccce 136
PGI-Related Environment Variablescoccooiiiiiniiiiiiiiiiiiiccee e 137
PGI Environment Variablesccocoooiiiiiiiiiiiiiiiice e 138
FLEXLM_BATCHoooiiiiiiiiiiiiie ettt et e e 139

viii

FORTRANOPT ..ottt ettt e e e st e e e s 139

GMON_OUT_PREFIXccoiiiiiiiiiiiiiieeee ettt e e ettt e e e e e s ettt e e e e e s e s ntnanreeaaeeeeens 139
LD_LIBRARY_PATHooiiiiiiiiiiiiiiiiee ettt ettt e e e e et e e e e e e e 139
LM_LICENSE_FILEcoooiiiiiiiiiiiiiiiiiiiiiii e 140
MANPATH ...ttt e e e e sttt e e e e e s esetb e e e e e e e e s nnenennes 140
MPSTKZ ..ottt e e et e e e e e e ettt e e e e e e e tb b aeeaeeee e e 140
IMP_BIND .ttt 140
MP_BLIST ..ottt e e e e e et e e e e e e et aeaeaee e e 141

P PN e 141
IMP_WARN .ottt 141
INCPUS ettt ettt ettt ettt et ettt e et e e e et e e e e eeae e 141
NCPUS_MAX .. 142
NO_STOP_MESSAGEooiiiiiiiieiii e e e e e e s e 142
PATH ...ttt e ettt e e e e e et e e e e e e ettt e e e e e e e et aeeeas 142

PGL 142
PGI_CONTINUE ...ttt e ettt e e e e sttt e e e e e e e s nnabbneeeeas 143
PGI_OBJSUFFIXoottiiiiiiiiiiiiiiiiiiiii ittt ree e e ettt e e eeeeeeeeeeeeeees 143
PGI_STACK _USAGEooiiiiiieiiiiiit ettt e et e e e e e e taanaeeeeeeens 143
PGI_TERMoooiiiiiiiiiiiiiee ettt e bttt e e e e e e sttt e e e e s e s e ntbtrreeeeeeens 143
PGI_TERM_DEBUGcceeeiiiiiiiiiiiiiee ettt ettt e ettt e e e e e e e et aeeaaeeeeene 145

8 O O PP UPR S PPPPPRPRN 145
STATIC_RANDOM_SEEDccoiiiiiiiiiiiieeee ettt e et e e e s aeeeeas 145

TP e e e e ettt e e e e e e sttt e e e e e e e e nanerees 146
TMPDIRooeieiiiieeee ettt e e e ettt e e e e e e ettt e e e e e e et aeaee e e e e nnrrrees 146
Using Environment Modules 0n LINUXcc.oooviiiiriiiiniiiiieecc e 146
Stack Traceback and JIT Debuggingccccovveviiiiiiiiiiiiiiiiiiccc e 147
11. Distributing Files - Deploymentccccooooiiniiiiiiiice s 149
Deploying APpLCations 0N LIMUXcccviiriieriiiiieniieiiieiee ettt et sreesieesbe e ssbeeaeeenne s 149
Runtime Library ConSiderationscccevieriiiiieriiiieiienieie et 149
04-bit Linux CONSIAEIAONSevevieviierieriiteiere ettt 150
Linux Redistributable FIlescccooiiiiiiiiiiiiiiieicice e 150
Restrictions on Linux POrtabilityccovvieviiiiniiiiiiiiieiie e 150
Installing the Linux Portability PACKagecccocoeviiiiiiiiiiiiieee e 150
Licensing for Redistributable Filesc.coccoriiiiiiiiiniiiiiieee e 151
Deploying Applications 0n WINAOWSccceeruiiiiiiiniiiiiiieiiie e 151
PGI RediStribDUADIEScovviiiiiiiiiiiiiieie e 151
Microsoft RediStributablesc.coooiiiiiiiiiiiii e 151
Code Generation and Processor ArChiteCturecocovvveriiriiiinieicicee e 152
Generating Generic X80 COMEcevverirvirieieiiiieieie ettt 152
Generating Code for a Specific ProCeSSOTcocoviiiiiiiriiiiiiieicc e 152
Generating One Executable for Multiple Types 0f PrOCESSOTSccueervveivierieiiieniieiieeniie e, 152
PGI Unified Binary Command-line SWIitChescccoviiiriiiiiiiniiiciece e 153

PGI Unified Binary Directives and Pragmascccocveriiiienianiniienieneiieseee e 153

12. Inter-language Calling ... 155

PGI® User's Guide

Overview of Calling CONVENLIONScoveriiriiiiiiiiiiiteiete st 155
Inter-language Calling ConSiderationsccevieriiriiiiiniiieiiec e 156
Functions and SUDTOULNEScccooiiiiiiiiiiiiieie e 156
Upper and Lower Case Conventions, UNAEISCOTEScccuevuieriiiiiieniiiiieniie e 157
Compatible DAt TYPESoovevriiiiiiiieii e 157
Fortran Named Common BIOCKScc.cooiiiiiiiiiiiiii 158
Argument Passing and Return VAIUesccccooviiiiiiiiiiiiiiiicccecce e 159
Passing by Value (90VAL)coeviiiriiiiiiiiiiiiieiteie et 159
Character RetUIN VAIUESooovvviiiiiiiiiiiiiiiiieeeeeee 159
Complex RN VALUEScc.ovviriiriiiiiiiiiiieiieiieie et 160
ALTAY TOAICES ...ttt 160
EXAIMIPIES ...ttt 161
Example - Fortran Calling €ccoooviriiiiiiiiiiiiicceec e 161
Example - C Calling FOTTrancoooviiriiniiiiiiiiicecee s 162
Example - C++ Calling €ooveviniiiiiiiii e 163
Example - G Calling G+ ..ovvveiiniiiiiiiieie e 163
Example - Fortran Calling G+ooeiiiiiiiiiiiiieiciccc e 164
Example - C++ Calling FOItranccoooviiiiiiiiiiiiieceeeee e 165
Win32 Calling CONVENTONScveiirtiiiitiitiitieie ettt 166
Win32 Fortran Calling CONVENtiONScoeruiriiiiieiiieiienieeie st 166
Symbol Name Construction and Calling EXamplecooceviiiiniiiiiniiicieee 167
Using the Default Calling CoONVENtoNcocvviiiiiininiiniiisteeeeee e 168
Using the STDCALL Calling CONVENtiONceevveiiierieniiniiniiiiisieeic e 168
Using the C Calling CONVENHONcc.eoveriiriiriiiiiiiieieieiesese e 169
Using the UNIX Calling CONVENtONc.ooviuieiiiiiiiiiiieie it 169
Using the CREF Calling CONVENtONcoevuiriiiiiiiiiiiiieniesie e 169

13. Programming Considerations for 64-Bit Environmentsc...c..cccccooo..... 171
Data Types in the 64-Bit ENVIFONMENEccoovviiiiiiiiirieiicicce et 171
C/CH4 DALA TYPLS ..vveeeiniiiieeeeiiet ettt et e st e ettt e e st e e e snbaeees 172
FOTtran DAtd TYPESeeevimiiiieeiiiiiee ettt et e e e e e e e 172
Large Static Data in LINUXocevviiiiiiiiiiii e 172
Large Dynamically Allocated DAtaccoeviiiiiiieiiiiiieiie ettt 172
04-Bit ATaY INAEXINGevevveviieiiesietieieiet ettt ettt et es ettt se bt ene b e 172
Compiler Options for 64-bit Programmingccc.evveirierieiierieieinieieeeeiereeesieeee e 173
Practical Limitations of Large Array Programmingccooovverreriueenieniieenienineenieesneesneennnes 174
Medium Memory Model and Large Array in €coovierienieiienieniiiesceesee e 175
Medium Memory Model and Large Array in FOItranccoccoverieniiiiniiniieiiecee e, 176
Large Array and Small Memory Model in FOtranccccoviviiinieniiienieniiieeec e 177
14. C/C++ Inline Assembly and INtrinsics ..., 179
Inline ASSEMDIYcc.oiiiiiiiiiie s 179
Extended Inline ASSEMDLYcocoriiiiiiiiiiiii 180
OUIPUE OPETANMAS ...ttt 181
INPUE OPEIANASc.veoviiiiiietic e e 183
CLODDET LISt ..ottt et ettt 184

ADIONAL CONSITAIILSvvvveeeeee e e ettt e e e e e e e et e eeeeeeeeeenenaens 185

OPErand ALASESeeeniieiiiiiie e 191
Assembly String MOGIErSccviiiiiiiiiitei e 191
Extended ASI MACLOScoovvviiiiiiiiiii e 193
1T R o ST 194
15. Fortran, C, and C++ Data TYPEScocoovriviiiiiiecee s 195
FOTtran Datd TYPESeeeeiiiiiiieiiiit et 195
|0 un e RN 1 .1 ¢ S 195
FORTRAN 77 Aggregate Data Type EXtensionscccccevvviiiiiiiiiiiiniiiiiiiiiiec, 197
Fortran 90 Aggregate Data Types (Derived TYPES)covevvirieriiriiriiiiieienene e 198

C AN CH4 DA TYPES .eeeeieeeieeiie ettt ettt et 198
(O T R O)1 198

C and C++ Aggregate Data TYPESccoverririiiiiiiiiiiieieeee sttt 200

Class and Object Data LAYOULc..ccoviiiinieiiiiiiieieest e 200
Aggregate ALIGNMENLcceviiiiiiiiiii it 201
Bit-field AGNMENEcciiviiiiiiiiiiii i 202
Other Type Keywords in € and C++ccooviiriiiiiiiiiiiiiiccicce e 202

16. Command-Line Options Reference ..., 203
PGI Compiler Option SUMMALYcccoorviiiiriiiiiiiiiiie e 203
Build-Related PGI OPHONSc..ovviriiiiiiiiiieiciicie e 203

PGI Debug-Related Compiler OPtionscoceevviiiiriiniiiiiniiiiiceececse e 206

PGI Optimization-Related Compiler OPHONSccoveriiiiinieriiiiinicecece 207

PGI Linking and Runtime-Related Compiler Optionscccoevvevienieiiniiiniiiciiceenn 207

C and C++ Compiler OPLONSeoviriiiriiiiiiieit ettt 208
Generic PGI Compiler OPtONScoeviiriiiiiiiiiieie et 211
C and C++ -specific ComPIler OPLONSccveiiriiriiriiriiiiit e, 252
—M OPLONS DY CALEZOTY ...ttt ettt 263
Code Generation CONIOLSccueriiriiiiniiiiiie et 264
C/C++ Language COMLIOLScoueruiruiiiiiiiieieieete sttt 268
Environment CONIOLScoouieiiiiiiiiiiiit et 270
Fortran Language CONIOLScoveiiiiiiiiiiiiiiiiicic e 271
Inlining CONIOLSc..ovviiiiiiiiiiii e 274
Optimization CONLIOLSooiiiiiiiiiiiiiiie e 275
Miscellaneous CONLIOLScc.evvirieriiiiiriieiieeeee e 286

17. OpenMP Reference Information ..., 293
TASKS oo 293
Task CharacteristicsS and ACHVILIEScoeeeeeeeeeeeeeee e, 293

Task Scheduling POINLScoouiiiiiiiiiiiieie e e 293

T Q0 1T 1 o A 294
Parallelization Directives and Pragmasccooieiiiiiiiiniieiiieiie e 296
ATOMIC QN AEOIMUC +eeeeeeeeeeeeeeeeee e ettt e e et e e e e e e e e eeeeas 296
BARRIER QNA DALTIELeevetieeieeieeeeeeet ettt aannnne 297

CRITICAL ... END CRITICAL and Criticalcocooiiiiiiiiiiiiiieiicce e 297

PGI® User's Guide

CEDOACROSS ..ttt ettt ettt ettt ettt ettt ettt ettt et ettt 299
DO...END DO and O ...oiiviiiiiiiieit e 300
FLUSH and fIUshc.oooiviiiiiiii ittt 302
MASTER ... END MASTER and MASLETooiviiiiiiiiiiiiiiiiieciie e 302
ORDERED and 0rderedccooiiiiiiiiiiiiieiie e 303
PARALLEL ... END PARALLEL and parallelcccooiiiiiiiiiiiiecee e 304
PARALLEL DO .o 305
PARALLEL SECTIONS and parallel SECHONSc..cooviriiriiiiinieiiiiiniieeeiee e 306
PARALLEL WORKSHARE ... END PARALLEL WORKSHAREoooovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeee, 307
SECTIONS ... END SECTIONS and SECHONSccverureiiaiieniietieiieniienie e sieeie e 308
SINGLE ... END SINGLE and Singleccccocuoiiiiiiiiiiiiieiiieieeesei e 309
TASK @nd tASK ..ooviiiiiiiieecc s 310
TASKWAIT and tASKWAIEoovviiiiiiiiiieieiieit e e 311
THREADPRIVATE and threadpriVateccooiiiiiiiiiiiiinieiieiiescec e 312
WORKSHARE ... END WORKSHAREccooiiiiiiiiiiiiiiiiiii et 313
Directive and Pragma ClAUSESccveeriiriiieriieiiieiie et eniee ettt e st e eeeeeieeebeestaesrreeieeerbeeeeas 313
COLLAPSE (1) ...vvivviitiiieeie ettt ettt ettt ettt ettt sb et e be e e teebeesaeeneeaas 313
COPYIN (JSE) +..vvevveereeeriete ettt ettt ettt ettt ettt e et e ste et eessesbaebeesbeeneebaenseeneas 314
COPYPRIVATE(JISE) +..vveuvvevvietieiieie et e ettt ettt ettt ettt ettt et e sta s e ensebeenneas 314
DEFAULT ...ttt ettt ettt ettt ettt ettt et 314
FIRSTPRIVATE(JISE)vvevvvevveivreeieeie ettt ettt ettt ettt ettt 315

TE() oottt bt bt h sttt sttt et neeneene s 315
LASTPRIVATE (LISE) ...ttt ettt 315
NOWAIT ...ttt et ettt et et sbe ettt e e 315
NUM_THREADSottt et e et e st e s es 315
ORDEREDcooiiiiiiiiiiiiit et e ettt e e e ee e 315
PRIVATE ..ottt ettt ettt ettt e 316
REDUCGTIONooiiiieeiiiie ettt ettt e e ettt e e e e e s eabbeeeeaae 316
SCHEDULEcooiiiiiiiiiiiiiet ettt e e et e e e e sttt eeeeeas 317
SHARED ...ttt e e ettt e e e et e e 318
UNTIED ...ttt ettt ettt ettt ettt e 318
OpenMP Environment VATIADIEScccveiiiiiiiiiiiiiiiieiie ottt 318
OMP_DYNAMIC ...ttt et e ettt e e e e st e e e e e e e e 318
OMP_NESTED ...cooiuiiiiieiiiiit et et e et e et e e s 318
OMP_MAX_ACTIVE_LEVELSoiiiiiiiiiiiieiiiiit ettt 318
OMP_NUM_THREADSooiiiiiiiiiiieeiiiiee ettt e s 318
OMP_SCHEDULEooiiiiiiiiiiiiiiiiee et e et e e e s eeeeeeeans 319
OMP_STACKSIZEcooiiiiiieeiiiiite ettt e e et e s 319
OMP_THREAD_LIMITcooiiiiiiiiiiiite ettt ettt ettt e st e s e e 319
OMP_WAIT _POLICYeeeiiiiiieeiiiiiee ettt ettt ettt e st e e ee e e s 320

18. PGI Accelerator Compilers Reference ..., 321
PGI ACCEIEIALOr DITECHVESveiuiieiiiiiieitie ettt et 321
Accelerator Compute Region DIr€CHVecocveriiiiirieniiiiiieniiecseeseee e 322
Accelerator Data Region DIreCiVecocoeviviiiiiiniiiiinieiiiicsieicecseee e 323
Accelerator Loop Mapping DIir€Ctivecocouiviiriiriiiiinieiiiie e 324

COMDINEA DITECHVE ...oevvveeee ettt e e e e et e e e e e e e e e eeeaens 325

Accelerator Declarative Data DIir€CHVEccovvieeiiiuieeeiiiiieee e 325
Accelerator Update DITECHVEc.coieiiiiiriiiiiiieniieic et 326

PGI Accelerator DIireCtive CLAUSEScooviiviuuriiiiieieeeiiiiiiie ettt e e e e 327
I (CONAIEON) .ottt eaee s 327

DA CLAUSESovvvvviiiiieeeeeeeee ettt e e e e e e e e e 328

COPY (LSE) .ot 329
COPYIN (JESE) +vvveeeeeee ettt ettt ettt ettt e et et e et e et be s e eae e 329
COPYOUL (JSE) .ottt 329
LOCAL (JESE) oo et e e e e 330
MUITOT (JST) oottt ettt et 330
update deviCelOSt (JESE)covivviriiiiiiieiece e 330
Loop Scheduling Clausescocooiiiiiiiriiiiiic e 331
CACRE (JIST) .ot 332

ROSE [UEAED) | e e e e, 332
INAEPENACNL ..ottt 332
(S 1 1<) AR 333
parallel [(UIAID)] ...oooooieeeee e s 333
PIAVALE (JESE) .vevvereieeie ettt ettt ettt ettt ettt ene 333

SEQ [(WIAD) | ..ooovoeeeeeeeeeeeeee e 334
110 1 (010) P PP PR PR PO RUPURPTPPIIN 334
UNTOIL [(UEAID) | oo e 334
e (0 S K Q777777) RSP RPRP 334
Declarative Data Directive CIAUSESccoveieiiiivieeeiiiieeeeeeiieeeeeeiee e 335
POELECRA (JESE) oo ettt 335
Update Directive CLAUSEScoeeiiiiiiriiiiiiieii ettt 335
EVICE (JIST) oottt 335

ROSE (JESE) e et 336

PGI Accelerator RUNtime ROULNESvvvviiiiiiiiiiiiiiiiieee ettt et 336
ACC_ZLE EVICE ...vvevvieriieiieit ettt ettt ettt ettt ettt et sreeneenee s 336
ACC_ZEt_NUM_AEVICESevvievieiieiienieeiieieete et et e e et ettt e e eseesteebeeneesaeeaeeneennes 336

Lo VD 1 1) L 337
ACC_SCE_ABVICE oooeeiiiiiiiiiii e 338
ACC_SEE_AOVICE UM ...ttt eseeeeeene 338

P T o) 1 L111410) 4 ¢ R 339
ACC_ON_ABVICEvvvveeeeeeeeeeeeeee ettt a e s e s s e e nananene 339
Accelerator Environment VALIADIESoovvvvriiiiiiiiiiiiiiiiiieee ettt 340
F O O D) AT (0] 340
ACC_DEVICE _NUM ...ttt e e e e e e 340

ACC NOTIFY oo e et e e e e 341

19. C++ Name Mangling ... 343
TYPES Of MANGLNGoovviviiiiiiiiiiti e s 344
Mangling SUMMATYcoviiiiiiiiiiiiii e 344
Type Name Manglngcccoooviiiiiiiiiiiii e 344
Nested Class Name Manglingcccocvevieniiiiiiiiiiiiiiiee e 345

Xii

PGI® User's Guide

Local Class Name Manglingcocoovviriiiiiiiiniiniiicicc e 345
Template Class Name Manglingccccooveviiriiiniiiiiniiiieee e 345

20. Directives and Pragmas Reference ... 347
PGI Proprietary Fortran Directive and C/C++ Pragma SUMMArYc..cocveerveerieenieerienneennnens 347
ACOAE (MOAICOAL) ..o 348
ASSOC (TMOASSOC) . eeeeeeeeeeeeee et ettt e e e e e ettt e e e e e et e e e e e e e 349
bounds (NODOUNAS) cooviiieieiiee ettt e 349
CCAL (MOCNCAIL) ..o 349
CONCUL (THOCOTICUL) ettt e e ettt e e e e e e e et e e e e e e e et e e e e e e e e e reeeeas 349
depchk (NOAEPCHK) ...ooviiviiiiiiicic et 349
eqVchk (N0€QVCHK)oovviiiiiicccc e 349

FCOM (TOLCON) et 350
IVALTE (NOTVATIE) ..ottt ee e 350
IVARD ettt 350
ISEVAL (OISEVAL) ..o ettt e e 350
PLEfELCh «..oooeiiei e 350

(070 TSP PP UPRUUPURTRRPPRO 350

SAE (M0SALC) ..o e e 351

SAE JASIVAL oo 351
safeptr (NOSALEPLL)ccvivvviieiiiiiiit e 352
SINGIE (NOSINGIE) ..vvovviivieiieie ettt ettt ete e sbeerbeeteebeesaeeaeesnas 353

(11O OSSP TP PR UTPTPPIPPRP 353
UNTOIL (MOUNTOLL) ..ot e e e e e e e e e 353
VECEOT (TMOVECLOT) .ttt ettt e ettt e e e e e e et e e e e e e e e eeeeeeeas 354
VIIEE (TLOVATIEE) .ottt ettt e e e e e ettt e e e e e e et e e e e e e e e e eeeeaeaaeaa 354
Prefetch Directives and Pragmascooveviiiriieiiioiiieiie et snre e 354
IDECS DATECHVES ...vveevveeeeieeeeeeeee ettt e e et e et e e ettt e et e ettt e ettt e et e e et e e et e e et e e e eteeseaeeeeaeas 354
ALTAS DITECHVE ...ttt ettt etae e e ettee et e e et eeeaeeas 354
ATTRIBUTES DIFECLIVEveeeiiiiiiiiiriiieeeee ettt ettt e e et e e e et reae e 355
DECORATE DiFECHVEecvviivviieieieieeeiee ettt ettt et s et te e eaee e e enee e 356
DISTRIBUTE DiFECHVEeovvvivieieiieeiee et eeiee ettt ettt ettt era e ae e 356
IGNORE_TKR DILECLVE ...ttt et e e 356

21. Run-time Environment ... 359
Linux86 and Win32 Programming MOdelccooiriiiiiniiiiiiiieeeee e 359
Function Calling SEqUENCEcccuiriiiiiiiiiiiiiiic i 359
Function Return VALUEScooviiiiiiiiiiiiiiii ettt 362
ACGUMENE PASSINGe.viiiiieiieiieietet ettt 363
Linux86-04 Programming MOdelocooiiiriiiiiiiiii s 365
Function Calling SEqUENCEcooeviiriiriiiiiiiiiieeee e 366
Function RetUrn VALUESoooviiiiiiiiiiiiciie ettt 368
ACGUMENE PASSINGe.viviiiitieiieietet et 369
Linux86-04 Fortran SUPPLEMENtcoeiiiiiiieiiiieict e 371
Win64 Programming MOElcocoiiiriiiiiiiiiiiciie e 376
Function Calling SEqUENCEcoeeviiriiriiiiiiiiiiieeee e 376

FUNCLON REIUITL VAIUESooovvveeiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 378

Argument PASSINGcvvviiiiiiiiiiiiiii e 379
Win64/SUAG4 Fortran SUPPIEMENLc.covevviviiiriiiiiriitiereee et 381

22. C++ Dialect SuppOrted ..o 387
Extensions Accepted in NOrmal C++ MOAEcccoevviiiiiiiiiiiiiiiiieie et 387
cfront 2.1 CompPatibility MOAEc.eeoviiiiiiiiieiie et 388
cfront 2.1/3.0 Compatibility MOAEceeviviiiiiiiiiiiieiit it 390

23. Fortran Module/Library Interfaces for Windowscccooooiinrinnnnnn, 391
SOULCE FALES ..ot 391

DIALA TYPES .ottt et et e e e e 391
Using DFLIB and DFPORTcccoiiiiiiiiiiieiiieiie ettt 392
DELIB ...ttt e ettt e e e e e e e e s 392

DEFPORT ...ttt et e s e et e e s 393

Using the DFWIN mMOAUIEccoooiuiiiiiiiiiii e 399
Supported Libraries and MoOdULescccoooiiiiiiiiiiiiiiii e 399
AAVAPIBZZ ..ottt e e 399

COMUAIZ32 ..ottt 401

GEWDASE ... 401

WY .o 402

BAIB2 bbbttt ettt e bt enae e 402

KEINEIZ2 ..ottt nnes 405

SHEIIB2 .o et 413

111 e /PSSO UU PR PRPR 414

WATIVET ...ttt ettt ettt ettt et e a e bt e et ekt eeab e e bt e e nb e e ke een bt e bt e nb et enteennreenns 418

WSOCKBZ ottt 418

24. C/C++ MMX/SSE Inline INtrinsicsccccocovvoivviiieiirieiieeeeeee e, 421
Using INtrinsic fUNCHONSooviiiiiiiiiiiieit e 421
Required Header Filec.cooiiiiiiiiiiiiiiicc e 421

INtrinSic DAta TYPESc.vevvviriiiiiiiiii ettt 422

Intrinsic EXAMPLEccooiiiiiiiiiiiiiii e 422

MMX IEFISICS +nvveentieitieeiee ettt ettt ettt b et et e et e bt e e bt e e snbe e b e e 422

SSE TNLINSICS ..ottt ettt ettt ettt e b et e e e b eeee 424
ABM TNELINSICS ...ttt ettt ettt et e ettt e bt e s abe et nteen 428

25, MESSAGESooiiiiiiii 429
DiagnOStC MESSAZESveeeiiiiiieiiiiiit ettt 429
Phase INVOCAON MESSAZESerueeuierieriiaieeiieiteeteete st ettt et et et e bt esbe et e bt eneesneeneeenee e 430
Fortran Compiler ErTOr MESSAZESccveruieiiiiiiiaie ittt sttt 430
MESSAZE FOTMIALeviiiiiiieiieiieieie ettt ettt ettt ebe e eee e 430

MESSAZE LASEvveveeeieeieee ettt ettt ettt ettt ettt bt e 430

Fortran Run-time Error MESSAZEScooiiiiiiiiiiitiiiiieiiit ettt 455
MESSAZE FOTINALc.vovivirieiietiiesiete ettt ettt ettt ettt ettt se ettt eb b ens b ebens 455

MESSAZE LS ...c.vevvviverieiteteiett ettt ettt sttt ettt ettt st eb s 455

TIUACX ..o 459

Xiv

Figures

15.1. Internal Padding in @ StrUCKULEcc.eoiviiiiiriiiiiiiee ettt

15.2. Tail Padding in a Structure

XV

XVi

Tables

1. PGI Compilers and COMMANGSccoueiiiiiiiiiiiieiieie e XXVii
1.1. Stop-after Options, INPULS ANA OULPULSoveerviriririieiiitieieee et 6
1.2. Examples of Using siterc and USer rC FIleScocuerieriiiiiniiiniiiieiieccesceie e 15
2.1. Commonly Used Command Line OPLONSccueruieriirieriiiiiiieiiieieeie st 23
3.1. Optimization and —0, —g and —M<OPt> OPLONSccveiierrieriiiieirieieeeesieeie e sre e eeesbe e 46
5.1. Directive and Pragma Summary TADIecccoriiiiiiiiniiieiiete e 63
5.2. Directive and Pragma Clauses Summary Tableccccoooriiiiiiiiiiniiiiiiieee e 64
5.3. Run-time Library ROULNES SUMMALYc.cooviiiiiiiiieiiieiiieiie et seeeiee e see et bae s 67
5.4. OpenMP-related Environment Variable Summary Tablecccocoviiiiiieiininiieieieeceeeeen 72
6.1. MPI Implementation OPHONScc.evvirvirrieriireereereereeeetestesreereereereessessese st e stesreereereereessessesnas 76
0.2. MPI Profiling OPLONScveoviiviiriiiiirietietet ettt ettt ettt ettt rs ettt ereereeaeereanis 77
7.1. PGI Accelerator Directive SUmmary TabIecccoviiiiriiiiiiiiiieiciescee e 95
7.2. Directive Clauses SUMMALYcoviriiiiiiiiiiiiie ittt sttt 97
7.3. Accelerator Runtime Library ROULNEScccovvviiiiriiiiiiiiiiiie e 100
7.4. Accelerator Environment Variablesccoooiiiiiiioierieieie et 101
7.5. Supported FOrtran INEINSICScc.verveeieriieriiiieiii ettt 105
7.6. Supported C Intrinsic DOuble FUNCHONScovveiiiiiiieiiiiieee e 107
7.7. Supported C Intrinsic Float FUNCHONScc.ovveiiiriiiiiiiiieiieiiec e 107
8.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summaryc..c..... 111
8.2. IDEC$ Directives SUMMALY TADIEcocveirieviiiieriieiiieieisiee e 118
10.1. PGI-Related Environment Variable SUMMArycccocooviiiiniiiiniiniiicccee e 137
10.2. Supported PGI_TERM VAIUEScccueriiiiiiiniiiieiiie ittt 144
12.1. Fortran and C/C++ Data Type COMPAtiDIlityc.eovvriiiiiriiiiiiiiiiiiiecie e 157
12.2. Fortran and C/C++ Representation of the COVMPLEX TYPEccvevviiriieniiiiieiieeiieeieeiie e, 158
12.3. Calling Conventions Supported by the PGI Fortran Compilerscccovivierieneniinieniiiennnn 167
13.1. 64-bit COmPIlEr OPLONSecvveveiriiieeiiiiiteet ettt ettt ettt ettt eve e eaeene s 173
13.2. Effects of Options on Memory and Array SiZeScoevveeivierieiieenieiieeriie e eriee e 174
13.3. 64-Bit LIMGALHONSvevveviiiiieietieteieiett ettt ettt se et ess s b eseebesbesseneere e 174
14.1. SIMPIe CONSIIAILScviviiviitierietietiet ettt ettt ettt ettt eteete e e ess e s e b et esbeebeereeaeenseseas 186
14.2. X86/X86_64 MACKINE CONSILANLSeeeeeeeeeeeeeeee et ettt e e e e e e e e e e e e e e e e e eeeea 187
14.3. Multiple Alternative CONSIIAINSccveerveiierieiieeeeiteete e et eie e e ste et sre e ereesreeaeenee s 189
14.4. Constraint Modifier ChATACLETScoeiviiiiiiiiiiiieieee et 190
14.5. Assembly String Modifier CRATACLETSc.eoviriiiiiiiiiiieieiee e 192

Xviii

14.6. Intrinsic Header File Organizationccoocveveieierieriesieniesiesieeseeeeesesee e see e eseeneenas 194

15.1. Representation of FOrtran DAta TYPESccververueruiriiniiiiieieieieie ettt 195
15.2. Real DAta TYPE RANGESc.veviiiiieiieiieieieete ettt 196
15.3. Scalar Type AZNMENEceoiiriiiiitiitiiti ittt 196
15.4. C/C++ SCAIAr DAA TYPESevvveveeeveeiierieeiieeie ettt ettt ettt e sbeeteeseesbeenbeeneenseeneas 198
15.5. Scalar AIRZOMENTcc..eiiiiiiiiiiieiie ettt et 199
16.1. PGI Build-Related Compiler OPHONScviueiueiiiiiieieiiiieieiet et 204
16.2. PGI Debug-Related Compiler OPHONSccerveiiiiirieriiieiieietieieee e 206
16.3. Optimization-Related PGI Compiler OPiONScoveuivierieieiinieieieiieeieie et 207
16.4. Linking and Runtime-Related PGI Compiler Optionscccevveiiiirieiainieieiisenieesie e 207
16.5. C and C++ -specific COMPIlEr OPLONSeoverieriiiiierieiiiteiet et 208
16.6. Subgroups for —help OPHONcccoiiiiiriiiiiieieeee e 220
16.7. =M OPHONS SUMMATYe.viuiitiitinietiateetentete ettt ettt ebe bttt et e st ebe bt eseabe e eseene e 226
16.8. Optimization and —0, —g, —Mvect, and —Mconcur OPONSc.evveereereieerierierierieriesieereenenns 235
17.1. Initialization of REDUCTION VAriablescccoociriiieiiiriiriiniiiiit it 316
20.1. IGNORE_TKR EXQAMPIEooviiiiiiiiiiiiiiiit et 357
21.1. Re@ISter ALIOCALONc.veviiiiiiiieiieit ettt 360
21.2. Standard StACK FrAMEccooiiiiiiiiiiiiiii it 360
21.3. Stack Contents for Functions Returning StruCt/Unioncceoevverireninenieiiienenene e 363
21.4. Integral and Pointer ATGUMENLScoviiiriiiiiiieieiete ettt 363
21.5. Floating-point ATGUMENLScoveruerrirtertintietiaiieteetet ettt ettt ettt ettt eneene 363
21.6. Structure and Union ATGUMENSc.eruerurrerrerreiaiieteieseeteniestete sttt ettt steseenesbeeene e 364
21.7. Re@IStEr ALIOCALONc.viviiiitiiiiitieii ettt 366
21.8. Standard StaCK FrAMEccooiiiiiiiiiiiiiiiii it 366
21.9. Register Allocation for EXAmple A-2cccooiiiiiiiiiiiiieieiesie e 370
21.10. Linux86-64 Fortran Fundamental TYPESccoveviruirieieiiniiieiiiteiee e 372
21.11. Fortran and C/C++ Data Type Compatibilitycccovviiriiiiniiiniiiiicc 373
21.12. Fortran and C/C++ Representation of the COMPLEX TYPec.cocevveviririniiiiicienencnciee 374
21.13. Register ALLOCAONcc.evuiiiiiiiiiieiiiieieet et 376
21.14. Standard Stack Frameccoooviiiiiiiiiiiiiiiiiie e 377
21.15. Register Allocation for EXAmPple A-4ccccocoiiiiiiiiiiieei s 380
21.16. Win64 Fortran Fundamental TYPEScooouiiiiiieiiiiiieieiiiieieie e 381
21.17. Fortran and C/C++ Data Type Compatibilityccovvveriiiiniiiniiiiicc 383
21.18. Fortran and C/C++ Representation of the COMPLEX TYPecc.cocevviviriiiiniiiiiiienencie e 384
23.1. Fortran Data Type Mappingsccccoovviiiiiiiiiiiiiiiiiiii e 391
23.2. DFLIB Function SUMMALYccooriiimiiiiiieeeiiiiiiiiiiie ettt e e e e st e e e e st eeeeee e aes 392
23.3. DFPORT FUNCHOMNSeeiieeiiiiiiiiiiiieeeeeeiiiiet et e e e e e ettt e e e e e sttt e e e e e s s snetbbaeeeeeesssannnnbnaeeeens 393
23.4. DFWIN advapi32 FUNCHONScc.eoviiiieiieiieiiesieeieeiteeie et snee st neesteebeeneesneeseeeneesneenaeeneeas 399
24.1. MMX Intrinsics (Mmintrin.i)oc.ooooiiiiiiiiii s 423
24.2. SSE Intrinsics (XMMUNLIN.N) ©.ooovvviiiiiiiiie e 424
24.3. SSE2 Intrinsics (eMMUNEIIN.N)oooiiiiiiiiiiiiie e 425
24.4. SSE3 Intrinsics (PMMINEEiN.N)ocoviviiiiiiiiiiiic e 427
24.5. SSSE3 Intrinsics (tmmuintrindl)ooooviiiiiiiiiii i 427
24.6. SSE4a Intrinsics (AMMUNTIN.N) ...oooiiiiiiiiiiie e 428
24.7. ABM Intrinsics (INEFNJ) coovvviiiiiie e 428

Examples

1.1, HELO PIOZLAMo.vvieiiiiiiiieiie ettt ettt ettt ettt ettt et e esb e e baeesbeetaeenbeesbaeenbeeseeenbaenes 2
2.1. Makefiles With OPONSccviiiiiiiiiiiieiie ettt et e e e sbeeennas 20
3.1, DOt PrOAUCE COAEeevviiiiiiieieeieee et 32
3.2. Unrolled Dot Product COAEcc.eouiriiiriiiiiiiieieiie sttt 32
3.3. Vector operation using SSE iNSLIUCLIONScoeeriiiiiiiiiiiiiieiiiiiiiteeee e 35
3.4. Using SYSTEM_CLOCK COde fragmentccoocvrieieieieieienie ettt 48
4.1, Sample MAKEFIIEcceoiviiiiiiiicciee et 54
5.1. OpenMP LOOP EXAMPLEcveeiiviiiiiiiiiiiieiie ettt ettt eibeebeeenre s 59
6.1. MPI Hello World EXAIMPIEocovoiiiiiiiiiiiiiiiieiee et 78
7.1. Accelerator Kernel Timing DAtacocoiiiiiiiiiiiiiiiiieiiec et 104
8.1. PrefetCh DIrECHVE USEcoeirviierieiiierietieteiestetestest ettt ettt sttt et se ettt ese b sbens s eeens 116
8.2. Prefetch Pragma in €c.oooiiiiiiiiiiiiiecie ettt 117
9.1. Build @ DLL: FOTTIAN ...c..eevviiiiiiieiiiiieitt ettt ettt 127
0.2, BUILA @ DLL: € .oeovvieniieiiie ettt ettt ettt e st e et st et et eeba e nbeeteas 128
9.3. Build DLLs Containing Circular Mutual IMports: Ccccoovverieriiiiniiieiienieceescee e 129
9.4. Build DLLs Containing Mutual Imports: FOIrancccooevviriiiiiiieiieieieiesie e 131
9.5. Import a Fortran module from @ DLLcccoooiiiiiiiiiiiieiiecce e 132
12.1. Character Return PATAMELELScovtiieriieriiiieitieie sttt ettt ettt ettt e e 160
12.2. COMPLEX RetUIN VAIUEScceovevierieiiienieieiieieit ettt ettt ess ettt ne e 160
12.3. Fortran Main Program f2c_main.fcocoeiiiiiiiiiiiii e 161
12.4. C UNCHON T2C_TUNC_ woiiiieeeee et 161
12.5. C Main Program C2f MAIN.Cccoovviiiiiiiiiiiect et 162
12.6. Fortran SUbroutine C2f SUD.Lvviiiiieee ettt et 162
12.7. C++ Main Program cp2c_main.C Calling a C FUNCHONccoevvviiiiiiiiiiiiieiieeie e 163
12.8. Simple C Function C2CP_fUNC.Ccvviiviiiiiiiieiiieiie et 163
12.9. C Main Program c2cp_main.c Calling @ C++ FUNCHONcccvvvviiiviiiiieiiieiieeie e 163
12.10. Simple C++ Function c2cp_func.C with EXtern Cccoovviiiiiiiiiiiiiiiiecieeee e 164
12.11. Fortran Main Program f2cp_main.f calling a C++ functionccocoevvvieniiiiiiiniiiiiiiieenns 164
12.12. C++ function f2Cp_func.Cc.oovoiiviiiiiiicie e 165
12.13. C++ main program cP2f_Main.Cooovviiriiiiiiiieiie e 165
12.14. Fortran Subroutine cp2f func.fcccooiiiiiiiiii 166
13.1. Medium Memory Model and Large Array in €ccoovvieiiiiinieiiieiiecie e 175
13.2. Medium Memory Model and Large Array in FOItrancccoooeviiniininieniiciiencee e, 176

XX

13.3. Large Array and Small Memory Model in FOrtranccccoocveiiiiiiiiniiiiiicniccecneecns 177

17.1. OpenMP Task C EXAMPIEccoooiiiiiiiiiiiiiiici e 295
17.2. OpenMP Task Fortran EXAmpleccccooiiiiiiiiiiiiiiii i 295
21.1. C Program Calling an Assembly-language ROUtinecccoceviiniiniiiiniiniiiccccc 365
21.2. Parameter PaSSIngoccoiiiiiiiiiiiiiiiii i 370
21.3. C Program Calling an Assembly-language ROUtInecccocoviiniiniiiiiniiniiiccc 371
21.4. PArAMELET PASSINGc.viivieiieiiiiieiiieie ettt ettt ettt ettt st ettt enee e 379
21.5. C Program Calling an Assembly-language ROUtINeccoeviiiiiniiiiniiiniiicccc 381

Preface

This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran, C, and

C++ compilers and program development tools. These compilers and tools include the PGF77, PGF95,
PGFORTRAN, PGHPF, PGC++, and PGCC ANSI C compilers, the PGPROF profiler, and the PGDBG debugger.
They work in conjunction with an x86 or x64 assembler and linker. You can use the PGI compilers and tools
to compile, debug, optimize, and profile serial and parallel applications for x86 (Intel Pentium II/ITI/4/M, Intel
Centrino, Intel Xeon, AMD Athlon XP/MP) or x64 (AMD Athlon64/Opteron/Turion, Intel EM64T, Intel Core
Duo, Intel Core 2 Duo, Barcelona) processor-based systems.

The PGI User's Guide provides operating instructions for the PGI command-level development environment. It
also contains details concerning the PGI compilers' interpretation of the Fortran language, implementation of
Fortran language extensions, and command-level compilation. Users are expected to have previous experience
with or knowledge of the Fortran programming language.

Audience Description

This manual is intended for scientists and engineers using the PGI compilers. To use these compilers, you
should be aware of the role of high-level languages, such as Fortran, C, and C++, as well as assembly-language
in the software development process; and you should have some level of understanding of programming. The
PGI compilers are available on a variety of x86 or x64 hardware platforms and operating systems. You need to
be familiar with the basic commands available on your system.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of the compilers. For information
on installing PGI compilers and tools, refer to the Release Notes and Installation Guide included with your
software.

For further information, refer to the following:

* American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

* [SO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran, Geneva, 1991
(Fortran 90).

* [SO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran, Geneva, 1997
(Fortran 95).

XXi

Organization

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

o OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
* [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

* American National Standard Programming Language C, ANSI X3.159-1989.
e [SO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).

Organization

XXii

Users typically begin by wanting to know how to use a product and often then find that they need more
information and facts about specific areas of the product. Knowing how as well as why you might use certain
options or perform certain tasks is key to using the PGI compilers and tools effectively and efficiently. However,
once you have this knowledge and understanding, you very likely might find yourself wanting to know much
more about specific areas or specific topics.

To facilitate ease of use, this manual is divided into the following two parts:

e Part I, Compiler Usage, contains the essential information on how to use the compiler.

e Part IT, Reference Information, contains more detailed reference information about specific aspects of the
compiler, such as the details of compiler options, directives, and more.

Part I, Compiler Usage, contains these chapters:

Chapter 1, “Getting Started” provides an introduction to the PGI compilers and describes their use and
overall features.

Chapter 2, “Using Command Line Options” provides an overview of the command-line options as well as
task-related lists of options.

Chapter 3, “Optimizing & Parallelizing” describes standard optimization techniques that, with little effort,
allow users to significantly improve the performance of programs.

Chapter 4, “Using Function Inlining” describes how to use function inlining and shows how to create an
inline library.

Chapter 5, “Using OpenMP” provides a description of the OpenMP Fortran parallelization directives and of the
OpenMP C and C++ parallelization pragmas and shows examples of their use.

Chapter 6, “Using MPI " describes how to use MPI with PGI Workstation and PGI server.

Preface

Chapter 7, “Using an Accelerator” describes how to use the PGI Accelerator compilers.

Chapter 8, “Using Directives and Pragmas” provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Chapter 9, “Creating and Using Libraries” discusses PGI support libraries, shared object files, and
environment variables that affect the behavior of the PGI compilers.

Chapter 10, * Using Environment Variables” describes the environment variables that affect the behavior of
the PGI compilers.

Chapter 11, “Distributing Files - Deployment” describes the deployment of your files once you have built,
debugged and compiled them successfully.

Chapter 12, “Inter-language Calling” provides examples showing how to place C Language calls in a Fortran
program and Fortran Language calls in a C program.

Chapter 13, “Programming Considerations for 64-Bit Environments” discusses issues of which
programmers should be aware when targeting 64-bit processors.

Chapter 14, “C/C++ Inline Assembly and Intrinsics” describes how to use inline assembly code in C and C+
+ programs, as well as how to use intrinsic functions that map directly to x86 and x64 machine instructions.

Part II, Reference Information, contains these chapters:

Chapter 15, “Fortran, C, and C++ Data Types” describes the data types that are supported by the PGI Fortran,
C, and C++ compilers.

Chapter 16, “Command-Line Options Reference” provides a detailed description of each command-line
option.

Chapter 17, “OpenMP Reference Information” contains detailed descriptions of each of the OpenMP
directives and pragmas that PGI supports.

Chapter 18, “PGI Accelerator Compilers Reference "contains detailed descriptions of each of the PGI
Accelerator directives, runtime routines, and environment variables that PGI supports.

Chapter 19, “C++ Name Mangling” describes the name mangling facility and explains the transformations of
names of entities to names that include information on aspects of the entity’s type and a fully qualified name.

Chapter 20, “Directives and Pragmas Reference” contains detailed descriptions of PGI's proprietary
directives and pragmas.

Chapter 21, “Run-time Environment” describes the assembly language calling conventions and examples of
assembly language calls.

Chapter 22, “C++ Dialect Supported” lists more details of the version of the C++ language that PGC++
Supports.

Chapter 23, “Fortran Module/Library Interfaces for Windows” provides a description of the Fortran module
library interfaces that PVF supports, describing each property available.

XXiii

Hardware and Software Constraints

Chapter 24, “C/C++ MMX/SSE Inline Intrinsics” provides tables that list the MMX Inline Intrinsics
(mmintrin.h), the SSE1 inline intrinsics (xmmintrin.h), and SSE2 inline intrinsics (emmintrin.h).

Chapter 25, “Messages” provides a list of compiler error messages.

Hardware and Software Constraints

This guide describes versions of the PGI compilers that produce assembly code for x86 and x64 processor-
based systems. Details concerning environment-specific values and defaults and system-specific features or
limitations are presented in the release notes delivered with the PGI compilers.

Conventions

The PGI User's Guide uses the following conventions:

italic
Italic font is for emphasis.

Constant Wdth

Constant width font is for commands, filenames, directories, examples and for language statements in the
text, including assembly language statements.

[item1]
Square brackets indicate optional items. In this case item1 is optional.

{ item2 | item 3}
Braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename...

Ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using upper-case characters and a reduced
point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of Linux, Mac OS X, and
Windows operating systems on a variety of x86-compatible processors. There are a wide variety of releases
and distributions of each of these types of operating systems. Further, The PGI User’s Guide uses a number
of terms with respect to these platforms. For a complete definition of these terms and other terms in

this guide with which you may be unfamiliar, PGI provides a glossary of terms which you can access at
www.pgroup.com/support/definitions.htm.

AMDG64 linux86 0sx86 SSSE3
barcelona linux86-64 05x86-64 static linking
DLL Mac OS X SFU SUA

driver -mcmodel=small shared library Win32
dynamic library -mcmodel=medium SSE Win64

XXiv

Preface

EM64T MPI SSE1 Windows
hyperthreading (HT) ~ |MPICH SSE2 x04
1A32 multi-core SSE3 x86
Large arrays NUMA SSE4A and ABM x87

The following table lists the PGI compilers and tools and their corresponding commands:

Note

Table 1. PGl Compilers and Commands

Compiler or Tool |Language or Function Command

PGF77 FORTRAN 77 pgf77

PGF95 Fortran 90/95 pgf95

PGFORTRAN PGI Fortran pgfortran

PGHPF High Performance Fortran pghpf

PGCC C ANSI €99 and K&R C pgcc

PGC++ ANSI C++ with cfront features | pgcpp on Windows
pgCC on Linux

PGDBG Source code debugger pgdbg

PGPROF Performance profiler pgprof

The commands pgf95 and pgfortran are equivalent.

In general, the designation PGI Fortran is used to refer to The Portland Group’s Fortran 90/95 compiler, and
pgfortran is used to refer to the command that invokes the compiler. A similar convention is used for each of
the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the pgfortran
command, and most source code examples are written in Fortran. Usage of the PGF77 compiler, whose
features are a subset of PGF95 or PGFORTRAN, is similar. Usage of PGHPE, PGC++, and PGCC is consistent
with PGF95, PGFORTRAN, and PGF77, though there are command-line options and features of these compilers

that do not apply to PGF95, PGFORTRAN, and PGF77, and vice versa.

There are a wide variety of x86-compatible processors in use. All are supported by the PGI compilers and
tools. Most of these processors are forward-compatible, but not backward-compatible, meaning that code
compiled to target a given processor will not necessarily execute correctly on a previous-generation processor.

A table listing the processor options that PGI supports is available in the Release Notes. The table also includes

the features utilized by the PGI compilers that distinguish them from a compatibility standpoint.

In this manual, the convention is to use "x86" to specify the group of processors that are "32-bit" but not "64-
bit." The convention is to use "x64" to specify the group of processors that are both "32-bit" and "64-bit." x86
processor-based systems can run only 32-bit operating systems. x64 processor-based systems can run either

XXV

Related Publications

32-bit or 64-bit operating systems, and can execute all 32-bit x86 binaries in either case. x64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI compilers and tools
when running on a 64-bit operating system. The prefetch, SSE1, SSE2 and SSE3 processor features further
distinguish the various processors. Where such distinctions are important with respect to a given compiler
option or feature, it is explicitly noted in this manual.

Note

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that
support SSE1 and SSE2.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures, and the
compilers and tools available from The Portland Group.

* PGl Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data
types, input/output format specifiers, and additional reference material related to use of the PGI Fortran
compilers.

o System VApplication Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

o System VApplication Binary Interface X86-64 Architecture Processor Supplement, www.x86-64.org/
abi.pdf.

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

e [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e The C Programming Language by Kernighan and Ritchie (Prentice Hall).

* (: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

* The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories,
Inc. (Addison-Wesley Publishing Co., 1990).

* OpenMP Application Program Interface, Version 2.5 May 2005 (OpenMP Architecture Review Board,
1997-2005).

XXVi

Part |. Compiler Usage

Users typically begin by wanting to know how to use a product and often then find that they need more information
and facts about specific areas of the product. Knowing how as well as why you might use certain options or perform
certain tasks is key to using the PGI compilers and tools effectively and efficiently. In the chapters in this part of the
guide you learn how to:

Get started using the PGI compilers, as described in Chapter 1, “Getting Started” on page 1.

Use the most common command line options and learn why specific ones are especially beneficial for you to use,
as described in Chapter 2, “Using Command Line Options” on page 19.

Use optimization and parallelization to increase the performance of your program, as described in Chapter 3,
“Optimizing & Parallelizing” on page 25.

Invoke function inlining and create an inline library, as described in Chapter 4, “Using Function Inlining” on
page 51.

Use OpenMP directives, pragmas, run-time libraries, and environment variables, as described in Chapter 5, “Using
OpenMP” on page 57.

Use MPJ, including compiling, linking and generating MPI profile data, as described in Chapter 6, “Using MPI” on
page 75.

Using PGI Accelerator compilers, as described in Chapter 7, “Using an Accelerator” on page 85.
Use PGI directives and pragmas, as described in Chapter 8, “Using Directives and Pragmas” on page 109.
Create and use libraries, as described in Chapter 9, “Creating and Using Libraries” on page 119.

Create and use environment variables to control the behavior of PGI software, as described in Chapter 10, “Using
Environment Variables” on page 135.

Distribute files and deploy your applications, as described in Chapter 11, “Distributing Files - Deployment” on
page 149.

Make inter-language calls, as described in Chapter 12, “Inter-language Calling” on page 155.

Incorporate programming considerations for 64-bit environments, as described in Chapter 13, “Programming
Considerations for 64-bit Environments™ on page 171.

Properly use C/C++ inline assembly instructions and intrinsics, as described in Chapter 14, “C/C++ Inline
Assembly and Intrinsics” on page 179.

Chapter 1. Getting Started

This chapter describes how to use the PGI compilers.

The command used to invoke a compiler, such as the pgfortran command, is called a compiler driver. The
compiler driver controls the following phases of compilation: preprocessing, compiling, assembling, and
linking. Once a file is compiled and an executable file is produced, you can execute, debug, or profile the
program on your system. Executables produced by the PGI compilers are unconstrained, meaning they can be
executed on any compatible x86 or x64 processor-based system, regardless of whether the PGI compilers are
installed on that system.

Overview

In general, using a PGI compiler involves three steps:

1. Produce a program source code in a file containing a . f extension or another appropriate extension, as
described in “Input Files,” on page 4. This program may be one that you have written or one that you
are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The PGI compilers allow many variations on these general program development steps. These variations
include the following:

e Stop the compilation after preprocessing, compiling or assembling to save and examine intermediate
results.

e Provide options to the driver that control compiler optimization or that specify various features or
limitations.

e Include as input intermediate files such as preprocessor output, compiler output, or assembler output.

Invoking the Command-level PGl Compilers

Invoking the Command-level PGl Compilers

To translate and link a Fortran, G, or C++ program, the pgf77, pgf95, pgfortran, pghpf, pgcc, and pgepp
commands do the following:

1. Preprocess the source text file.
2. Check the syntax of the source text.
3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.

Example 1.1. Hello program

Let’s look at a simple example of using the PGI compiler to create, compile, and execute a program that prints
hello.

Step 1: Create your program.

For this example, suppose you enter the following simple Fortran program in the file hel | o. f

print *, "hello"
end

Step 2: Compile the program.

When you created your program, you called it hel | o. f . In this example, we compile it from a shell
command prompt using the default pgfortran driver option. Use the following syntax:

PG $ pgfortran hello.f
PA $

By default, the executable output is placed in the file a. out , or, on Windows platforms, in a filename based on
the name of the first source or object file on the command line. However, you can specify an output file name
by using the —o option.

To place the executable output in the file hel | o, use this command:

PA $ pgfortran -o hello hello.f
PG $

Step 3: Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and press the Return
or Enter key on your keyboard:

PA$ hello

hel |l o
PG $

Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:

pgfortran [options] [path]filename [...]

Chapter 1. Getting Started

Where:

options
is one or more command-line options, all of which are described in detail in Chapter 2, “Using
Command Line Options”.

path
is the pathname to the directory containing the file named by filename. If you do not specify the path for a
filename, the compiler uses the current directory. You must specify the path separately for each filename
not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object file, or library to be
processed by the compilation system. You can specify more than one [path]filename.

Command-line Options

The command-line options control various aspects of the compilation process. For a complete alphabetical
listing and a description of all the command-line options, refer to Chapter 2, “Using Command Line
Options”.

The following list provides important information about proper use of command-line options.

e (ase is significant for options and their arguments.

 The compiler drivers recognize characters preceded by a hyphen (-) as command-line options. For
example, the —M i st option specifies that the compiler creates a listing file.

Note

The convention for the text of this manual is to show command-line options using a dash instead of
a hyphen; for example, you see —M i st .

e The PGC++ command recognizes a group of characters preceded by a plus sign (+) as command-line
options.

e The order of options and the filename is flexible. That is, you can place options before and after the
filename argument on the command line. However, the placement of some options is significant, such as the
—I option, in which the order of the filenames determines the search order.

Note

If two or more options contradict each other, the /ast one in the command line takes precedence.

Fortran Directives and C/C++ Pragmas

You can insert Fortran directives and C/C++ pragmas in program source code to alter the effects of certain
command-line options and to control various aspects of the compilation process for a specific routine or a
specific program loop. For more information on Fortran directives and C/C++ pragmas, refer to Chapter 5,
“Using OpenMP” and Chapter 8, “Using Directives and Pragmas”.

Filename Conventions

Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create input and
output files. This section describes the input and output filename conventions for the phases of the compilation
process.

Input Files

You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files, object files,
and libraries as inputs on the command line. The compiler driver determines the type of each input file by
examining the filename extensions.

Note

For systems with a case-insensitive file system, use the —Mpreprocess option, described in Chapter 16,
“Command-Line Options Reference”, under the commands for Fortran preprocessing.

The drivers use the following conventions:

filename.f
indicates a Fortran source file.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.f00
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that can contain
macros and preprocessor directives (to be preprocessed).

filename.hpf
indicates an HPF source file.

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be preprocessed).

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

Chapter 1. Getting Started

filename.i
indicates a preprocessed C or C++ source file.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux, Mac OS X, SFU, SUA) indicates an object file.

filename.obj
(Windows systems only) indicates an object file.

filename.a
(Linux, Mac OS X, SFU, SUA) indicates a library of object files.

filename.lib
(Windows systems only) indicates a statically-linked library of object files or an import library.

filename.so
(Linux and SFU systems only) indicates a library of shared object files.

filename.dll
(Windows systems only) indicates a dynamically-linked library.

filename.dylib
(Mac OS X systems only) indicates a dynamically-linked library.

The driver passes files with . s extensions to the assembler and files with .o, .obj, .so, .dll, .a and .lib
extensions to the linker. Input files with unrecognized extensions, or no extension, are also passed to the
linker.

Files with a . F (Capital F) or . FOR suffix are first preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor functions like cpp for C/C++ programs, but is
built in to the Fortran compilers rather than implemented through an invocation of cpp. This design ensures
consistency in the preprocessing step regardless of the type or revision of operating system under which you're
compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if on

the command line you specify an assembly-language file (filename.s) and the —S option to stop before

the assembly phase, the compiler takes no action on the assembly language file. Processing stops after
compilation and the assembler does not run. In this scenario, the compilation must have been completed in
a previous pass which created the . s file. For a complete description of the —S option, refer to the following
section:“Output Files”.

In addition to specifying primary input files on the command line, code within other files can be compiled
as part of include files using the | NCLUDE statement in a Fortran source file or the pr epr ocessor
#i ncl ude directive in Fortran source files that use a . F extension or C and C++ source files.

Filename Conventions

When linking a program with a library, the linker extracts only those library components that the program
needs. The compiler drivers link in several libraries by default. For more information about libraries, refer to
Chapter 9, “Creating and Using Libraries”.

Output Files

By default, an executable output file produced by one of the PGI compilers is placed in the file a.out, or, on
Windows, in a filename based on the name of the first source or object file on the command line. As the
example in the preceding section shows, you can use the —o option to specify the output file name.

If you use one of the options: —F (Fortran only), —P (C/C++ only), —S or —c, the compiler produces a file
containing the output of the last completed phase for each input file, as specified by the option supplied. The
output file will be a preprocessed source file, an assembly-language file, or an unlinked object file respectively.
Similarly, the —E option does not produce a file, but displays the preprocessed source file on the standard
output. Using any of these options, the —o option is valid only if you specify a single input file. If no errors
occur during processing, you can use the files created by these options as input to a future invocation of any of
the PGI compiler drivers. The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also describes the accepted input files.

Table 1.1. Stop-after Options, Inputs and Outputs

Option |Stop after Input Output
—E preprocessing | Source files. preprocessed file to standard out
—F preprocessing |Source files. This option is not valid |preprocessed file (.f)
for pgcc or pgepp.
-P preprocessing |Source files. This option is not valid |preprocessed file (.i)
for pgf77, pgf9s, pgfortran or pghpf.
=S compilation Source files or preprocessed files. assembly-language file (.s)
—C assembly Source files, preprocessed files or |unlinked object file (.0 or .obj)
assembly-language files.
none linking Source files, preprocessed files, executable file (a.out or .exe)
assembly-language files, object files
or libraries.

If you specify multiple input files or do not specify an object filename, the compiler uses the input filenames
to derive corresponding default output filenames of the following form, where filename is the input filename
without its extension:

filename.f
indicates a preprocessed file, if you compiled a Fortran file using the —F option.

filename.i
indicates a preprocessed file, if you compiled using the —P option.

filename.lst
indicates a listing file from the —M i st option.

Chapter 1. Getting Started

filename.o or filename.obj
indicates an object file from the —c option.

filename.s
indicates an assembly-language file from the —S option.

Note

Unless you specify otherwise, the destination directory for any output file is the current working
directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output files proto.o and proto1.0, or, on Windows, proto.obj and proto1.obj all of which
are binary object files. Prior to compilation, the file proto1.F is preprocessed because it has a .F filename
extension.

Fortran, C, and C++ Data Types

The PGI Fortran, C, and C++ compilers recognize scalar and aggregate data types. A scalar data type holds
a single value, such as the integer value 42 or the real value 112.6. An aggregate data type consists of one or
more scalar data type objects, such as an array of integer values.

For information about the format and alignment of each data type in memory, and the range of values each
type can have on x86 or x64 processor-based systems running a 32-bit operating system, refer to Chapter 15,
“Fortran, C, and C++ Data Types”.

For more information on x86-specific data representation, refer to the System V Application Binary Interface
Processor Supplement by AT&T UNIX System Laboratories, Inc. (Prentice Hall, Inc.).

This manual specifically does not address x64 processor-based systems running a 64-bit operating system,
because the application binary interface (ABI) for those systems is still evolving. For the latest version of this
ABI, see www.x86-64.org/abi.pdf.

Parallel Programming Using the PGI Compilers
The PGI compilers support three styles of parallel programming;

e Automatic shared-memory parallel programs compiled using the —Mconcur option to pgf77, pgf95,
pgfortran, pgce, or pgepp — parallel programs of this variety can be run on shared-memory parallel
(SMP) systems such as dual-core or multi-processor workstations.

e OpenMP shared-memory parallel programs compiled using the —np option to pgf77, pgf95, pgfortran,
pgcc, or pgepp — parallel programs of this variety can be run on SMP systems. Carefully coded user-
directed parallel programs using OpenMP directives can often achieve significant speed-ups on dual-core
workstations or large numbers of processors on SMP server systems. Chapter 5, “Using OpenMP” contains
complete descriptions of user-directed parallel programming.

e Data parallel shared- or distributed-memory parallel programs compiled using the PGHPF High
Performance Fortran compiler — parallel programs of this variety can be run on SMP workstations or

Parallel Programming Using the PGI Compilers

servers, distributed-memory clusters of workstations, or clusters of SMP workstations or servers. Coding
a data parallel version of an application can be more work than using OpenMP directives, but has the
advantage that the resulting executable is usable on all types of parallel systems regardless of whether
shared memory is available. See the PGHPF User’s Guide for a complete description of how to build and
execute data parallel HPF programs.

In this manual, the first two types of parallel programs are collectively referred to as SMP parallel programs.
The third type is referred to as a data parallel program, or simply as an HPF program.

On a single silicon die, some newer CPUs incorporate two or more complete processor cores - functional
units, registers, level 1 cache, level 2 cache, and so on. These CPUs are known as multi-core processors. For
purposes of HPF, threads, or OpenMP parallelism, these cores function as two or more distinct processors.
However, the processing cores are on a single chip occupying a single socket on a system motherboard. For
purposes of PGI software licensing, a multi-core processor is treated as a single CPU.

Running SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run on more than one
processor, set the NCPUS environment variable to the desired number of processors, subject to 2 maximum
of four for PGI's workstation-class products. For information on how to set environment variables, refer
to“Setting Environment Variables,” on page 135

Note

If you set NCPUS to a number larger than the number of physical processors, your program may
execute very slowly.

Running Data Parallel HPF Programs

When you execute an HPF program, by default it will use only one processor. If you wish to run on more than
one processor, use the -pghpf -np run-time option. For example, to compile and run the hello.f example
defined in “Hello program,” on page 2 on one processor, you would issue the following commands:

% pghpf -0 hello hello.f
Li nki ng:
% hel | o
hel | o
%

To execute it on two processors, you would issue the following commands:

% hell o -pghpf -np 2
hel | o
%

Note

If you specify a number larger than the number of physical processors, your program will execute
very slowly.

You still only see a single "hello" printed to your screen. This is because HPF is a single-threaded model,
meaning that all statements execute with the same semantics as if they were running in serial. However,
parallel statements or constructs operating on explicitly distributed data are in fact executed in parallel.

Chapter 1. Getting Started

The programmer must manually insert compiler directives to cause data to be distributed to the available
processors. See the PGHPF User’s Guide and The High Performance Fortran Handbook for more details on
constructing and executing data parallel programs on shared-memory or distributed-memory cluster systems
using PGHPE

Platform-specific considerations

There are nine platforms supported by the PGI Workstation and PGI Server compilers and tools:

* 32-bit Linux — supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or an
x64 compatible processor.

* 4-bit/32-bit Linux — includes all features and capabilities of the 32-bit Linux version, and is also supported
on 64-bit Linux operating systems running on an x64 compatible processor.

e 32-bit Windows — supported on 32-bit Windows operating systems running on either a 32-bit x86
compatible or an x64-compatible processor.

* 04-bit/32-bit Windows — includes all features and capabilities of the 32-bit Windows version; also supported
on 64-bit Windows operating systems running an x64- compatible processor.

e 32-bit SFU — supported on 32-bit Windows operating systems running on either a 32-bit x86 compatible or
an x64 compatible processor.

* 32-bit SUA — supported on 32-bit Windows operating systems running on either a 32-bit x86 compatible or
an x64 compatible processor.

e 64-bit/32-bit SUA — includes all features and capabilities of the 32-bit SUA version; also supported on 64-bit
Windows operating systems running on an x64-compatible processor.

e 32-bit Mac OS X — supported on 32-bit Mac OS X operating systems running on either a 32-bit or 64-bit
Intel-based Mac system.

* (4-bit Mac OS X — supported on 64-bit Mac OS X operating systems running on a 64-bit Intel-based Mac
system.

The following sections describe the specific considerations required to use the PGI compilers on the various
platforms: Linux, Windows, and Mac 0OS X.

Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGI supports many of these extensions, thus
allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can compile. A few
header files not interoperable with the PGI compilers have been rewritten. These files are included in $PG /

| i nux86/ i ncl ude, such as si gset . h, asnf byt eor der . h, st ddef . h, asnf posi x_t ypes. h and
others. Also, PGI's version of st dar g. h supports changes in newer versions of Linux.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This hierarchy happens by default unless you explicitly add a —I
option that references one of the system i ncl ude directories.

Platform-specific considerations

Running Parallel Programs on Linux

You may encounter difficulties running auto-parallel or OpenMP programs on Linux systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable OVP_STACKSI ZE to a larger value, such as 8MB. For information on setting
environment variables, refer to “Setting Environment Variables,” on page 135.

If your program is still failing, you may be encountering the hard 8 MB limit on main process stack sizes in
Linux. You can work around the problem by issuing the following command in csh:

%limt stacksize unlimted
in bash, sh, zsh, or ksh, use:

$ulimt -s unlinted

Using the PGI Compilers on Windows

PGl on the Windows Start Menu

PGI provides a Start menu entry that provides access to different versions of PGI command shells as well as
easy access to the PGI Debugger, the PGI Profiler, documentation, and licensing. The following sections provide
a quick overview of the menu selections.

To access the main PGI menu, from the Start menu, select Start | All Programs | PGI Workstation.

Command Shell Submenus

10

From the PGI Workstation menu, you have access to PGI command shells for each version of PGI installed on
your system. For example, if you have PGI 10.1 and PGI 10.2 installed, then you have a submenu for each of
these versions.

The PGI submenus for each version include the following:

* PGI Bash (64) — Select this option to launch a Cygwin bash shell in which the environment is pre-
initialized to use the 64-bit PGI compilers and tools. The default environment variables are already set and
available. (Available only on x64 systems with Cygwin installed.)

e PGI Bash — Select this option to launch a Cygwin bash shell in which the environment is pre-initialized
to use the 32-bit PGI compilers and tools. The default environment variables are already set and available.
(Available only on systems with Cygwin installed.)

e PGI Cmd (64) — Select this option to launch a Microsoft command shell in which the environment is pre-
initialized to use the 64-bit PGI compilers and tools. The default environment variables are already set and
available. (Available only on x64 systems.)

e PGI Cmd — Select this option to launch a Microsoft command shell in which the environment is pre-
initialized to use the 32-bit PGI compilers and tools. The default environment variables are already set and
available.

The command window launched by PGI Workstation can be customized using the "Properties" selection on the
menu accessible by right-clicking the window's title bar.

Chapter 1. Getting Started

Debugger & Profiler Submenu

From the Debugger & Profiler menu, you have access to the PGI debugging and profiling tools. PGDBG is a
symbolic debugger for Fortran, C, C++ and assembly language programs. It provides debugger features, such
as execution control using breakpoints, single-stepping, and examination and modification of application
variables, memory locations, and registers.

* PGDBG Debugger (64) — Select this option to launch the PGI debugger, PGDBG, for use with 64-bit
applications.

* PGDBG Debugger — Select this option to launch the PGI debugger, PGDBG, for use with 32-bit
applications.

e PGPROF Performance Profiler — Select this option to launch the PGPROF Performance Profiler. PGPROF
provides a way to visualize and diagnose the performance of the components of your program, and provides
features for helping you to understand why certain parts of your program have high execution times.

Documentation Submenu

From the Documentation menu, you have access to all PGI documentation that is useful for PGI users. The
documentation that is available includes the following:

e AMD Core Math Library- Select this option to display documentation that describes elements of the
AMD Core Math Library, a software development library released by AMD that includes a set of useful
mathematical routines optimized for AMD processors.

* CUDA Fortran Reference— Select this option to display the CUDA Fortran Programming Guide and
Reference. This document describes CUDA Fortran, a small set of extensions to Fortran that support and
build upon the CUDA computing architecture.

* Fortran Language Reference— Select this option to display the PGI Fortran Reference. This document
describes The Portland Group's implementation of the FORTRAN 77 and Fortran 90/95 languages and
presents the Fortran language statements, intrinsics, and extension directives.

e Installation Guide- Select this option to display the PGI Server and Workstation Installation Guide.
This document provides an overview of the steps required to successfully install and license PGI Server and
PGI Workstation.

* Release Notes— Select this option to display the latest PGI Server and Workstation Release Notes. This
document describes changes between previous releases and the current release.

* Tools Guide— Select this option to display the PGI Tools Guide. This guide describes how to use the
PGPROF profiler and PGDBG debugger to tune and debug serial and parallel applications built with PGI
compilers. It contains information about how to use the tools, as well as detailed reference information on
commands and graphical interfaces.

e User’s Guide— Select this option to display the PGI User's Guide. This document provides operating
instructions for the PGI command-level development environment as well as details concerning the PGI
compilers' interpretation of the Fortran language, implementation of Fortran language extensions, and
command-level compilation.

11

Platform-specific considerations

Licensing Submenu

From the Licensing menu, you have access to the PGI License Agreement and an automated license generating
tool:

* Generate License— Select this option to display the PGI License Setup dialog that walks you through the
steps required to download and install a license for PGI Workstation or PGI Server. To complete this process
you need an internet connection.

* License Agreement— Select this option to display the license agreement that is associated with use of PGI
software.

PGl on the Windows Desktop

By default, a PGI Workstation installation creates a shortcut on the Windows desktop. This shortcut launches
a Cygwin bash shell if Cygwin is installed; otherwise it launches a Microsoft command shell. The environment
for this shell is pre-configured to use PGI compilers and tools. On 64-bit systems, the 64-bit compilers are
targeted, while on 32-bit systems, the 32-bit compilers are targeted.

BASH Shell Environment (Cygwin)

A UNIX-like shell environment, Cygwin, is bundled with PGI compilers and tools for Windows to provide a
familiar development environment for Linux or UNIX users. PGI Workstation for SFU and SUA does not include
Cygwin; it runs in the SFU/SUA shell environment.

After installation of PGI Workstation or PGI Server, you have a PGI Workstation icon on your Windows desktop.
Double-left-click on this icon to launch an instance of the Cygwin bash command shell window. Working
within BASH is very much like working within the sh or ksh shells on a Linux system; yet BASH has a command
history feature similar to csh and several other unique features. Shell programming is fully supported.

The BASH shell window is pre-initialized for usage of the PGI compilers and tools, so there is no need to set
environment variables or modify your command path when the command window comes up. In addition to the
PGI compiler commands, within BASH you have access to over 100 common commands and utilities, including
but not limited to the following:

vi gzip / gunzip ftp

tar / untar grep / egrep / fgrep awk

sed cksum cp

cat diff du

date kill Is

find mv printenv / env
more / less touch we

rm / rmdir make

If you are familiar with program development in a Linux environment, editing, compiling, and executing
programs within bash will be very comfortable. If you have not previously used such an environment, you
might want to familiarize yourself with v7 or other editors and with makef i | es. The Web has an extensive

12

Chapter 1. Getting Started

online tutorial available for the v editor as well as a number of thorough introductions to the construction and
use of makef il es.

ar or ranlib

For library compatibility, PGI provides versions of ar and ranlib that are compatible with native Windows
object-file formats. For more information on these commands, refer to “Creating and Using Static Libraries on
Windows,” on page 124.

Using the PGI Compilers on SUA and SFU

Subsystem for Unix Applications (SUA and SFU)

Subsystem for Unix Applications (SUA) is a source-compatibility subsystem for running Unix applications on
32-bit and 64-bit Windows server-class operating systems. PGI Workstation for Windows includes compilers
and tools for SUA and its 32-bit-only predecessor, Services For Unix (SFU).

SUA provides an operating system for POSIX processes. There is a package of support utilities available for
download from Microsoft that provides a more complete Unix environment, including features like shells,
scripting utilities, a telnet client, development tools, and so on.

SUA/SFU Header Files

The SUA/SFU system header files contain numerous non-standard extensions. PGI supports many of these
extensions, thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers
can compile. A few header files not interoperable with the PGI compilers have been rewritten and are included
in $PGI/sua32/include or $PGIl/sua64/include. These files are: stdarg.h, stddef.h, and others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This happens by default unless you explicitly add a —I option that
references one of the system include directories.

Running Parallel Programs on SUA and SFU

You may encounter difficulties running auto-parallel or OpenMP programs on SUA/SFU systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable OVP_STACKSI ZE to a larger value, such as 8MB. For information on how to set
environment variables, refer to “Setting Environment Variables,” on page 135.

Using Shared object files in SFU and SUA

PGI Workstation for 32-bit SFU and 32-bit SUA uses the GNU 1d for its linker. Further, the PGI compilers and
tools are able to generate shared object (.so0) files. You use the -shared switch to generate a shared object file.

For examples of how to create a shared object file and a program that uses it, as well as compiler switches
that support shared objects, refer to “Creating and Using Shared Object Files in SFU and 32-bit SUA,” on page
122.

13

Platform-specific considerations

Using the PGI Compilers on Mac OS X

PGI Workstation 10.0 for Mac OS X supports most of the features of the 32-and 64-bit versions for linux86 and
linux86-64 environments. Typically the PGI compilers and tools on Mac OS X function identically to their Linux
counterparts.

Mac OS X Header Files

The Mac OS X header files contain numerous non-standard extensions. PGI supports many of these extensions,
thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can compile.
A few header files not interoperable with the PGI compilers have been rewritten. These files are included in
$PGI/0sx86/10.0/include or $PGI/0sx86-64/10.0/include. These files are: stdarg.h, stddef.h, and others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This will happen by default unless you explicitly add a —I option that
references one of the system include directories.

Mac OS Debugging Requirements

Both the —g and —Mkeepobj switches play important roles when compiling a program on Apple Mac OS for
debugging.

¢ To debug a program with symbol information on the Mac OS, files must be compiled with the -g switch to
keep the program's object files, the files with a ".0" extension. Further, these object files must remain in the
same directory in which they were created.

e If a program is built with separate compile and link steps, by compiling with the -c switch which generates
the ".0" object files, then using the —g switch guarantees the required object files are available for
debugging.

Use the following command sequence to compile and then link your code.

To compile the programs, use these commands:

pgcc -c -g main.cpgcc -c -g foo.cpgcc -c -g bar.c

To link, use this command:

pgcc -g main.o foo.o bar.o

Linking on Mac OS X

On the Mac OS X, the PGI Workstation 10.0 compilers do not support static linking of user binaries. For
compatibility with future Apple updates, the compilers support dynamic linking of user binaries. For more
information on dynamic linking, refer to “Creating and Using Dynamic Libraries on Mac OS X,” on page 123.

Running Parallel Programs on Mac OS X

14

You may encounter difficulties running auto-parallel or OpenMP programs on Mac OS X systems when
the per-thread stack size is set to the default (8MB). If you have unexplained failures, please try setting
the environment variable OMP_STACKSIZE to a larger value, such as 16MB. For information on how to set
environment variables, refer to “Setting Environment Variables,” on page 135.

Chapter 1. Getting Started

Site-specific Customization of the Compilers

If you are using the PGI compilers and want all your users to have access to specific libraries or other files,
there are special files that allow you to customize the compilers for your site.

Using siterc Files

The PGI compiler drivers utilize a file named si t er c to enable site-specific customization of the behavior of
the PGI compilers. The si t er c file is located in the bi n subdirectory of the PGI installation directory. Using
si t er c, you can control how the compiler drivers invoke the various components in the compilation tool
chain.

Using User rc Files

In addition to the siterc file, user r c files can reside in a given user’s home directory, as specified by the user’s
HOME environment variable. You can use these files to control the respective PGI compilers. All of these files
are optional.

On Linux, SUA, and Mac OS X, these files are named . nypgf 77r ¢, . nypgf 90r ¢, . mypgccrc,
. nypgcppr c, and . mypghpfrc.

On Windows, these files are named nypgf 77rc, nypgf90rc, nypgf95rc, nypgfortranrc,
nmypgccrc, mypgeppr c, and mypghpfrec.

The following examples show how these r ¢ files can be used to tailor a given installation for a particular

purpose.
Table 1.2. Examples of Using siterc and User rc Files
To do this... Add the line shown to the indicated file
Make available to all linux86-64 set S| TELI B=/ opt/new i bs/ 64;

compilations the libraries found in
[opt/ new i bs/ 64
Make available to all linux86 set SI TELI B=/ opt/ newl i bs/ 32;

compilations the libraries found in
/opt/ new i bs/ 32

to/ opt/pgi/linux86-64/10.0/bin/siterc

to/opt/pgi/linux86/10.0/bin/siterc

Add to all linux86-64 compilations append SI TELI B=/ opt/ | ocal / f ast;
;‘;‘;‘t”/ﬁlbgizlpla;ha“st to/ opt/ pgi /i nux86- 64/ 10. 0/ bi n/ si terc
Make available to all compilations set SI TEINC=/ opt/acni /i ncl ude;

the include path to /opt/pgi/linux86/10.0/bin/siterc and

-1/ opt/acm /incl ude /opt/ pgi/linux86-64/10.0/bin/siterc

With linux86-64 compilations, set PI LI BDI R/ opt / mynpi / 64;
change —-Mmpi to link in set Pl LI BNAVE=Ni x;

15

Common Development Tasks

To do this... Add the line shown to the indicated file

Have linux86-64 compilations set S| TEDEF=I S64BI T AMD,

always add to/ opt/ pgi /1 i nux86- 64/ 10. 0/ bi n/ si terc
—DI S64BI T —DAVD

Build an F90 or F95 executable for set RPATH=./REDI ST ;

linux86-64 or linux80 that resolves
PGI shared objects in the relative
directory . / REDI ST Note. This only affects the behavior of PGFORTRAN for
the given user.

to~/ . nmypgfortranrc

Common Development Tasks

16

Now that you have a brief introduction to the compiler, let’s look at some common development tasks that you
might wish to perform.

e When you compile code you can specify a number of options on the command line that define specific
characteristics related to how the program is compiled and linked, typically enhancing or overriding the
default behavior of the compiler. For a list of the most common command line options and information on
all the command line options, refer to Chapter 2, “Using Command Line Options”.

¢ Code optimization and parallelization allows the compiler to organize your code for efficient execution.
While possibly increasing compilation time and making the code more difficult to debug, these techniques
typically produce code that runs significantly faster than code that does not use them. For more information
on optimization and parallelization, refer to Chapter 3, “Optimizing & Parallelizing”.

e Function inlining, a special type of optimization, replaces a call to a function or a subroutine with the body
of the function or subroutine. This process can speed up execution by eliminating parameter passing and
the function or subroutine call and return overhead. In addition, function inlining allows the compiler
to optimize the function with the rest of the code. However, function inlining may also result in much
larger code size with no increase in execution speed. For more information on function inlining, refer to
Chapter 4, “Using Function Inlining”.

e Directives and pragmas allow users to place hints in the source code to help the compiler generate
better assembly code. You typically use directives and pragmas to control the actions of the compiler in a
particular portion of a program without affecting the program as a whole. You place them in your source
code where you want them to take effect. A directive or pragma typically stays in effect from the point where
included until the end of the compilation unit or until another directive or pragma changes its status. For
more information on directives and pragmas, refer to Chapter 5, “Using OpenMP” and Chapter 8, “Using
Directives and Pragmas’.

e Alibrary is a collection of functions or subprograms used to develop software. Libraries contain "helper”
code and data, which provide services to independent programs, allowing code and data to be shared and
changed in 2 modular fashion. The functions and programs in a library are grouped for ease of use and
linking. When creating your programs, it is often useful to incorporate standard libraries or proprietary
ones. For more information on this topic, refer to Chapter 9, “Creating and Using Libraries”.

e Environment variables define a set of dynamic values that can affect the way running processes behave on a
computer. It is often useful to use these variables to set and pass information that alters the default behavior

Chapter 1. Getting Started

of the PGI compilers and the executables which they generate. For more information on these variables,
refer to Chapter 10, “ Using Environment Variables”.

Deployment, though possibly an infrequent task, can present some unique issues related to concerns
of porting the code to other systems. Deployment, in this context, involves distribution of a specific file
or set of files that are already compiled and configured. The distribution must occur in such a way that
the application executes accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you might need to know to
successfully deploy your code, refer to Chapter 11, “Distributing Files - Deployment”.

e An intrinsic is a function available in a given language whose implementation is handled specially by the
compiler. Intrinsics make using processor-specific enhancements easier because they provide a C/C++
language interface to assembly instructions. In doing so, the compiler manages details that the user would
normally have to be concerned with, such as register names, register allocations, and memory locations
of data. For C/C++ programs, PGI provides support for MMX and SSE/SSE2/SSE3 intrinsics. For more
information on these intrinsics, refer to Chapter 24, “C/C++ MMX/SSE Inline Intrinsics”.

17

18

Chapter 2. Using Command Line
Options

A command line option allows you to control specific behavior when a program is compiled and linked. This
chapter describes the syntax for properly using command-line options and provides a brief overview of a few
of the more common options.

Note

For a complete list of command-line options, their descriptions and use, refer to Chapter 16,
“Command-Line Options Reference,” on page 203.

Command Line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for these options. There
are a large number of options available to you, yet most users only use a few of them. So, start simple and
progress into using the more advanced options.

By default, the PGI compilers generate code that is optimized for the type of processor on which compilation is
performed, the compilation host. Before adding options to your command-line, review the sections “Help with
Command-line Options,” on page 20 and “Frequently-used Options,” on page 23.

Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not recognize an
option, it passes the option to the linker.

This document uses the following notation when describing options:
[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (1) separates
the choices.

19

Help with Command-line Options

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

NOTE

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in Chapter 16, “Command-Line Options
Reference,” on page 203 contains this information.

Command-line Suboptions

Some options accept several suboptions. You can specify these suboptions either by using the full option
statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:
pgf ortran - M/ect =sse - Mvect =noal t code

pgfortran - M/ect =sse, noal t code

Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both—-Mrect and —Mhovect are
available. -Mvect enables vectorization and —vnovect disables it. If you used both of these commands on a
command line, they would conflict.

Note

Rule: When you use conflicting options on a command line, the last encountered option takes
precedence over any previous one.

This rule is important for a2 number of reasons.

 Some options, such as —f ast , include other options. Therefore, it is possible for you to be unaware that
you have conflicting options.

* You can use this rule to create makefiles that apply specific flags to a set of files, as shown in Example 2.1.
Example 2.1. Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags defined for CCFLAGS but
disables vectorization.

CCFLAGS=c - Mvect =sse
CCNOVECTFLAGS=$(CCFLAGS) - Mhovect

Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which options are
available, when to use them, and which options most users find effective.

Using —help

The —hel p option is useful because it provides information about all options supported by a given compiler.
You can use —hel p in one of three ways:

20

Chapter 2. Using Command Line Options

e Use —hel p with no parameters to obtain a list of all the available options with a brief one-line description
of each.

e Add a parameter to —hel p to restrict the output to information about a specific option. The syntax for this
usage is this:

—hel p <conmand |ine option>

Suppose you use the following command to restrict the output to information about the - f ast option:
$ pgfortran -help -fast

The output you see is similar to this:

-fast Conmon optim zations; includes -G -Minroll=c:1 -Moframe -Mre

In the following example, we add the —hel p parameter to restrict the output to information about the
help command. The usage information for —hel p shows how groups of options can be listed or examined
according to function.
$ pgfortran -help -help
- hel p[=gr oups| asnj debug| | anguage| | i nker | opt | ot her |

overal | | phase| prepro| suffi x| switch|target|vari abl e]

Show conpi | er switches

* Add a parameter to —hel p to restrict the output to a specific set of options or to a building process. The
syntax for this usage is this:

- hel p=<subgr oup>

By using the command pgf ortran - hel p - hel p, as previously shown, we can see output that shows
the available subgroups. You can use the following command to restrict the output on the —hel p command
to information about only the options related to only one group, such as debug information generation.

$ pgfortran -hel p=debug

The output you see is similar to this:

Debuggi ng swi t ches:

-M no] bounds Generate code to check array bounds

- Mchkf pst k Check consistency of floating point stack at subprogramcalls
(32-bit only)

-Mchkst k Check for sufficient stack space upon subprogramentry
-Mcof f Generate COFF fornmat object

-Miwar f 1 Generate DWARF1 debug information with -g

- Miwar f 2 Generate DWARF2 debug information with -g

- Midwar f 3 Gener ate DWARF3 debug information with -g

-Mel f Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optim zations

For a complete description of subgroups, refer to “~help ,” on page 219.

Getting Started with Performance

One of the top priorities of most users is performance and optimization. This section provides a quick
overview of a few of the command-line options that are useful in improving performance.

21

Getting Started with Performance

Using —fast and —fastsse Options

PGI compilers implement a wide range of options that allow users a fine degree of control on each
optimization phase. When it comes to optimization of code, the quickest way to start is to use the options
—f ast and —f ast sse. These options create a generally optimal set of flags for targets that support SSE/
SSE2 capability. They incorporate optimization options to enable use of vector streaming SIMD (SSE/SSE2)
instructions for 64-bit targets. They enable vectorization with SSE instructions, cache alignment, and SSE
arithmetic to flush to zero mode.

Note

The contents of the —f ast and —f ast sse options are host-dependent. Further, you should use these
options on both compile and link command lines.

e —fast and —f ast sse typically include these options:

—02 Specifies a code optimization level of 2.

—Munroll=c:1 Unrolls loops, executing multiple instances of the loop during each
iteration.

—Mnoframe Indicates to not generate code to set up a stack frame.

—Milre Indicates loop-carried redundancy elimination.

—Mpre Indicates partial redundancy elimination.

e These additional options are also typically available when using —f ast for 64-bit targets or —f ast sse for
both 32- and 64-bit targets:
—Mvect=sse Generates SSE instructions.
—Mscalarsse Generates scalar SSE code with xmm registers; implies —Mflushz.
—Mcache_align Aligns long objects on cache-line boundaries.
—Mflushz Sets SSE to flush-to-zero mode.

—M[no]vect Controls automatic vector pipelining.

Note

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler,
even for FORTRAN 77 code, and the —f ast option.

To see the specific behavior of —f ast for your target, use the following command:

$ pgfortran -help -fast

Other Performance-related Options

22

While —f ast and - f ast sse are options designed to be the quickest route to best performance, they are
limited to routine boundaries. Depending on the nature and writing style of the source code, the compiler
often can perform further optimization by knowing the global context of usage of a given routine. For instance,
determining the possible value range of actual parameters of a routine could enable a loop to be vectorized;
similarly, determining static occurrence of calls helps to decide which routine is beneficial to inline.

Chapter 2. Using Command Line Options

These types of global optimizations are under control of Interprocedural Analysis (IPA) in PGI compilers.
Option - M pa enables Interprocedural Analysis. - Mpi =f ast is the recommended option to get best
performances for global optimization. You can also add the suboption i nl i ne to enable automatic global
inlining across files. You might consider using —M pa=f ast , i nl i ne. This option for interprocedural
analysis and global optimization can improve performance.

You may also obtain further performance improvements by experimenting with the —M<pgf | ag> options
described in the section “—M Options by Category,” on page 263. These options include, but are not

limited to, —-Mconcur ,—Mvect , —Munr ol | , =M nl i ne, and —Mpf i / —Mpf o. However, performance
improvements using these options are typically application- and system-dependent. It is important to time your
application carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Chapter 3, “Optimizing & Parallelizing,” on page 25. For
specific information about these options, refer to “Optimization Controls,” on page 275.

Targeting Multiple Systems - Using the -tp Option

The —t p option allows you to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a given
system may not be usable on previous generation systems. For example, executables created on a Pentium 4
may fail to execute on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the - t p option. Thus, it is
possible to create executables that are usable on previous generation systems. With the exception of k8-64,
k8-64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64 processor-based system. The
k8-64, k8-64e, p7-64 and x64 options are valid only on x64 processor-based systems

For more information about the - t p option, refer to “—tp <target> [target...],” on page 245.

Frequently-used Options

In addition to overall performance, there are a number of other options that many users find useful when
getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the complete description of each option available in
Chapter 16, “Command-Line Options Reference,” on page 203. Also, there are a number of suboptions
available with each of the —~Moptions listed. For more information on those options, refer to “—~M Options by
Category,” on page 263.

Table 2.1. Commonly Used Command Line Options

Option Description
—fast These options create a generally optimal set of flags for targets that
_fastsse support SSE/SSE2 capability. They incorporate optimization options

to enable use of vector streaming SIMD instructions (64-bit targets)
and enable vectorization with SEE instructions, cache aligned and
flushz.

23

Frequently-used Options

24

Option Description

-g Instructs the compiler to include symbolic debugging information in
the object module.

—gopt Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when —g is not specified.

—help Provides information about available options.

—mcmodel=medium

Enables medium=model core generation for 64-bit targets; useful
when the data space of the program exceeds 4GB.

—Mconcur Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple processors to execute loops
that it determines to be parallelizable; thus, loop iterations are split
to execute optimally in a multithreaded execution context.

—Minfo Instructs the compiler to produce information on standard error.

—Minline Enables function inlining.

—Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables
automatic procedure inlining.

—Mpfi or —Mpfo

Enable profile feedback driven optimizations.

—Mkeepasm Keeps the generated assembly files.

—Munroll Invokes the loop unroller to unroll loops, executing multiple
instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no —O or
—g options are supplied.

—M|[no]vect Enables/Disables the code vectorizer.

--[no_]exceptions

Removes exception handling from user code.

For C++, declares that the functions in this file generate no C++
exceptions, allowing more optimal code generation.

—0

Names the output file.

—O<level>

Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

—tp <target> [target...]

Specify the target processor(s); for the 64-bit compilers, more than
one target is allowed, and enables generation of PGI Unified Binary
executables.

Chapter 3. Optimizing & Parallelizing

Source code that is readable, maintainable, and produces correct results is not always organized for efficient
execution. Normally, the first step in the program development process involves producing code that executes
and produces the correct results. This first step usually involves compiling without much worry about
optimization. After code is compiled and debugged, code optimization and parallelization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler to generate optimized
code. Optimization is not always performed since it increases compilation time and may make debugging
difficult. However, optimization produces more efficient code that usually runs significantly faster than code
that is not optimized.

Note

PGI provides a profiler, PGPROF, that provides a way to visualize the performance of the components
of your program. Using tables and graphs, PGPROF associates execution time and resource utilization
data with the source code and instructions of your program, allowing you to see where execution time
is spent. Through resource utilization data and compiler analysis information, PGPROF helps you to
understand why certain parts of your program have high execution times.

The compilers optimize code according to the specified optimization level. You can use a number of options
to specify the optimization levels, including —O, —~Mvect , —M pa, and —Mconcur . In addition, you can use
several of the —M<pgflag> switches to control specific types of optimization and parallelization.

This chapter describes the optimization options displayed in the following list.

—f ast —M nline —Mpf i —Mrect
—Mconcur —M pa=f ast —Mof o -0
-M nfo —Mnegi nfo —Munr ol | —Msaf eptr

This chapter also describes how to choose optimization options to use with the PGI compilers. This overview
will help if you are just getting started with one of the PGI compilers, or wish to experiment with individual
optimizations. Complete specifications of each of these options is available in Chapter 16, “Command-Line
Options Reference’.

25

Overview of Optimization

Overview of Optimization

In general, optimization involves using transformations and replacements that generate more efficient

code. This is done by the compiler and involves replacements that are independent of the particular target
processor’s architecture as well as replacements that take advantage of the x86 or x64 architecture, instruction
set and registers. For the discussion in this and the following chapters, optimization is divided into the
following categories:

Local Optimization

This optimization is performed on a block-by-block basis within a program’s basic blocks. A basic block is
a sequence of statements in which the flow of control enters at the beginning and leaves at the end without
the possibility of branching, except at the end. The PGI compilers perform many types of local optimization
including: algebraic identity removal, constant folding, common sub-expression elimination, redundant load
and store elimination, scheduling, strength reduction, and peephole optimizations.

Global Optimization

This optimization is performed on a program unit over all its basic blocks. The optimizer performs control-
flow and data-flow analysis for an entire program unit. All loops, including those formed by IFs and GOTOs,
are detected and optimized. Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable elimination.

Loop Optimization: Unrolling, Vectorization, and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling options.
Vectorization transforms loops to improve memory access performance and make use of packed SSE
instructions which perform the same operation on multiple data items concurrently. Unrolling replicates the
body of loops to reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with multiple processors may
also improve using the parallelization features of the PGI compilers.

Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable. For example, if the actual argument to a function is in fact
a constant in the caller, it may be possible to propagate that constant into the callee and perform optimizations
that are not valid if the dummy argument is treated as a variable. A wide range of optimizations are enabled

or improved by using IPA, including but not limited to data alignment optimizations, argument removal,
constant propagation, pointer disambiguation, pure function detection, FO0/F95 array shape propagation, data
placement, vestigial function removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled libraries.

Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function. This
optimization will sometimes speed up execution by eliminating the function call and return overhead. Function
inlining may also create opportunities for other types of optimization. Function inlining is not always beneficial.
When used improperly it may increase code size and generate less efficient code.

26

Chapter 3. Optimizing & Parallelizing

Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from a trace file produced by specially
instrumented executables which capture and save information on branch frequency, function and subroutine
call frequency, semi-invariant values, loop index ranges, and other input data dependent information that
can only be collected dynamically during execution of a program. By definition, use of profile-feedback
optimization is a two-phase process: compilation and execution of a specially-instrumented executable,
followed by a subsequent compilation which reads a trace file generated during the first phase and uses the
information in that trace file to guide compiler optimizations.

Getting Started with Optimizations

Your first concern should be getting your program to execute and produce correct results. To get your
program running, start by compiling and linking without optimization. Use the optimization level —Q0 or select
—g to perform minimal optimization. At this level, you will be able to debug your program easily and isolate
any coding errors exposed during porting to x86 or x64 platforms.

If you want to get started quickly with optimization, a good set of options to use with any of the PGI compilers
is—fast —M pa=f ast . For example:

$ pgfortran -fast -M pa=fast prog.f

For all of the PGI Fortran, C, and C++ compilers, the —f ast —M pa=f ast options generally produce code
that is well-optimized without the possibility of significant slowdowns due to pathological cases.

» The —f ast option is an aggregate option that includes a number of individual PGI compiler options; which
PGI compiler options are included depends on the target for which compilation is performed.

e The —M pa=f ast option invokes interprocedural analysis including several IPA suboptions.

* For C++ programs, add - M nl i ne=l evel s: 10 --no_except i ons as shown here:

$ pgcpp -fast -M pa=fast -Mnline=level s:10 --no_excepti ons prog.cc

Note

A C++ program compiled with - - no_except i ons fails if the program uses exception handling.

By experimenting with individual compiler options on a file-by-file basis, further significant performance gains
can sometimes be realized. However, depending on the coding style, individual optimizations can sometimes
cause slowdowns, and must be used carefully to ensure performance improvements. In addition to - f ast , the
optimization flags most likely to further improve performance are - O3, - Mpf i , - Mpf 0, - M nl i ne; and on
targets with multiple processors, you can use - Mconcur .

In addition, the —Msaf ept r option can significantly improve performance of C/C++ programs in which there
is known to be no pointer aliasing. For obvious reasons this command-line option must be used carefully.

Three other extremely useful options are - hel p, - M nf o, and - dr yr un.

27

Getting Started with Optimizations

—help

As described in “Help with Command-line Options,” on page 20, you can see a specification of any command-
line option by invoking any of the PGI compilers with - hel p in combination with the option in question,
without specifying any input files.

For example, you might want information on - O
$ pgfortran -help -O

The resulting output is similar to this:
Readi ng rcfile /usr/pgi/linux86-64/7.0/bin/.pgfortranrc
- <n>] Set optimzation level, - to -O4, default -Q2

Or you can see the full functionality of - hel p itself, which can return information on either an individual
option or groups of options:

$ pgfortran -help -help

The resulting output is similar to this:

Reading rcfile /usr/pgi_rel/linux86-64/7.0/bin/.pgfortranrc
- hel p[=gr oups| asmn| debug| | anguage| | i nker | opt | ot her | overal | |
phase| prepro| suffi x| swi tch|target]|variabl e]

—Minfo

You can use the - M nf o option to display compile-time optimization listings. When this option is used, the
PGI compilers issue informational messages to stderr as compilation proceeds. From these messages, you
can determine which loops are optimized using unrolling, SSE instructions, vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You can also see where and whether
functions are inlined.

For more information on —M nf o, refer to “Optimization Controls,” on page 275.

—Mneginfo

You can use the - Mnegi nf o option to display informational messages listing why certain optimizations are
inhibited.

For more information on —Vhegi nf o, refer to “Optimization Controls,” on page 275.

—dryrun

28

The —dr yr un option can be useful as a diagnostic tool if you need to see the steps used by the compiler driver
to preprocess, compile, assemble and link in the presence of a given set of command line inputs. When you
specify the —dr yr un option, these steps will be printed to stderr but are not actually performed. For example,
you can use this option to inspect the default and user-specified libraries that are searched during the link
phase, and the order in which they are searched by the linker.

The remainder of this chapter describes the —0 options, the loop unroller option —Munr ol | , the vectorizer
option —Mvect , the auto-parallelization option —~Mconcur , the interprocedural analysis optimization —M pa,
and the profile-feedback instrumentation (—Mpf i) and optimization (—Mpf o) options. You should be able to
get very near optimal compiled performance using some combination of these switches.

Chapter 3. Optimizing & Parallelizing

Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information about how your
program was optimized, or why a particular optimization was not made, in the executable file. To append this
information to the object file, use the compiler option—M nf o=ccf f .

If you choose to use PGPROF to aid with your optimization, PGPROF can extract this information and associate
it with source code and other performance data, allowing you to view all of this information simultaneously in
one of the available profiler panels.

Local and Global Optimization using -O

Using the PGI compiler commands with the —Olevel option (the capital O is for Optimize), you can specify any
of the following optimization levels:

-00
Level zero specifies no optimization. A basic block is generated for each language statement.

-01
Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is
performed.

-02
Level two specifies global optimization. This level performs all level-one local optimization as well as level-
two global optimization. If optimization is specified on the command line without a level, level 2 is the
default.

-03
Level three specifies aggressive global optimization. This level performs all level-one and level-two
optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or may
not be profitable.

—04
Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of guarded
invariant floating point expressions.

Note

If you use the —Ooption to specify optimization and do not specify a level, then level-two optimization
(-2) is the default.

Level-zero optimization specifies no optimization (—~00). At this level, the compiler generates a basic block for
each statement. Performance will almost always be slowest using this optimization level. This level is useful for
the initial execution of a program. It is also useful for debugging, since there is a direct correlation between
the program text and the code generated.

Level-one optimization specifies local optimization (—~OL). The compiler performs scheduling of basic blocks
as well as register allocation. Local optimization is a good choice when the code is very irregular, such as code
that contains many short statements containing IF statements and does not contain loops (DO or DO WHILE

29

Local and Global Optimization using -O

statements). Although this case rarely occurs, for certain types of code, this optimization level may perform
better than level-two (—C2).

The PGI compilers perform many different types of local optimizations, including but not limited to:

- Algebraic identity removal - Peephole optimizations
- Constant folding - Redundant load and store elimination
- Common subexpression elimination - Strength reductions

- Local register optimization

Level-two optimization (—O2 or —O) specifies global optimization. The —f ast option generally will specify
global optimization; however, the —f ast switch varies from release to release, depending on a reasonable
selection of switches for any one particular release. The —O or —02 level performs all level-one local
optimizations as well as global optimizations. Control flow analysis is applied and global registers are allocated
for all functions and subroutines. Loop regions are given special consideration. This optimization level is a
good choice when the program contains loops, the loops are short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but not limited to:

- Branch to branch elimination - Global register allocation
- Constant propagation - Invariant code motion
- Copy propagation - Induction variable elimination

- Dead store elimination

You can explicitly select the optimization level on the command line. For example, the following command line
specifies level-two optimization which results in global optimization:

$ pgfortran -2 prog. f

Specifying —O on the command-line without a level designation is equivalent to —CO2. The default optimization
level changes depending on which options you select on the command line. For example, when you select
the —g debugging option, the default optimization level is set to level-zero (—00). However, if you need to
debug optimized code, you can use the - gopt option to generate debug information without perturbing
optimization. Refer to “Default Optimization Levels,” on page 46 for a description of the default levels.

As noted previously, the —f ast option includes —C2 on all x86 and x64 targets. If you want to override the
default for—f ast with —C38 while maintaining all other elements of —f ast , simply compile as follows:

$ pgfortran -fast -@B prog.f

Scalar SSE Code Generation

30

For all processors prior to Intel Pentium 4 and AMD Opteron/Athlon64, for example Intel Pentium III and
AMD AthlonXP/MP processors, scalar floating-point arithmetic as generated by the PGI Workstation compilers
is performed using x87 floating-point stack instructions. With the advent of SSE/SSE2 instructions on Intel
Pentium 4/Xeon and AMD Opteron/Athlon64, it is possible to perform all scalar floating-point arithmetic using
SSE/SSE2 instructions. In most cases, this is beneficial from a performance standpoint.

The default on 32-bit Intel Pentium II/IIT (options —t p p6, -t p piii,and so on) or on AMD AthlonXP/
MP (option —tp k7) isto use x87 instructions for scalar floating-point arithmetic. The default on Intel

Chapter 3. Optimizing & Parallelizing

Pentium 4/Xeon or Intel EMO4T running a 32-bit operating system (-t p p7), AMD Opteron/Athlon64
running a 32-bit operating system (-t p k8- 32), or AMD Opteron/Athlon64 or Intel EM64T processors
running a 64-bit operating system (using —t p k8- 64 and —t p p7- 64 respectively) is to use SSE/SSE2
instructions for scalar floating-point arithmetic. The only way to override this default on AMD Opteron/
Athlon64 or Intel EM64T processors running a 64-bit operating system is to specify an older 32-bit target. For
example, you canuse -t p k7 or—tp piii.

Note

There can be significant arithmetic differences between calculations performed using x87 instructions
versus SSE/SSE2.

By default, all floating-point data is promoted to IEEE 80-bit format when stored on the x87 floating-point
stack, and all x87 operations are performed register-to-register in this same format. Values are converted back
to IEEE 32-bit or IEEE 64-bit when stored back to memory (for REAL/float and DOUBLE PRECISION/double
data respectively). The default precision of the x87 floating-point stack can be reduced to IEEE 32-bit or IEEE
04-bit globally by compiling the main program with the —pc { 32| 64} option to the PGI compilers, which

is described in detail in Chapter 2, “Using Command Line Options”. However, there is no way to ensure

that operations performed in mixed precision will match those produced on a traditional load-store RISC/
UNIX system which implements IEEE 64-bit and IEEE 32-bit registers and associated floating-point arithmetic
instructions.

In contrast, arithmetic results produced on Intel Pentium 4/Xeon, AMD Opteron/Athlon64 or Intel EM64T
processors will usually closely match or be identical to those produced on a traditional RISC/UNIX system if
all scalar arithmetic is performed using SSE/SSE2 instructions. You should keep this in mind when porting
applications to and from systems which support both x87 and full SSE/SSE2 floating-point arithmetic. Many
subtle issues can arise which affect your numerical results, sometimes to several digits of accuracy.

Loop Unrolling using —-Munroll

This optimization unrolls loops, executing multiple instances of the loop during each iteration. This reduces
branch overhead, and can improve execution speed by creating better opportunities for instruction scheduling.
A loop with a constant count may be completely unrolled or partially unrolled. A loop with a non-constant
count may also be unrolled. A candidate loop must be an innermost loop containing one to four blocks of
code.

The following example shows the use of the —Munr ol | option:
$ pgfortran -Munrol |l prog.f

The —Munr ol | option is included as part of —f ast on all x86 and x64 targets. The loop unroller expands the
contents of a loop and reduces the number of times a loop is executed. Branching overhead is reduced when

a loop is unrolled two or more times, since each iteration of the unrolled loop corresponds to two or more
iterations of the original loop; the number of branch instructions executed is proportionately reduced. When a
loop is unrolled completely, the loop’s branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely unrolled or unrolled
two or more times, opportunities for improved scheduling may be presented. The code generator can take
advantage of more possibilities for instruction grouping or filling instruction delays found within the loop.

31

Vectorization using —Mvect

Example 3.1, “Dot Product Code”and Example 3.2, “Unrolled Dot Product Code” show the effect of code
unrolling on a segment that computes a dot product.

Example 3.1. Dot Product Code Example 3.2. Unrolled Dot Product Code
REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z
| NTEGER | | NTEGER |
DO I=1, 100 DO I=1, 100, 2
Z=2z+Ai) * B(i) Z=2z+Ai) * B(i)
END DO Z =2z + A(i+1) * B(i+1)
END END DO
END

Using the —~M nf o option, the compiler informs you when a loop is being unrolled. For example, a message
similar to the following, indicating the line number, and the number of times the code is unrolled, displays

when a loop is unrolled:
dot :
5, Loop unrolled 5 tinmes

Using the c:<m> and n:<m> sub-options to —Munr ol | , or using —Mnounr ol | , you can control whether
and how loops are unrolled on a file-by-file basis. Using directives or pragmas as specified in Chapter 8,
“Using Directives and Pragmas”, you can precisely control whether and how a given loop is unrolled. For a
detailed description of the —Munr ol | option, refer to Chapter 2, “Using Command Line Options”.

Vectorization using —-Mvect

The —~Mvect option is included as part of —f ast on all x86 and x64 targets. If your program contains
computationally-intensive loops, the —Mvect option may be helpful. If in addition you specify —M nf o,
and your code contains loops that can be vectorized, the compiler reports relevant information on the
optimizations applied.

When a PGI compiler command is invoked with the —Mvect option, the vectorizer scans code searching for
loops that are candidates for high-level transformations such as loop distribution, loop interchange, cache
tiling, and idiom recognition (replacement of a recognizable code sequence, such as a reduction loop, with
optimized code sequences or function calls). When the vectorizer finds vectorization opportunities, it internally
rearranges or replaces sections of loops (the vectorizer changes the code generated; your source code’s loops
are not altered). In addition to performing these loop transformations, the vectorizer produces extensive data
dependence information for use by other phases of compilation and detects opportunities to use vector or
packed Streaming SIMD Extensions (SSE) instructions on processors where these are supported.

The —Mvect option can speed up code which contains well-behaved countable loops which operate on large
REAL, REAL*4, REAL*8, INTEGER*4, COMPLEX or COMPLEX DOUBLE arrays in Fortran and their C/C++
counterparts. However, it is possible that some codes will show a decrease in performance when compiled
with the —Mvect option due to the generation of conditionally executed code segments, inability to determine
data alignment, and other code generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled with this option
enabled.

Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable if the
number of iterations is set only before loop execution and cannot be modified during loop execution. Some

32

Chapter 3. Optimizing & Parallelizing

of the vectorizer transformations can be controlled by arguments to the -Mvect command line option. The
following sections describe the arguments that affect the operation of the vectorizer. In addition, some of these
vectorizer operations can be controlled from within code using directives and pragmas. For details on the use
of directives and pragmas, refer to Chapter 8, “Using Directives and Pragmas,” on page 109.

The vectorizer performs the following operations:

* Loop interchange

e Loop splitting

e Loop fusion

e Memory-hierarchy (cache tiling) optimizations

¢ Generation of SSE instructions on processors where these are supported

* Generation of prefetch instructions on processors where these are supported
e Loop iteration peeling to maximize vector alignment

e Alternate code generation

By default, -Mrect without any sub-options is equivalent to:

- Mrect =assoc, cachesi ze=c
where c is the actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options. These defaults
may vary depending on the target system.

Assoc Option

The option —Mrect =assoc instructs the vectorizer to perform associativity conversions that can change
the results of a computation due to a round-off error (-Mvect =noassoc disables this option). For
example, a typical optimization is to change one arithmetic operation to another arithmetic operation that
is mathematically correct, but can be computationally different and generate faster code. This option is
provided to enable or disable this transformation, since a round-off error for such associativity conversions
may produce unacceptable results.

Cachesize Option

The option —Mrect =cachesi ze: n instructs the vectorizer to tile nested loop operations assuming a data
cache size of n bytes. By default, the vectorizer attempts to tile nested loop operations, such as matrix multiply,
using multi-dimensional strip-mining techniques to maximize re-use of items in the data cache.

SSE Option

The option —Mrect =sse instructs the vectorizer to automatically generate packed SSE (Streaming SIMD
Extensions), SSE2, and prefetch instructions when vectorizable loops are encountered. SSE instructions, first
introduced on Pentium III and AthlonXP processors, operate on single-precision floating-point data, and hence
apply only to vectorizable loops that operate on single-precision floating-point data. SSE2 instructions, first

33

Vectorization using -Mvect

introduced on Pentium 4, Xeon and Opteron processors, operate on double-precision floating-point data.
Prefetch instructions, first introduced on Pentium III and AthlonXP processors, can be used to improve the
performance of vectorizable loops that operate on either 32-bit or 64-bit floating-point data. Refer to the PGI
Release Notes for a concise list of processors that support SSE, SSE2 and prefetch instructions.

Note

Program units compiled with —~Mvect =sse will not execute on Pentium, Pentium Pro, Pentium II or
first generation AMD Athlon processors. They will only execute correctly on Pentium III, Pentium 4,
Xeon, EM64T, AthlonXP, Athlon64 and Opteron systems running an SSE-enabled operating system.

Prefetch Option

The option —Mvect =pr ef et ch instructs the vectorizer to automatically generate prefetch instructions when
vectorizable loops are encountered, even in cases where SSE or SSE2 instructions are not generated. Usually,
explicit prefetching is not necessary on Pentium 4, Xeon and Opteron because these processors support
hardware prefetching; nonetheless, it sometimes can be worthwhile to experiment with explicit prefetching.
Prefetching can be controlled on a loop-by-loop level using prefetch directives, which are described in detail
in “Prefetch Directives and Pragmas,” on page 115.

Note

Program units compiled with —~Mvect =pr ef et ch will not execute correctly on Pentium, Pentium
Pro, or Pentium II processors. They will execute correctly only on Pentium III, Pentium 4, Xeon,
EM64T, AthlonXP, Athlon64 or Opteron systems. In addition, the pr ef et ch instruction is only
supported on AthlonXP, Athlon64 or Opteron systems and can cause instruction faults on non-AMD
processors. For this reason, the PGI compilers do not generate pr ef et ch instructions by default on
any target.

In addition to these sub-options to —Mvect , several other sub-options are supported. Refer to the description
of —M[no]vect in Chapter 16, “Command-Line Options Reference” for a detailed description of all available
sub-options.

Vectorization Example Using SSE/SSE? Instructions

34

One of the most important vectorization options is - Mrect =sse. When you use this option, the compiler
automatically generates SSE and SSE2 instructions, where possible, when targeting processors on which these
instructions are supported. This process can improve performance by up to a factor of two compared with the
equivalent scalar code. All of the PGI Fortran, C and C++ compilers support this capability. The PGI Release
Notes show which x86 and x64 processors support these instructions.

Prior to release 7.0, - Mrect =sse was omitted from the compiler switch - f ast but was included in the
switch - f ast sse. Since release 7.0 , - f ast is synonymous with - f ast sse; therefore, both options include
- Mrect =sse.

In the program in Example 3.3, “Vector operation using SSE instructions”, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch - Mrect =sse or - f ast is used. This example
shows the compilation, informational messages, and run-time results using the SSE instructions on an AMD
Opteron processor-based system, along with issues that affect SSE performance.

Chapter 3. Optimizing & Parallelizing

First note that the arrays in Example 3.3 are single-precision and that the vector operation is done using a
unit stride loop. Thus, this loop can potentially be vectorized using SSE instructions on any processor that
supports SSE or SSE2 instructions. SSE operations can be used to operate on pairs of single-precision floating-
point numbers, and do not apply to double-precision floating-point numbers. SSE2 instructions can be used
to operate on quads of single-precision floating-point numbers or on pairs of double-precision floating-point
numbers.

Loops vectorized using SSE or SSE2 instructions operate much more efficiently when processing vectors that
are aligned to a cache-line boundary. You can cause unconstrained data objects of size 16 bytes or greater
to be cache-aligned by compiling with the —~Mcache_al i gn switch. An unconstrained data object is a data
object that is not a common block member and not a member of an aggregate data structure.

Note

For stack-based local variables to be properly aligned, the main program or function must be
compiled with —~Mcache_al i gn.

The —Mcache_al i gn switch has no effect on the alignment of Fortran allocatable or automatic arrays. If
you have arrays that are constrained, such as vectors that are members of Fortran common blocks, you must
specifically pad your data structures to ensure proper cache alignment. You can use —Mcache_al i gn for
only the beginning address of each common block to be cache-aligned.

The following examples show the results of compiling the sample code in Example 3.3 both with and without
the option —-Mvect =sse.

Example 3.3. Vector operation using SSE instructions

pr ogr am vect or _op
paraneter (N = 9999)

real 4 x(N, y(N, z(N, WN
n

doi =1,
y(i) =i
z(i) = 2%i
wWi) = 4%i

enddo

do j =1, 200000
call loop(x,y,z,w 1.0e0, N)

enddo

print *, x(1),x(771),x(3618), x(6498), x(9999)

end

subroutine | oop(a,b,c,d,s,n)

integer i, n
real *4 a(n), b(n), c(n), d(n),s
doi =1, n
a(i) =b(i) +c(i) - s * d(i)
enddo
end

Assume the preceding program is compiled as follows, where - Mrect =nosse disables SSE vectorization:

% pgfortran -fast -Mect=nosse -Mnfo vadd. f

vect or _op:
4, Loop unrolled 4 tinmes
| oop:

18, Loop unrolled 4 tines

35

Vectorization using —Mvect

36

The following output shows a sample result if the generated executable is run and timed on a standalone AMD
Opteron 2.2 Ghz system:
% /bin/time vadd

-1. 000000 -771.000 -3618.000 -6498.00 -9999.00
5. 39user 0.00system 0: 05. 40el apsed 99%CP

Now, recompile with SSE vectorization enabled, and you see results similar to these:

% pgfortran -fast -Mnfo vadd.f -o vadd

vect or _op:

4, Unrolled inner loop 8 tines

Loop unrolled 7 times (conpletely unroll ed)

| oop:

18, Generated 4 alternate | oops for the inner |oop
Gener at ed vector sse code for inner |oop

Generated 3 prefetch instructions for this |oop

Notice the informational message for the loop at line 18.

e The first two lines of the message indicate that the loop was vectorized, SSE instructions were generated,
and four alternate versions of the loop were also generated. The loop count and alignments of the arrays
determine which of these versions is executed.

e The last line of the informational message indicates that prefetch instructions have been generated for three
loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/time vadd

-1. 000000 -771. 000 -3618.00 -6498. 00

-9999.0

3. 59user 0. 00system 0: 03. 59el apsed 100%CPU
The result is a 50% speed-up over the equivalent scalar, that is, the non-SSE, version of the program.

Speed-up realized by a given loop or program can vary widely based on a number of factors:

e When the vectors of data are resident in the data cache, performance improvement using vector SSE or SSE2
instructions is most effective.

o If data is aligned properly, performance will be better in general than when using vector SSE operations on
unaligned data.

e If the compiler can guarantee that data is aligned properly, even more efficient sequences of SSE
instructions can be generated.

* The efficiency of loops that operate on single-precision data can be higher. SSE2 vector instructions can
operate on four single-precision elements concurrently, but only two double-precision elements.

Note

Compiling with —~Mvect =sse can result in numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive

to order of operations and the associative transformations necessary to enable vectorization (or
parallelization).

Chapter 3. Optimizing & Parallelizing

Auto-Parallelization using -Mconcur

With the - Mconcur option the compiler scans code searching for loops that are candidates for auto-
parallelization. - Mconcur must be used at both compile-time and link-time. When the parallelizer finds
opportunities for auto-parallelization, it parallelizes loops and you are informed of the line or loop being
parallelized if the - M nf o option is present on the compile line. See “Optimization Controls,” on page 275,
for a complete specification of - Mconcur .

Aloop is considered parallelizable if doesn't contain any cross-iteration data dependencies. Cross-iteration
dependencies from reductions and expandable scalars are excluded from consideration, enabling more loops
to be parallelizable. In general, loops with calls are not parallelized due to unknown side effects. Also, loops
with low trip counts are not parallelized since the overhead in setting up and starting a parallel loop will likely
outweigh the potential benefits. In addition, the default is to not parallelize innermost loops, since these often
by definition are vectorizable using SSE instructions and it is seldom profitable to both vectorize and parallelize
the same loop, especially on multi-core processors. Compiler switches and directives are available to let you
override most of these restrictions on auto-parallelization.

Auto-parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the —~Mconcur command
line option. The following sections describe these arguments that affect the operation of the vectorizer. In
addition, these vectorizer operations can be controlled from within code using directives and pragmas.

For details on the use of directives and pragmas, refer to Chapter 8, “Using Directives and Pragmas”.

By default, -Mconcur without any sub-options is equivalent to:

- Mconcur =di st : bl ock

This enables parallelization of loops with blocked iteration allocation across the available threads of execution.
These defaults may vary depending on the target system.

Altcode Option

The option —Mconcur =al t code instructs the parallelizer to generate alternate serial code for parallelized
loops. If altcode is specified without arguments, the parallelizer determines an appropriate cutoff length

and generates serial code to be executed whenever the loop count is less than or equal to that length. If

al t code: n is specified, the serial altcode is executed whenever the loop count is less than or equal to n. If
noal t code is specified, no alternate serial code is generated.

Dist Option

The option —Mconcur =di st : { bl ock]| cycl i c} option specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-robin) fashion. Block distribution is the default. If cyclic is
specified, iterations are allocated to processors cyclically. That is, processor 0 performs iterations 0, 3, 6, etc.;
processor 1 performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

Cncall Option

The option —Mconcur =cncal | specifies that it is safe to parallelize loops that contain subroutine or function
calls. By default, such loops are excluded from consideration for auto-parallelization. Also, no minimum loop

37

Auto-Parallelization using -Mconcur

count threshold must be satisfied before parallelization will occur, and last values of scalars are assumed to be
safe.

The environment variable NCPUS is checked at run-time for a parallel program. If NCPUS is set to 1, a
parallel program runs serially, but will use the parallel routines generated during compilation. If NCPUS is

set to a value greater than 1, the specified number of processors will be used to execute the program. Setting
NCPUS to a value exceeding the number of physical processors can produce inefficient execution. Executing a
program on multiple processors in an environment where some of the processors are being time-shared with
another executing job can also result in inefficient execution.

As with the vectorizer, the - Mconcur option can speed up code if it contains well-behaved countable loops
and/or computationally intensive nested loops that operate on arrays. However, it is possible that some codes
will show a decrease in performance on multi-processor systems when compiled with - Mconcur due to
parallelization overheads, memory bandwidth limitations in the target system, false-sharing of cache lines, or
other architectural or code-generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to Chapter 5,
“Using OpenMP". 1t is possible that insertion of explicit parallelization directives or pragmas, and use of the
compiler option —np might enable the application to run in parallel.

Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler, programmers may notice
loops that are seemingly parallel, but are not parallelized. In this subsection, we look at some examples of
common situations where parallelization does not occur.

Innermost Loops

As noted earlier in this chapter, the PGI compilers will not parallelize innermost loops by default, because it is
usually not profitable. However, you can override this default using the -Mconcur =i nner nost command-
line option .

Timing Loops

38

Often, loops occur in programs that are similar to timing loops. The outer loop in the following example is one
such loop.
doj =1, 2

doi =1, n

a(i) = b(i) + c(i)

1 enddo
enddo

The outer loop in the preceding example is not parallelized because the compiler detects a cross-iteration
dependence in the assignment to a(i) . Suppose the outer loop were parallelized. Then both processors
would simultaneously attempt to make assignments into a(1: n) . Now in general the values computed by each
processor for a(1: n) will differ, so that simultaneous assignment into a(1: n) will produce values different
from sequential execution of the loops.

In this example, values computed for a(1: n) don’t depend on j , so that simultaneous assignment by both
processors will not yield incorrect results. However, it is beyond the scope of the compilers’ dependence

Chapter 3. Optimizing & Parallelizing

analysis to determine that values computed in one iteration of a loop don’t differ from values computed in
another iteration. So the worst case is assumed, and different iterations of the outer loop are assumed to
compute different values for a(1: n) . Is this assumption too pessimistic? If j doesn’t occur anywhere within
a loop, the loop exists only to cause some delay, most probably to improve timing resolution. It is not usually
valid to parallelize timing loops; to do so would distort the timing information for the inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate cases that
present problems. In the first case, scalars appear to be expandable, but appear in non-innermost loops, as in
the following example.
doj =1, n
x = b(j)
doi =1, n
a(i,j) =x +c(i,j)
enddo
enddo

There are a number of technical problems to be resolved in order to recognize expandable scalars in non-
innermost loops. Until this generalization occurs, scalars like x in the preceding code segment inhibit
parallelization of loops in which they are assigned. In the following example, scalar k is not expandable, and it
is not an accumulator for a reduction.

2 if (i .gt. nf2) k =n - (i - n/2)
enddo

If the outer loop is parallelized, conflicting values are stored into k by the various processors. The variable k
cannot be made local to each processor because its value must remain coherent among the processors. It is
possible the loop could be parallelized if all assignments to k are placed in critical sections. However, it is not
clear where critical sections should be introduced because in general the value for k could depend on another
scalar (or on k itself), and code to obtain the value of other scalars must reside in the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k from being recognized
as an induction variable. If the conditional statement at label 2 is removed, k would be an induction variable
whose value varies linearly with j , and the loop could be parallelized.

Scalar Last Values

During parallelization, scalars within loops often need to be privatized, that is, each execution thread has its
own independent copy of the scalar. Problems can arise if a privatized scalar is accessed outside the loop. For
example, consider the following loop:
for (i =1; i<N i++){
if(f(x[i]) >5.0) t = x[i];
}
v = t;
The value of t may not be computed on the last iteration of the loop. Normally, if a scalar is assigned within
a loop and used following the loop, the PGI compilers save the last value of the scalar. However, if the loop

39

Processor-Specific Optimization & the Unified Binary

is parallelized and the scalar is not assigned on every iteration, it may be difficult, without resorting to costly
critical sections, to determine on what iteration t is last assigned. Analysis allows the compiler to determine
that a scalar is assigned on each iteration and hence that the loop is safe to parallelize if the scalar is used later,
as illustrated in the following example.

for (i =1; i <n; i++) {
if (x[i] >0.0) {

t = 2.0;

}

el se {

t = 3.0;

yli] = ...t;

}

}

vV = t;

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be privatizable,
but if it is used after the loop, it is unsafe to parallelize. Examine the following loop in which each use of t
within the loop is reached by a definition from the same iteration.
for (i =1; i <N i++){

if(x[i] > 0.0){

t =x[i];

< g -

=t;

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the compiler may
not be able to detect on which iteration of the parallelized loop t is last assigned. The compiler detects

the previous cases. When a scalar is used after the loop but is not defined on every iteration of the loop,
parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the programmer

may use a directive or pragma to let the compiler know the loop is safe to parallelize. The Fortran directive
saf e_| ast val informs the compiler that, for a given loop, all scalars are assigned in the last iteration of the
loop; thus, it is safe to parallelize the loop. We could add the following line to any of our previous examples.
cpgi $I safe_l astval

The resulting code looks similar to this:
cpgi 8l safe_| astval
for (i =1; i<N i++){
if(f(x[i]) >50) t = x[i];
}
vV = t;
In addition, a command-line option —Msafe_lastval, provides this information for all loops within the routines
being compiled, which essentially provides global scope.

Processor-Specific Optimization & the Unified Binary

Different processors have differences, some subtle, in hardware features such as instruction sets and cache
size. The compilers make architecture-specific decisions about things such as instruction selection, instruction

40

Chapter 3. Optimizing & Parallelizing

scheduling, and vectorization. By default, the PGI compilers produce code specifically targeted to the type

of processor on which the compilation is performed. That is, the default is to use all supported instructions
wherever possible when compiling on a given system. As a result, executables created on a given system may
not be usable on previous generation systems. For example, executables created on a Pentium 4 may fail to
execute on a Pentium III or Pentium IL

All PGI compilers have the capability of generating unified binaries, which provide a low-overhead means for
generating a single executable that is compatible with and has good performance on more than one hardware
platform.

You can use the —t p option to control compilation behavior by specifying the processor or processors with
which the generated code is compatible. The compilers generate and combine into one executable multiple
binary code streams, each optimized for a specific platform. At run-time, the one executable senses the
environment and dynamically selects the appropriate code stream. For specific information on the —t p option,
refer to —tp <target> [target...].

Executable size is automatically controlled via unified binary culling. Only those functions and subroutines
where the target affects the generated code have unique binary images, resulting in a code-size savings of from
10% to 90% compared to generating full copies of code for each target.

Programs can use the PGI Unified Binary even if all of the object files and libraries are not compiled as unified
binaries. Like any other object file, you can use PGI Unified Binary object files to create programs or libraries.
No special start up code is needed; support is linked in from the PGI libraries.

The —M pa option disables generation of PGI Unified Binary. Instead, the default target auto-detect rules for
the host are used to select the target processor.

Interprocedural Analysis and Optimization using —Mipa

The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that results in minimal changes

to makefiles and the standard edit-build-run application development cycle. Other than adding —M pa to

the command line, no other changes are required. For reference and background, the process of building a
program without IPA is described later in this section, followed by the minor modifications required to use
IPA with the PGI compilers. While the PGCC compiler is used here to show how IPA works, similar capabilities
apply to each of the PGI Fortran, C and C++ compilers.

Note

The examples use Linux file naming conventions. On Windows, ‘.0’ files would be *.obj’ files, and
‘a.out’ files would be ‘.exe’ files.

Building a Program Without IPA — Single Step

Using the pgcc command-level compiler driver, multiple source files can be compiled and linked into a single
executable with one command. The following example compiles and links three source files:
% pgcc -0 a.out filel.c file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files corresponding
to each source file, and subsequently to link the object files together into a single executable file. This
command is roughly equivalent to the following commands performed individually:

41

Interprocedural Analysis and Optimization using —-Mipa

% pgcc -S -o filel.s filel.c

%as -o filel.o filel.s

% pgcc -S -0 file2.s file2.c

%as -o file2.0 file2.s

% pgcc -S -o file3.s file3.c

%as -o file3.0 file3.s

% pgcc -0 a.out filel.o file2.0 file3.0

If any of the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -0 a.out filel.c file2.c file3.c

Note

This always works as intended, but has the side-effect of recompiling all of the source files, even
if only one has changed. For applications with a large number of source files, this can be time-
consuming and inefficient.

Building a Program Without IPA - Several Steps

It is also possible to use individual pgcc commands to compile each source file into a corresponding object
file, and one to link the resulting object files into an executable:

% pgcc -c filel.c
% pgcc -c file2.c
% pgcc -c file3.c
% pgcc -0 a.out filel.o file2.0 file3.0

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes
the linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -c filel.c
% pgcc -0 a.out filel.o file2.0 file3.o0

Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using the make utility on systems
where it is supported. Suppose you create a makef i | e containing the following lines:
a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c
pgcc $(OPT) -c filel.c
file2.0: file2.c
pgcc $(OPT) -c file2.c
file3.0: file3.c
pgcc $(OPT) -c file3.c

It is then possible to type a single make command:

% make
The make utility determines which object files are out of date with respect to their corresponding source files,
and invokes the compiler to recompile only those source files and to relink the executable. If you subsequently

edit one or more source files, the executable can be rebuilt with the minimum number of recompilations using
the same single rake command.

42

Chapter 3. Optimizing & Parallelizing

Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the PGI compilers alters the standard and make utility
command-level interfaces as little as possible. IPA occurs in three phases:

* Collection: Create a summary of each function or procedure, collecting the useful information for
interprocedural optimizations. This is done during the compile step if the —M pa switch is present on the
command line; summary information is collected and stored in the object file.

e Propagation: Process all the object files to propagate the interprocedural summary information across
function and file boundaries. This is done during the link step, when all the object files are combined, if the
—M pa switch is present on the link command line.

* Recompile/Optimization: Recompile each of the object files with the propagated interprocedural
information, producing a specialized object file. This process is also performed during the link step when
the —M pa switch is present on the link command line.

When linking with —M pa, the PGI compilers automatically regenerate IPA-optimized versions of each object
file, essentially recompiling each file. If there are IPA-optimized objects from a previous build, the compilers
will minimize the recompile time by reusing those objects if they are still valid. They will still be valid if the IPA-
optimized object is newer than the original object file, and the propagated IPA information for that file has not
changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application with the IPA-
optimized object files. The IPA-optimized object files are saved in the same directory as the original object files,
for use in subsequent program builds.

Building a Program with IPA - Single Step

By adding the —M pa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

Just like compiling without —M pa, the driver executes several steps to produce the assembly and object files
to create the executable:

% pgcc -Mpa=fast -S -o filel.s filel.c

%as -o filel.o filel.s

% pgcc -Mpa=fast -S -o file2.s file2.c

%as -o file2.0 file2.s

% pgcc -Mpa=fast -S -o file3.s file3.c

%as -o file3.0 file3.s

% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to recompile
them with interprocedural information. This creates three new objects with mangled names:

filel ipa5_a.out.o00.0, file2 ipa5_a.out.o00.0, file2_ ipa5_a.out.o00.0

The system linker is then invoked to link these IPA-optimized objects into the final executable. Later, if one of
the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

43

Interprocedural Analysis and Optimization using —-Mipa

This will work, but again has the side-effect of compiling each source file, and recompiling each object file at
link time.

Building a Program with IPA - Several Steps

Just by adding the —M pa command-line switch, it is possible to use individual pgcc commands to compile
each source file, followed by a command to link the resulting object files into an executable:

% pgcc -M pa=fast -c filel.c

% pgcc -Mpa=fast -c file2.c
% pgcc -Mpa=fast -c file3.c
% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes the
IPA linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -M pa=fast -c filel.c
% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

When the IPA linker is invoked, it will determine that the IPA-optimized object for fi | el. o

(filel_i pa5_a.out. 00. 0) is stale, since it is older than the object filel.0, and hence will need to be
rebuilt, and will reinvoke the compiler to generate it. In addition, depending on the nature of the changes

to the source file file1.c, the interprocedural optimizations previously performed for file2 and file3 may now
be inaccurate. For instance, IPA may have propagated a constant argument value in a call from a function
infilel.ctoafunctioninfil e2. c;if the value of the argument has changed, any optimizations based
on that constant value are invalid. The IPA linker will determine which, if any, of any previously created IPA-
optimized objects need to be regenerated, and will reinvoke the compiler as appropriate to regenerate them.
Only those objects that are stale or which have new or different IPA information will be regenerated, which
saves on compile time.

Building a Program with IPA Using Make

As in the previous two sections, programs can be built with IPA using the make utility. Just add the command-
line switch —M pa, as shown here:

OPT=-M pa=fast a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c

pgcc $(OPT) -c filel.c

file2.0: file2.c

pgcc $(OPT) -c file2.c

file3.0: file3.c

pgcc $(OPT) -c file3.c

Using the single rake command invokes the compiler to generate any object files that are out-of-date, then
invokes pgcc to link the objects into the executable; at link time, pgcc calls the IPA linker to regenerate any
stale or invalid IPA-optimized objects.

% make

Questions about IPA

44

1. Why s the object file so large?

Chapter 3. Optimizing & Parallelizing

An object file created with —M pa contains several additional sections. One is the summary information
used to drive the interprocedural analysis. In addition, the object file contains the compiler internal
representation of the source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is enabled. The total size of the object
file may be 5-10 times its original size. The extra sections are not added to the final executable.

What if I compile with —M pa and link without -M pa?

The PGI compilers generate a legal object file, even when the source file is compiled with —M pa. If
you compile with —M pa and link without —M pa, the linker is invoked on the original object files. A
legal executable will be generated; while this will not have the benefit of interprocedural optimizations,
any other optimizations will apply.

What if I compile without —M pa and link with —-M pa?

At link time, the IPA linker must have summary information about all the functions or routines used

in the program. This information is created only when a file is compiled with —M pa. If you compile

a file without —M pa and then try to get interprocedural optimizations by linking with —M pa, the IPA
linker will issue a message that some routines have no IPA summary information, and will proceed to
run the system linker using the original object files. If some files were compiled with —M pa and others
were not, it will determine the safest approximation of the IPA summary information for those files not
compiled with —M pa, and use that to recompile the other files using interprocedural optimizations.

Can I build multiple applications in the same directory with —M pa?

Yes. Suppose you have three source files: mai n1. c, mai n2. c, and sub. c, where sub. c is shared
between the two applications. Suppose you build the first application with —M pa, using this command:

% pgcc -M pa=fast -o appl nminl.c sub.c
The the IPA linker creates two IPA-optimized object files:
mai n1_i pa4_appl. o sub_i pa4_appl. oo

It uses them to build the first application. Now suppose you build the second application using this
command:

% pgcc -M pa=fast -0 app2 nmi n2.c sub.c
The IPA linker creates two more IPA-optimized object files:

mai Nn2_i pa4_app2. oo sub_i pad4_app2. oo

Note

There are now three object files for sub. c: the original sub. o, and two IPA-optimized
objects, one for each application in which it appears.

How is the mangled name for the IPA-optimized object files generated?

The mangled name has '_ipa' appended, followed by the decimal number of the length of the
executable file name, followed by an underscore and the executable file name itself. The suffix is
changed to .00 (on Linux or Mac OS X) or .oobj (on Windows) so linking *.0 or *.obj does not pull
in the IPA-optimized objects. If the IPA linker determines that the file would not benefit from any

45

Profile-Feedback Optimization using -Mpfi/~Mpfo

interprocedural optimizations, it does not have to recompile the file at link time and uses the original
object.

Profile-Feedback Optimization using —Mpfi/-Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-invariant value
optimizations and block placement. These are performed under control of the —Vpf i /~Mpf o command-line
options.

When invoked with the —Mpf i option, the PGI compilers instrument the generated executable for collection
of profile and data feedback information. This information can be used in subsequent compilations that
include the —Vpf o optimization option. —Vpf i must be used at both compile-time and link-time. Programs
compiled with —Mpf i include extra code to collect run-time statistics and write them out to a trace file. When
the resulting program is executed, a profile feedback trace file pgf i . out is generated in the current working
directory.

Note

Programs compiled and linked with —Mpf i execute more slowly due to the instrumentation and data
collection overhead. You should use executables compiled with —Mpf i only for execution of training
runs.

When invoked with the —Mpf o option, the PGI compilers use data from a pgf i . out profile feedback
tracefile to enable or enhance certain performance optimizations. Use of this option requires the presence of a
pgfi . out trace file in the current working directory.

Default Optimization Levels

The following table shows the interaction between the —O<level> , —g, and —M<opt > options. In the table,
level can be 0, 1, 2, 3 or 4, and <opt> can be vect , concur, unrol | ori pa. The default optimization level
is dependent upon these command-line options.

Table 3.1. Optimization and -0, —g and —-M<opt> Options

Optimize Option Debug Option -M<opt> Option Optimization Level
none none none 1

none none —M<opt> 2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel <=2 none or —g —M<opt> 2

Code that is not optimized yet compiled using the option —Q0 can be significantly slower than code generated
at other optimization levels. The —M<opt > option, where <opt> is vect , concur, unrol | ori pa, sets

46

Chapter 3. Optimizing & Parallelizing

the optimization level to 2 if no —O options are supplied. Both the —f ast and the —f ast sse options set the
optimization level to a target-dependent optimization level if no —Ooptions are supplied.

Local Optimization Using Directives and Pragmas

Command-line options let you specify optimizations for an entire source file. Directives supplied within a
Fortran source file and pragmas supplied within a C or C++ source file provide information to the compiler
and alter the effects of certain command-line options or the default behavior of the compiler. (Many directives
have a corresponding command-line option.)

While 2 command line option affects the entire source file that is being compiled, directives and pragmas let
you do the following:

* Apply, or disable, the effects of a particular command-line option to selected subprograms or to selected
loops in the source file (for example, an optimization).

e Globally override command-line options.

* Tune selected routines or loops based on your knowledge or on information obtained through profiling.

Chapter 8, “Using Directives and Pragmas” provides details on how to add directives and pragmas to your
source files.

Execution Timing and Instruction Counting

As this chapter describes, once you have a program that compiles, executes and gives correct results, you may
optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you compare several
optimization levels before arriving at the best solution. To compare optimization levels, you need to measure
the execution time for your program. There are several approaches you can take for timing execution.

* You can use shell commands that provide execution time statistics.
* You can include function calls in your code that provide timing information.

* You can profile sections of code.
Timing functions available with the PGI compilers include these:

¢ 3F timing routines
* The SECNDS pre-declared function in PGF77, PGF95, or PGFORTRAN
¢ The SYSTEM_CLOCK or CPU_CLOCK intrinsics in PGF95 or PGHPE

In general, when timing a program, you should try to eliminate or reduce the amount of system level activities
such as 1/0, program loading, and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK effectively within an F90,
F95 or HPF program unit.

47

Portability of Multi-Threaded Programs on Linux

Example 3.4. Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clockO, clockl
real :: time
integer, allocatable :: t(:)

L hpf$ distribute t(cyclic)
#if defined (HPF)

al l ocate (t(nunber_of processors()))
#el i f defined (_OPENWP)

al l ocate (t(OWP_GET_NUM THREADS()))
#el se

allocate (t(1))
#endi f

call systemclock (count_rate=hz)
|

call system cl ock(count=cl ock0)
< do wor k>

call system cl ock(count=cl ockl)
|

't = (clockl - cl ock0)
time = real (sum(t)) / (real(hz) * size(t))

Portability of Multi-Threaded Programs on Linux

PGI has created two libraries - libpgbind and libnuma - to handle the variations between various
implementations of Linux.

Some older versions of Linux are lacking certain features that support multi-processor and multi-core systems,
in particular, the system call 'sched_setaffinity' and the numa library libnuma. The PGI run-time library uses
these features to implement some —Mconcur and —np operations.

These variations have led to the creation of two PGI libraries, libpgbind and libnuma. These libraries are used
on all 32-bit and 64-bit Linux systems, but are not needed on Windows or Mac OS X.

When a program is linked with the system libnuma library, the program depends on the libnuma library in
order to run. On systems without a system libnuma library, the PGI version of libnuma provides the required
stubs so that the program links and executes properly.

If the program is linked with libpgbind and libnuma, the differences between systems is masked by the
different versions of libpgbind and libnuma. In particular, PGI provides two versions of libpgbind: one for
systems with working support for sched_setaffinity and another for systems that do not.

When a program is deployed to the target system, the proper set of libraries, real or stub, should be deployed
with the program.

This facility requires that the program be dynamically linked with libpgbind and libnuma.

libpgbind

On some versions of Linux, the system call sched_setaffinity does not exist or does not work. The library
libpgbind is used to work around this problem.

48

Chapter 3. Optimizing & Parallelizing

During installation, a small test program is compiled, linked, and executed. If the test program compiles, links,
and executes successfully, the installed version of libpgbind calls the system sched_setaffinity, otherwise the
stub version is installed.

libnuma

Not all systems have libnuma. Typically, only numa systems will have this library. PGI supplies a stub version of
libnuma which satisfies the calls from the PGI run-time to libnuma. Note that libnuma is a shared library that is
linked dynamically at run-time.

The reason to have a numa library on all systems is to allow multi-threaded programs, such as programs
compiled with —~Mconcur or —np , to be compiled, linked, and executed without regard to whether the host
or target systems has a numa library. When the numa library is not available, a multi-threaded program still
runs because the calls to the numa library are satisfied by the PGI stub library.

During installation, the installation procedure checks for the existence of a real libnuma among the system
libraries. If the real library is not found, the PGI stub version is substituted.

49

50

Chapter 4. Using Function Inlining

Function inlining replaces a call to a function or a subroutine with the body of the function or subroutine. This
can speed up execution by eliminating parameter passing and function/subroutine call and return overhead.

It also allows the compiler to optimize the function with the rest of the code. Note that using function inlining
indiscriminately can result in much larger code size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

* Automatic inlining - During the compilation process, a hidden pass precedes the compilation pass.
This hidden pass extracts functions that are candidates for inlining. The inlining of functions occurs as the
source files are compiled.

e Inline libraries - You create inline libraries, for example using the pgfortran compiler driver and the —o
and —Mext r act options. There is no hidden extract pass but you must ensure that any files that depend on
the inline library use the latest version of the inline library.

There are important restrictions on inlining. Inlining only applies to certain types of functions. Refer to
“Restrictions on Inlining,” on page 55 for more details on function inlining limitations.

This chapter describes how to use the following options related to function inlining:
—Mext r act

—M nli ne

—M ecursi ve

Invoking Function Inlining

To invoke the function inliner, use the - M nl i ne option. If you do not specify an inline library, the compiler

performs a special prepass on all source files named on the compiler command line before it compiles any of
them. This pass extracts functions that meet the requirements for inlining and puts them in a temporary inline
library for use by the compilation pass.

Several - M nl i ne suboptions let you determine the selection criteria for functions to be inlined. These
suboptions include:

51

Invoking Function Inlining

except:f unc
Inlines all eligible functions except f unc, a function in the source text. you can use a comma-separated
list to specify multiple functions.

[name:]f unc
Inlines all functions in the source text whose name matches f unc. you can use a comma-separated list to
specify multiple functions.

[size:|n
Inlines functions with a statement count less than or equal to n, the specified size.

Note

The size n may not exactly equal the number of statements in a selected function,; the size
parameter is merely a rough gauge.

levels:n
Inlines n level of function calling levels. The default number is one (1). Using a level greater than one
indicates that function calls within inlined functions may be replaced with inlined code. This approach
allows the function inliner to automatically perform a sequence of inline and extract processes.

[lib:]fi 1 e. ext
Instructs the inliner to inline the functions within the library file f i | e. ext . If no inline library is
specified, functions are extracted from a temporary library created during an extract prepass.

Tip

Create the library file using the - Mext r act option.

If you specify both a function name and a size n, the compiler inlines functions that match the function name
or have n or fewer statements.

If a name is used without a keyword, then a name with a period is assumed to be an inline library and a name
without a period is assumed to be a function name. If a number is used without a keyword, the number is
assumed to be a size.

In the following example, the compiler inlines functions with fewer than approximately 100 statements in the
source file mypr og. f and writes the executable code in the default output file a. out .

$ pgfortran -M nline=size: 100 nyprog. f

Refer to “~M Options by Category,” on page 263 for more information on the - M nl i ne options.

Using an Inline Library

52

If you specify one or more inline libraries on the command line with the - M nl i ne option, the compiler does
not perform an initial extract pass. The compiler selects functions to inline from the specified inline library.

If you also specify a size or function name, all functions in the inline library meeting the selection criteria are
selected for inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the - M nl i ne option, the compiler inlines every
function in the inline library that matches a function in the source text.

Chapter 4. Using Function Inlining

In the following example, the compiler inlines the function pr oc from the inline library | i b. i | and writes
the executable code in the default output file a. out .

$ pgfortran -Mnline=nanme:proc,lib:lib.il mnyprog.f

The following command line is equivalent to the preceding line, with the exception that in the following
example does not use the keywords nane: and | i b: . You typically use keywords to avoid name conflicts
when you use an inline library name that does not contain a period. Otherwise, without the keywords, a period
informs the compiler that the file on the command line is an inline library.

$ pgfortran -Mnline=proc,lib.il nyprog.f

Creating an Inline Library

You can create or update an inline library using the - Mext r act command-line option. If you do not specify
selection criteria with the - Mext r act option, the compiler attempts to extract all subprograms.

Several - Mext r act options let you determine the selection criteria for creating or updating an inline library.
These selection criteria include:

func
Extracts the function f unc. you can use a comma-separated list to specify multiple functions.

[name:]f unc
Extracts the functions whose name matches f unc, a function in the source text.

[size:|n
Limits the size of the extracted functions to functions with a statement count less than or equal to n, the
specified size.

Note

The size n may not exactly equal the number of statements in a selected function; the size
parameter is merely a rough gauge.

[lib:]lext . 1ib
Stores the extracted information in the library directory ext . 1'i b.

If no inline library is specified, functions are extracted to a temporary library created during an extract
prepass for use during the compilation stage.

When you use the - Mext r act option, only the extract phase is performed; the compile and link phases

are not performed. The output of an extract pass is a library of functions available for inlining. This output is
placed in the inline library file specified on the command line with the —o filename specification. If the library
file exists, new information is appended to it. If the file does not exist, it is created. You can use a command
similar to the following:

$ pgfortran -Mextract=lib:lib.il myfunc.f

You can use the - M nl i ne option with the - Mext r act option. In this case, the extracted library of functions
can have other functions inlined into the library. Using both options enables you to obtain more than one
level of inlining. In this situation, if you do not specify a library with the —~M nl i ne option, the inline process

53

Creating an Inline Library

consists of two extract passes. The first pass is a hidden pass implied by the —M nl i ne option, during which
the compiler extracts functions and places them into a temporary library. The second pass uses the results of
the first pass but puts its results into the library that you specify with the —o option.

Working with Inline Libraries

An inline library is implemented as a directory with each inline function in the library stored as a file using an
encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents for the inline library.
This is a printable, ASCII file which you can examine to locate information about the library contents, such
as names and sizes of functions, the source file from which they were extracted, the version number of the
extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.
e Inline libraries can be copied or renamed.

e Elements of libraries can be deleted or copied from one library to another.

e Thel s ordi r command can be used to determine the last-change date of a library entry.

Dependencies

When a library is created or updated using one of the PGI compilers, the last-change date of the library
directory is updated. This allows a library to be listed as a dependence in a makefile and ensures that the
necessary compilations are performed when a library is changed.

Updating Inline Libraries - Makefiles

54

If you use inline libraries you must be certain that they remain up-to-date with the source files into which they
are inlined. One way to assure inline libraries are updated is to include them in 2 makefile.

The makefile fragment in the following example assumes the file uti I s. f contains a number of small
functions used in the files par ser . f and al | oc. f.

This portion of the makefile:

e Maintains the inline libraryutils.il.
e Updates the library whenever you change ut i | s. f or one of the include files it uses.

e Compiles par ser. f and al | oc. f whenever you update the library.

Example 4.1. Sample Makefile

SRC = nydir

FC = pgfortran

FFLAGS = -2

mai n. o: $(SRC)/mmin. f $(SRC)/ gl obal . h

$(FC) $(FFLAGS) -c $(SRO)/ mi n. f

utils.o: $(SRC)/utils.f $(SRC)/global .h $(SRC)/utils.h
$(FC) $(FFLAGS) -c $(SRO)/utils.f

Chapter 4. Using Function Inlining

utils.il: $(SRO)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(FC) $(FFLAGS) -Mextract=15 -o utils.il utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il

$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRO)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/alloc. f

myprog: main.o utils.o parser.o alloc.o
$(FO -0 nyprog main.o utils.o parser.o alloc.o

Error Detection during Inlining

You can specify the —M nf o=i nl i ne option to request inlining information from the compiler when you
invoke the inliner. For example:

$ pgfortran -Mnline=nylib.il -Mnfo=inline nyext.f

Examples

Assume the program dhry consists of a single source file dhry. f . The following command line builds an
executable file for dhr y in which proc7 is inlined wherever it is called:

$ pgfortran dhry.f -Mnline=proc?7

The following command lines build an executable file for dhr y in which proc7 plus any functions of
approximately 10 or fewer statements are inlined (one level only).

Note

The specified functions are inlined only if they are previously placed in the inline library, t enp. i I ,
during the extract phase.

$ pgfortran dhry.f -Mextract=lib:tenp.il
$ pgfortran dhry.f -Mnline=10, proc7,tenp.il

Using the same source file dhr y. f , the following example builds an executable for dhr y in which all
functions of roughly ten or fewer statements are inlined. Two levels of inlining are performed. This means
that if function A calls function B, and B calls C, and both B and C are inlinable, then the version of B which is
inlined into A will have had C inlined into it.

$ pgfortran dhry.f -Mnline=size: 10, evel s: 2

Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

Main or BLOCK DATA programs.

Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE statements.

Subprograms containing FORMAT statements.

Subprograms containing multiple entries.

99

Restrictions on Inlining

56

A Fortran subprogram is not inlined if any of the following applies:

o It is referenced in a statement function.

* A common block mismatch exists; in other words, the caller must contain all common blocks specified in
the callee, and elements of the common blocks must agree in name, order, and type (except that the caller's
common block can have additional members appended to the end of the common block).

* An argument mismatch exists; in other words, the number and type (size) of actual and formal parameters
must be equal.

* A name clash exists, such as a call to subroutine xyz in the extracted subprogram and a variable named
xyz in the caller.

The following types of C and C++ functions cannot be inlined:

e Functions containing switch statements
¢ Functions which reference a static variable whose definition is nested within the function

e Function which accept a variable number of arguments
Certain C/C++ functions can only be inlined into the file that contains their definition:

o Static functions
¢ Functions which call a static function

¢ Functions which reference a static variable

Chapter 5. Using OpenMP

The PGF77, PGF95, and PGFORTRAN Fortran compilers support the OpenMP Fortran Application Program
Interface. The PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface.

OpenMP is a specification for a set of compiler directives, an applications programming interface (API), and

a set of environment variables that can be used to specify shared memory parallelism in FORTRAN and C/C++
programs. OpenMP may be used to obtain most of the parallel performance you can expect from your code, or
it may serve as a stepping stone to parallelizing an entire application with MPL.

This chapter provides information on OpenMP as it is supported by PGI compilers.

Use the - np compiler switch to enable processing of the OMP pragmas listed in this chapter. C++ applications
will also compile with thread-safe versions of STL header files. Users must link with the - np switch to link the
OpenMP runtime library, and for C++, the thread-safe Standard Template Library.

Note

The C++ Standard Template library has been made thread-safe to extent allowed in the STLport code:
simultaneous accesses to distinct containers are safe, simultaneous reads to shared containers are
also safe. However, simultaneous writes to shared containers must be protected by #pragma omp
critical sections.

This chapter describes how to use the following options related to using OpenMP:
—np

OpenMP Overview

Let’s look at the OpenMP shared-memory parallel programming model and some common OpenMP
terminology.

OpenMP Shared-Memory Parallel Programming Model

The OpenMP shared-memory programming model is a collection of compiler directives or pragmas, library
routines, and environment variables that can be used to specify shared-memory parallelism in Fortran and C/C
++ programs.

o7

OpenMP Overview

Fortran directives and C/C++ pragmas
Allow users to mark sections of code that can be executed in parallel when the code is compiled using the
—np switch. When this switch is not present, the compiler ignores these directives and pragmas.

OpenMP Fortran directives begin with ! $OVP , CSOVP, or * $OVP, beginning in column 1. OpenMP
pragmas for C/C++ begin with #pr agma onp. This format allows the user to have a single source for
use with or without the —np switch, as these lines are then merely viewed as comments when —np is not
present or the compilers are not capable of handling directives or C/C++ pragmas.

These directives and pragmas allow the user to create task, loop, and parallel section work-sharing
constructs and synchronization constructs. They also allow the user to define how data is shared or copied
between parallel threads of execution.

Fortran directives and C/C++ pragmas include a parallel region construct for writing coarse grain SPMD
programs, work-sharing constructs which specify that DO loop iterations or C/C++ for loop iterations
should be split among the available threads of execution, and synchronization constructs.

Note

The data environment is controlled either by using clauses on the directives or pragmas, or with
additional directives or pragmas.

Run-time library routines
Are available to query the parallel run-time environment, for example to determine how many threads are
participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on OpenMP,
see www.openmp.org.

Macro substitution

C and C++ omp pragmas are subject to macro replacement after #pr agma onp.

Terminology

For OpenMP 3.0 there are a number of terms for which it is useful to have common definitions.
Thread
An execution entity with a stack and associated static memory, called threadprivate memory.
* An OpenMP thread is a thread that is managed by the OpenMP runtime system.

* A thread-safe routine is a routine that performs the intended function even when executed concurrently,
that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an OpenMP
library routine. A region includes any code in called routines as well as any implicit code introduced by
the OpenMP implementation.

58

Chapter 5. Using OpenMP

Regions are nested if one region is (dynamically) enclosed by another region, that is, a region is
encountered during the execution of another region. PGI currently does not support nested parallel
regions.

Parallel region
In OpenMP 3.0 there is a distinction between a parallel region and an active parallel region. A parallel
region can be either inactive or active.

* An inactive parallel region is executed by a single thread.

* An active parallel region is a parallel region that is executed by a team consisting of more than one
thread.

Note

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.0. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:

program t est
| ogi cal onp_in_parallel

| $onp parall el
print *, onp_in_parallel()
I $onp end parall el

st op
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.0, the program yields F. In OpenMP 3.0, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

PGI currently does not support nested parallel regions so currently has only one level of active parallel
regions.

Task
A specific instance of executable code and its data environment, generated when a thread encounters a
task construct or a parallel construct.

OpenMP Example
Look at the following simple OpenMP example involving loops.

Example 5.1. OpenMP Loop Example

PROGRAM MAI N
INTEGER |, N, QOVP_GET_THREAD NUM
REAL*8 V(1000), GSUM LSUM

GSUM = 0. 0D0
N = 1000

59

Task Overview

DOl =1, N
V(1) = DBLE(1)
ENDDO

1 $OVP PARALLEL PRI VATE(I, LSUM) SHARED(V, GSUM N)
LSUM = 0. 0DO0
1 $OVP DO
DOl =1, N
LSUM = LSUM + V(1)
ENDDO
1 $OMP END DO
1 $OVMP CRI Tl CAL
print *, "Thread ", OW_GET_THREAD NUM)," local sum ", LSUM
GSUM = GSUM + LSUM
1 $OVMP END CRI Tl CAL
1 $OMP END PARALLEL

PRINT *, "G obal Sum ", GSUM

STOP
END

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then the output looks
similar to this:

Thr ead 0 local sum 31375. 00000000000
Thr ead 1 local sum 93875. 00000000000
Thr ead 2 local sum 156375. 0000000000
Thr ead 3 local sum 218875. 0000000000
d obal Sum 500500. 0000000000
FORTRAN STOP

Task Overview

Every part of an OpenMP program is part of a task. A task, whose execution can be performed immediately or
delayed, has these characteristics:

¢ Code to execute
e A data environment - that is, it owns its data

* An assigned thread that executes the code and uses the data.
There are two activities associated with tasks: packaging and execution.

e Packaging: Each encountering thread packages a new instance of a task - code and data.

¢ Execution: Some thread in the team executes the task at some later time.
In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a task
construct. A task can be implicit or explicit.

* An explicit task is a task generated when a task construct is encountered during execution.

e An implicit task is a task generated by the implicit parallel region or generated when a parallel
construct is encountered during execution.

60

Chapter 5. Using OpenMP

Task construct
A task directive plus a structured block

Task region

The dynamic sequence of instructions produced by the execution of a task by a thread.

Fortran Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers when
the option —np is specified on the command line. The form of a parallelization directive is:

sentinel directive_nane [cl auses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with these rules:

Be one of these: '$OMP, CSOMP, or *$OMP.

Must start in column 1 (one).

Must appear as a single word without embedded white space.

The sentinel marking a DOACROSS directive is C$.

The directive_name can be any of the directives listed in Table 5.1, “Directive and Pragma Summary Table,”
on page 63. The valid clauses depend on the directive. Chapter 17, “OpenMP Reference Information”
provides a list of directives and their clauses, their usage, and examples.

In addition to the sentinel rules, the directive must also comply with these rules:

e Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply to the directive
line.

e Initial directive lines must have a space or zero in column six.

e Continuation directive lines must have a character other than a space or a zero in column six. Continuation
lines for CSDOACROSS directives are specified using the C$& sentinel.

e Directives which are presented in pairs must be used in pairs.
Clauses associated with directives have these characteristics:

e The order in which clauses appear in the parallelization directives is not significant.

e Commas separate clauses within the directives, but commas are not allowed between the directive name and
the first clause.

e (Clauses on directives may be repeated as needed, subject to the restrictions listed in the description of each
clause.

C/C++ Parallelization Pragmas

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the PGCC C and
C++ compilers when the option -mp is specified on the command line. The form of a parallelization pragma
is:

61

Directive and Pragma Recognition

#pragma onp pragma_nane [cl auses]

The format for pragmas include these standards:

e The pragmas follow the conventions of the C and C++ standards.

» Whitespace can appear before and after the #.

e Preprocessing tokens following the #pragma omp are subject to macro replacement.
e The order in which clauses appear in the parallelization pragmas is not significant.

e Spaces separate clauses within the pragmas.

e (Clauses on pragmas may be repeated as needed subject to the restrictions listed in the description of each
clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement or compound
statement (a sequence of statements beginning with { and ending with }) that has a single entry and a single
exit. No statement or compound statement is a C/C++ structured block if there is a jump into or out of that
statement.

Directive and Pragma Recognition

The compiler option —np enables recognition of the parallelization directives and pragmas. The use of this
option also implies:

—M eent rant
Local variables are placed on the stack and optimizations, such as - Mhof r ane, that may result in non-
reentrant code are disabled.

—M onut ex
For directives, critical sections are generated around Fortran I/O statements.

For pragmas, calls to I/0 library functions are system-dependent and are not necessarily guaranteed to be

thread-safe. 1/0 library calls within parallel regions should be protected by critical regions, as shown in the
examples in Chapter 17, “OpenMP Reference Information”, to ensure they function correctly on all systems.

Directive and Pragma Summary Table

The following table provides a brief summary of the directives and pragmas that PGI supports. For complete
information on these statements and examples, refer to Chapter 17, “OpenMP Reference Information”.

Note

In the table, the values in uppercase letters are Fortran directives while the names in lowercase letters
are C/C++ pragmas.

62

Chapter 5. Using OpenMP

Table 5.1. Directive and Pragma Summary Table

Fortran Directive and C/C++
Pragma

Description

ATOMIC and atomic Semantically equivalent to enclosing a single statement in the
CRITCIAL...END CRITICAL directive or critical pragma. Note:
Only certain statements are allowed.

BARRIER and barrier Synchronizes all threads at a specific point in a program so

that all threads complete work to that point before any thread
continues.

CRITICAL ... END CRITICAL and
critical

Defines a subsection of code within a parallel region, a critical
section, which is executed one thread at a time.

DO...END DO and for

Provides a mechanism for distribution of loop iterations across
the available threads in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it
applies, even though that loop is not contained within a parallel
region.

FLUSH and flush When this appears, all processor-visible data items, or, when a

list is present (FLUSH [list]), only those specified in the list, are
written to memory, thus ensuring that all the threads in a team
have a consistent view of certain objects in memory.

MASTER ... END MASTER and
master

Designates code that executes on the master thread and that is
skipped by the other threads.

ORDERED and ordered

Defines a code block that is executed by only one thread at a
time, and in the order of the loop iterations; this makes the
ordered code block sequential, while allowing parallel execution
of statements outside the code block.

PARALLEL DO and parallel for

Enables you to specify which loops the compiler should
parallelize.

PARALLEL ... END PARALLEL and
parallel

Supports a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered.

PARALLEL SECTIONS and parallel
sections

Defines a non-iterative work-sharing construct without the need
to define an enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE
directive inside a PARALLEL construct.

SECTIONS ... END SECTIONS and
sections

Defines a non-iterative work-sharing construct within a parallel
region.

SINGLE ... END SINGLE and
single

Designates code that executes on a single thread and that is
skipped by the other threads.

TASK and task

Defines an explicit task.

63

Directive and Pragma Clauses

Fortran Directive and C/C++ |Description

Pragma

TASKWAIT and taskwait Specifies a wait on the completion of child tasks generated since
the beginning of the current task.

THREADPRIVATE and When a common block or variable that is initialized appears in

threadprivate this directive or pragma, each thread’s copy is initialized once
prior to its first use.

WORKSHARE ... END Provides 2 mechanism to effect parallel execution of non-

WORKSHARE iterative but implicitly data parallel constructs.

Directive and Pragma Clauses

Some directives and pragmas accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all directives, so the
clauses that are valid are included with the description of the directive and pragma.

The following table provides a brief summary of the clauses associated with OPENMP directives and pragmas

that PGI supports.
Table 5.2. Directive and Pragma Clauses Summary Table
This clause Applies to this directive |Applies to this |Has this functionality
pragma

“COLLAPSE (n)” DO...END DO parallel for Specifies how many loops
PARALLEL DO are associated with the loop
PARALLEL WORKSHARE construct.

“COPYIN (list)” PARALLEL parallel Allows threads to access the
PARALLEL DO parallel for master thread's value, for a
PARALLEL SECTIONS threadprivate variable. You assign
PARALLEL WORKSHARE the same value to threadprivate

variables for each thread in

the team executing the parallel
region. Then, for each variable
specified, the value of the
variable in the master thread

of the team is copied to the
threadprivate copies at the
beginning of the parallel region.

64

Chapter 5. Using OpenMP

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“COPYPRIVATE(list)” |SINGLE single Specifies that one or more
variables should be shared
among all threads. This clause
provides a mechanism to use
a private variable to broadcast
a value from one member of a
team to the other members.
“DEFAULT” PARALLEL parallel Specifies the behavior of
PARALLEL DO parallel for unscoped variables in a parallel
PARALLEL SECTIONS region, such as the data-sharing
PARALLEL WORKSHARE attributes of variables.
“FIRSTPRIVATE (list)” |DO for Specifies that each thread
PARALLEL parallel should have its own instance of a
PARALLEL DO parallel for variable, and that each variable
PARALLEL SECTIONS sections in the list should be initialized
PARALLEL WORKSHARE |single with the value of the original
SECTIONS variable, because it exists before
SINGLE the parallel construct.
“IF()” PARALLEL ... END PARALLEL parallel Specifies whether a loop should
PARALLEL DO ... parallel for be executed in parallel or in
END PARALLEL DO parallel sections |serial.
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
“LASTPRIVATE(list)” | DO parallel Specifies that the enclosing
PARALLEL DO ... parallel for context's version of the variable
END PARALLEL DO parallel sections |is set equal to the private version
PARALLEL SECTIONS ... sections of whichever thread executes
END PARALLEL SECTIONS the final iteration of a for-loop
SECTIONS construct or last section of
#pragma sections.
“NOWAIT” DO ... END DO for Overrides the barrier implicit in a
SECTIONS sections directive.
SINGLE single
WORKSHARE ...
END WORKSHARE

65

Directive and Pragma Clauses

66

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“NUM_THREADS” PARALLEL parallel Sets the number of threads in a
PARALLEL DO ... parallel for thread team.
END PARALLEL DO parallel sections
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
“ORDERED” DO...END DO parallel for Required on a parallel FOR
PARALLEL DO... statement if an ordered directive
END PARALLEL DO is used in the loop.
“PRIVATE” DO for Specifies that each thread
PARALLEL parallel should have its own instance of a
PARALLEL DO ... parallel for variable.
END PARALLEL DO parallel sections
PARALLEL SECTIONS ... sections
END PARALLEL SECTIONS |single
PARALLEL WORKSHARE
SECTIONS
SINGLE
“REDUCTION”({ opetB©Oor for Specifies that one or more
| intrinsic } : |PARALLEL parallel variables that are private to
list) PARALLEL DO ... parallel for each thread are the subject of a
END PARALLEL DO parallel sections |reduction operation at the end of
PARALLEL SECTIONS ... sections the parallel region.
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
“SCHEDULE”(type |DO ... END DO for Applies to the FOR directive,
[, chunk]) PARALLEL DO... parallel for allowing the user to specify
END PARALLEL DO the chunking method for
parallelization. Work is assigned
to threads in different manners
depending on the scheduling type
or chunk size used.
“SHARED” PARALLEL parallel Specifies that one or more
PARALLEL DO ... parallel for variables should be shared
END PARALLEL DO parallel sections |among all threads. All threads
PARALLEL SECTIONS ... within a team access the same
END PARALLEL SECTIONS storage area for shared variables
PARALLEL WORKSHARE

Chapter 5. Using OpenMP

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“UNTIED” TASK task Specifies that any thread in the
TASKWAIT taskwait team can resume the task region

after a suspension.

For complete information on these clauses, refer to the OpenMP documentation available on the WorldWide

Web.

Run-time Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution environment.

Any C/C++ program unit that invokes these functions should include the statement #include <omp.h>.
The onp. h include file contains definitions for each of the C/C++ library routines and the required type
definitions. For example, to use the onp_get _num t hr eads function, use this syntax:

#i ncl ude <onp. h>
i nt onp_get _num t hreads(voi d);

Note

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP run-time libraries - up to the hard limit of 64 threads.

The following table summarizes the run-time library calls.

Note

The Fortran call is shown first followed by the equivalent C/C++ call.

Table 5.3. Run-time Library Routines Summary

Run-time Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region.

By default, the value returned by this function is equal to the value of the environment variable
OVP_NUM_THREADS or to the value set by the last previous call to omp_set_num_threads().

Fortran

i nteger function onp_get_numthreads()

C/C++

int onp_get_num t hreads(voi d);

67

Run-time Library Routines

68

Run-time Library Routines with Examples

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine or function can only be called from a serial region of code. If it is called from
within a parallel region, or from within a subroutine or function that is called from within a parallel
region, the results are undefined. Further, this subroutine or function has precedence over the
OVP_NUM_THREADS environment variable.

Fortran

subroutine onp_set_num t hreads(scal ar _i nt eger _exp)

C/C++

voi d onp_set_numthreads(int numthreads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

Fortran

i nteger function onp_get _thread num()

C/C++

int onp_get _thread_nun{void);

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran i nteger function onp_get ancestor_thread_nun(l evel)
i nteger |evel
C/C++ int onp_get _ancestor_thread_nun(int |evel);

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call. PGI
currently supports only one level of active parallel regions, so the return value currently is 1.

Fortran

i nteger function onp_get_active_l evel ()

C/C++

int onp_get active_ | evel (void);

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran

i nteger function onp_get_|evel ()

C/C++

int onp_get_|evel (void);

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num_threads().

If omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

Fortran

i nteger function onp_get_max_threads()

C/C++

voi d onp_get _max_t hreads(voi d);

Chapter 5. Using OpenMP

Run-time Library Routines with Examples

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran i nteger function onp_get_num procs()

C/C++ int onp_get_num procs(void);

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may 7ot be the size of the stack of the current thread.

Fortran lonp_get _stack_size interface

function onp_get _stack_size ()

use onp_lib_kinds

i nteger (ki nd=OVP_STACK_SI ZE_KI ND)
onp_get _stack_si ze

end function onp_get_stack_si ze

end interface

C/C++ size_t onp_get_stack_size(void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created
just prior to the first parallel region; therefore, only calls to onp_set _st ack_si ze() that occur
prior to the first region have an effect.

Fortran subroutine onp_set _stack_si ze(integer (Kl ND=OVWP_STACK_SI ZE _KI ND))

C/C++ voi d onp_set _stack_size(size_t);

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor
belongs.

Fortran i nteger function onp_get teamsize (Ilevel)
i nteger |evel

C/C++ i nteger onp_get teamsize(int |evel);

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE. for directives and non-zero for pragmas if called from within a parallel region and

. FALSE. for directives and zero for pragmas if called outside of a parallel region. When called
from within a parallel region that is serialized, for example in the presence of an IF clause evaluating
. FALSE. for directives and zero for pragmas, the function returns . FALSE. for directives and zero
for pragmas.

Fortran | ogi cal function onp_in_parallel()

69

Run-time Library Routines

70

Run-time Library Routines with Examples

C/C++ int onp_in_parallel(void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _dynani c(scal ar _| ogi cal _exp)

C/C++ voi d onp_set _dynam c(int dynam c_t hreads);

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get_dynam c()

C/C++ voi d onp_get _dynami c(voi d);

omp_set_nested

Allows enabling/disabling of nested parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _nest ed(nest ed)
| ogi cal nested

C/C++ voi d onp_set _nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get_nested()

C/C++ int onp_get _nested(void);

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine onp_set_schedul e(kind, nodifier)
i ncl ude ‘onp_lib_kinds.h’

i nt eger (ki nd=onp_sched_ki nd) ki nd

i nteger nodifier

C/C++ doubl e onp_set _schedul e()

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subrouti ne onp_get _schedul e(ki nd, nodifier)
i ncl ude ‘onp_lib_kinds. h’

i nt eger (ki nd=onp_sched_ki nd) ki nd

i nteger nodifier

Chapter 5. Using OpenMP

Run-time Library Routines with Examples

C/C++

doubl e onp_get schedul e()

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a

floating-point double value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran

doubl e precision function onp_get_wtinme()

C/C++

doubl e onp_get_wti ne(voi d)

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran
directives and as a floating-point double value for C/C++ pragmas.

Fortran

doubl e precision function onp_get_wtick()

C/C++

doubl e onp_get_wt i ck()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock; it is illegal to
make a call to this routine.

Fortran subroutine onp_init_|ock(l ock)

i nclude ‘onp_lib_kinds.h

i nt eger (ki nd=onp_I ock_ki nd) | ock
C/C++ void onp_init_|ock(onp_l ock t *Iock);

voi d onp_init_nest | ock(onp_nest _lock t *Iock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine onp_destroy_| ock(!| ock)

i nclude ‘onp_lib_Kkinds.h

i nt eger (ki nd=onp_I| ock_ki nd) | ock
C/C++ voi d onp_destroy_| ock(onp_l ock_t *I ock);

voi d onp_destroy_nest | ock(onp_nest | ock_t *I| ock);

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with

a lock, it is illegal to make a call to this routine.

Fortran subroutine onp_set _| ock(l ock)

i nclude ‘onp_lib_kinds.h

i nt eger (ki nd=onp_I ock_ki nd) | ock
C/C++ voi d onp_set | ock(onp_l ock_t *I ock);

voi d onp_set _nest _| ock(onp_nest _| ock_t *Iock);

71

Environment Variables

Run-time Library Routines with Examples

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with i nt eger _var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine onp_unset _| ock(l ock)
i nclude ‘onp_lib_Kkinds.h’
i nt eger (ki nd=onp_I ock_ki nd) | ock

C/C++ #i ncl ude <onp. h> voi d onp_unset _| ock(onp_| ock_t *I ock);
voi d onp_unset _nest _| ock(onp_nest | ock_t *I ock);

omp_test_lock
Causes the calling thread to try to gain ownership of the lock associated with the variable.
The function returns . TRUE. for directives and non-zero for pragmas if the thread gains ownership

of the lock; otherwise it returns . FALSE. for directives and zero for pragmas. If the variable is not
already associated with a lock, it is illegal to make a call to this routine.

Fortran | ogi cal function onp_test | ock(l ock)
i ncl ude ‘onp_lib_kinds. h’
i nt eger (ki nd=onp_| ock_ki nd) | ock

C/C++ int onp_test_|ock(onmp_lock_t *|ock);
int onp_test_nest_| ock(onp_nest _|ock_ t *Iock);

Environment Variables

You can use OpenMP environment variables to control the behavior of OpenMP programs. These environment
variables allow you to set and pass information that can alter the behavior of directives and pragmas.

The following summary table is a quick reference for the OpenMP environment variables that PGI uses. For
detailed descriptions of each of these variables, refer to “OpenMP Environment Variables,” on page 318.

Table 5.4. OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) the dynamic adjustment of the number of
threads.

OMP_NESTED Currently has no effect. Typically specifies the maximum
number of nested parallel regions.

OMP_MAX_ACTIVE_LEVELS |FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) nested parallelism.

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions.

72

Chapter 5. Using OpenMP

Environment Variable

Default

Description

OMP_SCHEDULE

STATIC with
chunk size of
1

Specifies the type of iteration scheduling and optionally the
chunk size to use for omp for and omp parallel for 1oops
that include the run-time schedule clause. The supported
schedule types, which can be specified in upper- or lower-
case are static, dynamic, guided, and auto.

OMP_STACKSIZE

Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can
be used in a program.
OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin

or sleep when idle. The values are ACTIVE and PASSIVE.

73

74

Chapter 6. Using MPI

Message Passing Interface (MPI) is an industry-standard application programming interface designed for
rapid data exchange between processors in a cluster application. MPI is computer software used in computer
clusters that allows the processes of a parallel application to communicate with one another.

PGI provides MPI support with PGI compilers and tools. PGI compilers provide explicit support to build MPI
applications on Windows using Microsoft’s implementation of MPI, MSMPI, on Mac OS X using OpenMPI, and
on Linux using MPICH-1, MPICH-2, MVAPICH, OpenMPI, and HP-MPL. Of course, you may always build using
an arbitrary version of MPI; to do this, use the - 1, - L, or - | option.

PGI Workstation on Linux includes MPICH-1; PGI Workstation on Mac OS X includes OpenMPI; and PGI CDK
on Linux includes MPICH-1, MPICH-2, and MVAPICH. This chapter describes how to use these capabilities and
how to configure PGI compilers so these capabilities can be used with custom MPI installations.

The debugger and profiler are enabled to support MPI applications running locally with a limited number of
processes. The PGI Tools Guide describes the MPI-enabled tools in detail:

* PGPROF graphical MPI/OpenMP/multi-thread performance profiler.
* PGDBG graphical MPI/OpenMP/multi-thread symbolic debugger.

MPI Overview

This section contains general information applicable to various MPI implementations. For specific information,
refer to the implementation-specific sections later in this chapter.

Note

Due to complexities in the OpenMPI implementation, the - Mrpi =opennpi is not supported for
OpenMPL. To build using OpenMPI, use the OpenMPI-supplied wrappers mpicc, mpic++, mpif77, or
mpif90 to compile and link. On Windows, configure these compiler wrappers to use PGI compilers,
as described in the OpenMPI documentation and the PGI Installation Guide. On Mac OS X use the
compiler wrapper provided with PGI software.

MPI is a set of function calls and libraries that are used to send messages between multiple processes. These
processes can be located on the same system or on a collection of distributed servers. Unlike OpenMP, the
distributed nature of MPI allows it to work in almost any parallel environment.

75

MPI Overview

Compiling and Linking MPI Applications

The PGI compilers provide an option, - Mpi =, to make building MPI applications more convenient by adding
the MPI include and library directories to the compiler's include and library search paths. The compiler
determines the location of these directories using various mechanisms described in the MPI implementation-
specific sections later in this chapter.

Table 6.1 lists the - Mpi = suboptions for each of the supported implementations.

Table 6.1. MPI Implementation Options

This MPI Requires this option...

implementation...

MPICH-1 - Mmpi =npi chl

MPICH-2 - Mpi =npi ch2

MVAPICH - Mpi =nmvapi chl

HP-MPI - Mpi =hpnpi

MSMPI - Mmpi =nsnpi

OpenMPI - Mpi not supported. Use compiler wrappers.
Note

When you use these options to build an MPI application, you must use them in both the compile and
link steps.

Debugging MPI Applications

76

The PGI debugger, PGDBG, provides support for symbolic debugging of MPI applications. In PGI Workstation,
this support is limited in two ways:

e The application processes must run on a system where PGI Workstation is installed.

 The number of processes is limited, controlled by the license key.

For all implementations of MPI except MPICH-1, you use the PGDBG command to initiate an MPI debugging
session. For example, you might invoke an HP-MPI session as follows:

% pgdbg - npi :/opt/ hpnpi/bin/ mpirun -np 4 ny_npi _app

For specific information on how to initiate a debugging session for your instance of MPI, refer to the
implementation-specific sections available later in this chapter.

PGDBG can display the contents of message queues for instances of MPI that have been configured to support
that feature. The version of MPICH-1 provided with PGI Workstation as well as HP-MPI function properly. If
you are using MPICH-2 or MVAPICH, these must be built and configured correctly. Further, MSMPI does not
support displaying message queue contents.

For more information on MPI and displaying message queues, refer to the documentation for your specific
implementation.

Chapter 6. Using MPI

Profiling MPI Applications

The PGI performance profiler, PGPROE, provides support for profiling MPI applications. The number of
processes that can be profiled is limited by your license. PGPROF instrumentation is inserted into the program
by the compiler, and after the program is executed, the PGPROF profiler can display MPI message count
statistics as they relate to the source code of the application and the time spent in those portions of the
application.

To create and view a performance profile of your MPI application, you must first build an instrumented version
of the application using the - Mpr of = option to specify one of the MPI implementations. The - Mpr of = option
requires that you use another profiling sub-option in conjunction with the MPI implementation suboptions,
listed in Table 6.2.

Note

When you build an MPI application for profiling, you must use these options in both the compile and
link steps.

Table 6.2. MPI Profiling Options

This MPI implementation... |Requires this profiling option...
MPICH-1 - Mor of =npi chl, {func| hwct s| | i nes|ti e}
MPICH-2 - Mor of =npi ch2, {func| hwct s| | i nes|ti me}
MVAPICH - Mor of =nvapi chl, {func| hwct s| | i nes| ti me}
HP-MPI - Mor of =hpnpi , {func| hwct s| i nes|ti e}
MSMPI - Mor of =nsnpi , {func| | i nes}
OpenMPI Use OpenMPI compiler wrappers with

- Mprof ={func| hwects|lines|tinme}

For example, you can use the following command to compile for profiling with MPICH-2:
% pgfortran -fast -Mrof=npich2, func nmy_npi _app. f 90

Note

The default versions of the compilation scripts, such as npi cc and npi f 90, that are provided by
some MPI distributions, do not correctly support the - Mpr of option. For best results, use the PGI
compiler drivers in place of these scripts.

For OpenMPI, refer to the PGI Workstation Installation Guide for more information on configuring the
OpenMPI compiler wrappers to work with the PGI compilers on your system.

Once you have built an instrumented version of your MPI application, running it produces the profile data. For
specific details on using PGPROF to view the profile data, refer to the PGI Tools Guide.

Using MPICH-1 on Linux

PGI Workstation and CDK for Linux includes MPICH-1 libraries, tools, and licenses required to compile,
execute, profile, and debug MPI programs. PGI Workstation can be installed on a single system, and that

"7

Using MPICH-2 on Linux

system can be treated as if it is a small cluster. The MPI profiler and debugger are limited to processes on a
single system in PGI Workstation. The PGI CDK supports general development on clusters.

Example

Example 6.1. MPI Hello World Example

The following MPI “hello world” example program uses MPICH-1.

% cd ny_exanpl e_dir

%cp -r $PA /1 inux86/10. 0- 0/ EXAMPLES/ MPI / npi hel | o .
% cd npi hello

% pgf 77 -o npi hell o npi hell o. f - Mmpi =npi chl

% npi run npi hell o
Hello world! |I'm node O

% npirun -np 4 npi hello

Hello world! |I'm node O
Hello world! |I'm node 2
Hello world! |I'm node 1
Hello world! |I'm node 3

If you want to build your MPI application using the instance of MPICH-1 installed with the PGI compilers, just
use the - Mpi =npi ch1l option, or the - Mpr of =npi ch1 option to instrument for MPICH-1 profiling.

To use a different instance of MPICH-1, set the MPI DI R environment variable before invoking the compiler.
MPI DI R specifies the location of the instance of MPI to use. For example, set MPI DI Rto the root of the
MPICH-1 installation directory that you want to use, that is, the directory that contains bi n, i ncl ude, | i b,
and so on.

Using MPICH-2 on Linux

PGI CDK for Linux includes MPICH-2 libraries, tools, and licenses required to compile, execute, profile, and
debug MPI programs.

If you want to build your MPI application using the instance of MPICH-2 installed with the PGI compilers, just
add the - Mpi =npi ch2 option to the compilation and link steps, or you can use the - Mpr of =npi ch2
option to instrument for MPICH-2 profiling. The - Mpi =npi ch2 option automatically sets up the include and
library paths to use the MPICH-2 headers and libraries. For example, you can use the following command to
compile for profiling with MPICH-2:

% pgf ortran -fast -Mrof=npich2,tinme ny_npi_app.f90

To use a different instance of MPICH-2, set the MPI DI R environment variable before invoking and linking with
- Mhpi =npi ch2. MPI DI R specifies the location of the instance of MPI to use. For example, set MPI DI R to
the root of the MPICH-2 installation directory that you want to use, that is, the directory that contains bi n,

i ncl ude, i b, and so on.

Using MVAPICH on Linux

78

PGI CDK for Linux includes MVAPICH libraries, tools, and licenses required to compile, execute, profile, and
debug MPI programs.

Chapter 6. Using MPI

If you want to build your MPI application using the instance of MVAPICH installed with the PGI compilers, just
add the - Mpi =nvapi ch1l option to the compilation and link steps, or you can use the - Mpr of =nvapi chl
option to instrument for MVAPICH profiling. The - Mhpi =mvapi ch1 option automatically sets up the include
and library paths to use the MVAPICH headers and libraries. For example, you can use the following command
to compile for profiling with MVAPICH:

% pgfortran -fast -Mrof=nvapichl,time ny_npi_app.f90

To use a different instance of MVAPICH, set the MPI DI R environment variable before invoking and linking with
- Mpi =nvapi chl1. MPI DI Rspecifies the location of the instance of MPI to use. For example, set MPI DI R
to the root of the MVAPICH installation directory that you want to use, that is, the directory that contains bi n,

i ncl ude, i b, and so on.

Using HP-MPI on Linux

If you have an instance of HP-MPI available on the Linux system on which you have the PGI compilers installed,
you can compile, run, debug, and profile locally on your system using that instance of HP-MPI.

HP-MPI Installation Directory

By default, HP-MPI on Linux is installed in / opt / hpnpi .

e If your instance of HP-MPI is installed in / opt / hpnpi , the default location, then compiling and linking
with the options - Mpi =hpnpi and - Mpr of =hpnpi automatically brings in the appropriate include files
and libraries.

e If your instance of HP-MPI is installed in a directory other than the default location, then you must set the
HP-MPI environment variable MPI _ROOT to the alternate directory where HP-MPI is installed. MPI _ROOT
specifies the location of the instance of HP-MPI to use when compiling your application.

Multi-threaded Application Support

The - Mpi =hpnpi and - Mpr of =hpnpi options use the non-thread-compliant version of HP-MPI. This
library is sufficient for applications that do not make MPI calls simultaneously from multiple threads.

The thread-compliant version is not supported by these options, although you can link to the library directly
using the - L and - | options.

For more information on using HP-MPI in a multi-threaded application, refer to the HP-MPI documentation.

Using OpenMPI on Linux

PGI does not include a version of OpenMPI on Linux that is preconfigured. However, you can configure your
system for OpenMPI by following the instructions in the PGI Workstation Installation Guide.

Compiling using OpenMPI

To build the application, use the OpenMPI compiler wrappers: mpicc, mpic++, mpif77, and mpif90. These
wrappers automatically set up the compiler commands with the correct include file search paths, library

79

Using MSMPI on Windows

directories, and link libraries. Unlike other MPI distributions, the PGI compiler drivers do not directly support
the - Mipi =opennpi option for OpenMPIL.

Generate MPI Profile Data

To build an application that generates MPI profile data suitable for use with PGPROF, use the OpenMPI
compiler wrappers with the - Mpr of =f unc, - Mpr of =I i nes, or - Mpr of =t i e option. On linux86-64
configured with PAPI, you may also use - Mpr of =hwct s. For more information on profiling with PAPI, refer
to the PGI Tools Guide.

Unlike for other MPI distributions, the PGI compiler drivers do not directly support the - Mpr of =opennpi
option.

Using MSMPI on Windows

If you have an implementation of MSMPI available on the Windows system on which you have PGI Workstation
installed, you can compile, run, debug, and profile locally on your system using that instance of MSMPI.

In general these instructions apply to a system where the Microsoft HPC Pack 2008 SDK is installed as a
development tool, as opposed to an actual HPC Server system.

MSMPI Environment

When the Microsoft HPC Pack 2008 SDK is installed, some system environment variables are set. Further, there
are two environment variables available to help you specify directory locations associated with using MSMPI on
Windows: CCP_HOVE and CCP_SDK.

e CCP_HOME specifies the root directory of the Microsoft cluster management software for systems on which
the Microsoft HPC Pack 2008 is installed.

e CCP_SDX specifies the root directory of the MSMPI software for systems on which Microsoft’s HPC Pack
2008 SDK is installed.

If the appropriate environment variable is set for the version of MSMPI that you are using, then both the
options - Mpi =nmsnpi and - Mpr of =menpi automatically bring in the appropriate include files and
libraries.

Compiling using MSMPI

To compile the application, use the - Mpi =msnpi option. This option inserts options into the compile and
link lines to pick up the MSMPI headers and libraries.

Generate MPI Profile Data

80

To build an application that generates MPI profile data, use the - Mpr of =nmsnpi option. This option performs
MPICH-style profiling for Microsoft MPI.

The profile data generated by running an application built with the option - Mpr of =nsnpi contains
information about the number of sends and receives, as well as the number of bytes sent and received,
correlated with the source location associated with the sends and receives. You must use - Mpr of =nmsnpi in

Chapter 6. Using MPI

conjunction with - Mpr of =f unc or - Mpr of =I i nes. When invoked using this type of profile data, PGPROF
automatically displays MPI statistics.

Using OpenMPI on Mac OS X

PGI Workstation for Mac OS X includes a version of OpenMPI preconfigured for use with the PGI compilers.
Compiling using OpenMPI

To build the application, use the OpenMPI compiler wrappers: mpicc, mpic++, mpif77, and mpif90. These
wrappers automatically set up the compiler commands with the correct include file search paths, library
directories, and link libraries. Unlike other MPI distributions, the PGI compiler drivers do not directly support
the - Mpi =opennpi option for OpenMPI.

Generate MPI Profile Data

You build an application that generates MPI profile data suitable for use with PGPROF, use the OpenMPI
compiler wrappers with the - Mpr of =f unc or - Mpr of =l i nes option.

Note

- Mpr of =t i me and - Mpr of =hwect s are not supported on Mac OS X.

Unlike for other MPI distributions, the PGI compiler drivers do not directly support the - Mpr of =opennpi
option.

Site-specific Customization

You can configure MPI compilers to use custom MPI installations. The section “Site-specific Customization
of the Compilers,” on page 15 of Chapter 1, “Getting Started” describes how to use the si t er c file to
customize the compiler to add certain libraries as well as include paths. This section describes how you can
use the siterc file or environment variables to specify MPI installations other than the PGI-installed defaults.

* You set environment variables to change the MPI installation used by the PGI compilers for a single user or
a single build.

* You change the siterc file to change the defaults for anyone using a PGI installation.

Use Alternate MPICH Installation

Important

In this example, the location of your installation is / opt / npi .

To use an alternate mpich installation, do one of the following.

e Add the following line to the si t er c file:
set MPI UDI R=/ opt / npi ;

OR

81

Site-specific Customization

¢ Set the environment variable MPI DI R

setenv MPI DI R /opt/ npi
export MPI DI R=/ opt/ npi

Once you have done this, when compiling with - Mrpi with any library setting, these new settings are used
instead of the PGlI-installed default.

Use Alternate MVAPICH Installation

Important

In this example, the location of your mvapich installation is / opt / mvapi ch and openfabrics is
installed in / opt / of ed

To use an alternate mvapich installation, do the following.

Add the following lines to the si t er c file:

set MPI VDI R=/ opt / npi ;
set OFEDLI BDI R=/ opt/ of ed/ | i b;

Once you have done this, when compiling with - Mrpi =mvapi ch1 with any library setting, these new settings
are used instead of the PGI-installed default.

Use Alternate HPMPI Installation

Important

In this example, the location of your hpmpi installation is / opt / myhpnpi .
To use an alternate hpmpi installation, do the following.
* Add the following line to the si t er c file:
set MPI HPDI R=/ opt / myhpnpi ;
OR

o Set the environment variable MPI DI R

setenv MPI _ROOT / opt/ myhpnpi
export MPI _ROOT=/ opt/ myhpnpi

Once you have done this, the default setting is / opt / myhpnpi and this is the seeing that is used when
compiling with - Mhpi =hpnpi .

Use Alternate MSMPI Installation

To use an alternate MSMPI installation, do the following.

Important

In this example, the location of your MSMPI installation is C: \ nynsnpi .
82

Chapter 6. Using MPI

e Add the following lines to the si t er c file:

set MSMPI DI R=C: \ nynmsnpi
set MSMPI LI B32=C: \ mynsnpi \ | i b\i 386
set MSMPI LI B64=C: \ nynsnpi \ | i b\ and64

OR

o Set the MSMPI environment variables

set CCP_SDK=C: \ nynsnpi
set CCP_LIB32=C:\ nmynsnpi\lib\i 386
set CCP_LIB64=C:\ mynsnpi\lib\and64

Once you have done this, the default setting is / opt / myhpnpi and this is the setting that is used when
compiling with - Mhpi =hpnpi .

Note

To configure OpenMPI for use with PGI compilers, see the section on OpenMPI in the PGI Installation
Guide.

83

84

Chapter 7. Using an Accelerator

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations. This chapter describes a collection of compiler
directives used to specify regions of code in Fortran and C programs that can be offloaded from a host CPU to
an attached accelerator.

Overview

The programming model and directives described in this chapter allow programmers to create high-level
host+accelerator programs without the need to explicitly initialize the accelerator, manage data or program
transfers between the host and accelerator, or initiate accelerator startup and shutdown. Rather, all of

these details are implicit in the programming model and are managed by the PGI Fortran and C accelerator
compilers.

The method described provides a model for accelerator programming that is portable across operating
systems and various host CPUs and accelerators. The directives allow a programmer to migrate applications
incrementally to accelerator targets using standards-compliant Fortran or C.

This programming model allows the programmer to augment information available to the compilers, including
specification of data local to an accelerator region, guidance on mapping of loops onto an accelerator, and
similar performance-related details.

Components

The PGI Accelerator compiler technology includes the following components:

PGF95 auto-parallelizing accelerator-enabled Fortran 90/95 compiler

PGCC auto-parallelizing accelerator-enabled ANSI C99 and K&R C compiler

NVIDIA CUDA Toolkit components

A simple command-line tool to detect whether the system has an appropriate GPU or accelerator card

No accelerator-enabled debugger is included with this release

85

Terminology

Availability

The PGI 10.0 Fortran & C Accelerator compilers are available only on x86 processor-based workstations and
servers with an attached NVIDIA CUDA-enabled GPU or Tesla card. These compilers target all platforms that
PGI supports except 64-bit Mac OS X. All examples included in this chapter are developed and presented on
such a platform. For a list of supported GPUs, refer to the Accelerator Installation and Supported Platforms list
in the latest PGI Release Notes.

User-directed Accelerator Programming

In user-directed accelerator programming the user specifies the regions of a host program to be targeted for
offloading to an accelerator device. The bulk of a user’s program, as well as regions containing constructs
that are not supported on the targeted accelerator, are executed on the host. This chapter concentrates on
specification of loops and regions of code to be offloaded to an accelerator.

Features Not Covered or Implemented

This chapter does not describe features or limitations of the host programming environment as a whole.
Further, it does not cover automatic detection and offloading of regions of code to an accelerator by a compiler
or other tool. While future versions of the PGI compilers may allow for automatic offloading or multiple
accelerators of different types, these features are not currently supported.

Terminology

Clear and consistent terminology is important in describing any programming model. This section provides
definitions of the terms required for you to effectively use this chapter and the associated programming model.

Accelerator

a special-purpose co-processor attached to a CPU and to which the CPU can offload data and executable
kernels to perform compute-intensive calculations.

Compute intensity
for a given loop, region, or program unit, the ratio of the number of arithmetic operations performed on
computed data divided by the number of memory transfers required to move that data between two levels
of a memory hierarchy.

Compute region
a region defined by an Accelerator compute region directive. A compute region is a structured block
containing loops which are compiled for the accelerator. A compute region may require device memory
to be allocated and data to be copied from host to device upon region entry, and data to be copied from
device to host memory and device memory deallocated upon exit. Compute regions may not contain other
compute regions or data regions.

CUDA
stands for Compute Unified Device Architecture; the CUDA environment from NVIDIA is a C-like
programming environment used to explicitly control and program an NVIDIA GPU.

Data region
a region defined by an Accelerator data region directive, or an implicit data region for a function or
subroutine containing Accelerator directives. Data regions typically require device memory to be allocated

86

Chapter 7. Using an Accelerator

and data to be copied from host to device memory upon entry, and data to be copied from device to host
memory and device memory deallocated upon exit. Data regions may contain other data regions and
compute regions.

Device
a general reference to any type of accelerator.

Device memory
memory attached to an accelerator which is physically separate from the host memory.

Directive
in G, a #pragma, or in Fortran, a specially formatted comment statement that is interpreted by a compiler
to augment information about or specify the behavior of the program.

DMA
Direct Memory Access, 2 method to move data between physically separate memories; this is typically
performed by a DMA engine, separate from the host CPU, that can access the host physical memory as well
as an 10 device or GPU physical memory.

GPU
a Graphics Processing Unit; one type of accelerator device.

GPGPU
General Purpose computation on Graphics Processing Units.

Host
the main CPU that in this context has an attached accelerator device. The host CPU controls the program
regions and data loaded into and executed on the device.

Loop trip count
the number of times a particular loop executes.

OpenCL - Open Compute Language
a proposed standard C-like programming environment similar to CUDA that enables portable low-level
general-purpose programming on GPUs and other accelerators.

Private data
with respect to an iterative loop, data which is used only during a particular loop iteration. With respect
to a more general region of code, data which is used within the region but is not initialized prior to the
region and is re-initialized prior to any use after the region.

Region
a structured block identified by the programmer or implicitly defined by the language. Certain actions may
occur when program execution reaches the start and end of a region, such as device memory allocation
or data movement between the host and device memory. Loops in a compute region are targeted for
execution on the accelerator.

Structured block
in C, an executable statement, possibly compound, with a single entry at the top and a single exit at the
bottom. In Fortran, a block of executable statements with a single entry at the top and a single exit at the
bottom.

87

System Requirements

Vector operation
a single operation or sequence of operations applied uniformly to each element of an array.

Visible device copy
a copy of a variable, array, or subarray allocated in device memory, that is visible to the program unit
being compiled.

System Requirements

To use the PGI Accelerator compiler features, you must install the NVIDIA drivers. You may download these
components from the NVIDIA website at
www. nvi di a. com cuda

These are not PGI products, and are licensed and supported by NVIDIA.

Note

You must be using an operating system that is supported by both the current PGI release and by the
CUDA software and drivers.

Supported Processors and GPUs

This PGI Accelerator compiler release supports all AMD64 and Intel 64 host processors supported by Release
9.0 or higher of the PGI compilers and tools. You can use the -t p <t ar get > flag as documented in the
release to specify the target processor.

Use the —t a=nvi di a flag to enable the accelerator directives and target the NVIDIA GPU. You can then use
the generated code on any system with CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla
card.

For more information on these flags as they relate to accelerator technology, refer to “Applicable Command
Line Options,” on page 101.

For a complete list of supported GPUs, refer to the NVIDIA website at:
www. nvi di a. conf obj ect/ cuda_| ear n_pr oduct s. ht m

You can detect whether the system has CUDA properly installed and has an attached graphics card by running
the pgaccelinfo command, which is delivered as part of the PGI Accelerator compilers software package.

Installation and Licensing

Note

The PGI Accelerator compilers require a separate license key in addition to a normal PGI Workstation,
Server, or CDK license.

Required Files

Note

If you are installing on Windows, the required files are built for you.

88

Chapter 7. Using an Accelerator

The default NVIDIA Compute Capability for generated code is now both cc1.0 and cc1.3, enabling code
generation for both compute capabilities.

You can change the default to one or more of the supported compute caoabilities by adding a line similar to
the following one to the si t envr c file.

For example, adding the following line sets the compute capability to enable code generation for all four of the
supported compute capabilites. Notice that the compute capabilities are seaparated by a space.

set COWPUTECAP=10 11 12 13;

You must place the si t envr c file in the following directory, where $PGI is the PGI installation directory,
which is typically / opt / pgi or/ usr/ pgi .

$PA /1 i nux86- 64/ 10. 0- 1/ bi n/
Command Line Flag

After creating the si t envr c file and acquiring the PGI Accelerator compilers license key, you can use the
option —t a=nvi di a with the pgf or t en or pgcc commands.

For more information on the —t a flag and the suboptions that relate to the target accelerators, refer to
“Applicable Command Line Options,” on page 101.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds
the kernels in the Linux object file.

Note

To access the accelerator libraries, you must link an accelerator program with the —t a flag as well.

Execution Model

The execution model targeted by the PGI Accelerator compilers is host-directed execution with an attached
accelerator device, such as a GPU. The bulk of a user application executes on the host. Compute intensive
regions are offloaded to the accelerator device under control of the host. The accelerator device executes
kernels, which may be as simple as a tightly-nested loop, or as complex as a subroutine, depending on the
accelerator hardware.

Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

allocates memory on the accelerator device

initiates data transfer

sends the kernel code to the accelerator

passes kernel arguments

queues the kernel

89

Memory Model

* waits for completion
o transfers results back to the host

e deallocates memory

Note

In most cases, the host can queue a sequence of kernels to be executed on the device, one after the
other.

Levels of Parallelism

Most current GPUs support two levels of parallelism:

e an outer doall (fully parallel) loop level

e an inner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly rectangular. The
synchronous level may not be fully implemented with SIMD or vector operations, so explicit synchronization is
supported and required across this level. No synchronization is supported between parallel threads across the
doall level.

The execution model on the device side exposes these two levels of parallelism and the programmer is
required to understand the difference between, for example, a fully parallel loop and a loop that is vectorizable
but requires synchronization across iterations. All fully parallel loops can be scheduled for either doall or
synchronous parallel execution, but by definition SIMD vector loops that require synchronization can only be
scheduled for synchronous parallel execution.

Memory Model

The most significant difference between a host-only program and a host+accelerator program is that the
memory on the accelerator can be completely separate from host memory, which is the case on most current
GPUs. For example:

e The host cannot read or write accelerator memory by reference because it is not mapped into the virtual
memory space of the host.

* All data movement between host memory and accelerator memory must be performed by the host through
runtime library calls that explicitly move data between the separate memories.

e It is not valid to assume the accelerator can read or write host memory, though this may be supported by
accelerators in the future.

Separate Host and Accelerator Memory Considerations

The concept of separate host and accelerator memories is very apparent in low-level accelerator programming
models such as CUDA or OpenCL, in which data movement between the memories dominates user code. In the
PGI Accelerator programming model, data movement between the memories is implicit and managed by the
compiler.

90

Chapter 7. Using an Accelerator

The programmer must be aware of the potentially separate memories for many reasons, including but not
limited to:

e Memory bandwidth between host memory and accelerator memory determines the compute intensity
required to effectively accelerate a given region of code.

e Limited size of accelerator memory may prohibit offloading of regions of code that operate on very large
amounts of data.

Accelerator Memory

On the accelerator side, current GPUs implement 2 weak memory model. In particular, they do not support
memory coherence between threads unless those threads are parallel only at the synchronous level and the
memory operations are separated by an explicit barrier. Otherwise, if one thread updates a memory location
and another reads the same location, or two threads store a value to the same location, the hardware does not
guarantee the results. While the results of running such a program might be inconsistent, it is not accurate to
say that the results are incorrect. By definition, such programs are defined as being in error. While a compiler
can detect some potential errors of this nature, it is nonetheless possible to write an accelerator region that
produces inconsistent numerical results.

Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and most

have hardware caches that can be used only in certain situations and are limited to read-only data. In low-
level programming models such as CUDA or OpenCL, it is up to the programmer to manage these caches.
However, in the PGI Accelerator programming model, the compiler manages these caches using hints from the
programmer in the form of directives.

Running an Accelerator Program

Running a program that has accelerator directives and was compiled and linked with the - t a=nvi di a flag is
the same as running the program compiled without the - t a=nvi di a flag.

e The program looks for and dynamically loads the CUDA libraries. If the libraries are not available, or if
they are in a different directory than they were when the program was compiled, you may need to append
the CUDA library directory to your LD_LIBRARY_PATH environment variable on Linux or to the PATH
environment variable on Windows.

e On Linux, if you have no server running on your NVIDIA GPU, when your program reaches its first
accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from a power-off condition.
You can avoid this delay by running the pgcudai ni t program in the background, which keeps the GPU
powered on.

e If you run an accelerated program on a system without a CUDA-enabled NVIDIA GPU, or without the CUDA
software installed in a directory where the runtime library can find it, the program fails at runtime with an
error message.

e If you set the environment variable ACC_NOTI FY to a nonzero integer value, the runtime library prints a
line to standard error every time it launches a kernel.

91

Accelerator Directives

Accelerator Directives

This section provides an overview of the Fortran and C directives used to delineate accelerator regions and to
augment information available to the compiler for scheduling of loops and classification of data. For complete
descriptions of each accelerator directive, refer to “PGI Accelerator Directives,” on page 321.

Enable Accelerator Directives

PGI Accelerator compilers enable accelerator directives with the —t a command line option. For more
information on this option as it relates to the Accelerator, refer to “Applicable Command Line Options,” on
page 101.

Note

The syntax used to define directives allows compilers to ignore accelerator directives if support is
disabled or not provided.

_ACCEL macro

The _ACCEL macro name is defined to have a value yyyymmwhere yyyy is the year and nmis the month
designation of the version of the Accelerator directives supported by the implementation. For example, the

version for May, 2009 is 200905. This macro must be defined by a compiler when accelerator directives are
enabled.

Format
The specific format of the directive depends on the language and the format or form of the source.
Directives include a name and clauses, and the format of the directive depends on the type:

o (directives, described in “C Directives”
¢ Free-form Fortran directives, described in “Free-Form Fortran Directives”

e Fixed-form Fortran directives, described in “Fixed-Form Fortran Directives”

Note

This document uses free form for all PGI Accelerator compiler Fortran directive examples.
Rules
The following rules apply to all PGI Accelerator compiler directives:
e Only one directive-name can be specified per directive.
e The order in which clauses appear is not significant.

e Clauses may be repeated unless otherwise specified.

e For clauses that have a /ist argument, a list is 2 comma-separated list of variable names, array names, or, in
some cases, subarrays with subscript ranges.

92

Chapter 7. Using an Accelerator

C Directives

In C, PGI Accelerator compiler directives are specified using #pr agna

Syntax

The syntax of a PGI Accelerator compiler directive is:

Rules

#pragma acc directive-nanme [clause [,clause].] newline

In addition to the general directive rules, the following rules apply to PGI Accelerator compiler C directives:

Each directive starts with #pr agma acc.
The remainder of the directive follows the C conventions for pragmas.

White space may be used before and after the #; white space may be required to separate words in a
directive.

Preprocessing tokens following the #pr agna acc are subject to macro replacement.
C directives are case sensitive.

An Accelerator directive applies to the immediately following structured block or loop.

Free-Form Fortran Directives

PGI Accelerator compiler Fortran directives can be either Free-Form or Fixed-Form directives. Free-Form
Accelerator directives are specified with the ! $acc mechanism.

Syntax

The syntax of directives in free-form source files is:

Rules

I $acc directive-nane [clause [, clause].]

In addition to the general directive rules, the following rules apply to PGI Accelerator compiler Free-Form
Fortran directives:

The comment prefix (!) may appear in any column, but may only be preceded by white space (spaces and
tabs).

The sentinel (!$acc) must appear as a single word, with no intervening white space.
Line length, white space, and continuation rules apply to the directive line.
Initial directive lines must have a space after the sentinel.

Continued directive lines must have an ampersand (&) as the last nonblank character on the line, prior to
any comment placed in the directive.

Comments may appear on the same line as the directive, starting with an exclamation point and extending to
the end of the line.

93

Accelerator Directives

If the first nonblank character after the sentinel is an exclamation point, the line is ignored.

Directives are case-insensitive.

¢ Directives cannot be embedded within continued statements.

Statements must not be embedded within continued directives.

Fixed-Form Fortran Directives

Fixed-Form Accelerator directives are specified using one of three formats.

Syntax

Rules

The syntax of directives in fixed-form source files is one these three formats:
I $acc directive-nanme [clause [, clause].]

c$acc directive-nanme [clause [, clause].]
*$acc directive-nanme [clause [, clause].]

In addition to the general directive rules, the following rules apply to Accelerator Fixed-Form Fortran
directives:

* The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5.
e Fixed form line length, white space, continuation, and column rules apply to the directive line.

e Initial directive lines must have a space or zero in column 6, and continuation directive lines must have a
character other than a space or zero in column 6.

e Comments may appear on the same line as a directive, starting with an exclamation point on or after
column 7 and continuing to the end of the line.

¢ Directives are case-insensitive.
¢ Directives cannot be embedded within continued statements.

o Statements must not be embedded within continued directives.

Accelerator Directive Summary

94

PGI currently supports these types of accelerator directives, which are defined in more detail in “PGI
Accelerator Directives,” on page 321:

Accelerator Compute Region Directive
Accelerator Loop Mapping Directive
Combined Directive

Accelerator Declarative Data Directive
Accelerator Update Directive

Table 7.1 lists and briefly describes each of the accelerator directives that PGI currently supports. For a
complete description of each directive, refer to “PGI Accelerator Directives,” on page 321.

Chapter 7. Using an Accelerator

Table 7.1. PGI Accelerator Directive Summary Table

This directive... Accepts these

clauses...

Has this functionality...

if (condition)

copy (list)

copyin(/ist)
copyout(/ist)
local(/ist)

update device(/ist)
update host(/Zist)

Accelerator Compute
Region Directive

Defines the region of the program that should be
compiled for execution on the accelerator device.

C Syntax

#pragma acc region [clause [,
structured bl ock

cl ause] ..] newline

Fortran Syntax

I'$acc region [clause [, clause].]
structured bl ock
I $acc end region
Accelerator Data copy (list) Defines data, typically arrays, that should be allocated in
Region Directive copyin(/ist) the device memory for the duration of the data region,
copyout(/ist) whether data should be copied from the host to the
local(/ist) device memory upon region entry, and copied from the
mirror (/ist) device to host memory upon region exit.
update device(/st)
update host(/ist)

C Syntax

#pragma acc data region [clause [,
structured bl ock

cl ause] ..] newline

Fortran Syntax

I $acc data region [clause [,
structured bl ock
I $acc end data region

cl ause] .]

Accelerator Loop
Mapping Directive

cache(list)

host [(width) |
independent
kernel

parallel [(width)]
private(/ist)

seq [(width)]
shortloop

unroll [(width)]
vector [(width) |

Describes what type of parallelism to use to execute
the loop and declare loop-private variables and arrays.
Applies to a loop which must appear on the following
line.

95

Accelerator Directives

96

This directive... Accepts these Has this functionality...
clauses...

C Syntax

#pragma acc for [clause [,clause]...]newline
for | oop

Fortran Syntax

I $acc do [clause [, clause].]

do | oop
Combined Directive | Any clause that is Is a shortcut for specifying a loop directive nested
allowed on a region immediately inside an accelerator compute region
directive or a loop directive. The meaning is identical to explicitly specifying

directive is allowed on a |a region construct containing a loop directive.
combined directive.

C Syntax

#pragma acc region for [clause [, clause]...] newline
for | oop

Fortran Syntax

I'$acc region do [clause [, clause]...]

do | oop
Accelerator Declarative | copy (Zist) Specifies that an array or arrays are to be allocated in the
Data Directive copyin(/ist) device memory for the duration of the implicit data
copyout(/ist) region of a function, subroutine, or program.
local(Zist) Specifies whether the data values are to be transferred
mirror (/ist) from the host to the device memory upon entry to the
reflected(/ist) implicit data region, and from the device to the host
memory upon exit from the implicit data region.
Creates a visible device copy of the variable or array.

C Syntax

#pragma acc decl cl ause [, decl cl ause]...newline

Fortran Syntax

I $acc decl cl ause [, decl cl ause] . .

Accelerator Update host (/ist) Used within an explicit or implicit data region to update
Directive device(/st) all or part of 2 host memory array with values from the
corresponding array in device memory, or to update all
or part of a device memory array with values from the
corresponding array in host memory.

Chapter 7. Using an Accelerator

This directive...

Accepts these
clauses...

Has this functionality...

C Syntax

Fortran Syntax

#pragma acc updat e updatecl ause [, updat ecl ause]...newline

I $acc updat e updat ecl ause [, updat ecl ause] . .

Accelerator Directive Clauses

Table 7.2 provides an alphabetical listing and brief description of each clause that is applicable for the various
Accelerator directives. The table also indicates for which directives the clause is applicable.

For more information on the restrictions and use of each clause, refer to “PGI Accelerator Directive Clauses,”

on page 327.

Table 7.2. Directive Clauses Summary

Use this clause...

In these directives...

To do this...

cache (/ist)

Accelerator Loop Mapping

Provides a hint to the compiler to try to move the
variables, arrays, or subarrays in the list to the highest
level of the memory hierarchy.

copy (/ist)

Accelerator Data Region
Declarative Data

Declares that the variables, arrays, or subarrays in the list
have values in the host memory that need to be copied to
the accelerator memory, and are assigned values on the
accelerator that need to be copied back to the host.

copyin (/ist)

Accelerator Data Region
Declarative Data

Declares that the variables, arrays or subarrays in the list
have values in the host memory that need to be copied to
the accelerator memory.

copyout (/ist)

Accelerator Data Region
Declarative Data

Declares that the variables, arrays, or subarrays in the list
are assigned or contain values in the accelerator memory
that need to be copied back to the host memory at the
end of the accelerator region.

device (/ist)

Update

Copies the variables, arrays, or subarrays in the list
argument from host memory to the visible device copy
of the variables, arrays, or subarrays in device memory.
Copy occurs before beginning execution of the compute
or data region.

host (/ist)

Update

Copies the visible device copies of the variables, arrays,
or subarrays in the /ist argument to the associated host
memory locations. The copy occurs after completion of
the compute or data region.

host [(width) |

Accelerator Loop Mapping

Tells the compiler to execute the loop sequentially on the
host processor.

97

Accelerator Directive Clauses

98

Use this clause...

In these directives...

To do this...

if (condition)

Accelerator Compute Data
Region

When present, tells the compiler to generate two copies of
the region - one for the accelerator, one for the host - and
to generate code to decide which copy to execute.

independent Accelerator Loop Mapping | Tells the compiler that the iterations of this loop are data-
independent of each other, thus allowing the compiler
to generate code to examine the iterations in parallel,
without synchronization.

kernel Accelerator Loop Mapping | Tells the compiler that the body of this loop is to be the

body of the computational kernel. Any loops contained
within the kernel loop are executed sequentially on the
accelerator.

local (Zist) Accelerator Data Region | Declares that the variables, arrays or subarrays in the
Declarative Data list need to be allocated in the accelerator memory, but
the values in the host memory are not needed on the
accelerator, and the values computed and assigned on the
accelerator are not needed on the host.
mirror (/ist) Accelerator Data Region | Declares that the arrays in the /ist need to mirror the
Declarative Data allocation state of the host array within the region. Valid

only in Fortran on Accelerator data region directive.

parallel [(width)]

Accelerator Loop Mapping

Tells the compiler to execute this loop in parallel mode
on the accelerator. There may be a target-specific limit
on the number of iterations in a parallel loop or on the
number of parallel loops allowed in a given kernel

private (/ist)

Accelerator Loop Mapping

Declares that the variables, arrays, or subarrays in the /ist
argument need to be allocated in the accelerator memory
with one copy for each iteration of the loop.

reflected (/ist)

Declarative Data

Declares that the actual argument arrays that are bound
to the dummy argument arrays in the /ist need to have a
visible copy at the call site.

seq [(width)]

Accelerator Loop Mapping

Tells the compiler to execute this loop sequentially on the
accelerator. There is no maximum number of iterations
for a seq schedule.

shortloop

Accelerator Loop Mapping

Tells the compiler that any accelerator target-specific limit
on the number of iterations supported in a parallel or
vector loop is satisfied, either becuase the loop trip count
or the value of the width expression is small enough.

unroll [(width)]

Accelerator Loop Mapping

Tells the ompiler to unroll width iterations for sequential
execution on the accelerator. The width argument must
be a compile time positive constant integer.

Chapter 7. Using an Accelerator

Use this clause... |In these directives... |To do this...
update device Accelerator Data Region | Copies the variables, arrays, or subarrays in the /is¢
(Zist) argument from host memory to the visible device copy

of the variables, arrays, or subarrays in device memory,
before beginning execution of the compute or data
region.

update host (/ist) |Accelerator Data Region |Copies the visible device copies of the variables, arrays,
or subarrays in the /ist argument to the associated host
memory locations, after completion of the compute or
data region.

vector [(width)] |Accelerator Loop Mapping |Tells the compiler to execute this loop in vector mode on
the accelerator.

PGI Accelerator Compilers Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are available for use
by programmers to query the accelerator features and to control behavior of accelerator-enabled programs at
runtime.

Note

In Fortran, none of the PGI Accelerator compilers runtime library routines may be called from a PURE
or ELEMENTAL procedure.

Runtime Library Definitions

There are separate runtime library files for C and for Fortran.

C Runtime Library Files

In G, prototypes for the runtime library routines are available in a header file named accel . h. All the library
routines are ext er n functions with “C” linkage. This file defines:

e The prototypes of all routines in this section.

e Any data types used in those prototypes, including an enumeration type to describe types of accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named accel _| i b. handina
Fortran module named accel _| i b. These files define:

* Interfaces for all routines in this section.
* Integer parameters to define integer kinds for arguments to those routines.

* Integer parameters to describe types of accelerators.

99

Environment Variables

e The integer parameter accel _ver si on with a value yyyymmwhere yyyy and nmare the year and
month designations of the version of the Accelerator programming model supported. This value matches the
value of the preprocessor variable _ ACCEL.

Runtime Library Routines

Table 7.3 lists and briefly describes the supported PGI Accelerator compilers runtime library routines. For a
complete description of these routines, refer to “PGI Accelerator Runtime Routines,” on page 336.

Table 7.3. Accelerator Runtime Library Routines

This Runtime Library |Does this...
Routine...

acc_get_device Returns the type of accelerator device used to run the next accelerator
region, if one is selected.

acc_get_num_devices Returns the number of accelerator devices of the given type attached to the

host.

acc_init Connects to and initializes the accelerator device and allocates control
structures in the accelerator library.

acc_on_device Tells the program whether it is executing on a particular device.

acc_set_device Tells the runtime which type of device to use when executing an accelerator
compute region.

acc_set_device_num Tells the runtime which device of the given type to use among those that are
attached.

acc_shutdown Tells the runtime to shutdown the connection to the given accelerator

device, and free up any runtime resources.

Environment Variables

100

PGI supports environment variables that modify the behavior of accelerator regions. This section defines the
user-setable environment variables used to control behavior of accelerator-enabled programs at execution.
These environment variables must comply with these rules:

¢ The names of the environment variables must be upper case.

e The values assigned environment variables are case insensitive and may have leading and trailing white
space.

e The behavior is implementation-defined if the values of the environment variables change after the program
has started, even if the program itself modifies the values.

Table 7.4 lists and briefly describes the Accelerator environment variables that PGI supports.

Chapter 7. Using an Accelerator

Table 7.4. Accelerator Environment Variables

This environment variable... |Does this...

ACC_DEVICE Controls which accelerator device to use when executing accelerator
regions, if the program has been compiled to use more than one
different type of device. The value of this environment variable is
implementation-defined, and currently may be the string NVIDIA or
HOST.

ACC_DEVICE_NUM Controls the default device number to use when executing
accelerator regions. The value of this environment variable must
be a nonnegative integer between zero and the number of devices
attached to the host.

ACC_NOTIFY When set to a non-negative integer, indicates to print a message to
standard output when a kernel is executed on an accelerator.

Applicable Command Line Options
The following command line options are applicable specifically when working with accelerators.

-ta
Use this option to enable recognition of the !$ACC directives in Fortran, and #pragma acc directives in C.

—t p
Use this option to specify the target host processor architecture.

—M nf o or —-M nf o=accel
Use this option to see messages about the success or failure of the compiler in translating the accelerator
region into GPU kernels.

The —t a flag has the following accelerator-related suboptions:

nvidia
Select NVIDIA accelerator target.

analysis
Perform loop analysis only; do not generate GPU code.

ccl0
Generate code for compute capability 1.0.

ccll
Generate code for compute capability 1.1.

ccl2
Generate code for compute capability 1.2.

ccl3
Generate code for compute capability 1.3.

fastmath
Use routines from the fast math library.

101

PGl Unified Binary for Accelerators

host
Select NO accelerator target. Generate PGI Unified Binary Code, as described in “PGI Unified Binary for
Accelerators,” on page 102.

keepbin
Keep the binary files.

keepgpu
Keep the kernel source files.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates no limit.

mul24
Use 24-bit multiplication for subscripting.

nofma
Do not generate fused multiply-add instructions.

time
Link in a limited-profiling library, as described in “Profiling Accelerator Kernels,” on page 104.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds
the kernels in the object file.

Note

To access accelerator libraries, you must /ink an accelerator program with the —t a flag.

PGI Unified Binary for Accelerators

102

Note

The information and capabilities described in this section are only supported for 64-bit systems.

PGI compilers support the PGI Unified Binary feature to generate executables with functions optimized
for different host processors, all packed into a single binary. This release extends the PGI Unified Binary
technology for accelerators. Specifically, you can generate a single binary that includes two versions of
functions:

e one is optimized for the accelerator

e one runs on the host processor when the accelerator is not available or when you want to compare host to
accelerator execution.

To enable this feature, use the extended —t a flag:
-ta=nvi di a, host

This flag tells the compiler to generate two versions of functions that have valid accelerator regions.

* A compiled version that targets the accelerator.

Chapter 7. Using an Accelerator

e A compiled version that ignores the accelerator directives and targets the host processor.

If you use the —M nf o flag, you get messages similar to the following:

sl:
12, PA Unified Binary version for -tp=barcelona-64 -ta=host
18, Generated an alternate |oop for the inner |oop
Gener at ed vector sse code for inner |oop
Generated 1 prefetch instructions for this |oop
sl:

12, PA Unified Binary version for -tp=barcelona-64 -ta=nvidia
15, Generating copy(b(:,2:90))
Gener ati ng copyin(a(:, 2:90))
16, Loop is parallelizable
18, Loop is parallelizable
Paral l eli zation requires privatization of array t(2:90)
Accel erator kernel generated
16, !$acc do parallel
18, !$acc do parallel, vector(256)
Using register for t

The PGI Unified Binary message shows that two versions of the subprogram s1 were generated:

¢ one for no accelerator (-t a=host)

¢ one for the NVIDIA GPU (-t a=nvi di a)

At run time, the program tries to load the NVIDIA CUDA dynamic libraries and test for the presence of a GPU. If
the libraries are not available or no GPU is found, the program runs the host version.

You can also set an environment variable to tell the program to run on the NVIDIA GPU. To do this, set
ACC_DEVICE to the value NVI DI A or nvi di a. Any other value of the environment variable causes the
program to use the host version.

Note

The only supported —t a targets for this release are nvi di a and host .

Multiple Processor Targets

With 64-bit processors, you can use the —t p flag with multiple processor targets along with the —t a flag. You
see the following behavior:

e If you specify one —t p value and one —t a value:

You see one version of each subprogram generated for that specific target processor and target accelerator.

* If you specify one —t p value and multiple —t a values:

The compiler generates two versions of subprograms that contain accelerator regions for the specified
target processor and each target accelerator.

* If you specify multiple —t p values and one —t a value:

If 2 or more —t p values are given, the compiler generates up to that many versions of each subprogram, for
each target processor, and each version also targets the selected accelerator.

103

Profiling Accelerator Kernels

e If you specify multiple —t p values and multiple —t a values:

With 'N' -t p values and two —t a values, the compiler generates up to N+1 versions of the subprogram. It
first generates up to N versions, for each —t p value, ignoring the accelerator regions, which is equivalent to
using —t a=host . It then generates one additional version with the accelerator target.

Profiling Accelerator Kernels

This release supports the command line option:
-ta=nvidia,tinme

The t i me suboption links in a timer library, which collects and prints out simple timing information about the
accelerator regions and generated kernels.

Example 7.1. Accelerator Kernel Timing Data

bb04. f 90
sl
15: region entered 1 tinmes
time(us): total =1490738
init=1489138 regi on=1600
kernel s=155 dat a=1445
wo init: total =1600 max=1600
m n=1600 avg=1600
18: kernel launched 1 tines
time(us): total =155 max=155 m n=155 avg=155

In this example, 2 number of things are occurring:

e For each accelerator region, the file name / pr oj / qa/ t est s/ accel / bb04. f 90 and subroutine or
function name s1 is printed, with the line number of the accelerator region, which in the example is 15.

e The library counts how many times the region is entered (1 in the example) and the microseconds spent in
the region (in this example 1490738), which is split into initialization time (in this example 1489138)
and execution time (in this example 1600).

o The execution time is then divided into kernel execution time and data transfer time between the host and
GPU.

e For each kernel, the line number is given, (18 in the example), along with a count of kernel launches, and
the total, maximum, minimum, and average time spent in the kernel, all of which are 155 in this example.

Related Accelerator Programming Tools
PGPROF pgcollect

The PGI profiler, PGPROF, has an Accelerator tab - that displays profiling information provided by the
accelerator. This information is available in the file pgpr of . out and is collected by using pgcollect on an
executable binary compiled for an accelerator target. For more information on pgcollect, refer to Chapter 22,
“pgcollect Reference,” of the PGI Tools Guide.

NVIDIA CUDA Profile

You can use the NVIDIA CUDA Profiler with PGI-generated code for the NVIDIA GPUs. You may download the
CUDA Profiler from the same website as the CUDA software:

104

Chapter 7. Using an Accelerator

www. nvi di a. conl cuda

Documentation and support is provided by NVIDIA.

TAU - Tuning and Analysis Utility

You can use the TAU (Tuning and Analysis Utility), version 2.18.1+, with PGI-generated accelerator code.
TAU instruments code at the function or loop level, and version 2.18.1 is enhanced with support to track
performance in accelerator regions. TAU software and documentation is available at this website:

http://tau. uoregon. edu

Supported Intrinsics

An intrinsic is a function available in a given language whose implementation is handled specifically by the
compiler. Typically, an intrinsic substitutes a sequence of automatically-generated instructions for the original
function call. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it
and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a language interface
to assembly instructions. In doing so, the compiler manages things that the user would normally have to be
concerned with, such as register names, register allocations, and memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accelerator supports.

Supported Fortran Intrinsics Summary Table

Table 7.5 is an alphabetical summary of the supported Fortran intrinsics that the accelerator supports. These
functions are specific to Fortran 90/95 unless otherwise specified.

Note

For complete descriptions of these intrinsics, refer to the Chapter 6, “Fortran Intrinsics” of the PGI
Fortran Reference.

In most cases PGI provides support for all the data types for which the intrinsic is valid. When support is
available for only certain data types, the middle column of the table specifies which ones, using the following

codes:
I for integer C for single precision complex
S for single precision real Z for double precision complex
D for double precision real
Table 7.5. Supported Fortran Intrinsics

This intrinsic Returns this value ...

ABS LS,D |absolute value of the supplied argument.

ACOS arccosine of the specified value.

105

Supported Intrinsics

This intrinsic Returns this value ...

AINT truncation of the supplied value to a2 whole number.
ANINT nearest whole number to the supplied argument.
ASIN arcsine of the specified value.

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

0N S,D |cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE S,D conversion of the value to double precision real.
DPROD double precision real product.

EXP S,D exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.
IEOR result of a bit-by-bit logical exclusive OR on the arguments.
INT LS,D |conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.
LOG S,D |natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

MOD | remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.
REAL LS,D |conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN S,D |value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT S,.D square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

Supported C Intrinsics Summary Table

106

This section contains two alphabetical summaries - one for double functions and a second for float functions.

These lists contain only those C intrinsics that the accelerator supports.

Chapter 7. Using an Accelerator

Table 7.6. Supported C Intrinsic Double Functions

This intrinsic |Returns this value ...
acos arccosine of the specified value.
asin arcsine of the specified value.
atan arctangent of the specified value.
atan2 arctangent of y/x, where y is the first argument, x the second.
oS cosine of the specified value.
cosh hyperbolic cosine of the specified value.
exp exponential value of the argument.
fabs absolute value of the argument.
fmax maximum value of the two supplied arguments
fmin minimum value of the two supplied arguments
log natural logarithm of the specified value.
log10 base-10 logarithm of the specified value.
pow value of the first argument raised to the power of the second argument.
sin value of the sine of the argument.
sinh hyperbolic sine of the argument.
sqrt square root of the argument.
tan tangent of the specified value.
tanh hyperbolic tangent of the specified value.
Table 7.7. Supported C Intrinsic Float Functions
This intrinsic |Returns this value ...
acosf arccosine of the specified value.
asinf arcsine of the specified value.
atanf arctangent of the specified value.
atan2f arctangent of y/x, where y is the first argument, x the second.
cosf cosine of the specified value.
coshf hyperbolic cosine of the specified value.
expf exponential value of the floating-point argument.
fabsf absolute value of the floating-point argument.
logf natural logarithm of the specified value.
log10f base-10 logarithm of the specified value.
powf value of the first argument raised to the power of the second argument.

107

References related to Accelerators

This intrinsic |Returns this value ...

sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrtf square root of the argument.

tanf tangent of the specified value.

tanhf hyperbolic tangent of the specified value.

References related to Accelerators

108

ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran, Geneva, 1997 (Fortran

95).

American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).
ISO/IEC 9899:1999, Information Technology - Programming Languages - C, Geneva, 1999 (C99).
PGI Tools Guide, The Portland Group, Release 10.0, November, 2009. Available online at http://

www.pgroup.com/doc/pgitools.pdf.

PGI Fortran Reference, The Portland Group, Release 10.0, November, 2009. Available online at http://

www.pgroup.com/doc/pgifortref.pdf

Chapter 8. Using Directives and
Pragmas

It is often useful to be able to alter the effects of certain command line options or default behavior of the
compiler. Fortran directives and C/C++ pragmas provide pragmatic information that control the actions of

the compiler in a particular portion of a program without affecting the program as a whole. That is, while a
command line option affects the entire source file that is being compiled, directives and pragmas apply, or
disable, the effects of a command line option to selected subprograms or to selected loops in the source file,
for example, to optimize a specific area of code. Use directives and pragmas to tune selected routines or loops.

PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:
I pgi $g directive

I pgi $r directive

I pgi $I directive

Ipgi $ directive

Note

If the input is in fixed format, the comment character must begin in column 1 and either * or C is
allowed in place of !.

The scope indicator controls the scope of the directive. This indicator occurs after the $. Some directives
ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:

8

(global) indicates the directive applies to the end of the source file.
r

(routine) indicates the directive applies to the next subprogram.
1

(loop) indicates the directive applies to the next loop, but not to any loop contained within the loop body.
Loop-scoped directives are only applied to DOloops.

109

PGl Proprietary C and C++ Pragmas

blank
indicates that the default scope for the directive is applied.

The body of the directive may immediately follow the scope indicator. Alternatively, any number of blanks may
precede the name of the directive. Any names in the body of the directive, including the directive name, may
not contain embedded blanks. Blanks may surround any special characters, such as a comma or an equal
sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and the case is not
significant. Case is significant for any variable names that appear in the body of the directive if the command
line option —Mupcase is selected. For compatibility with other vendors’ directives, the prefix cpgi $ may be
substituted with cdi r $ or cvd$.

PGI Proprietary C and C++ Pragmas

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Many pragmas have
a corresponding command-line option. Pragmas may also toggle an option, selectively enabling and disabling
the option.

The general syntax of a pragma is:
#pragma [scope] pragnma- body

The optional scope field is an indicator for the scope of the pragma; some pragmas ignore the scope indicator.

The valid scopes are:

global
indicates the pragma applies to the entire source file.

routine
indicates the pragma applies to the next function.

loop
indicates the pragma applies to the next loop (but not to any loop contained within the loop body). Loop-
scoped pragmas are only applied to for and while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must appear after the
pragma keyword and between the scope indicator and the body of the pragma. Whitespace may also surround
any special characters, such as a comma or an equal sign. Case is significant for the names of the pragmas and
any variable names that appear in the body of the pragma.

PGI Proprietary Optimization Directive and Pragma Summary

110

The following table summarizes the supported Fortran directives and C/C++ pragmas. The following terms are
useful in understanding the table.

e Functionality is a brief summary of the way to use the directive or pragma. For a complete description, refer
to Chapter 20, “Directives and Pragmas Reference,” on page 347.

e Many of the directives and pragmas can be preceded by NO. The default entry indicates the default for the
directive or pragma. N/A appears if a default does not apply.

Chapter 8. Using Directives and Pragmas

e The scope entry indicates the allowed scope indicators for each directive or pragma, with L for loop, R for
routine, and Gfor global. The default scope is surrounded by parentheses and N/A appears if the directive
or pragma is not available in the given language.

Note

The "*" in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive or pragma until the end of the routine.

For globally-scoped directive

The scope includes the code following the directive or pragma until the end of the file rather

than for the entire file.

Note

The name of a directive or pragma may also be prefixed with —M

For example, you can use the directive —~Mbounds, which is equivalent to the directive bounds and
you can use —Mopt , which is equivalent to opt . For pragmas, you can use the directive —~Mnhoassoc,

which is equivalent to the pragma noassoc, and —Mvi nt r , which is equivalent to vi nt r.

Table 8.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summary

Directive or Functionality Default Fortran C/C++
pragma Scope Scope
altcode Do/don’t generate alternate code for altcode (L)RG (L)RG
(noaltcode) vectorized and parallelized loops.
assoc (noassoc) |Do/don’t perform associative 45S0C (LRG (LRG
transformations.
bounds Do/don’t perform array bounds checking. [nobounds (R)G* R)G
(nobounds)
cncall (nocncall) |Loops are considered for parallelization, |nocncall (LRG (LRG
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.
concur Do/don’t enable auto-concurrentization of | concur (LRG (LRG
(noconcur) loops.
depchk Do/don’t ignore potential data depchk (L)RG (L)RG
(nodepchk) dependencies.
eqvchk Do/don’t check EQUIVALENCE for data eqvchk (LRG N/A
(noeqvchk) dependencies.
fcon (nofcon) Do/don’t assume unsuffixed real constants | nofcon N/A R)G

are single precision.

1M

Scope of Fortran Directives and Command-Line options

Directive or Functionality Default Fortran C/C++

pragma Scope Scope

invarif (noinvarif) |Do/don’t remove invariant if constructs |invarif (L)RG (L)RG
from loops.

ivdep Ignore potential data dependencies. ivdep (L)RG N/A

Istval (nolstval) Do/don’t compute last values. Istval (L)RG (LRG

prefetch Control how prefetch instructions are
emitted

opt Select optimization level. N/A R)G R)G

safe (nosafe) Do/don’t treat pointer arguments as safe. |safe N/A R)G

safe_lastval Parallelize when loop contains a scalar ~ |not enabled (L) (L)
used outside of loop.

safeptr (nosafeptr) |Do/don’t ignore potential data nosafeptr N/A L(R)G
dependencies to pointers.

single (nosingle) |Do/don’t convert float parameters to nosingle N/A (R)G*
double.

tp Generate PGI Unified Binary code N/A R)G R)G
optimized for specified targets.

unroll (nounroll) |{Do/don’t unroll loops. nounroll (L)RG (LRG

vector (novector) |Do/don't perform vectorizations. vector (L)RG* (LRG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (LRG (LRG

Scope of Fortran Directives and Command-Line options

During compilation the effect of a directive may be to either turn an option on, or turn an option off. Directives
apply to the section of code following the directive, corresponding to the specified scope, which may include
the following loop, the following routine, or the rest of the program. This section presents several examples
that show the effect of directives as well as their scope.

Consider the following Fortran code:

integer maxtine, tine

paranmeter (n = 1000, maxtime = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
do tinme = 1, maxtinme

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

When compiled with —Mvect , both interior loops are interchanged with the outer loop.

$ pgfortran - MWect dirvectl.f

112

Chapter 8. Using Directives and Pragmas

Directives alter this behavior either globally or on a routine or loop by loop basis. To assure that vectorization
is not applied, use the novect or directive with global scope.

cpgi $g novect or

i nteger maxtine, tine

paraneter (n = 1000, maxtine = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
do tinme = 1, maxtine

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

In this version, the compiler disables vectorization for the entire source file. Another use of the directive
scoping mechanism turns an option on or off locally, either for a specific procedure or for a specific loop:

integer maxtine, tine
paraneter (n = 1000, maxtime = 10)
doubl e precision a(n,n), b(n,n), c(n,n)
cpgi $I novect or
do tinme = 1, maxtinme
doi =1, n
doj =1, n
c(ij) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

Loop level scoping does not apply to nested loops. That is, the directive only applies to the following loop.
In this example, the directive turns off vector transformations for the top-level loop. If the outer loop were a
timing loop, this would be a practical use for a loop-scoped directive.

Scope of C/C++ Pragmas and Command-Line Options

During compilation a pragma either turns an option on or turns an option off. Pragmas apply to the section
of code corresponding to the specified scope - either the entire file, the following loop, or the following or
current routine. This section presents several examples showing the effect of pragmas and the use of the
pragma scope indicators.

Note

In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for determining the scope of the
pragma. We cover these special scope rules at the end of this section.

Consider the following program:

mai n() {
float a[100][100], b[2100][100], c[100][100];
int time, maxtime, n, i, j;

maxt i me=10;

113

Scope of C/C++ Pragmas and Command-Line Options

114

n=100;
for (tinme=0; tinme<maxtine;time++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
: c[i][il =alillil + bLi][il;

When this is compiled using the -Mrect command-line option, both interior loops are interchanged with the
outer loop. Pragmas alter this behavior either globally or on a routine or loop by loop basis. To ensure that
vectorization is not applied, use the novect or pragma with global scope.

mai n() {
#pragma gl obal novect or
float a[100][100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;
maxt i me=10;
n=100;
for (tinme=0; tinme<maxtine;timnme++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
} c[i][j] =a[i][j] + b[i][j];

In this version, the compiler does not perform vectorization for the entire source file. Another use of the
pragma scoping mechanism turns an option on or off locally either for a specific procedure or for a specific
loop. The following example shows the use of a loop-scoped pragma.

mai n() {
float a[100][100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;
maxt i me=10;
n=100;
#pragma | oop novect or
for (tinme=0; tinme<maxtine;tinme++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
} c[i][il =alillil + bLi][il;

Loop level scoping does not apply to nested loops. That is, the pragma only applies to the following loop. In
this example, the pragma turns off vector transformations for the top-level loop. If the outer loop were a timing
loop, this would be a practical use for a loop-scoped pragma. The following example shows routine pragma
scope:

#i ncl ude "math. h"
funcl() {
#pragma routi ne novector

float a[100][2100], b[2100][100];
float c[100][2100], d[2100][100];
int i,j;

for (i=0;i<100;i++)

for (j=0;j<100;]j ++)
a[i][j] =a[i][j] + b[i

} c[i][j] =c[i][j] + b[i

func2() {

float a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;

101~
101

Chapter 8. Using Directives and Pragmas

for (i=0;i<200;i++)
for (j=0;j<200;]j++)
a[i][j] =a[i][j] + b[i][j] *
: c[i][j] =c[i][j] + b[i][j] *

When this source is compiled using the ~Mrect command-line option, func2 is vectorized but funcl is not
vectorized. In the following example, the global novector pragma turns off vectorization for the entire file.

#i ncl ude "nmat h. h"
funcl() {
#pragma gl obal novect or

float a[100][100], b[2100][100];

float c[100][100], d[2100][100];

int i,j;

for (i=0;i<100;i ++)

for (j=0;j<100;]j ++)
ali]lj] =ali][j] + bLi][j] * c[i

: cli]lj] =cli]lj] + bli][j]

func2() {
float a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;
for (i=0;i<200;i++)
for (j=0;j<200;]j++)
a[i][j] =ali][j] + bl[i][j] * c[i
c[il[i]l =cl[illil + bLi][jl

}

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma is placed within a
routine, it applies to the routine from its point in the routine to the end of the routine. The same rule applies
for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which affect code
immediately following the pragma:

* bounds and fcon — The bounds and fcon pragmas behave in a similar manner to pragmas with loop scope.
That is, they apply to the code following the pragma.

e opt and safe — When the opt, and safe pragmas are placed within a routine, they apply to the entire routine
as if they had been placed at the beginning of the routine.

Prefetch Directives and Pragmas

Today’s processors are so fast that it is difficult to bring data into them quickly enough to keep them busy.
Prefetch instructions can increase the speed of an application substantially by bringing data into cache so that
it is available when the processor needs it.

When vectorization is enabled using the -Mvect or —Mpr ef et ch compiler options, or an aggregate option
such as —f ast that incorporates —Mvect , the PGI compilers selectively emit instructions to explicitly prefetch
data into the data cache prior to first use. You can control how these prefetch instructions are emitted by using
prefetch directives and pragmas.

115

Prefetch Directives and Pragmas

For a list of processors that support prefetch instructions refer to the PGI Release Notes.

Prefetch Directive Syntax

The syntax of a prefetch directive is as follows:

c$mem prefetch <var1>[, <var2>[,...]]

where <var n> is any valid variable, member, or array element reference.

Prefetch Directive Format Requirements

Note

The sentinel for prefetch directives is c$mem which is distinct from the cpgi $ sentinel used for
optimization directives. Any prefetch directives that use the cpgi $ sentinel are ignored by the PGI
compilers.

e The "c" must be in column 1.
e Either * or ! is allowed in place of c.
e The scope indicators g, r and | used with the cpgi $ sentinel are not supported.

e The directive name, including the directive prefix, may contain upper or lower case letters and is case
insensitive (case is not significant).

e [f the command line option —Mupcase is used, any variable names that appear in the body of the directive
are case sensitive.

Sample Usage of Prefetch Directive

116

Example 8.1. Prefetch Directive Use

This example uses prefetch directives to prefetch data in a matrix multiplication inner loop where a row of one
source matrix has been gathered into a contiguous vector.

real *8 a(mn), b(n,p), c(mp), arow(n)

doj =1, p
c$mem prefetch arowm(1), b(1,j)
c$mem prefetch arowm5), b(5,j)
c$mem prefetch arowm(9),b(9,j)
do k =1, n, 4
c$mem prefetch arow(k+12), b(k+12,j)
c(i,j) =c(i,j) +arowmk) * b(k,j)
c(i,j) c(i,j) + arow(k+1) * b(k+1,j)
c(i,j) c(i,j) + arow(k+2) * b(k+2,]j)
c(i,j) c(i,j) + arow(k+3) * b(k+3,j)
enddo
enddo

This pattern of prefetch directives the compiler emits prefetch instructions whereby elements of ar owand b
are fetched into the data cache starting four iterations prior to first use. By varying the prefetch distance in this
way, it is sometimes possible to reduce the effects of main memory latency and improve performance.

Chapter 8. Using Directives and Pragmas

Prefetch Pragma Syntax
The syntax of a prefetch pragma is as follows:
#pragma mem prefetch <var1>[, <var2>[,...]]

where <var n> is any valid variable, member, or array element reference.
Sample Usage of Prefetch Pragma

Example 8.2. Prefetch Pragmain C

This example uses the prefetch pragma to prefetch data from the source vector x for eight iterations beyond
the current iteration.

for (i=0; i<n; i++) {
#pragma nmem prefetch x[i +8]
! ylil =yli] + a*x[i];

IDECS Directives

PGI Fortran compilers for Microsoft Windows support several de-facto standard Fortran directives that help
with inter-language calling and importing and exporting routines to and from DLLs. These directives all take
the form:

I DEC$ directive
Format Requirements
You must follow the following format requirements for the directive to be recognized in your program:

e The directive must begin in line 1 when the file is fixed format or compiled with —M i xed.

* The directive prefix ! DEC$ requires a space between the prefix and the directive keyword, such as
ATTRI BUTES.

* The ! must begin the prefix when compiling Fortran 90/95 free-form format.

e The characters C or * can be used in place of ! in either form of the prefix when compiling F77-style fixed-
form format.

e The directives are completely case insensitive.

Summary Table

The following table summarizes the supported 'DEC$ directives. For a complete description of each directive,
refer to the section “IDEC$ Directives,” on page 354 in Chapter 20, “Directives and Pragmas Reference’.

117

C$PRAGMA C

Table 8.2. IDEC$ Directives Summary Table

Directive Functionality

ALIAS Specifies an alternative name with which to resolve a routine.

ATTRIBUTES Lets you specify properties for data objects and procedures.

DECORATE Specifies that the name specified in the ALIAS directive should have the prefix

and postfix decorations performed on it that are associated with the calling
conventions that are in effect. This directive has no effect if ALIAS is not

specified.
DISTRIBUTE Tells the compiler at what point within a loop to split into two loops.
IGNORE_TKR Directs the compiler to ignore the type, kind, and/or rank (/TKR/) of specified

dummy arguments in a procedure interface.

C$PRAGMA C

118

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, OSX, and SUA systems,
an underscore is appended to Fortran global names, including names of functions, subroutines, and common
blocks. This mechanism distinguishes Fortran name space from C/C++ name space.

You can use C$PRAGMA C in the Fortran program to call a C/C++ function from Fortran. The statement would
look similar to this:

C3PRAGVA C(nane[, nane]...)

NOTE

This statement directs the compiler to recognize the routine 'name' as a C function, thus preventing
the Fortran compiler from appending an underscore to the routine name.

On Win32 systems the CSPRAGMA C as well as the attributes C and STDCALL may effect other changes on
argument passing as well as on the names of the routine. For more information on this topic, refer to “Win32
Calling Conventions,” on page 166.

Chapter 9. Creating and Using
Libraries

A library is a collection of functions or subprograms that are grouped for reference and ease of linking. This
chapter discusses issues related to PGI-supplied compiler libraries. Specifically, it addresses the use of C/C++
builtin functions in place of the corresponding libc routines, creation of dynamically linked libraries, known as
shared objects or shared libraries, and math libraries.

Note

This chapter does not duplicate material related to using libraries for inlining, described in “Creating
an Inline Library,” on page 53 or information related to run-time library routines available to OpenMP
programmers, described in “Run-time Library Routines,” on page 67.

PGI provides libraries that export C interfaces by using Fortran modules. It also provides additions to the
supported library functionality, specifically, NARGS, a run-time function included in DFLIB. NARGS returns
the total number of command-line arguments, including the command. The result is of type INTEGER(4). For
example, NARGS returns 4 for the command-line invocation of PROG1 -g -c -a.

This chapter has examples that include the following options related to creating and using libraries.

—Bdynam ¢ —def<file> —implib <file> —Mrakei mpli b
—Bstatic —dynam clib =l -0
—C —fpic —Mrakedl | —shar ed

Using builtin Math Functions in C/C++

The name of the math header file is mat h. h. Include the math header file in all of your source files that use a
math library routine as in the following example, which calculates the inverse cosine of pi/3.
#i ncl ude <mat h. h>

#define Pl 3.1415926535
voi d mai n()

119

Using System Library Routines

{
doubl e x, vy;
x = PlI/3.0;
y = acos(X);
}

Including mat h. h causes PGCC C and C++ to use builtin functions, which are much more efficient than
library calls. In particular, if you include mat h. h, the following intrinsics calls are processed using builtins:

abs atan atan2 Cos
exp fabs fmax fmaxf
fmin fminf log log10
pow sin sqrt tan

Using System Library Routines

Release 10.0 of the PGI run-time libraries makes use of Linux system libraries to implement, for example,
OpenMP and Fortran I/0. The PGI run-time libraries make use of several additional system library routines.

On 64-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_write pthread_mutex_init sleep
aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock
aio_suspend pthread_attr_init setrlimit

On 32-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_suspend getrlimit sleep
aio_read aio_write pthread_attr_init
aio_return calloc setrlimit

Creating and Using Shared Object Files on Linux

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike statically-linked
object and library files, shared object files link and resolve references with an executable at runtime via a
dynamic linker supplied with your operating system. The PGI compilers must generate position independent
code to support creation of shared objects by the linker. However, this is not the default. You must create
object files with position independent code and shared object files that will include them.

Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

1. Create an object file with position independent code.

To do this, compile your code with the appropriate PGI compiler using the —f pi ¢ option, or one of the
equivalent options, such as —f PI C, —Kpi ¢, and —KPI C, which are supported for compatibility with other

120

Chapter 9. Creating and Using Libraries

systems. For example, use the following command to create an object file with position independent code
using pgfortran:

% pgfortran -c -fpic tobeshared.f

. Produce a shared object file.

To do this, use the appropriate PGI compiler to invoke the linker supplied with your system. It is customary
to name such files using a . so filename extension. On Linux, you do this by passing the —shar ed option
to the linker:

% pgfortran -shared -o tobeshared. so tobeshared. o

Note

Compilation and generation of the shared object can be performed in one step using both the —
f pi ¢ option and the appropriate option for generation of a shared object file.

. Use a shared object file.

To do this, use the appropriate PGI compiler to compile and link the program which will reference
functions or subroutines in the shared object file, and list the shared object on the link line, as shown here:

% pgfortran -o nmyprog nyprog.f tobeshared. so

. Make the executable available.

You now have an executable nypr og which does not include any code from functions or

subroutines in t obeshar ed. so, but which can be executed and dynamically linked to that code.

By default, when the program is linked to produce nypr og, no assumptions are made on the

location of t obeshar ed. so. Therefore, for mypr og to execute correctly, you must initialize the
environment variable LD_LI BRARY_PATH to include the directory containing t obeshar ed. so.

If LD_LI BRARY_PATH s already initialized, it is important not to overwrite its contents. Assuming

you have placed t obeshar ed. so in a directory / hone/ nyuser nane/ bi n, you can initialize

LD_LI BRARY_PATH to include that directory and preserve its existing contents, as shown in the following:

% setenv LD LI BRARY_PATH "$LD LI BRARY_PATH': / hone/ nyuser nane/ bi n

If you know that t obeshar ed. so always resides in a specific directory, you can create the executable
nypr og in a form that assumes this directory by using the —R link-time option. For example, you can link
as follows:

% pgfortran -o myprog nyprof.f tobeshared.so -R hone/ myuser nane/ bi n

Note

As with the —L option, there is no space between —R and the directory name. If the —R option is
used, it is not necessary to initialize LD_LI BRARY_PATH.

In the previous example, the dynamic linker always looks in / horme/ myuser nanme/ bi n to resolve
references to t obeshar ed. so. By default, if the LD LI BRARY_PATH environment variable is not set,
the linker only searches / usr/1i b and /i b for shared objects.

121

Creating and Using Shared Object Files in SFU and 32-bit SUA

|dd Command

The I dd command is a useful tool when working with shared object files and executables that reference them.
When applied to an executable, as shown in the following example, | dd lists all shared object files referenced
in the executable along with the pathname of the directory from which they will be extracted.

% | dd mypr og

If the pathname is not hard-coded using the-R option, and if LD_LI BRARY_PATH s not initialized, the
pathname is listed as "not found". For more information on | dd, its options and usage, see the online man
page for | dd.

Creating and Using Shared Object Files in SFU and 32-bit SUA
Note

The information included in this section is valid for 32-bit only.

The 32-bit version of PGI Workstation for SFU and SUA uses the GNU | d for its linker, unlike previous versions
that used the Windows LI NK. EXE. With this change, the PGI compilers and tools for SFU and 32-bit SUA are
now able to generate shared object (. so) files. You use the —shar ed switch to generate a shared object file.

The following example creates a shared object file, hel | 0. so, and then creates a program called hel | o that
uses it.

1. Create a shared object file.

To produce a shared object file, use the appropriate PGI compiler to invoke the linker supplied with your
system. It is customary to name such files using a . so filename extension. In the following example, we use
hel | 0. so:

% pgcc -shared hello.c -o hello.so

2. Create a program that uses the shared object, in this example, hel | 0. so:
% pgcc hi.c hello.so -0 hello

Shared Object Error Message

When running a program that uses a shared object, you may encounter an error message similar to the
following:

hello: error in |loading shared libraries hello.so:
cannot open shared object file: No such file or directory

This error message either means that the shared object file does not exist or that the location of this file is not
specified in your LD_LI BRARY_PATH variable. To specify the location of the . so, add the shared object’s
directory to your LD_LI BRARY_PATH variable. For example, the following command adds the current
directory to your LD_LI BRARY_PATH variable using C shell syntax:

% setenv LD LI BRARY_PATH "$LD LI BRARY_PATH':"./"

Shared Object-Related Compiler Switches

The following switches support shared object files in SFU and SUA. For more detailed information on these
switches, refer to Chapter 16, “Command-Line Options Reference,” on page 203.

122

Chapter 9. Creating and Using Libraries

—shared

Used to produce shared libraries

—Bdynamic

Passed to linker; specify dynamic binding

Note

On Windows, —Bst at i ¢ and —Bdynani ¢ must be used for both compiling and linking.

—Bstatic

Passed to linker; specify static binding

—Bstatic_pgi

Use to link static PGI libraries with dynamic system libraries; implies —vnor pat h.

—L<libdir>

Passed to linker; add directory to library search path.

—Mnorpath

Don't add —r pat h paths to link line.

—Mnostartup

Do not use standard linker startup file.

—Mnostdlib

Do not use standard linker libraries.

—R<Idarg>

Passed to linker; just link symbols from object, or add directory to run time search path.

Creating and Using Dynamic Libraries on Mac OS X

Note

PGI compilers for Mac OS X do not support static linking on user executables. Apple only ships
dynamic versions of its system libraries - not static versions. You can create static libraries; however,
you cannot create 100% static executables.

The 32-bit version of PGI Workstation for Mac OS X supports generation of dynamic libraries. To create the
dynamic library, you use the —dynani cl i b switch to invoke the libtool utility program provided by Mac OS X.
For more information, refer to the | i bt ool man page.

The following example creates and uses a dynamic library:

1.

Create the object files.

wor | d. f 90:

subroutine world
print *, '"Hello World!'
end

hel | 0. f90:

123

PGI Runtime Libraries on Windows

program hel | o
call world
end

2. Build the dynamic library:
% pgfortran -dynamiclib world.f90 -0 world.dylib

3. Build the program that uses the dynamic library:
% pgfortran hello.f90 world.dylib -o hello

4. Run the program:

% ./ hel | o]
Hell o Worl d!

PGI Runtime Libraries on Windows

The PGI runtime libraries on Windows are available in both static and dynamically-linked (DLL) versions. The
static libraries are used by default.

* You can use the dynamically-linked version of the run-time by specifying —Bdynami ¢ at both compile and
link time.

Note

C++ on Windows does not support —Bdynani c.

* You can explicitly specify static linking, the default, by using —Bst at i ¢ at compile and link time.

For details on why you might choose one type of linking over another type, refer to “Creating and Using
Dynamic-Link Libraries on Windows,” on page 126.

Creating and Using Static Libraries on Windows

The Microsoft Library Manager (L1 B. EXE) is the tool that is typically used to create and manage a static
library of object files on Windows. LI B is provided with the PGI compilers as part of the Microsoft Open Tools.
Refer to www.msdn2.com for a complete L1 B reference - search for L1 B. EXE. For a list of available options,
invoke LI B with the / ? switch.

For compatibility with legacy makefiles, PGI provides a wrapper for L1 B and LI NK called ar . This version of
ar is compatible with Windows and object-file formats.

PGI also provides r anl i b as a placeholder for legacy makefile support.

ar command

The ar command is a legacy archive wrapper that interprets legacy ar command line options and translates
these to L1 NK/ LI B options. You can use it to create libraries of object files.

Syntax:

The syntax for the ar command is this:

124

Chapter 9. Creating and Using Libraries

ar [options] [archive] [object file].

Where:

The first argument must be a command line switch, and the leading dash on the first option is optional.

The single character options, such as —d and —v, may be combined into a single option, as —dv.

Thus,ar dv,ar -dv, andar -d -v all mean the same thing.

The first non-switch argument must be the library name.

One (and only one) of —d, —r , —t , or —x must appear on the command line.
Options

The options available for the ar command are these:

—C
This switch is for compatibility; it is ignored.

—d
Deletes the named object files from the library.

—r
Replaces in or adds the named object files to the library.

—t
Writes a table of contents of the library to standard out.

-V
Writes a verbose file-by-file description of the making of the new library to standard out.

—X
Extracts the named files by copying them into the current directory.

ranlib command

The r anl i b command is a wrapper that allows use of legacy scripts and makefiles that use the r anl i b
command. The command actually does nothing; it merely exists for compatibility.

Syntax:

The syntax for the r anl i b command is this:

ranlib [options] [archive]
Options
The options available for the r anl i b command are these:

—help

Short help information is printed out.
-V

Version information is printed out.

125

Creating and Using Dynamic-Link Libraries on Windows

Creating and Using Dynamic-Link Libraries on Windows

126

There are several differences between static and dynamic-link libraries on Windows. Libraries of either type
are used when resolving external references for linking an executable, but the process differs for each type of
library. When linking with a static library, the code needed from the library is incorporated into the executable.
When linking with a DLL, external references are resolved using the DLL's import library, not the DLL itself. The
code in the DLL associated with the external references does not become a part of the executable. The DLL is
loaded when the executable that needs it is run. For the DLL to be loaded in this manner, the DLL must be in
your path.

Static libraries and DLLs also handle global data differently. Global data in static libraries is automatically
accessible to other objects linked into an executable. Global data in a DLL can only be accessed from outside
the DLL if the DLL exports the data and the image that uses the data imports it.

To access global data, the C compilers support the Microsoft storage class extensions:
__decl spec(dl I'i nport) and __decl spec(dl | export). These extensions may appear as storage
class modifiers and enable functions and data to be imported and exported:

extern int __decl spec(dllinport) intfunc();
float __decl spec(dl | export) fdata;

The PGI Fortran compilers support the DEC$ ATTRIBUTES extensions DLLI MPORT and DLLEXPORT:

cDEC$ ATTRI BUTES DLLEXPORT :: object [,object] ...
cDEC$ ATTRI BUTES DLLI MPORT :: object [,object] ...

Here c is one of G, ¢, !, or *. obj ect is the name of the subprogram or common block that is exported or
imported. Further, common block names are enclosed within slashes (/), as shown here:

cDEC$ ATTRI BUTES DLLI MPORT :: intfunc
| DEC$ ATTRI BUTES DLLEXPORT :: /fdata/

For more information on these extensions, refer to “!DEC$ Directives,” on page 117.
The examples in this section further illustrate the use of these extensions.
To create a DLL from the command line, use the —~Mvaked! | option.

The following switches apply to making and using DLLs with the PGI compilers:

—Bdynamic
Compile for and link to the DLL version of the PGI runtime libraries. This flag is required when linking
with any DLL built by the PGI compilers. This flag corresponds to the / MD flag used by Microsoft’s cl
compilers.

When you use the PGI compiler flag —Bdynami c to create an executable that links to the DLL form of
the runtime, the executable built is smaller than one built without —Bdynani c. The PGI runtime DLLs,
however, must be available on the system where the executable is run. You must use the —Bdynani c flag
when linking an executable against a DLL built by the PGI compilers.

Note

C++ on Windows does not support —Bdynari c.

Chapter 9. Creating and Using Libraries

—Bstatic
Compile for and link to the static version of the PGI runtime libraries. This flag corresponds to the / MT
flag used by Microsoft’s cl compilers.

On Windows, you must use—Bst at i ¢ for both compiling and linking.

—MmakedIl
Generate a dynamic-link library or DLL. Implies —Bdynanmi c.

—Mmakeimplib
Generate an import library without generating a DLL. Use this flag when you want to generate an import
library for a DLL but are not yet ready to build the DLL itself. This situation might arise, for example, when
building DLLs with mutual imports, as shown in Example 9.4, “Build DLLs Containing Mutual Imports:
Fortran,” on page 131.

—o <file>
Passed to the linker. Name the DLL or import library <file>.

—def <file>
When used with —Mraked! | , this flag is passed to the linker and a . def file named <file> is generated
for the DLL. The . def file contains the symbols exported by the DLL. Generating a . def file is not
required when building 2 DLL but can be a useful debugging tool if the DLL does not contain the symbols
that you expect it to contain.

When used with —Mrakei npl i b, this flag is passed to | i b which requires a . def file to create an
import library. The . def file can be empty if the list of symbols to export are passed to | i b on the
command line or explicitly marked as DLLEXPORT in the source code.

—implib <file>
Passed to the colinker. Generate an import library named <file> for the DLL. A DLL’s import library is the
interface used when linking an executable that depends on routines in a DLL.

To use the PGI compilers to create an executable that links to the DLL form of the runtime, use the compiler
flag —Bdynami c. The executable built will be smaller than one built without —Bdynani c; the PGI runtime
DLLs, however, must be available on the system where the executable is run. The —Bdynani ¢ flag must be
used when an executable is linked against a DLL built by the PGI compilers.

The following examples outline how to use —Bdynani c, —Mraked! | and —Mrakei npl i b to build and use
DLLs with the PGI compilers.

Note

C++ on Windows does not support —Bdynani c.

Example 9.1. Build a DLL: Fortran

This example builds a DLL from a single source file, obj ect 1. f , which exports data and a subroutine using
DLLEXPORT. The source file, pr og1. f , uses DLLI MPORT to import the data and subroutine from the DLL.

objectl.f

subroutine subl(i)

127

Creating and Using Dynamic-Link Libraries on Windows

128

| DEC$ ATTRI BUTES DLLEXPORT :: subl
integer i

comon /aconmon/ adat a

i nteger adata

| DEC$ ATTRI BUTES DLLEXPORT :: /acommon/
print *, "subl adata", adata

print *, "subl i ", i

adata = i

end

progl. f

program progl

comon /aconmon/ adat a

i nteger adata

external subl

| DEC$ ATTRI BUTES DLLI MPORT:: subl, /acommon/
adata = 11

call subl(12)

print *, "main adata", adata

end

Step 1: Create the DLL obj 1. dI | and its import library obj 1. | i b using the following series of commands:

% pgf ortran -Bdynanmic -c objectl.f
% pgf ortran - Mrakedl | objectl1.obj -o obj1.dl

Step 2: Compile the main program:

% pgfortran -Bdynamic -o progl progl.f -defaultlib:obj1

The —Bdynani ¢ and —MvakedI | switches cause the compiler to link against the PGI runtime DLLs instead
of the PGI runtime static libraries. The —Bdynani ¢ switch is required when linking against any PGI-compiled
DLL, such as obj 1. dl | . The -defaultlib: switch specifies that obj 1. I i b, the DLL’s import library, should be
used to resolve imports.

Step 3: Ensure that obj 1. dI | is in your path, then run the executable pr og1 to determine if the DLL was
successfully created and linked:

% progl

subl adata 11

subl i 12
mai n adata 12

Should you wish to change obj 1. dI | without changing the subroutine or function interfaces, no rebuilding
of pr og1 is necessary. Just recreate obj 1. dl | and the new obj 1. dI | is loaded at runtime.

Example 9.2. Build a DLL: C

In this example, we build a DLL out of a single source file, obj ect 2. c, which exports data and a subroutine
using __decl spec(dl | export). The main source file, pr og2. c, uses __decl spec(dl | i nport) to
import the data and subroutine from the DLL.

object2.c

int _ decl spec(dl | export) data;
void _ decl spec(dl | export)
func2(int i)

{

Chapter 9. Creating and Using Libraries

printf("func2: data == %\ n", data);
printf("func2: i == %\n", i);
data = i;

}
prog2.c

int _ decl spec(dllinport) data;
void _ decl spec(dllinport) func2(int);
i nt
mai n()
{
data = 11;
func2(12);
printf("min: data == %l\n", data);
return O;

}

Step 1: Create the DLL obj 2. dI | and its import library obj 2. | i b using the following series of commands:
% pgcc -Bdynamic -c object2.c

% pgcc - Mhakedl | object2.0bj -0 obj2.dll

Step 2: Compile the main program:

% pgcc -Bdynanmic -0 prog2 prog2.c -defaultlib:obj2

The —Bdynani ¢ switch causes the compiler to link against the PGI runtime DLLs instead of the PGI runtime
static libraries. The —Bdynani c switch is required when linking against any PGI-compiled DLL such as

obj 2. dl I . The #def aul t1i b: switch specifies that obj 2. | i b, the DLL’s import library, should be used
to resolve the imported data and subroutine in pr 0og2. c.

Step 3: Ensure that obj 2. dI | is in your path, then run the executable pr og2 to determine if the DLL was
successfully created and linked:

% pr og2

func2: data == 11
func2: i == 12
mai n: data == 12

Should you wish to change obj 2. dI | without changing the subroutine or function interfaces, no rebuilding
of pr og2 is necessary. Just recreate obj 2. dl | and the new obj 2. dI | is loaded at runtime.

Example 9.3. Build DLLs Containing Circular Mutual Imports: C

In this example we build two DLLs, obj 3. dI | and obj 4. dI | , each of which imports a routine that is
exported by the other. To link the first DLL, the import library for the second DLL must be available. Usually an
import library is created when a DLL is linked. In this case, however, the second DLL cannot be linked without
the import library for the first DLL. When such circular imports exist, an import library for one of the DLLs
must be created in a separate step without creating the DLL. The PGI drivers call the Microsoft | i b tool to
create import libraries in this situation. Once the DLLs are built, we can use them to build the main program.
/* object3.c */

void _ decl spec(dllinport) func_4b(void);

void _ decl spec(dl | export)

func_3a(voi d)

{
129

Creating and Using Dynamic-Link Libraries on Windows

130

printf("func_3a, calling a routine in obj4.dl[\n");
func_4b();

}

voi d _ decl spec(dl! | export)

func_3b(voi d)

{

}

/* objectd.c */
void __ decl spec(dllinport) func_3b(void);
void __ decl spec(dl | export)
func_4a(voi d)

{
printf("func_4a, calling a routine in obj3.dlI\n");
func_3b();

}

void _ decl spec(dl | export)

func_4b(voi d)

{

}

[* prog3.c */
void __ decl spec(dllinport) func_3a(void);
void _ decl spec(dllinport) func_4a(void);
i nt
mai n()
{
func_3a();
func_4a();
return O;

printf("func_3b\n");

printf("func_4b\n");

}

Step 1: Use —Mrakei npl i b with the PGI compilers to build an import library for the first DLL without
building the DLL itself.

% pgcc -Bdynamic -c object3.c
% pgcc - Mmakei mplib -0 obj3.1ib object3. obj

Tip

The —def =<def f i | e> option can also be used with —Mrakei npl i b. Use a. def file when you
need to export additional symbols from the DLL. A . def file is not needed in this example because all
symbols are exported using __decl spec(dl | export).

Step 2: Use the import library, obj 3. I i b, created in Step 1, to link the second DLL.

% pgcc -Bdynamic -c object4.c
% pgcc - Mhakedl |l -0 obj4.dll object4.obj -defaultlib:obj3

Step 3: Use the import library, obj 4. | i b, created in Step 2, to link the first DLL.

% pgcc - Makedl |l -0 obj 3.dl|l object3.obj -defaultlib:obj4

Step 4: Compile the main program and link against the import libraries for the two DLLs.

% pgcc -Bdynanic prog3.c -o prog3 -defaultlib:obj3 -defaultlib:obj4

Step 5: Execute pr og3. exe to ensure that the DLLs were create properly.

Chapter 9. Creating and Using Libraries

% prog3
func_3a, calling a routine in obj4.dl
func_4b
func_4a, calling a routine in obj3.dl
func_3b

Example 9.4. Build DLLs Containing Mutual Imports: Fortran

In this example we build two DLLs when each DLL is dependent on the other, and use them to build the main
program.

In the following source files, obj ect 2. f 95 makes calls to routines defined in obj ect 3. f 95, and vice
versa. This situation of mutual imports requires two steps to build each DLL.

To link the first DLL, the import library for the second DLL must be available. Usually an import library is
created when a DLL is linked. In this case, however, the second DLL cannot be linked without the import
library for the first DLL. When such circular imports exist, an import library for one of the DLLs must be
created in a separate step without creating the DLL. The PGI drivers call the Microsoft | i b tool to create
import libraries in this situation.

Once the DLLs are built, we can use them to build the main program.

obj ect 2. f 95

subroutine func_2a

external func_3b

| DEC$ ATTRI BUTES DLLEXPORT :: func_2a
| DEC$ ATTRI BUTES DLLI MPORT :: func_3b
print*,"func_2a, calling a routine in obj3.dlI"
call func_3b()

end subroutine

subroutine func_2b

| DEC$ ATTRI BUTES DLLEXPORT :: func_2b
print*, "func_2b"

end subroutine

obj ect 3. f 95

subroutine func_3a

external func_2b

| DEC$ ATTRI BUTES DLLEXPORT :: func_3a

| DEC$ ATTRI BUTES DLLI MPORT :: func_2b
print*,"func_3a, calling a routine in obj2.dlI"
call func_2b()

end subroutine

subroutine func_3b

| DEC$ ATTRI BUTES DLLEXPORT :: func_3b
print*,"func_3b"

end subroutine

prog2. f 95

program pr og2

external func_2a

external func_3a

| DEC$ ATTRI BUTES DLLI MPORT :: func_2a
| DEC$ ATTRI BUTES DLLI MPORT :: func_3a
call func_2a()

131

Creating and Using Dynamic-Link Libraries on Windows

132

call func_3a()
end program

Step 1: Use —Mrakei npl i b with the PGI compilers to build an import library for the first DLL without
building the DLL itself.

% pgfortran -Bdynam c -c object2.f95
% pgfortran - Mrakeinplib -0 obj2.1ib object?2. obj

Tip

The - def =<def fi | e> option can also be used with —Mvakei npl i b. Use a .. def file when you
need to export additional symbols from the DLL. A . def file is not needed in this example because all
symbols are exported using DLLEXPORT.

Step 2: Use the import library, obj 2. 1 i b, created in Step 1, to link the second DLL.

% pgfortran -Bdynanic -c object3.f95
% pgfortran - Mrakedl | -o obj3.dll object3.obj -defaultlib:obj2

Step 3: Use the import library, obj 3. | i b, created in Step 2, to link the first DLL.
% pgfortran - Mrakedl | -o obj2.dl|l object2.obj -defaultlib:obj3

Step 4: Compile the main program and link against the import libraries for the two DLLs.

% pgfortran -Bdynanmic prog2.f95 -0 prog2 -defaultlib:obj2 -defaultlib:obj3

Step 5: Execute pr og2 to ensure that the DLLs were created properly:

% prog2
func_2a, calling a routine in obj3.dll
func_3b
func_3a, calling a routine in obj2.dllI
func_2b

Example 9.5. Import a Fortran module from a DLL

In this example we import a Fortran module from a DLL. We use the source file def nod. f 90 to create a DLL
containing a Fortran module. We then use the source file use_nod. f 90 to build a program that imports and
uses the Fortran module from def nod. f 90.

defmod.f90

nodul e testm

type a_type

integer :: an_int

end type a_type

type(a_type) :: a, b

| DEC$ ATTRI BUTES DLLEXPORT :: a, b
cont ai ns

subroutine print_a

I DEC$ ATTRI BUTES DLLEXPORT :: print_a
wite(*,*) a%n_int

end subroutine

subroutine print_b

I DEC$ ATTRI BUTES DLLEXPORT :: print_b
wite(*,*) b%n_int

end subroutine
gooa

Chapter 9. Creating and Using Libraries

|

usemod.fo0
use testm
a%n_int =1
b%n_int = 2

call print_a
call print_b
end
Step 1: Create the DLL.

% pgf 90 - Mmakedl | -o defnod.dl| defnod.f90
Creating library defnod.lib and object defnod. exp

Step 2: Create the exe and link against the import library for the imported DLL.

% pgf 90 - Bdynami c -0 usenod usenod.f90 -defaultlib:defrod.lib

Step 3: Run the exe to ensure that the module was imported from the DLL properly.

% usenod
1
2

Using LIB3F

The PGI Fortran compilers include complete support for the de facto standard LIB3F library routines on both
Linux and Windows operating systems. See the PGI Fortran Reference manual for a complete list of available
routines in the PGI implementation of LIB3F.

LAPACK, BLAS and FFTs

Pre-compiled versions of the public domain LAPACK and BLAS libraries are included with the PGI compilers.
The LAPACK library is called | i bl apack. a or on Windows, | i bl apack. | i b. The BLAS library is called

| i bbl as. a or on Windows, | i bbl as. | i b. These libraries are installed to $PG / <t ar get >/ | i b, where
<target> is replaced with the appropriate target name (linux86, linux86-64, 0sx86, 0sx86-64, win32, win64,
sfu32, sua32, or suab4).

To use these libraries, simply link them in using the —I option when linking your main program:

% pgfortran nyprog.f -Ilapack -Iblas

Highly optimized assembly-coded versions of BLAS and certain FFT routines may be available for your
platform. In some cases, these are shipped with the PGI compilers. See the current release notes for the PGI
compilers you are using to determine if these optimized libraries exist, where they can be downloaded (if
necessary), and how to incorporate them into your installation as the default.

The C++ Standard Template Library

The PGC++ compiler includes a bundled copy of the STLPort Standard C++ Library. See the online Standard C
++ Library tutorial and reference manual at www.stlport.com for further details and licensing.

133

134

Chapter 10. Using Environment
Variables

Environment variables allow you to set and pass information that can alter the default behavior of the PGI
compilers and the executables which they generate. This chapter includes explanations of the environment
variables specific to PGI compilers. Other environment variables are referenced and documented in other
sections of this User’s Guide or the PGI Tools Guide.

* You use OpenMP environment variables to control the behavior of OpenMP programs. For consistency
related to the OpenMP environment, the details of the OpenMP-related environment variables are included
in Chapter 5, “Using OpenMP”.

* You can use environment variables to control the behavior of the PGDBG debugger or PGPROF profiler. For
a description of environment variables that affect these tools, refer to the PGI Tools Guide.

Setting Environment Variables

Before we look at the environment variables that you might use with the PGI compilers and tools, let’s take a
look at how to set environment variables. To illustrate how to set these variables in various environments, lets
look at how a user might initialize the shell environment prior to using the PGI compilers and tools.

Setting Environment Variables on Linux

Let’s assume that you want access to the PGI products when you log on. Let’s further assume that you installed
the PGI compilers in / opt / pgi and that the license file is in / opt / pgi / | i cense. dat . For access at
startup, you can add the following lines to your startup file.

In csh, use these commands:

% setenv PA /opt/pgi

% set env MANPATH " $MANPATH": $PA / | i nux86/ 10. 0/ man
% setenv LM LI CENSE_FI LE $PA /i cense. dat

% set path = ($PA /i nux86/10. 0/ bi n $pat h)

In bash, sh, zsh, or ksh, use these commands:

$ PG =/opt/pgi; export PG

135

Setting Environment Variables

$ MANPATH=$MANPATH: $PA / | i nux86/ 10. O/ man; export MANPATH
$ LM LI CENSE FI LE=$PA /| i cense. dat; export LM LI CENSE FILE
$ PATH=$PA /| i nux86/ 10. 0/ bi n: $PATH;, export PATH

Setting Environment Variables on Windows

In Windows, when you access PGI Workstation 10.0 (for example, using Start | ALL Programs | PGI
Workstation | Command Shells 10.2), you have options that PGI provides for setting your environment
variables - either the DOS command environment or the Cygwin Bash environment.

When you open either of these shells available to you, the default environment variables are already set and
available to you.

You may want to use other environment variables, such as the OpenMP ones. This section explains how to do
that.

Suppose that your home directory is C: \ t np. The following examples show how you might set the temporary
directory to your home directory, and then verify that it is set.

Command prompt:

Once you have launched a command shell for the version of PGI that you are using, (32-bit or 64-bit), enter
the following:

DOS> set TMPDI R=C: \t np

DOS> echo %MPDI R%

C\tnp
DOS>

Cygwin Bash prompt:

From PGI Workstation 10.0, select PGI Workstation (32-bit or 64-bit) and at the Cygwin Bash prompt, enter
the following

PA $ export TMPDI R=C:\tnp

PG $ echo $TWPDIR

C\tnp
PG $

Setting Environment Variables on Mac OSX

Let’s assume that you want access to the PGI products when you log on. Let’s further assume that you installed
the PGI compilers in / opt / pgi and that the license file is in / opt / pgi /1 i cense. dat . For access at
startup, you can add the following lines to your startup file.

For x64 0sx86-64 in a csh:

% set path = (/opt/pgi/osx86-64/10.0/bin $path)
% set env. MANPATH " $MANPATH" : / opt / pgi / 0sx86- 64/ 10. 0/ man

For x64 0sx86-64 in a bash, sh, zsh, or ksh:

$ PATH=/ opt/ pgi / 0sx86- 64/ 10. 0/ bi n: $PATH, export PATH
$ MANPATH=$MANPATH: / opt / pgi / 0sx86- 64/ 10. 0/ man; export MANPATH

136

Chapter 10. Using Environment Variables

PGI-Related Environment Variables

For easy reference, the following table provides a quick listing of some OpenMP and all PGI compiler-
related environment variables. This section provides more detailed descriptions of the environment variables
specific to PGI compilers and the executables they generate. For information specific to OpenMP environment
variables, refer to Table 5.4, “OpenMP-related Environment Variable Summary Table,” on page 72 and to the
complete descriptions in “OpenMP Environment Variables”

Table 10.1. PGI-Related Environment Variable Summary

Environment Variable

Description

FLEXLM_BATCH (Windows only) When set to 1, prevents interactive pop-ups from
appearing by sending all licensing errors and warnings to standard
out rather than to a pop-up window.

FORTRANOPT Allows the user to specify that the PGI Fortran compilers user VAX I/

O conventions.

GMON_OUT_PREFIX

Specifies the name of the output file for programs that are compiled
and linked with the —pg option.

LD_LIBRARY_PATH

Specifies a colon-separated set of directories where libraries should
first be searched, prior to searching the standard set of directories.

LM_LICENSE_FILE

Specifies the full path of the license file that is required for running
the PGI software. On Windows, LM LI CENSE_FI LE does not need
to be set.

MANPATH Sets the directories that are searched for manual pages associated
with the command that the user types.

MPSTKZ Increases the size of the stacks used by threads executing in parallel
regions. The value should be an integer <n> concatenated with Mor
mto specify stack sizes of n megabytes.

MP_BIND Specifies whether to bind processes or threads executing in a
parallel region to a physical processor.

MP_BLIST When MP_BI NDis yes, this variable specifically defines the thread-
CPU relationship, overriding the default values.

MP_SPIN Specifies the number of times to check a semaphore before calling
sched_yield() (on Linux, SUA, or Mac OS X) or _sleep() (on
Windows).

MP_WARN Allows you to eliminate certain default warning messages.

NCPUS Sets the number of processes or threads used in parallel regions.

NCPUS_MAX Limits the maximum number of processors or threads that can be

used in a parallel region.

NO_STOP_MESSAGE

If used, the execution of a plain STOP statement does not produce
the message FORTRAN STOP.

137

PGI Environment Variables

Environment Variable

Description

OMP_DYNAMIC

Currently has no effect. Enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads. The default is FALSE.

OMP_MAX_ACTIVE_LEVELS

Currently has no effect. Enables (TRUE) or disables (FALSE)
nested parallelism. The default is FALSE.

OMP_NUM_THREADS

Specifies the number of threads to use during execution of parallel
regions. Default is 1.

OMP_SCHEDULE

Specifies the type of iteration scheduling and, optionally, the chunk
size to use for omp for and omp parallel for loops that include the
run-time schedule clause. The default is STATIC with chunk size = 1.

OMP_STACKSIZE

Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY

Sets the behavior of idle threads, defining whether they spin or sleep
when idle. The values are ACTI VE and PASSI VE. The default is
ACTI VE.

PATH Determines which locations are searched for commands the user
may type.
PGI Specifies, at compile-time, the root directory where the PGI

compilers and tools are installed.

PGI_CONTINUE

If set, when a program compiled with—Mchkf pst k is executed, the
stack is automatically cleaned up and execution then continues.

PGI_OBJSUFFIX

Allows you to control the suffix on generated object files.

PGI_STACK_USAGE

(Windows only) Allows you to explicitly set stack properties for your
program.

PGI_TERM

Controls the stack traceback and just-in-time debugging
functionality.

PGI_TERM_DEBUG

Overrides the default behavior when PG _ TERMis set to debug.

PWD

Allows you to display the current directory.

STATIC_RANDOM_SEED

Forces the seed returned by RANDOM_SEED to be constant.

T™MP

Sets the directory to use for temporary files created during
execution of the PGI compilers and tools; interchangeable with
TMPDI R.

TMPDIR

Sets the directory to use for temporary files created during
execution of the PGI compilers and tools.

PGI Environment Variables

You use the environment variables listed in Table 10.1 to alter the default behavior of the PGI compilers and
the executables which they generate. This section provides more detailed descriptions about the variables in
this table that are not OpenMP environment variables.

138

Chapter 10. Using Environment Variables

FLEXLM_BATCH

By default, on Windows the license server creates interactive pop-up messages to issue warning and errors.
You can use the environment variable FLEXLM BATCH to prevent interactive pop-up windows. To do this, set
the environment variable FLEXLM BATCHto 1.

The following csh example prevents interactive pop-up messages for licensing warnings and errors:
% set FLEXLM BATCH = 1;

FORTRANOPT

FORTRANOPT allows the user to adjust the behavior of the PGI Fortran compilers.

e If FORTRANOPT exists and contains the value vaxi o, the record length in the open statement is in units
of 4-byte words, and the $ edit descriptor only has an effect for lines beginning with a space or a plus sign

(+).

e [f FORTRANOPT exists and contains the value f or mat _r el axed, an I/0 item corresponding to a
numerical edit descriptor (such as F, E, I, and so on) is not required to be a type implied by the descriptor.

e In a non-Windows environment, if FORTRANOPT exists and contains the value cr i f , a sequential
formatted or list-directed record is allowed to be terminated with the character sequence \ r\ n (carriage
return, newline). This approach is useful when reading records from a file produced on a Window’s system.

The following example causes the PGI Fortran compilers to use VAX I/0 conventions:
% set env. FORTRANOPT vaxi o

GMON_OUT_PREFIX

GVON_OUT_PREFI X specifies the name of the output file for programs that are compiled and linked with the
- pg option. The default name is gnon. out . a.

If GVON_OUT_PREFI X is set, the name of the output file has GVON_OUT_PREFI X as a prefix.
Further, the suffix is the pid of the running process. The prefix and suffix are separated by a dot.
For example, if the output file is mygnon, then the full filename may look something similar to this:
GVON_QUT_PREFI X. nygnon. 0012348567.

The following example causes the PGI Fortran compilers to use pgout as the output file for programs
compiled and linked with the - pg option.

% set env GVMON_OUT_PREFI X pgout

LD_LIBRARY_PATH

The LD_LI BRARY_PATH variable is a colon-separated set of directories specifying where libraries should
first be searched, prior to searching the standard set of directories. This variable is useful when debugging a
new library or using a nonstandard library for special purposes.

The following csh example adds the current directory to your LD_LI BRARY_PATH variable.
% setenv LD LI BRARY_PATH "$LD LI BRARY_PATH':"./"

139

PGI Environment Variables

LM_LICENSE_FILE

The LM LI CENSE_FI LE variable specifies the full path of the license file that is required for running the PGI
software.

For example, once the license file is in place, you can execute the following csh commands to make the
products you have purchased accessible and to initialize your environment for use of FLEXIm. These
commands assume that you use the default installation directory: / opt / pgi

% setenv PE /opt/ pgi
% setenv LM LI CENSE FI LE "$LM LI CENSE _FI LE": /opt/pgi/license. dat

To set the environment variable LM LI CENSE_FI LE to the full path of the license key file, do this:

1. Open the System Properties dialog: Start | Control Panel | System.
2. Select the Advanced tab.
3. Click the Environment Variables button.

e If LM LI CENSE_FI LE is not already an environment variable, create a new system variable for it. Set
its value to the full path, including the name of the license key file, | i cense. dat .

e If LM LI CENSE_FI LE already exists as an environment variable, append the path to the license file to
the variable’s current value using a semi-colon to separate entries.

MANPATH

The MANPATH variable sets the directories that are searched for manual pages associated with the commands
that the user types. When using PGI products, it is important that you set your PATH to include the location of
the PGI products and then set the MANPATH variable to include the man pages associated with the products.

The following csh example targets x64 linux86-64 version of the compilers and tool s and allows the user
access to the manual pages associated with them.

% set path = (/opt/pgi/linux86-64/10.0/bin $path
% set env. MANPATH " $MANPATH': / opt / pgi /| i nux86- 64/ 10. 0/ man

MPSTKZ

MPSTKZ increases the size of the stacks used by threads executing in parallel regions. You typically use this
variable with programs that utilize large amounts of thread-local storage in the form of private variables or
local variables in functions or subroutines called within parallel regions. The value should be an integer <n>
concatenated with Mor mto specify stack sizes of n megabytes.

For example, the following setting specifies a stack size of 8 megabytes.
% set env MPSTKZ 8M

MP_BIND

140

You can set MP_BI NDto yes ory to bind processes or threads executing in a parallel region to physical
processor. Set it to no or n to disable such binding. The default is to not bind processes to processors. This
variable is an execution-time environment variable interpreted by the PGI run-time support libraries. It does
not affect the behavior of the PGI compilers in any way.

Chapter 10. Using Environment Variables

Note

The MP_BI ND environment variable is not supported on all platforms.

% setenv MP_BIND y

MP_BLIST

MP_BLI ST allows you to specifically define the thread-CPU relationship.

Note

This variable is only in effect when MP_BI NDis yes.

While the MP_BI NDvariable binds processors or threads to a physical processor, MP_BLI ST allows you
to specifically define which thread is associated with which processor. The list defines the processor-thread
relationship order, beginning with thread 0. This list overrides the default binding.

For example, the following setting for MP_BL1 ST maps CPUs 3, 2, 1 and 0 to threads 0, 1, 2 and 3
respectively.

% setenv MP_BLI ST=3,2,1,0

MP_SPIN

When a thread executing in a parallel region enters a barrier, it spins on a semaphore. You can use MP_SPI N
to specify the number of times it checks the semaphore before calling sched_yi el d() (on Linux, SUA, or
MAC OS X) or _sl eep() (on Windows). These calls cause the thread to be re-scheduled, allowing other
processes to run. The default value is 1000000..

% setenv MP_SPI N 200

MP_WARN

MP_WARN allows you to eliminate certain default warning messages.

By default, a warning is printed to stderr if you execute an OpenMP or auto-parallelized program with NCPUS
or OVP_NUM_THREADS set to a value larger than the number of physical processors in the system.

For example, if you produce a parallelized executable a. out and execute as follows on a system with only one
processor, you get a warning message.

% set env. OVP_NUM_THREADS 2

% a. out

War ni ng: OVP_NUM THREADS or NCPUS (2) greater
than avail abl e cpus (1)

FORTRAN STOP

Setting MP_WARN to NO eliminates these warning messages.

NCPUS

You can use the NCPUS environment variable to set the number of processes or threads used in parallel
regions. The default is to use only one process or thread, which is known as serial mode.

141

PGI Environment Variables

Note

OVP_NUM_THREADS has the same functionality as NCPUS. For historical reasons, PGI supports
the environment variable NCPUS. If both OVP_NUM THREADS and NCPUS are set, the value of
OVP_NUM THREADS takes precedence.

Warning

Setting NCPUS to a value larger than the number of physical processors or cores in your system can
cause parallel programs to run very slowly.

NCPUS_MAX

You can use the NCPUS_MAX environment variable to limit the maximum number of processes or threads
used in a parallel program. Attempts to dynamically set the number of processes or threads to a higher value,
for example using set_omp_num_threads(), will cause the number of processes or threads to be set at the
value of NCPUS_MAX rather than the value specified in the function call.

NO_STOP_MESSAGE

If the NO_STOP_MESSAGE variable exists, the execution of a plain STOP statement does not produce the
message FORTRAN STOP. The default behavior of the PGI Fortran compilers is to issue this message.

PATH

PGl

142

The PATH variable sets the directories that are searched for commands that the user types. When using PGI
products, it is important that you set your PATH to include the location of the PGI products.

You can also use this variable to specify that you want to use only the linux86 version of the compilers and
tools, or to target linux86 as the default.

The following csh example targets x64 linux86-64 version of the compilers and tools.

% set path = (/opt/pgi/linux86-64/10.0/bin $path)

Important

The PG environment variable specifies the root directory where the PGI compilers and tools are installed.
This variable is recognized at compile-time. If it is not set, the default value depends on your system as well as
which compilers are installed:

¢ On Linux, the default value of this variable is / opt / pgi .

e On Windows, the default value is C: \ Progr am Fi | es\ PG , where C represents the system drive. If both
32- and 64-bit compilers are installed, the 32-bit compilers are in C: \ Pr ogr am Fi | es (x86)\ PG .

e On SFU/SUA and Mac OS X, the default value of this variable is / opt / pgi . The corresponding Windows-
style path is C: \ SFW\ opt \ pgi for SFU and C: \ W NDOWB\ SUA\ opt \ pgi for SUA, where C represents
the system drive.

Chapter 10. Using Environment Variables

In most cases, if the PGI environment variable is not set, the PGI compilers and tools dynamically determine
the location of this root directory based on the instance of the compiler or tool that was invoked. However,
there are still some dependencies on the PGI environment variable, and you can use it as a convenience when
initializing your environment for use of the PGI compilers and tools.

For example, assuming you use csh and want the 64-bit linux86-64 versions of the PGI compilers and tools to
be the default, you would use this syntax:

% setenv PG /usr/pgi

% set env. MANPATH " $MANPATH': $PG / | i nux86/ 10. O/ man

% setenv LM LI CENSE _FI LE $PG /1i cense. dat
% set path = ($PA /i nux86-64/10.0/bin $pat h)

PGI_CONTINUE

You set the PG _CONTI NUE variable to specify the actions to take before continuing with execution.

For example, if the PG _CONTI NUE environment variable is set and then a program that is compiled

with —Mchkf pst k is executed, the stack is automatically cleaned up and execution then continues. If

PG _CONTI NUE is set to ver bose, the stack is automatically cleaned up, a warning message is printed, and
then execution continues.

Note

There is a performance penalty associated with the stack cleanup.

PGI_OBJSUFFIX

You can set the PG _OBJSUFFI X environment variable to generate object files that have a specific suffix. For
example, if you set PA _OBJSUFFI X to . o, the object files have a suffix of . o rather than . obj .

PGI_STACK_USAGE

(Windows only) The PG _STACK_USAGE variable allows you to explicitly set stack properties for your
program. When the user compiles a program with the —Mchkst k option and sets the PGI_STACK_USAGE
environment variable to any value, the program displays the stack space allocated and used after the program
exits. You might see something similar to the following message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. For more information on the
—Mechkst k option, refer to —Mchkstk.

PGI_TERM

The PG _TERMenvironment variable controls the stack traceback and just-in-time debugging functionality.
The runtime libraries use the value of PG _TERMto determine what action to take when a program
abnormally terminates.

The value of PG _TERMis a comma-separated list of options. The commands for setting the environment
variable follow.

e Incsh:

143

PGI Environment Variables

% setenv PG _TERM option[, option...]

e 1In bash, sh, zsh, or ksh:

$ PG _TERM=option[, option...]
$ export PE _TERM

e In the Windows Command Prompt:
C \> set PG _TERM-option[, option...]

Table 10.2 lists the supported values for opt i on. Following the table is a complete description of each option

that indicates specifically how you might apply the option.

By default, all of these options are disabled.

Table 10.2. Supported PGI_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)

[no]trace Enables/disables stack traceback on error

[no]signal Enables/disables establishment of signal handlers for common signals
that cause program termination

[no]abort Enables/disables calling the system termination routine abort()

[no]debug

This enables/disables just-in-time debugging. The default is nodebug.

When PG _TERMis set to debug, the following command is invoked on error, unless you use
PG _TERM DEBUGto override this default.

pgdbg -text -attach <pid>

<pi d> is the process ID of the process being debugged.

The PGI_TERM_DEBUG environment variable may be set to override the default setting. For more information,

refer to “PGI_TERM_DEBUG,” on page 145.

[no]trace

This enables/disables the stack traceback. The default is not r ace.

[no]signal

This enables/disables establishing signal handlers for the most common signals that cause program
termination. The default is nosi gnal . Setting t r ace and debug automatically enables si gnal . Specifically

setting nosi gnal allows you to override this behavior.

[nojJabort

This enables/disables calling the system termination routine abort(). The default is noabor t . When

noabor t is in effect the process terminates by calling _exi t (127) .

On Linux and SUA, when abor t is in effect, the abort routine creates a core file and exits with code 127.

144

Chapter 10. Using Environment Variables

On Windows, when abor t is in effect, the abort routine exits with the status of the exception received. For
example, if the program receives an access violation, abort() exits with status 0xC0000005.

A few runtime errors just print an error message and call exi t (127) , regardless of the status of PG _TERM
These are mainly errors such as specifying an invalid environment variable value where a traceback would not
be useful.

If it appears that abort() does not generate core files on a Linux system, be sure to unlimit the coredumpsize.
You can do this in these ways:
e Using csh:

%limt coredunpsize unlimted
% set env PG _TERM abort

e Using bash, sh, zsh, or ksh:

$ulimt -c unlinted
$ export PG _TERM-abort

To debug a core file with pgdbg, start pgdbg with the -core option. For example, to view a core file named
"core" for a program named "a.out":

$ pgdbg -core core a.out
For more information on why to use this variable, refer to “Stack Traceback and JIT Debugging,” on page

147.

PGI_TERM_DEBUG

The PG _TERM DEBUG variable may be set to override the default behavior when PG _TERM s set to
debug.

The value of PG _TERM DEBUG should be set to the command line used to invoke the program. For example:
gdb --quiet --pid %l

The first occurrence of %@ in the PG _TERM DEBUGs tring is replaced by the process id. The program named
in the PG _TERM DEBUG string must be found on the current PATH or specified with a full path name.

PWD

The PWD variable allows you to display the current directory.

STATIC_RANDOM_SEED

You can use STATI C_RANDOM SEED to force the seed returned by the Fortran 90/95 RANDOM SEED
intrinsic to be constant. The first call to RANDOM_SEED without arguments resets the random seed to a
default value, then advances the seed by a variable amount based on time. Subsequent calls to RANDOM_SEED
without arguments reset the random seed to the same initial value as the first call. Unless the time is exactly the
same, each time a program is run a different random number sequence is generated. Setting the environment
variable STATI C_RANDOM SEEDto YES forces the seed returned by RANDOM SEED to be constant, thereby
generating the same sequence of random numbers at each execution of the program.

145

Using Environment Modules on Linux

TMP

You can use TMP to specify the directory to use for placement of any temporary files created during execution
of the PGI compilers and tools. This variable is interchangeable with TMPDI R.

TMPDIR

You can use TMPDI R to specify the directory to use for placement of any temporary files created during
execution of the PGI compilers and tools.

Using Environment Modules on Linux

146

On Linux, if you use the Environment Modules package, that is, the nodul e | oad command, PGI includes a
script to set up the appropriate module files.

Assuming your installation base directory is / opt / pgi , and your MODULEPATH environment variable is /
usr/ | ocal / Modul es/ modul ef i | es, execute this command:

% [opt/ pgi /| inux86/10. 0-0/ et c/ nodul efi |l es/ pgi . rodul e.instal | \
-all -install /usr/local/Mdul es/ modul efil es

This command creates module files for all installed versions of the PGI compilers. You must have write
permission to the modul ef i | es directory to enable the module commands:

% nodul e | oad pgi 32/10.0

% nodul e | oad pgi 64/ 10.0

% nodul e | oad pgi/10.0

where "pgi/10.0" uses the 32-bit compilers on a 32-bit system and uses 64-bit compilers on a 64-bit system.
To see what versions are available, use this command:

% nodul e avail pgi

The nodul e | oad command sets or modifies the environment variables as indicated in the following table.

This Environment Variable... |Is set or modified by the module load
command to ...

cC Full path to pgcc

CPP Full path to pgCC

CXX Path to pgCC

C++ Path to pgCC

FC Full path to pgfortran

F77 Full path to pgf77

F90 Full path to pgf90

LD LI BRARY_PATH Prepends the PGI library directory

MANPATH Prepends the PGI man page directory

PATH Prepends the PGI compiler and tools bi n directory

Chapter 10. Using Environment Variables

This Environment Variable...

Is set or modified by the module load
command to ...

PG The base installation directory
V Full path to pgCC
Note

PGI does not provide support for the Environment Modules package. For more information about the

package, go to: http://modules.sourceforge.net.

Stack Traceback and JIT Debugging

When a programming error results in a run-time error message or an application exception, a program will
usually exit, perhaps with an error message. The PGI run-time library includes a mechanism to override this

default action and instead print a stack traceback, start a debugger, or, on Linux, create a core file for post-

mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an environment variable,
PG _TERM described in “PGI_TERM,” on page 143. The run-time libraries use the value of PG _TERMto

determine what action to take when a program abnormally terminates.

When the PGI runtime library detects an error or catches a signal, it calls the routine pgi _st op_her e()
prior to generating a stack traceback or starting the debugger. The pgi _st op_her e() routine is a

convenient spot to set a breakpoint when debugging a program.

147

148

Chapter 11. Distributing Files -
Deployment

Once you have successfully built, debugged and tuned your application, you may want to distribute it to users
who need to run it on a variety of systems. This chapter addresses how to effectively distribute applications
built using PGI compilers and tools. The application must be installed in such a way that it executes accurately
on a system other than the one on which it was built, and which may be configured differently.

Deploying Applications on Linux
To successfully deploy your application on Linux, there are a number of issues to consider, including these:

¢ Runtime Libraries

64-bit Linux Systems

Redistribution of Files

Linux Portability of files and packages

¢ Licensing

Runtime Library Considerations

On Linux systems, the system runtime libraries can be linked to an application either statically, or dynamically,
For example, for the C runtime library, libc, you can use either the static version | i bc. a or the shared object
l'i bc. so. If the application is intended to run on Linux systems other than the one on which it was built, it is
generally safer to use the shared object version of the library. This approach ensures that the application uses
a version of the library that is compatible with the system on which the application is running. Further, it works
best when the application is linked on a system that has an equivalent or earlier version of the system software
than the system on which the application will be run.

Note

Building on a newer system and running the application on an older system may not produce the
desired output.

149

Deploying Applications on Linux

To use the shared object version of a library, the application must also link to shared object versions of the
PGI runtime libraries. To execute an application built in such a way on a system on which PGI compilers are
not installed, those shared objects must be available.To build using the shared object versions of the runtime
libraries, use the - Bdynani ¢ option, as shown here:

$ pgf90 - Bdynami ¢ nyprog. f 90
64-bit Linux Considerations

On 64-bit Linux systems, 64-bit applications that use the - ncrmodel =nedi umoption sometimes cannot be
successfully linked statically. Therefore, users with executables built with the - ncnodel =medi umoption may
need to use shared libraries, linking dynamically. Also, runtime libraries built using the - f pi ¢ option use
32-bit offsets, so they sometimes need to reside near other runtime | i bs in a shared area of Linux program
memory.

Note

If your application is linked dynamically using shared objects, then the shared object versions of the
PGI runtime are required.

Linux Redistributable Files

There are two methods for installing the shared object versions of the runtime libraries required for
applications built with PGI compilers and tools: Linux Portability Package and manual distribution.

PGI provides the Linux Portability Package, an installation package that can be downloaded from the PGI web
site. In addition, when the PGI compilers are installed, there are directories that have a name that begins with
REDI ST for each platform (linux86 and linux86-64); these directories contain the redistributed shared object
libraries. These may be redistributed by licensed PGI customers under the terms of the PGI End-User License
Agreement.

Restrictions on Linux Portability

You cannot expect to be able to run an executable on any given Linux machine. Portability depends on the
system you build on as well as how much your program uses system routines that may have changed from
Linux release to Linux release. For example, one area of significant change between some versions of Linux
isin | i bpt hr ead. so. PGI compilers use this shared object for both the option - Mconcur (auto-parallel)
and the option - np (OpenMP) programs.

Typically, portability is supported for forward execution, meaning running a program on the same or a later
version of Linux; but not for backward compatibility, that is, running on a prior release. For example, a user
who compiles and links a program under Suse 9.1 should not expect the program to run without incident on
a Red Hat 9.0 system, which is an earlier version of Linux. It 7zay run, but it is less likely. Developers might
consider building applications on earlier Linux versions for wider usage.

Installing the Linux Portability Package

You can download the Linux Portability Packages from the Downloads page at http://www.pgroup.com. First
download the package you need, then untar it, and run the install script. Then you can add the installation
directory to your library path.

150

Chapter 11. Distributing Files - Deployment

To use the installed libraries, you can either modify / et ¢/ | d. so. conf and run | dconfi g(1) or modify
the environment variable LD _LI BRARY_PATH, as shown here:

setenv LD LI BRARY_PATH /usr/| ocal / pgi

or

export LD _LI BRARY_PATH=/usr /| ocal / pgi

Licensing for Redistributable Files

The installation of the Linux Portability Package presents the standard PGI usage license. The | i bs can be
distributed for use with PGI compiled applications, within the provisions of that license.

The files in the REDIST directories may be redistributed under the terms of the End-User License Agreement

for the product in which they were included.

Deploying Applications on Windows

Windows programs may be linked statically or dynamically.

e A statically linked program is completely self-contained, created by linking to static versions of the PGI and
Microsoft runtime libraries.

* A dynamically linked program depends on separate dynamically-linked libraries (DLLs) that must be
installed on a system for the application to run on that system.

Although it may be simpler to install a statically linked executable, there are advantages to using the DLL
versions of the runtime, including these:

* Executable binary file size is smaller.
e Multiple processes can use DLLs at once, saving system resources.

* New versions of the runtime can be installed and used by the application without rebuilding the application.

Dynamically-linked Windows programs built with PGI compilers depend on dynamic run-time library files
(DLLs). These DLLs must be distributed with such programs to enable them to execute on systems where
the PGI compilers are not installed. These redistributable libraries include both PGI runtime libraries and
Microsoft runtime libraries.

PGl Redistributables

PGI redistributable directories contain all of the PGI Linux runtime library shared object files or Windows
dynamically-linked libraries that can be re-distributed by PGI 10.0 licensees under the terms of the PGI End-
user License Agreement (EULA).

Microsoft Redistributables

The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools directory contains a
subdirectory named r edi st . PGI licensees may redistribute the files contained in this directory in accordance
with the terms of the PGI End-User License Agreement.

151

Code Generation and Processor Architecture

Microsoft supplies installation packages, vcr edi st _x86. exe and vcr edi st _x64. exe, containing these
runtime files. These files are available in the r edi st directory.

Code Generation and Processor Architecture

The PGI compilers can generate much more efficient code if they know the specific x86 processor architecture
on which the program will run. When preparing to deploy your application, you should determine whether
you want the application to run on the widest possible set of x86 processors, or if you want to restrict the
application to run on a specific processor or set of processors. The restricted approach allows you to optimize
performance for that set of processors.

Different processors have differences, some subtle, in hardware features, such as instruction sets and cache
size. The compilers make architecture-specific decisions about such things as instruction selection, instruction
scheduling, and vectorization, all of which can have a profound effect on the performance of your application.

Processor-specific code generation is controlled by the - t p option, described in “~tp <target> [target...],”
on page 245. When an application is compiled without any - t p options, the compiler generates code for the
type of processor on which the compiler is run.

Generating Generic x86 Code

To generate generic x86 code, use one of the following forms of the- t p option on your command line:
-tp px ! generate code for any x86 cpu type

-tp p6 ! generate code for Pentium 2 or greater

While both of these examples are good choices for portable execution, most users have Pentium 2 or greater
CPUs.

Generating Code for a Specific Processor

You can use the - t p option to request that the compiler generate code optimized for a specific processor. The
PGI Release Notes contains a list of supported processors or you can look at the - t p entry in the compiler
output generated by using the - hel p option, described in “~help ,” on page 219.

Generating One Executable for Multiple Types of Processors

152

PGI unified binaries provide a low-overhead method for a single program to run well on 2 number of
hardware platforms.

All 64-bit PGI compilers can produce PGI Unified Binary programs that contain code streams fully optimized
and supported for both AMD64 and Intel EM64T processors using the - t p target option.

The compilers generate and combine multiple binary code streams into one executable, where each stream
is optimized for a specific platform. At runtime, this one executable senses the environment and dynamically
selects the appropriate code stream.

Executable size is automatically controlled via unified binary culling. Only those functions and subroutines
where the target affects the generated code have unique binary images, resulting in a code-size savings of
10-90% compared to generating full copies of code for each target.

Chapter 11. Distributing Files - Deployment

Programs can use PGI Unified Binary technology even if all of the object files and libraries are not compiled as
unified binaries. Like any other object file, you can use PGI Unified Binary object files to create programs or
libraries. No special start up code is needed; support is linked in from the PGI libraries.

The - Mpf i option disables generation of PGI Unified Binary object files. Instead, the default target auto-detect
rules for the host are used to select the target processor.

PGI Unified Binary Command-line Switches

The PGI Unified Binary command-line switch is an extension of the target processor switch, - t p, which may
be applied to individual files during compilation .

The target processor switch, - t p, accepts a comma-separated list of 64-bit targets and generates code
optimized for each listed target.

The following example generates optimized code for three targets:

-tp k8-64, p7-64, core2-64

A special target switch, -t p x64, is the same as -t p k8- 64, p7-64s.

PGI Unified Binary Directives and Pragmas

PGI Unified binary directives and pragmas may be applied to functions, subroutines, or whole files. The
directives and pragmas cause the compiler to generate PGI Unified Binary code optimized for one or more
targets. No special command line options are needed for these pragmas and directives to take effect.

The syntax of the Fortran directive is this:
pgi $[glr|] pgi tp [target]...
where the scope is g (global), r (routine) or blank. The default is r, routine.

For example, the following syntax indicates that the whole file, represented by g, should be optimized for both
k8_64 and p7_064.

pgi $g pgi tp k8_64 p7_64
The syntax of the C/C++ pragma is this:
#pragma [gl obal [routine|] tp [target]...

where the scope is global, routine, or blank. The default is routine.

For example, the following syntax indicates that the next function should be optimized for k8_64, p7_64, and
core2_04.

#pragma routine tp k8 _64 p7_64 core2_64

153

154

Chapter 12. Inter-language Calling

This chapter describes inter-language calling conventions for C, C++, and Fortran programs using the PGI
compilers. The following sections describe how to call a Fortran function or subroutine from a C or C++
program and how to call a C or C++ function from a Fortran program. For information on calling assembly
language programs, refer to Chapter 21, “Run-time Environment”.

This chapter provides examples that use the following options related to inter-language calling. For more
information on these options, refer to Chapter 16, “Command-Line Options Reference,” on page 203.

-C - Mhomai n -Mface - Miupcase

Overview of Calling Conventions

This chapter includes information on the following topics:

Functions and subroutines in Fortran, C, and C++

Naming and case conversion conventions

Compatible data types

Argument passing and special return values

Arrays and indexes

Win32 calling conventions

The sections “Inter-language Calling Considerations,” on page 156 through“Example - C++ Calling Fortran,”
on page 165 describe how to perform inter-language calling using the Linux, Mac OSX, Win64 or SUA
convention. Default Fortran calling conventions for Win32 differ, although Win32 programs compiled using
the - M f ace=uni x Fortran command-line option use the Linux/Win64 convention rather than the default
Win32 conventions. All information in those sections pertaining to compatibility of arguments applies to Win32
as well. For details on the symbol name and argument passing conventions used on Win32 platforms, refer to
“Win32 Calling Conventions,” on page 166.

155

Inter-language Calling Considerations

Inter-language Calling Considerations

In general, when argument data types and function return values agree, you can call a C or C++ function from
Fortran as well as call a Fortran function from C or C++. When data types for arguments do not agree, you may
need to develop custom mechanisms to handle them. For example, the Fortran COVPLEX type has a matching
type in C99 but does not have a matching type in C90; however, it is still possible to provide inter-language calls
but there are no general calling conventions for such cases.

Note

e Ifa C++ function contains objects with constructors and destructors, calling such a function from
either G or Fortran is not possible unless the initialization in the main program is performed from a
C++ program in which constructors and destructors are properly initialized.

* In general, you can call a C or Fortran function from C++ without problems as long as you use the
extern "C" keyword to declare the function in the C++ program. This declaration prevents name
mangling for the C function name. If you want to call a2 C++ function from C or Fortran, you also
have to use the extern "C" keyword to declare the C++ function. This keeps the C++ compiler
from mangling the name of the function.

* You can use the __cplusplus macro to allow a program or header file to work for both C and C++.
For example, the following defines in the header file stdio.h allow this file to work for both C and C
++.

#i fndef _STDI O H
#define _STDI O H
#i fdef __cpl uspl us

extern "C' {
#endif /* _ cplusplus */

. /* Functions and data types defined... */

#i fdef __cpl uspl us
}
#endif /* _ cplusplus */
#endi f
e (C++ member functions cannot be declared ext er n, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

Functions and Subroutines

156

Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value convention:

e When a C or C++ function returns a value, call it from Fortran as a function.

e When a C or C++ function does not return a value, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return a similar type. Table 12.1, “Fortran and
C/C++ Data Type Compatibility,” on page 157 lists compatible types. If the call is to a Fortran subroutine,

Chapter 12. Inter-language Calling

a Fortran CHARACTER function, or a Fortran COVPLEX function, call it from C/C++ as a function that
returns void. The exception to this convention is when a Fortran subroutine has alternate returns; call such
a subroutine from C/C++ as a function returning i nt whose value is the value of the integer expression
specified in the alternate RETURN statement.

Upper and Lower Case Conventions, Underscores

By default on Linux, Win64, OSX, and SUA systems, all Fortran symbol names are converted to lower case.

C and C++ are case sensitive, so upper-case function names stay upper-case. When you use inter-language
calling, you can either name your C/C++ functions with lower-case names, or invoke the Fortran compiler
command with the option —~Mupcase, in which case it will not convert symbol names to lower-case.

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, OSX, and SUA systems,
an underscore is appended to Fortran global names (names of functions, subroutines and common blocks).
This mechanism distinguishes Fortran name space from C/C++ name space. Use these naming conventions:

e Ifyou call a C/C++ function from Fortran, you should rename the C/C++ function by appending an
underscore or use CSPRAGMA C in the Fortran program. For more information on CSPRAGVA C, refer to
“C$PRAGMA C,” on page 118.

e Ifyou call a Fortran function from G/C++, you should append an underscore to the Fortran function name
in the calling program.

Compatible Data Types

Table 12.1 shows compatible data types between Fortran and C/C++. Table 12.2, “Fortran and C/C++
Representation of the COVPLEX Type,” on page 158 shows how the Fortran COVPLEX type may be
represented in C/C++.

Tip

If you can make your function/subroutine parameters as well as your return values match types, you
should be able to use inter-language calling.

Table 12.1. Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) |C/C++ Type Size (bytes)
character x char x 1
character*n x char x[n] n
real x float x 4
real*4 x float x 4
real*8 x double x 8
double precision double x 8
integer x int x 4
integer*1 x signed char x 1

157

Compatible Data Types

Fortran Type (lower case) |C/C++ Type Size (bytes)
integer®2 x short x 2
integer*4 x int x 4
integer*8 x long long x 8
logical x int x 4
logical*1 x char x 1
logical*2 x short x 2
logical*4 int x 4
logical*8 long long x 8

Table 12.2. Fortran and C/C++ Representation of the COVPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float ri;} x; 8
float complex x; 8
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16
Note

For C/C++, the conpl ex type implies C99 or later.

Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members correspond to
the members of the common block. The name of the structure in C/C++ must have the added underscore. For
example, here is a Fortran common block:

| NTEGER |

COVPLEX C

DOUBLE COMPLEX CD
DOUBLE PRECI SI ON D
COMWON /COM i, c, cd, d

This Fortran Common Block is represented in C with the following equivalent:
extern struct {

int i;

struct {float real, img;} c;

158

Chapter 12. Inter-language Calling

struct {double real, imag;} cd;
doubl e d;
} com;

This same Fortran Common Block is represented in C++ with the following equivalent:

extern "C' struct {

int i;

struct {float real, img;} c;
struct {double real, img;} cd;
doubl e d;

} com;

Tip

For global or external data sharing, ext ern " C" is not required.

Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed, rather than the
argument itself. In C/C++, arguments are passed by value, except for strings and arrays, which are passed
by reference. Due to the flexibility provided in C/C++, you can work around these differences. Solving the
parameter passing differences generally involves intelligent use of the & and * operators in argument passing
when C/C++ calls Fortran and in argument declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the string is also
passed to a calling function.

On Linux, SUA , and Mac OS X systems, or when using the UNIX calling convention on Windows (option -
M f ace=uni x), the compiler places the length argument(s) at the end of the parameter list, following the
other formal arguments. The length argument is passed by value, not by reference.

Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to pass by value using
the %/AL function. If you enclose a Fortran parameter with %/AL() , the parameter is passed by value. For
example, the following call passes the integer i and the logical bvar by value.

integer*1 i

| ogi cal *1 bvar
call cvalue (WAL(i), 9AL(bvar))

Character Return Values

“Functions and Subroutines,” on page 156 describes the general rules for return values for C/C++ and
Fortran inter-language calling. There is a special return value to consider. When a Fortran function returns a
character, two arguments need to be added at the beginning of the C/C++ calling function’s argument list:

¢ The address of the return character or characters

e The length of the return character

159

Array Indices

Example 12.1, “Character Return Parameters” illustrates the extra parameters, t mp and 10, supplied by the
caller:

Example 12.1. Character Return Parameters

I Fortran function returns a character
CHARACTER* (*) FUNCTI ON CHF(C1, |)
CHARACTER*(*) Cl1
| NTEGER |
END

/* C declaration of Fortran function */
extern void chf_();

char tnp[10];

char c1[9];

int i;

chf _(tnmp, 10, c1, &, 9);

If the Fortran function is declared to return a character value of constant length, for example CHARACTER* 4
FUNCTI ON CHF() , the second extra parameter representing the length must still be supplied, but is not
used.

Note

The value of the character function is not automatically NULL-terminated.

Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning of the C/C
++ calling function’s argument list; this argument is the address of the complex return value. Example 12.2,
“COMPLEX Return Values” illustrates the extra parameter, cpl x, supplied by the caller.

Example 12.2. COMPLEX Return Values

COVPLEX FUNCTION CF(C, |)
| NTEGER |

END

extern void cf_();

typedef struct {float real, imag;} cplXx;
cpl x ci;

int i;

cf _(&cl, &i);

Array Indices

160

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++ arrays start
at 0 and Fortran arrays start at 1. If you adjust your array comparisons so that a Fortran second element is
compared to a G/C++ first element, and adjust similarly for other elements, you should not have problems
working with this difference. If this is not satisfactory, you can declare your Fortran arrays to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses column-
major order and C/C++ uses row-major order. For one-dimensional arrays, this poses no problems. For two-
dimensional arrays, where there are an equal number of rows and columns, row and column indexes can

Chapter 12. Inter-language Calling

simply be reversed. For arrays other than single dimensional arrays, and square two-dimensional arrays, inter-
language function mixing is not recommended.

Examples
This section contains examples that illustrate inter-language calling.
Example - Fortran Calling C
Note

There are other solutions to calling C from Fortran than the one presented in this section. For
example, you can use the i so_c_bi ndi ng intrinsic module which PGI does support. For more
information on this module and for examples of how to use it, search the web using the keyword
iso_c_binding.

Example 12.4, “C function f2c_func_" shows a C function that is called by the Fortran main program shown
in Example 12.3, “Fortran Main Program f2c_main.f”. Notice that each argument is defined as a pointer, since
Fortran passes by reference. Also notice that the C function name uses all lower-case and a trailing "_"

Example 12.3. Fortran Main Program f2c_main.f

ogi cal *1 bool 1

character letterl
integer*4 numntl, numnt2
real nunfloat1l

doubl e precisi on nundoubl
i nteger*2 nunshor 1
external f2c_func

call f2c_func_(booll, letterl, numintl, numint2, nunfloatl, nundoubl, nunshor 1)

wite(*, "(L2, A2, I5 15, F6.1, F6.1, 15)")
+ bool1l, letterl, num ntl, num nt2, nunfloatl, nundoubl, nunshor 1

end

Example 12.4. C function f2¢c_func_

#defi ne TRUE Oxf f

#defi ne FALSE 0O

void f2c_func_(booll, letterl, num ntl, num nt2, nunfloatil,\
nundoubl, numshorl, len_letterl)

char *bool 1, *letterl;
int *num ntl, *num nt2;
fl oat *nunfl oat 1;

doubl e *nundoubl;

short *nunshor1;

int len letteri;

{

*pool 1 = TRUE, *letterl
*numintl = 11; *numnt2
*nunfloatl = 39.6 ;
*nundoubl 39. 2;
*nunshor 1 981;

I
'
I
g

161

Examples

Compile and execute the program f 2c_mai n. f with the call to f 2c_f unc_ using the following command
lines:

$ pgcc -c f2c_func.c
$ pgfortran f2c_func.o f2c_main.f

Executing the a. out file should produce the following output:

Tv 11 -44 39.6 39.2 981

Example - C Calling Fortran

162

Example 12.5, “C Main Program c2f_main.c” shows a C main program that calls the Fortran subroutine
shown in Example 12.6, “Fortran Subroutine c2f_sub.f’. Notice that each call uses the & operator to pass by
reference. Also notice that the call to the Fortran subroutine uses all lower-case and a trailing "_".

Example 12.5. C Main Program c2f_main.c

void main () {
char bool 1, letterl;
int numntl, num nt2;
float nunfl oat 1;
doubl e nundoubl;
short nunshor1;
extern void c2f_func_();
c2f _sub_(&bool 1, & etterl, &uni nt 1, &umi nt 2, &unf | oat 1, &undoubl, &unshor 1, 1);
printf(" % % % % 9%3. 1f % Of %\ n",
bool 1?" TRUE": "FALSE", letterl, num ntl, num nt2,
nunfl oat1, nundoubl, nunshorl);

Example 12.6. Fortran Subroutine c2f_sub.f

subroutine c2f _func (booll, letterl, numintl, numnt2,
+ nunfloatl, nundoubl, nunshor1)

| ogi cal *1 bool 1

character letterl

integer numntl, numint2

doubl e precisi on nundoubl

real nunfloatl

i nteger*2 nunshor1

bool 1 = .true.
letterl = "v"
numntl = 11
numnt2 = -44

nundoubl = 902
nunfloatl = 39.6
nunmshor1l = 299
return

end

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c c2f_main.c
$ pgfortran -Mionain c2f _main.o c2_sub.f

Chapter 12. Inter-language Calling

Executing the resulting a. out file should produce the following output:

TRUE v 11 -44 39.6 902 299

Example - C++ Calling C

Example 12.7, “C++ Main Program cp2c¢_main.C Calling a C Function” shows a C++ main program that calls
the C function shown in Example 12.8, “Simple C Function c2cp_func.c”.
Example 12.7. C++ Main Program cp2c¢_main.C Calling a C Function

extern "C' void cp2c_func(int n, int m int *p);
#i ncl ude <i ostreanr

mai n()
{
int a,b,c;
a=8;
b=2;
c=0;
cout << "mmin: a = "<<a<<" b = "<<b<<"ptr c = "<<hex<<&c<< endl;
cp2c_func(a, b, &) ;
cout << "mmin: res = "<<c<<endl;
}

Example 12.8. Simple C Function c2cp_func.c

voi d cp2c_func(numl, nun?, res)
int nunl, nunR, *res;

printf("func: a = % b = % ptr ¢ = %\n", nunt, nun2, res) ;
*res=numl/ nun®;
printf("func: res = %\ n", *res);

}

To compile this C function and C++ main program, use the following commands:

$ pgcc -c cp2c_func.c
$ pgcpp cp2c_mai n. C cp2c_func. o

Executing the resulting a.out file should produce the following output:

main: a=8b =2 ptr ¢ = Oxbffffb94
func: a =8 b =2 ptr ¢ = bffffb94
func: res = 4

main: res = 4

Example - C Calling C++

Example 12.9, “C Main Program c2cp_main.c Calling a C++ Function” shows a C main program that calls the
C++ function shown in Example 12.10, “Simple C++ Function c2cp_func.C with Extern C”.

Example 12.9. C Main Program c2cp_main.c Calling a C++ Function

extern void c2cp_func(int a, int b, int *c);
#i ncl ude <stdi o. h>
mai n() {

int a,b,c;

a=8; b=2;

163

Examples

printf("main: a =% b = %l ptr ¢ = %\n",a, b, &);
c2cp_func(a, b, &c);
printf("main: res = %\n", c);

}

Example 12.10. Simple C++ Function c2cp_func.C with Extern C

#i ncl ude <i ostreanr
extern "C' void c2cp_func(int numl,int nun®,int *res)

cout << "func: a = "<<nunl<<" b = "<<nun2<<"ptr c ="<<res<<end|
*res=nunil/ nun®
cout << "func: res = "<<res<<endl;

To compile this C function and C++ main program, use the following commands:

$ pgcc -c c2cp_main.c
$ pgcpp c2cp_main.o c2cp_func.C

Executing the resulting a.out file should produce the following output:

main: a=8b =2 ptr ¢ = Oxbffffb94
func: a =8 b =2 ptr ¢ = bffffb94
func: res = 4
main: res = 4

Note

You cannot use the extern "C" form of declaration for an object’s member functions.

Example - Fortran Calling C++

164

The Fortran main program shown in Example 12.11, “Fortran Main Program f2cp_main.f calling a C++
function” calls the C++ function shown in Example 12.12, “C++ function f2cp_func.C”.

Notice:

¢ Each argument is defined as a pointer in the C++ function, since Fortran passes by reference.

¢ The C++ function name uses all lower-case and a trailing "_":

Example 12.11. Fortran Main Program f2cp_main.f calling a C++ function

ogi cal *1 bool 1

character letterl

integer*4 numintl, num nt2

real nunfloatl

doubl e precision nundoubl

i nteger*2 nunshor 1

external f2cpfunc

call f2cp_func (bool 1, letterl, num ntl,

+ numint2, nunfloatl, nundoubl, nunshor 1)
wite(*, "(L2, A2, I5 15, F6.1, F6.1, 15)")
+ bool1l, letterl, num ntl, num nt2, nunfloatl,
+ nundoubl, nunshor 1

end

Chapter 12. Inter-language Calling

Example 12.12. C++ function f2cp_func.C

#defi ne TRUE Oxff
#defi ne FALSE 0

extern "C'
{

extern void f2cp_func_ (
char *bool 1, *letterl,
int *numntl, *num nt2,
float *nunfloatl,

doubl e *nundoubl,

short *nunshort1,

int len_letterl)

{

*bool 1 = TRUE; *letterl = 'v';

*numntl = 11; *num nt2 = -44;

*nunfloatl = 39.6; *nundoubl = 39.2; *nunshortl = 981;
}
}

Assuming the Fortran program is in a file f nai n. f | and the C++ function is in a file cpf unc. C, create an
executable, using the following command lines:

$ pgcpp -c¢ f2cp_func.C
$ pgfortran f2cp_func.o f2cp_main.f -pgcpplibs

Executing the a. out file should produce the following output:

Tv 11 -44 39.6 39.2 981

Example - C++ Calling Fortran

Example 12.14, “Fortran Subroutine cp2f_func.f* shows a Fortran subroutine called by the C++ main
program shown in Example 12.13, “C++ main program cp2f_main.C”. Notice that each call uses the &
operator to pass by reference. Also notice that the call to the Fortran subroutine uses all lower-case and a
trailing "_":

Example 12.13. C++ main program cp2f_main.C

#i ncl ude <i ostreanr

extern "C' { extern void cp2f_func_(char *,char *,int *,int *,
float *,double *,short *); }

main ()
{

char bool 1, letterl;

int numntl, num nt2;

fl oat nunfl oatl;

doubl e nundoubi;

short nunshor 1;

cp2f _func(&bool 1, & etterl, &wum nt 1, &um nt 2, &wunfl oat 1, &nundoubl, &unshor 1) ;
cout << " booll = ";
bool 1?cout << "TRUE ":cout << "FALSE "; cout <<endl;

cout << letterl = << |letterl <<endl;
cout << " numintl =" << numintl <<endl ;
cout << " numint2 = << num nt 2 <<endl ;
cout << " nunfloatl = " << nunfloatl <<endl ;
cout << " nundoubl = " << nundoubl <<endl ;

165

Win32 Calling Conventions

cout << " nunmshorl = " << nunshorl <<endl;

}

Example 12.14. Fortran Subroutine cp2f_func.f

subroutine cp2f_func (bool1l, letterl, num ntl1,
+ numint2, nunfloatl, nundoubl, nunshor1)

| ogi cal *1 bool 1

character letterl

integer numntl, numint2

doubl e precision nundoubl

real nunfloatl

i nteger*2 nunshor1

booll = .true. ; letterl = "v"

numntl = 11 ; numnt2 = -44

nundoubl = 902 ; nunfloatl = 39.6 ; nunshorl = 299
return

end

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgfortran -c cp2f_func. f
$ pgcpp cp2f _func.o cp2f _main. C -pgf90libs

Executing this C++ main should produce the following output:

bool 1 = TRUE

letterl = v
numntl = 11
numnt2 = -44
nunfloatl = 39.6
nundoubl = 902
nunshor1l = 299

Note that you must explicitly link in the PGFORTRAN runtime support libraries when linking pgfortran-
compiled program units into C or C++ main programs. When linking pgf77-compiled program units into C or
C++ main programs, you need only link in —I pgftnrt1 .

Win32 Calling Conventions

A calling convention is a set of conventions that describe the manner in which a particular routine is executed.
A routine's calling conventions specify where parameters and function results are passed. For a stack-based
routine, the calling conventions determine the structure of the routine's stack frame.

The calling convention for C/C++ is identical between most compilers on Win32 , Linux, Mac OS X, and
Win64. However, Fortran calling conventions vary widely between legacy Win32 Fortran compilers and Linux
or Win64 Fortran compilers.

Win32 Fortran Calling Conventions

Four styles of calling conventions are supported using the PGI Fortran compilers for Win32: Default, C,
STDCALL, and UNIX.

e Default - Used in the absence of compilation flags or directives to alter the default.

166

Chapter 12. Inter-language Calling

e C or STDCALL - Used if an appropriate compiler directive is placed in a program unit containing the call.

The C and STDCALL conventions are typically used to call routines coded in C or assembly language that

depend on these conventions.

e UNIX - Used in any Fortran program unit compiled using the - M f ace=uni x (or - Muni x) compilation

flag.

The following table outlines each of these calling conventions.

Table 12.3. Calling Conventions Supported by the PGI Fortran Compilers

Convention Default STDCALL C UNIX
Case of symbol name Upper Lower Lower Lower
Leading underscore Yes Yes Yes Yes
Trailing underscore No No No Yes
Argument byte count added Yes Yes No No
Arguments passed by reference | Yes No* No* Yes
Character argument length After each char |No No End of
passed argument argument list
First character of character string |No Yes Yes No
and passed by value

varargs support No No Yes Yes
Caller cleans stack No No Yes Yes

* Except arrays, which are always passed by reference even in the STDCALL and C conventions

Note

While it is compatible with the Fortran implementations of Microsoft and several other vendors, the C
calling convention supported by the PGI Fortran compilers for Windows is not strictly compatible with
the C calling convention used by most C/C++ compilers. In particular, symbol names produced by PGI
Fortran compilers using the C convention are all lower case. The standard C convention is to preserve
mixed-case symbol names. You can cause any of the PGI Fortran compilers to preserve mixed-case
symbol names using the - Mupcase option, but be aware that this could have other ramifications on
your program.

Symbol Name Construction and Calling Example

This section presents an example of the rules outlined in Table 12.3, “Calling Conventions Supported by the
PGI Fortran Compilers,” on page 167. In the pseudocode shown in the following examples, ¥addr refers to
the address of a data item while %val refers to the value of that data item. Subroutine and function names are
converted into symbol names according to the rules outlined in Table 12.3.

Consider the following subroutine call, where a is a double precision scalar, b is a real vector of size n, and n
is an integer:

167

Win32 Calling Conventions

call work (“ERR, a, b, n)

* Default - The symbol name for the subroutine is constructed by pre-pending an underscore, converting
to all upper case, and appending an @ sign followed by an integer indicating the total number of bytes
occupied by the argument list. Byte counts for character arguments appear immediately following the
corresponding argument in the argument list.

The following example is pseudocode for the preceding subroutine call using Default conventions:
call _WORK@O0 (%addr(‘ERR), 3, %addr(a), %addr(b), %addr(n))

e STDCALL - The symbol name for the subroutine is constructed by pre-pending an underscore, converting
to all lower case, and appending an @ sign followed by an integer indicating the total number of bytes
occupied by the argument list. Character strings are truncated to the first character in the string, which is
passed by value as the first byte in a 4-byte word. The following is an example of the pseudocode for the
work subroutine call using STDCALL conventions:

call _work@0 (%al (‘E), %al(a), %ddr(b), %al (n))

Notice in this case that there are still 20 bytes in the argument list. However, rather than five 4-byte
quantities as in the Default convention, there are three 4-byte quantities and one 8-byte quantity (the double
precision value of a).

e (- The symbol name for the subroutine is constructed by pre-pending an underscore and converting to all
lower case. Character strings are truncated to the first character in the string, which is passed by value as
the first byte in a 4-byte word. The following is an example of the pseudocode for the work subroutine call
using C conventions:

call _work (%Wal (‘E), %al (a), %ddr(b), %al (n))
e UNIX - The symbol name for the subroutine is constructed by pre-pending an underscore, converting
to all lower case, and appending an underscore. Byte counts for character strings appear in sequence

following the last argument in the argument list. The following is an example of the pseudocode for the
work subroutine call using UNIX conventions:

call _work_ (%addr(‘ERR), %addr(a), %addr(b), %addr(n), 3)

Using the Default Calling Convention

The Default calling convention is used if no directives are inserted to modify calling conventions and if neither
the - M f ace=uni x (or - Muni x) compilation flag is used. Refer to “Symbol Name Construction and Calling
Example,” on page 167 for a complete description of the Default calling convention.

Using the STDCALL Calling Convention

168

Using the STDCALL calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the STDCALL program unit. This directive has no effect when
either the - M f ace=uni x (or - Muni x) compilation flag is used, meaning you cannot mix UNIX-style
argument passing and STDCALL calling conventions within the same file.

In the following example syntax for the directive, wor k is the name of the subroutine to be called using
STDCALL conventions:

| DEC$ ATTRI BUTES STDCALL :: work

Chapter 12. Inter-language Calling

You can list more than one subroutine, separating them by commas. Refer to “Symbol Name Construction and
Calling Example,” on page 167 for a complete description of the implementation of STDCALL.

Note

e The directive prefix !DEC$ requires a space between the prefix and the directive keyword
ATTRIBUTES.

* The ! must begin the prefix when compiling using Fortran 90 freeform format.

* The characters C or * can be used in place of ! in either form of the prefix when compiling used
fixed-form format.

e The directives are completely case insensitive.

Using the C Calling Convention

Using the C calling convention requires the insertion of a compiler directive into the declarations section of any
Fortran program unit which calls the C program unit. This directive has no effect when the - M f ace=uni x
(or - Muni x) compilation flag is used, meaning you cannot mix UNIX-style argument passing and C calling
conventions within the same file.

Syntax for the directive is as follows:

I DEC$ ATTRIBUTES C :: work

Where wor k is the name of the subroutine to be called using C conventions. More than one subroutine may be
listed, separated by commas. Refer to “Symbol Name Construction and Calling Example,” on page 167 for a
complete description of the implementation of the C calling convention.

Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using - M f ace=uni x or
the - Muni x compilation flag uses the UNIX convention.

Using the CREF Calling Convention

Using the CREF calling convention is straightforward. Any program unit compiled using - M f ace=cr ef
compilation flag uses the CREF convention.

169

170

Chapter 13. Programming
Considerations for 64-Bit
Environments

PGI provides 64-bit compilers for the 64-bit Linux, Windows, SUA, and Mac OS X operating systems running
on the x64 architecture. You can use these compilers to create programs that use 64-bit memory addresses.
However, there are limitations to how this capability can be applied. With the exception of Linux86-64, the
object file formats on all of the operating systems limit the total cuamulative size of code plus static data to 2GB.
This limit includes the code and statically declared data in the program and in system and user object libraries.
Linux806-64 implements a mechanism that overcomes this limitations, as described in‘“Large Static Data in
Linux,” on page 172. This chapter describes the specifics of how to use the PGI compilers to make use of 64-
bit memory addressing.

The 64-bit Windows, Linux, Mac OS X, and SUA environments maintain 32-bit compatibility, which means that
32-bit applications can be developed and executed on the corresponding 64-bit operating system.

Note

The 64-bit PGI compilers are 64-bit applications which cannot run on anything but 64-bit CPUs
running 64-bit Operating Systems.

This chapter describes how to use the following options related to 64-bit programming.

-fPIC - ncnodel =medi um -M arge_arrays

-i8 -M ar geaddr essawar e -tp

Data Types in the 64-Bit Environment

The size of some data types can be different in a 64-bit environment. This section describes the major
differences. Refer to Chapter 15, “Fortran, C, and C++ Data Types” for detailed information.

171

Large Static Data in Linux

C/C++ Data Types

On 32-bit Windows, int is 4 bytes, long is 4 bytes, and pointers are 4 bytes. On 64-bit windows, the size of an
int is 4 bytes, a long is 4 bytes, and a pointer is 8 bytes.

On the 32-bit Linux, SUA, and Mac OS X operating systems, the size of an int is 4 bytes, a long is 4 bytes, and
a pointer is 4 bytes. On the 64-bit Linux, SUA, and Mac OS X operating systems, the size of an int is 4 bytes, a
long is 8 bytes, and a pointer is 8 bytes.

Fortran Data Types

In Fortran, the default size of the INTEGER type is 4 bytes. The - i 8 compiler option may be used to make the
default size of all INTEGER data in the program 8 bytes.

When using the - M ar ge_ar r ays option, described in “64-Bit Array Indexing,” on page 172, any 4-
byte INTEGER variables that are used to index arrays are silently promoted by the compiler to 8 bytes. This
promotion can lead to unexpected consequences, so 8-byte INTEGER variables are recommended for array
indexing when using the option - M ar ge_ar r ays.

Large Static Data in Linux

Linux86-64 operating systems support two different memory models. The default model used by PGI compilers
is the small memory model, which can be specified using -mcmodel=small. This is the 32-bit model, which
limits the size of code plus statically allocated data, including system and user libraries, to 2GB. The medium
memory model, specified by -mcmodel=medium, allows combined code and static data areas (.text and .bss
sections) larger than 2GB. The - ncrmodel =medi um option must be used on both the compile command and
the link command in order to take effect.

The Win64, SUAG4, and 64-bit Mac OS X operating systems do not have any support for large static data
declarations.

There are two drawbacks to using - mcmodel =nedi um First, there is increased addressing overhead to
support the large data range. This can affect performance, though the compilers seek to minimize the added
overhead through careful instruction generation. Second, -mcmodel=medium cannot be used for objects in
shared libraries, because there is no OS support for 64-bit dynamic linkage.

Large Dynamically Allocated Data

Dynamically allocated data objects in programs compiled by the 64-bit PGI compilers can be larger than 2GB.
No special compiler options are required to enable this functionality. The size of the allocation is only limited
by the system. However, to correctly access dynamically allocated arrays with more than 2G elements you
should use the - M ar ge_ar r ays option, described in the following section.

64-Bit Array Indexing

The 64-bit PGI compilers provide an option, - M ar ge_ar r ays, that enables 64-bit indexing of arrays. This
means that, as necessary, 64-bit INTEGER constants and variables are used to index arrays.

172

Note

Chapter 13. Programming Considerations for 64-Bit Environments

In the presence of - M ar ge_ar r ays, the compiler may silently promote 32-bit integers to 64 bits,
which can have unexpected side effects.

On Linux86-64, the - M ar ge_ar r ays option also enables single static data objects larger than 2 GB. This
option is the default in the presence of - mcrodel =nedi um

Note

On Win64, static data may not be larger than 2GB.

Compiler Options for 64-bit Programming

The usual switches that apply to 64-bit programmers seeking to increase the data range of their applications
are in the following table.

Table 13.1. 64-bit Compiler Options

Option

Purpose

Considerations

—mcmodel=medium

Enlarge object size; Allow for
declared data the size of larger
than 2GB

Linux86-64 only. Slower execution.
Cannot be used with —fPIC. Objects cannot
be put into shared libraries.

—Mlargeaddressaware

[Win64 only] Generates code
that allows for addresses greater
than 2GB, using RIP-relative
addressing.

Use —Mlargeaddressaware=no for a direct
addressing mechanism that restricts the
total addressable memory. This is not
applicable if the object file is placed in a
DLL. Further, if an object file is compiled
with this option, it must also be used
when linking.

—Mlarge_arrays

Perform all array-location-to-
address calculations using 64-bit
integer arithmetic.

Slightly slower execution. Is implicit with
—mcmodel=medium. Can be used with
option —mcmodel=small. Win64 does not
support —Mlarge_arrays for static objects
larger than 2GB.

constants not explicitly declared
INTEGER*4 are assumed to be
INTEGER*S.

—{PIC Position independent code. Dynamic linking restricted to a 32-bit
Necessary for shared libraries. |offset. External symbol references should
refer to other shared lib routines, rather
than the program calling them.
—i8 All INTEGER functions, data, and |Users should take care to explicitly

declare INTEGER functions as INTEGER*4.

The following table summarizes the limits of these programming models:

Practical Limitations of Large Array Programming

Table 13.2. Effects of Options on Memory and Array Sizes

Addr. Math |Max Size Gbytes

Comments

Compiler Options

~tp k8-32 or -tp p7 32 |32 |2 2 2 32-bit linux86 programs
—~tp k8-64 or -—tp p7-64 64 |32 |2 2 2 64-bit addr limited by option
—ncnodel =smal |

—tp k8-64 —fpic or 64 (32 |2 2 2 —f pi ¢ incompatible with
—mcmodel=medium

—tp p7-64 —fpic

—tp k8- 64 or 64 |64 |>2 |[>2 |>2 |Enable full support for 64-bit
data addressing

—-tp p7-64 —ntnodel =nedi um

Column Legend
A Address Type - size in bits of data used for address calculations, 32-bit or 64-bit.

I Index Arithmetic - bit-size of data used to index into arrays and other aggregate data
structures. If 32-bit, total range of any single data object is limited to 2GB.

AS |Maximum Array Size - the maximum size in gigabytes of any single data object.

DS |Maximum Data Size - max size in gigabytes combined of all data objects in .bss

TS |Maximum Total Size - max size in gigabytes, in aggregate, of all executable code and data
objects in a running program.

Practical Limitations of Large Array Programming

The 64-bit addressing capability of the Linux86-64 and Win64 environments can cause unexpected issues
when data sizes are enlarged significantly. The following table describes the most common occurrences of
practical limitations of large array programming.

Table 13.3. 64-Bit Limitations

array initialization | Initializing a large array with a data statement may result in very large
assembly and object files, where a line of assembler source is required for
each element in the initialized array. Compilation and linking can be very
time consuming as well. To avoid this issue, consider initializing large arrays
in a loop at runtime rather than in a data statement.

174

Chapter 13. Programming Considerations for 64-Bit Environments

stack space

Stack space can be a problem for data that is stack-based. In Win64, stack
space can be increased by using this link-time switch, where N is the desired
stack size—W , - st ack: N

Note

In linux806-064, stack size is increased in the environment. Setting
stacksize to unlimited often is not large enough.

limt stacksize new size ! in csh
ulimt —s new size ! in bash

page swapping

If your executable is much larger than the physical size of memory, page
swapping can cause it to run dramatically slower; it may even fail. This is
not a compiler problem. Try smaller data sets to determine whether or not a
problem is due to page thrashing.

configured space

Be sure your linux86-64 system is configured with swap space sufficiently
large to support the data sets used in your application(s). If your memory
+swap space is not sufficiently large, your application will likely encounter a
segmentation fault at runtime.

support for large
address offsets in
object file format

Arrays that are not dynamically allocated are limited by how the compiler
can express the ‘distance’ between them when generating code. A field in

the object file stores this ‘distance’ value, which is limited to 32-bits on
Win32, Win64, linux86, and linux86-64 with —mcmodel=small. It is 64-bits
on linux86-64 with —mcmodel=medium. Note. Without the 64-bit offset
support in the object file format, large arrays cannot be declared statically or
locally stack-based.

Medium Memory Model and Large Array in C

Example 13.1. Medium Memory Model and Large Array in C

Consider the following example, where the aggregate size of the arrays exceeds 2GB.

% cat bi gadd.

#i ncl ude <stdi o. h>

#defi ne SI ZE 600000000 /* > 2GB/4 */
static float a[SlIZE], b[SlIZE];

i nt

mai n()

{
long long i, n,
float c[SlZE];
n = Sl ZE;
m= 0;
for (i =0; i <
afi] =i + 1;
b[i] = 2.0 * (i
c[i] = a[i] + b[i]
m=i;
}

/* goes on stack */

printf("a[0] =% b[0] =% c[0]=%g\n", a[0], b[O], c[O]);

175

Medium Memory Model and Large Array in Fortran

printf("m%I|d a[%|d] =% b[%|d]=%gc[%|d]=%g\n", mma[n],mb[m,mc[n]);
return O;

}

% pgcc —ntnodel =nedi um —o bi gadd bi gadd. c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes per element, the size of each array
is greater than 2GB. With pgcc, using the —mcmodel=medium switch, a static data object can now be > 2GB in
size. If you execute with these settings in your environment, you may see the following:

% bi gadd
Segnent ati on fault

Execution fails because the stack size is not large enough. You can most likely correct this error by using the
limit stacksize command to reset the stack size in your environment:

%limt stacksize 3000M

Note

The command limit stacksize unlimited probably does not provide as large a stack as we are using
in the Example 13.1.

% bi gadd

a[0] =1 b[0] =2 c[0] =3

n=599990000 a[599990000] =5. 9999e+08 b[599990000] =1. 19998e+09
c[599990000] =1. 79997e+09

The size of the bss section of the bigadd executable is now larger than 2GB:

% si ze — format =sysv bigadd | grep bss

. bss 4800000008 5245696

% si ze -—format=sysv bigadd | grep Total
Total 4800005080

Medium Memory Model and Large Array in Fortran

The following example works with the PGFORTRAN, PGF95, and PGF77 compilers included in Release 2010.
Both compilers use 64-bit addresses and index arithmetic when the —-mcmodel=medium option is used.

Example 13.2. Medium Memory Model and Large Array in Fortran
Consider the following example:

% cat mat.f
pr ogr am mat
integer i, j, k, size, |, m n paraneter (size=16000) ! >2GB
par anet er (mFsi ze, n=si ze)
real *8 a(mn),b(mn),c(mn),d
doi =1, m
doj =1, n
a(i,j)=10000. 0D0*dbl e(i) +dbl e(j)
b(i,j)=20000.0D0*dbl e(i) +dbl e(j)
enddo
enddo

I $onp parall el

I $onp do

176

Chapter 13. Programming Considerations for 64-Bit Environments

doi =1, m

doj =1, n

c(i,j) =a(i,j) + b(i,j)
enddo

enddo

I $onp do

do i=1, m

doj =1, n

d = 30000. 0DO*dbl e(i) +dbl e(j) +dbl e(j)
if(d .ne. c(i,j)) then

print * "err i=",i,"j=",]
print *, "c(i,j)=",c(i,j)
print *, "d=",d

st op

endi f

enddo

enddo

I $onp end parall el

print *, "M="M", N=",N
print *, "c(MN =", c(mn)
end

When compiled with the PGFORTRAN compiler using —mcmodel=medium:

% pgfortran —np —o mat mat.f —i 8 —ntnodel =medi um
% set env. OVP_NUM_THREADS 2

% mat

M = 16000 , N = 16000

c(MN) = 480032000. 0000000

Large Array and Small Memory Model in Fortran

The following example uses large, dynamically-allocated arrays. The code is divided into 2 main and
subroutine so you could put the subroutine into a shared library. Dynamic allocation of large arrays saves
space in the size of executable and saves time initializing data. Further, the routines can be compiled with 32-
bit compilers, by just decreasing the parameter size.

Example 13.3. Large Array and Small Memory Model in Fortran

% cat mat _al |l 0. f90

program mat _al | o

integer i, |j

integer size, m n

par anet er (size=16000)

par anet er (mFsi ze, n=si ze)

doubl e precision, allocatable::a(:,:),b(:,:),c(:,:)
al locate(a(mn), b(mn), c(mn))

doi =100, m 1

doj =100, n, 1

a(i,j) 10000. 0D0 * dble(i) + dble(j)
b(i,j) 20000. 0D0 * dble(i) + dble(j)
enddo

enddo

call mat_add(a, b, c, mn)

print *, "M="m",N=",n

print *, "¢(MN) =", c(mn)

end

177

Large Array and Small Memory Model in Fortran

subroutine mat _add(a, b, c, m n)

integer m n, i, j

doubl e precision a(mn),b(mn),c(mn)
I $onp do

n
a(i,j) +b(i,j)

% pgfortran —o mat _allo mat _allo.f90 —i 8 —M arge_arrays -np -fast

178

Chapter 14. C/C++ Inline Assembly
and Intrinsics

Inline Assembly

Inline Assembly lets you specify machine instructions inside a "C" function. The format for an inline assembly
instruction is this:

{ asm| _asm__} ("string");

The asm statement begins with the asm or __asm__ keyword. The __asm___ keyword is typically used in
header files that may be included in ISO "C" programs.

"string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\2)
character. These instructions are inserted directly into the compiler's assembly-language output for the
enclosing function.

Some simple asm statements are:

asm ("cli");
asm ("sti");

These asm statements disable and enable system interrupts respectively.
In the following example, the eax register is set to zero.
asm("pushl %ax\n\t" "nmovl $0, %ax\n\t" "popl %ax");

Notice that eax is pushed on the stack so that it is it not clobbered. When the statement is done with eax; it is
restored with the popl instruction.

Typically a program uses macros that enclose asm statements. The following two examples use the interrupt
constructs created previously in this section:

#define disablelnt __asm__ ("cli");
#define enablelnt __asm __ ("sti");

179

Extended Inline Assembly

Extended Inline Assembly

180

“Inline Assembly,” on page 179 explains how to use inline assembly to specify machine specific instructions
inside a "C" function. This approach works well for simple machine operations such as disabling and enabling
system interrupts. However, inline assembly has three distinct limitations:

1. The programmer must choose the registers required by the inline assembly.

2. To prevent register clobbering, the inline assembly must include push and pop code for registers that get
modified by the inline assembly.

3. There is no easy way to access stack variables in an inline assembly statement.

Extended Inline Assembly was created to address these limitations. The format for extended inline assembly,
also known as extended asm, is as follows:

{ asm| _asm_} [volatile | __volatile__]
("string" [: [output operands]] [: [input operands]] [: [clobberlist]]);

¢ Extended asm statements begin with the asm or __asm__ keyword. Typically the __asm__ keyword is
used in header files that may be included by ISO "C" programs.

e An optional volatile or __volatile__ keyword may appear after the asm keyword. This keyword instructs
the compiler not to delete, move significantly, or combine with any other asm statement. Like __asm__, the
__volatile__ keyword is typically used with header files that may be included by ISO "C" programs.

e "string" is one or more machine specific instructions separated with a semi-colon (;) or newline (\rz)
character. The string can also contain operands specified in the [output operands], [input operands],
and [clobber list]. The instructions are inserted directly into the compiler's assembly-language output for
the enclosing function.

e The [output operands], [input operands], and [clobber list] items each describe the effect of the
instruction for the compiler. For example:

asm("movl %, %Weax\n" "novl Weax, W":"=r" (x) : "r" (y) : "%ax");

where "=r" (x) is an output operand
"r" (y) is an input operand.
"%eax" is the clobber list consisting of one register, "%eax".

The notation for the output and input operands is a constraint string surrounded by quotes, followed by
an expression, and surrounded by parentheses. The constraint string describes how the input and output
operands are used in the asm "string". For example, "r" tells the compiler that the operand is a register.
The "=" tells the compiler that the operand is write only, which means that a value is stored in an output
operand's expression at the end of the asm statement.

Each operand is referenced in the asm "string" by a percent "%" and its number. The first operand is
number 0, the second is number 1, the third is number 2, and so on. In the preceding example, "%0"
references the output operand, and "%1" references the input operand. The asm "string" also contains "%
%eax", which references machine register "%eax". Hard coded registers like "%eax" should be specified in
the clobber list to prevent conflicts with other instructions in the compiler's assembly-language output.

Chapter 14. C/C++ Inline Assembly and Intrinsics

[output operands], [input operands], and [clobber list] items are described in more detail in the
following sections.

Output Operands

The [output operands| are an optional list of output constraint and expression pairs that specify the result(s)
of the asm statement. An output constraint is a string that specifies how a result is delivered to the expression.

For example, "=r" (x) says the output operand is a write-only register that stores its value in the "C" variable x
at the end of the asm statement. An example follows:

int x;

voi d exanpl e()

{

asm("movl $0, 9®" : "=r" (x));
}

The previous example assigns 0 to the "C" variable x. For the function in this example, the compiler produces
the following assembly. If you want to produce an assembly listing, compile the example with the pgcc -S
compiler option:
exanpl e:
.. Dcf bO:

pushq % bp
.. Decfi O:

movg % sp, % bp
..Defil
.. ENL1:
|ineno: 8

nmovl $0, %ax

movl %eax, x(%ip)
lineno: O

popg % bp

ret
In the generated assembly shown, notice that the compiler generated two statements for the asm statement
at line number 5. The compiler generated "movl $0, %eax" from the asm "string". Also notice that %eax
appears in place of "%0" because the compiler assigned the %eax register to variable x. Since item 0 is an
output operand, the result must be stored in its expression (x). The instruction mouvl %eax, x(%rip) assigns
the output operand to variable x.

In addition to write-only output operands, there are read/write output operands designated with a "+" instead
of a "=". For example, "+7" (x) tells the compiler to initialize the output operand with variable x at the
beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:

int x=1;
voi d exanpl e2()

{
asm("addl $1, 9" : "+r" (x));

}

To perform the increment, the output operand must be initialized with variable x. The read/write constraint
modifier ("+") instructs the compiler to initialize the output operand with its expression. The compiler
generates the following assembly code for the example2 () function:

181

Extended Inline Assembly

182

exanpl e2:
.. Dcf bO:
pushq % bp
.. Dcfi O:
nmovg % sp, % bp
..Dcfil
.. ENL:
|ineno: 5
movl Xx(%ip), %eax
addl $1, %ax
movl %ax, X(%ip)
lineno: O
popq % bp
ret

From the example2 () code, two extraneous moves are generated in the assembly: one movl for initializing the
output register and a second movl to write it to variable x. To eliminate these moves, use a memory constraint
type instead of a register constraint type, as shown in the following example:

int x=1;
voi d exanpl e2()

asm("addl $1, 9" : "+t (x));
}

The compiler generates 2 memory reference in place of a memory constraint. This eliminates the two
extraneous moves. Because the assembly uses a memory reference to variable x, it does not have to move
X into a register prior to the asm statement; nor does it need to store the result after the asm statement.
Additional constraint types are found in “Additional Constraints,” on page 185.

exanpl e2:
.. Dcf bO:
pushq % bp
.. Dcfi O:
movg % sp, % bp
..Dcfil
.. ENL:
|ineno: 5
addl $1, x(%ip)
|ineno: O
popg % bp
ret

The examples thus far have used only one output operand. Because extended asm accepts a list of output
operands, asm statements can have more than one result, as shown in the following example:

voi d exanpl e4()

{

int x=1; int y=2;

asm("addl $1, %\n" "addl %, 9®": "+r" (x), "+ (y));
}

This example increments variable y by 7 then adds it to variable x. Multiple output operands are separated
with a comma. The first output operand is item 0 ("%0") and the second is item 1 ("%1") in the asm "string".
The resulting values for x and y are 4 and 3 respectively.

Chapter 14. C/C++ Inline Assembly and Intrinsics

Input Operands

The [input operands| are an optional list of input constraint and expression pairs that specify what "C" values
are needed by the asm statement. The input constraints specify how the data is delivered to the asm statement.

For example, "r" (x) says that the input operand is a register that has a copy of the value stored in "C" variable
x. Another example is "m" (x) which says that the input item is the memory location associated with variable

x. Other constraint types are discussed in “Additional Constraints,” on page 185. An example follows:

voi d exanpl e5()
{

int x=1;

int y=2;

int z=3;

asm("addl %2, %\n" "addl 9%, 9®" : "+r" (x), "+n¥ (y) @ "r" (z));
}

The previous example adds variable z, item 2, to variable x and variable y. The resulting values for x and y are 4
and 5 respectively.

Another type of input constraint worth mentioning here is the matching constraint. A matching constraint is
used to specify an operand that fills both an input as well as an output role. An example follows:

int x=1;
voi d exanpl e6()

{

asn("addl $1, %"
"= (%)
0" (X))

}

The previous example is equivalent to the example2() function shown in “Output Operands,” on page 181.
The constraint/expression pair, "0" (x), tells the compiler to initialize output item 0 with variable x at the
beginning of the asm statement. The resulting value for x is 2. Also note that "%7" in the asm "string" means

the same thing as "%0" in this case. That is because there is only one operand with both an input and an
output role.

Matching constraints are very similar to the read/write output operands mentioned in “Output Operands,”
on page 181. However, there is one key difference between read/write output operands and matching
constraints. The matching constraint can have an input expression that differs from its output expression.

The following example uses different values for the input and output roles:

int x;
int y=2;
voi d exanpl e7()
{
asm("addl $1, %4"
Pt (x)
0" ())i
}

The compiler generates the following assembly for example7():

exanpl e7:

.. Dcf bO:
pushqg % bp

.. Dcfi0:

183

Extended Inline Assembly

movg % sp, % bp
.. Decfi 1:
.. ENL:
|ineno: 8
movl y(%ip), Y%eax
addl $1, %ax
movl %eax, x(%ip)
|ineno: O
popq % bp
ret

Variable x gets initialized with the value stored in y, which is 2. After adding 7, the resulting value for variable x

is3.

Because matching constraints perform an input role for an output operand, it does not make sense for the
output operand to have the read/write ("+") modifier. In fact, the compiler disallows matching constraints

with read/write output operands. The output operand must have a write only ("=") modifier.

Clobber List

184

The [clobber list] is an optional list of strings that hold machine registers used in the asm "string". Essentially,
these strings tell the compiler which registers may be clobbered by the asm statement. By placing registers

in this list, the programmer does not have to explicitly save and restore them as required in traditional inline
assembly (described in “Inline Assembly,” on page 179). The compiler takes care of any required saving and
restoring of the registers in this list.

Each machine register in the [clobber list] is a string separated by a comma. The leading '%' is optional in the
register name. For example, "%eax" is equivalent to "eax". When specifying the register inside the asm "string",
you must include two leading '%' characters in front of the name (for example., "% %eax"). Otherwise, the
compiler will behave as if a bad input/output operand was specified and generate an error message. An
example follows:

voi d exanpl e8()
{
int x;
int y=2;
asm("nmovl %, %eax\n"
"movl %, %edx\n"
"addl %edx, %Weax\n"
"addl %eax, 90"
"=rto(x)
"0 (y)
: "eax", "edx");
}
This code uses two hard-coded registers, eax and edx. It performs the equivalent of 3*y and assigns it to X,
producing a result of 6.

In addition to machine registers, the clobber list may contain the following special flags:

cc
The asm statement may alter the condition code register.

Hmemoryﬂ
The asm statement may modify memory in an unpredictable fashion.

Chapter 14. C/C++ Inline Assembly and Intrinsics

When the "memory" flag is present, the compiler does not keep memory values cached in registers across the
asm statement and does not optimize stores or loads to that memory. For example:

asnm("call MyFunc":::"nmenory");

This asm statement contains a "memory" flag because it contains a call. The callee may otherwise clobber
registers in use by the caller without the "memory" flag.

The following function uses extended asm and the "cc" flag to compute a power of 2 that is less than or equal
to the input parameter n.

#pragma noi nline
i nt asnDi vi deConquer (i nt n)

{
int ax = 0;
int bx = 1;
asm (
"LogLoop: \ n"
"cnp %, %\n"
"jnle Done\n"
"inc %\ n"

"add %, %4\ n"

"jnp LogLoop\n"

"Done: \ n"

"dec %0\ n"

"+r" (ax), "+r" (bx) : "r" (n) : "cc");
return ax;

}

The "cc" flag is used because the asm statement contains some control flow that may alter the condition
code register. The #pragma noinline statement prevents the compiler from inlining the asmDivideConquer ()
function. If the compiler inlines asmDivideConquer(), then it may illegally duplicate the labels LogLoop and
Done in the generated assembly.

Additional Constraints

Operand constraints can be divided into four main categories:
e Simple Constraints

e Machine Constraints

e Multiple Alternative Constraints

e Constraint Modifiers

Simple Constraints

The simplest kind of constraint is a string of letters or characters, known as Simple Constraints, such as the
"r" and "m" constraints introduced in “Output Operands,” on page 181. Table 14.1, “Simple Constraints”
describes these constraints.

185

Extended Inline Assembly

186

Table 14.1. Simple Constraints

Constraint |Description

whitespace |Whitespace characters are ignored.

E An immediate floating point operand.

F Same as "E".

g Any general purpose register, memory, or immediate integer operand is allowed.

i An immediate integer operand.

m A memory operand. Any address supported by the machine is allowed.

n Same as "i".

0 Same as "m".

p An operand that is a valid memory address. The expression associated with the
constraint is expected to evaluate to an address (for example, "p" (&x)).

r A general purpose register operand.

X Same as "g".

0,1,2,.9 Matching Constraint. See “Input Operands,” on page 183 for a description.

The following example uses the general or "g" constraint, which allows the compiler to pick an appropriate
constraint type for the operand; the compiler chooses from a general purpose register, memory, or immediate
operand. This code lets the compiler choose the constraint type for "y".

voi d exanpl e9()

{

int x, y=2;

asnm("novl %, 9%®\n" : "=r"
§X) gt (y))

This technique can result in more efficient code. For example, when compiling example9 () the compiler
replaces the load and store of y with a constant 2. The compiler can then generate an immediate 2 for the y
operand in the example. The assembly generated by pgcc for our example is as follows:

exanpl e9:
.. Dcf bO:
pushq % bp
.. DcfiO:
movg % sp, % bp
.. Dcfil
.. ENL:
|ineno: 3
movl $2, %ax
|ineno: 6
popg % bp
ret

In this example, notice the use of $2 for the "y" operand.

Of course, if y is always 2, then the immediate value may be used instead of the variable with the "i" constraint,
as shown here:

Chapter 14. C/C++ Inline Assembly and Intrinsics

voi d exanpl el0()

{

int x;

asm("nmovl 9%,

Dt=Ert (%)

(D))

}

%0\ n"

Compiling example10() with pgcc produces assembly similar to that produced for example9 ().

Machine Constraints

Another category of constraints is Machine Constraints. The x86 and x86_064 architectures have several

classes of registers. To choose a particular class of register, you can use the x86/x86_064 machine constraints
described in Table 14.2, “x86/x86_064 Machine Constraints”.

Table 14.2. x86/x86_64 Machine Constraints

Constraint

Description

a register (e.g., %al, %ax, %eax, %rax)

Specifies a or d registers. This is used primarily for holding 64-bit integer values
on 32 bit targets. The d register holds the most significant bits and the a register
holds the least significant bits.

=n

b register (e.g, %bl, %bx, %ebx, %rbx)

c register (e.g., %cl, %cx, %ecx, %rcx)

Not supported.

d register (e.g., %dl, %dx, %edx, %rdx)

olae|olo

di register (e.g., %dil, %di, %edi, %rdi)

Constant in range of Oxffffffff to Ox 71ttt

Not supported.

Floating point constant in range of 0.0 to 1.0.

Constant in range of 0 to 31 (e.g., for 32-bit shifts).

Constant in range of 0 to 63 (e.g., for 64-bit shifts)

Constant in range of 0 to 127.

Constant in range of 0 to 65535.

Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

Constant in range of 0 to 255 (e.g., for out instruction).

Same as "r" simple constraint.

Same as "r" simple constraint.

Same as "r" simple constraint.

» I m o | Zz|lZ2lEmIT o™

si register (e.g., %sil, %si, %edi, %rsi)

—

Not supported.

187

Extended Inline Assembly

188

Constraint |Description

u Not supported.

X XMM SSE register

y Not supported.

Y/ Constant in range of 0 to Ox7ffffftf.

The following example uses the "x" or XMM register constraint to subtract ¢ from b and store the result in a.

doubl e exanpl el1()
{

doubl e ga;

doubl e b = 400. 99
doubl e ¢ = 300. 98
asm ("subpd %, 9%9;"
"=x" (a)

: "0" (b), "x" (c)

DE

return a;

}

The generated assembly for this example is this:

exanpl ell:
.. Dcf bO:
pushqg % bp
.. Dcfi O:
nmovg % sp, % bp
..Dcfil
.. ENL:
|ineno: 4
nmovsd . C00128(% i p), Yxml
movsd . C00130(% i p), YxnmR
movapd %&xmi, %m0
subpd %m2, % mMmo;
|ineno: 10
|ineno: 11
popq % bp
ret

If a specified register is not available, the pgcc and pgepp compilers issue an error message. For example,
pgcc and pgepp reserves the "%ebx" register for Position Independent Code (PIC) on 32-bit system targets. If
a program has an asm statement with a "b" register for one of the operands, the compiler will not be able to
obtain that register when compiling for 32-bit with the -fPIC switch (which generates PIC).

To illustrate this point, the following example is compiled for a 32-bit target using PIC:

voi d exanpl el2()

{

int x=1;

int y=1;

asm("addl %, %\n"
"+a" (X)
"b" (y));

Compiling with the "-tp p7" switch chooses a 32-bit target.

Chapter 14. C/C++ Inline Assembly and Intrinsics

% pgcc exanplel2.c -fPIC -c -tp p7

PGC-S-0354-Can't find a register in class 'BREG for extended ASM
operand 1 (exanplel2.c: 3)

PGC/ x86 Li nux/x86 Rel Dev: conpil ation conpleted with severe errors

Multiple Alternative Constraints

Sometimes a single instruction can take a variety of operand types. For example, the x86 permits register-
to-memory and memory-to-register operations. To allow this flexibility in inline assembly, use multiple
alternative constraints. An alternative is a series of constraints for each operand.

To specify multiple alternatives, separate each alternative with a comma.

Table 14.3. Multiple Alternative Constraints

Constraint |Description

, Separates each alternative for a particular operand.

? Ignored

! Ignored

The following example uses multiple alternatives for an add operation.

voi d exanpl el3()

{
int x=1;
int y=1;
asm("addl %, %\n"
"+ab, cd" (x)
: "db, cant (y));
}

examplel3() has two alternatives for each operand: "ab,cd" for the output operand and "db,cam" for the
input operand. Each operand must have the same number of alternatives; however, each alternative can have
any number of constraints (for example, the output operand in example13() has two constraints for its
second alternative and the input operand has three for its second alternative).

The compiler first tries to satisfy the left-most alternative of the first operand (for example, the output

operand in example13()). When satisfying the operand, the compiler starts with the left-most constraint.

If the compiler cannot satisfy an alternative with this constraint (for example, if the desired register is not
available), it tries to use any subsequent constraints. If the compiler runs out of constraints, it moves on to

the next alternative. If the compiler runs out of alternatives, it issues an error similar to the one mentioned in
examplel2(). 1f an alternative is found, the compiler uses the same alternative for subsequent operands. For
example, if the compiler chooses the "c" register for the output operand in example13(), then it will use either
the "a" or "m" constraint for the input operand.

Constraint Modifiers

Characters that affect the compiler's interpretation of a constraint are known as Constraint Modifiers. Two
constraint modifiers, the "="and the "+", were introduced in “Output Operands,” on page 181. Table 14.4
summarizes each constraint modifier.

189

Extended Inline Assembly

190

Table 14.4. Constraint Modifier Characters

Constraint |Description
Modifier

n_mn

= This operand is write-only. It is valid for output operands only. If specified, the "=
must appear as the first character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output
operands only. The output operand is initialized with its expression before the
first instruction in the asm statement. If specified, the "+" must appear as the first
character of the constraint string.

& A constraint or an alternative constraint, as defined in “Multiple Alternative
Constraints,” on page 189, containing an "&" indicates that the output operand
is an early clobber operand. This type operand is an output operand that may be
modified before the asm statement finishes using all of the input operands. The
compiler will not place this operand in a register that may be used as an input
operand or part of any memory address.

% Ignored.

Characters following a "#" up to the first comma (if present) are to be ignored in
the constraint.

* The character that follows the "*" is to be ignored in the constraint.

The "="and "+" modifiers apply to the operand, regardless of the number of alternatives in the constraint
string. For example, the "+" in the output operand of example13() appears once and applies to both
alternatives in the constraint string. The "&", "#", and "*" modifiers apply only to the alternative in which they
appear.

Normally, the compiler assumes that input operands are used before assigning results to the output operands.
This assumption lets the compiler reuse registers as needed inside the asm statement. However, if the asm
statement does not follow this convention, the compiler may indiscriminately clobber a result register with an
input operand. To prevent this behavior, apply the early clobber "&" modifier. An example follows:

voi d exanpl el5()
{
int w=1;
int z;
asnm("nmovl $1, %®\n"

"addl 9%, %\n"

"movl %R, "

cor=at (w), =t (z) oo trt (W)
}
The previous code example presents an interesting ambiguity because "w" appears both as an output and as
an input operand. So, the value of "z" can be either 1 or 2, depending on whether the compiler uses the same
register for operand 0 and operand 2. The use of constraint "r" for operand 2 allows the compiler to pick
any general purpose register, so it may (or may not) pick register "a" for operand 2. This ambiguity can be
eliminated by changing the constraint for operand 2 from "r" to "a" so the value of "z" will be 2, or by adding
an early clobber "&" modifier so that "z" will be 1. The following example shows the same function with an
early clobber "&" modifier:

Chapter 14. C/C++ Inline Assembly and Intrinsics

voi d exanpl el6()
{

int w=1;
int z;
asm("nmovl $1, %\n"

"addl 9%, 9%®O\n"

"movl 9@, "
5 "=&at (W), "=r" (z) @ "rt (W) o);
Adding the early clobber "&" forces the compiler not to use the "a" register for anything other than operand 0.
Operand 2 will therefore get its own register with its own copy of "w". The result for "z" in example16() is 1.

Operand Aliases

Extended asm specifies operands in assembly strings with a percent '%' followed by the operand number. For
example, "%0" references operand 0 or the output item "=&a" (w) in function example16() in the previous
example. Extended asm also supports operand aliasing, which allows use of a symbolic name instead of a
number for specifying operands, as illustrated in this example:

voi d exanpl el7()
{

int w=1, z=0;

asm("nmovl $1, 9% out put1]\n"

"addl % input], % outputl]\n"

"movl % input], % output2]”

: [outputl] "=&a" (w), [output2] "=r"
(2)

}: [input] "r" (w));

In examplel7(), "% [outputl]" is an alias for "%0", "% [output2]" is an alias for "%1", and "% [input]" is an
alias for "%2". Aliases and numeric references can be mixed, as shown in the following example:

voi d exanpl el8()
{

int w=1, z=0;

asm("nmovl $1, 9% out put1]\n"

"addl % input], %0\n"

"movl % input], % output2]”

: [outputl] "=&a" (w), [output2] "=r" (z)
}: [input] "r" (w));

In examplel18(), "%0" and "% [outputl]" both represent the output operand.

Assembly String Modifiers

Special character sequences in the assembly string affect the way the assembly is generated by the compiler.
For example, the "%" is an escape sequence for specifying an operand, "%%" produces a percent for hard
coded registers, and "\n" specifies a new line. Table 14.5, “Assembly String Modifier Characters”summarizes
these modifiers, known as Assembly String Modifiers.

191

Extended Inline Assembly

Table 14.5. Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

%* Adds a "*' in the assembly string.

%% Adds a '%' in the assembly string.

%A Adds a "*' in front of an operand in the assembly string. (For example, %A0 adds
a "' in front of operand 0 in the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0 produces
'b' on x86 and x86_64.)

%L Produces the word op code suffix for this operand. (For example, %L0 produces
1" on x86 and x86_64.)

%P If producing Position Independent Code (PIC), the compiler adds the PIC suffix
for this operand. (For example, %P0 produces @PLT on x86 and x86_64.)

%Q Produces a quad word op code suffix for this operand if is supported by the
target. Otherwise, it produces a word op code suffix. (For example, %Q0
produces 'q' on x86_64 and '1' on x86.)

%S Produces 's' suffix for this operand. (For example, %S0 produces 's' on x86 and
x86_64.)

%T Produces 't' suffix for this operand. (For example, %S0 produces 't' on x86 and
x86_64.)

%W Produces the half word op code suffix for this operand. (For example, %W0
produces 'w' on x86 and x86_64.)

%a Adds open and close parentheses () around the operand.

%b Produces the byte register name for an operand. (For example, if operand 0 is in
register 'a', then %b0 will produce '%al'.)

%C Cuts the '$' character from an immediate operand.

%k Produces the word register name for an operand. (For example, if operand 0 is
in register 'a', then %k0 will produce '%eax'.)

%q Produces the quad word register name for an operand if the target supports
quad word. Otherwise, it produces a word register name. (For example, if
operand 0 is in register 'a', then %q0 produces %rax on x86_64 or %eax on
x86.)

%W Produces the half word register name for an operand. (For example, if operand
0 is in register 'a', then %wO0 will produce '%ax'.)

%1 Produces an op code suffix based on the size of an operand. (For example, 'b'
for byte, 'w' for half word, '1' for word, and 'q' for quad word.)

%+ %G %D %F %0 %X %f %h %l %n %s %y are not supported.

These modifiers begin with either a backslash "\" or a percent "%".

192

Chapter 14. C/C++ Inline Assembly and Intrinsics

The modifiers that begin with a backslash "\" (e.g., "\n") have the same effect as they do in a printf format
string. The modifiers that are preceded with a "%" are used to modify a particular operand.

These modifiers begin with either a backslash "\" or a percent "%" For example, "%b0" means, "produce the
byte or 8 bit version of operand 0". If operand 0 is a register, it will produce a byte register such as %al, %bl,
%cl, and so on.

Consider this example:

voi d exanpl e19()
{

int a = 1;

int *p = &a;

asm ("add%0 %1, % 0"

D "=&p" (p) ¢ "r" (@), "0 (p));

}

On an x86 target, the compiler produces the following instruction for the asm string shown in the preceding

example:

addl %ecx, (%eax)

The "%z0" modifier produced an 'lI' (lower-case 'L') suffix because the size of pointer p is 32 bits on x86.
The "%q1" modifier produced the word register name for variable a. The "%a0" instructs the compiler to add
parentheses around operand 0, hence "(%eax)".

On an x86_64 target, the compiler produces the following instruction for the asm string shown in the
preceding example:

addq % cx, (% ax)

The "%z0" modifier produced a 'q' suffix because the size of pointer p is 64-bit on x86_64. Because x86_64
supports quad word registers, the "%q1" modifier produced the quad word register name (%rax) for variable
a.

Extended Asm Macros

As with traditional inline assembly, described in“Inline Assembly,” on page 179, extended asm can be used in
a macro. For example, you can use the following macro to access the runtime stack pointer.

#define GET_SP(x) \

asm("nov YWep, 9W": "=m' (##x):: "UYp");
voi d exanpl e20()

{

void * stack_pointer;
GET_SP(stack_poi nter);

}

The GET_SP macro assigns the value of the stack pointer to whatever is inserted in its argument (for example,
stack_pointer). Another "C" extension known as statement expressions is used to write the GET_SP macro
another way:

#define GET_SP2 ({ \

void *my_stack_ptr; \

asm("nmov %Wep, 9W": "=nm' (ny_stack_ptr) :: "%p"); \

my_stack_ptr; \

9]

193

Intrinsics

voi d exanpl e21()

{
void * stack_pointer = GET_SP2;

}

The statement expression allows a body of code to evaluate to a single value. This value is specified as the last
instruction in the statement expression. In this case, the value is the result of the asm statement, my_stack_ptr.
By writing an asm macro with a statement expression, the asm result may be assigned directly to another
variable (for example, void * stack_pointer = GET_SP2) or included in a larger expression, such as: void *
stack_pointer = GET_SP2 - sizeof(long).

Which style of macro to use depends on the application. If the asm statement needs to be a part of an
expression, then a macro with a statement expression is a good approach. Otherwise, a traditional macro, like
GET_SP(x), will probably suffice.

Intrinsics

Inline intrinsic functions map to actual x86 or x64 machine instructions. Intrinsics are inserted inline to avoid
the overhead of a function call. The compiler has special knowledge of intrinsics, so with use of intrinsics,
better code may be generated as compared to extended inline assembly code.

The PGI Workstation version 7.0 or higher compiler intrinsics library implements MMX, SSE, SS2, SSE3, SSSE3,
SSE4a, and ABM instructions. The intrinsic functions are available to C and C++ programs on Linux and
Windows. Unlike most functions which are in libraries, intrinsics are implemented internally by the compiler.
A program can call the intrinsic functions from C/C++ source code after including the corresponding header
file.

The intrinsics are divided into header files as follows:

Table 14.6. Intrinsic Header File Organization

Instructions Header File
MMX mmintrin.h
SSE xmmintrin.h
SSE2 emmintrin.h
SSE3 pmmintrin.h
SSSE3 tmmintrin.h
SSE4a ammintrin.h
ABM intrin.h

194

The following is a simple example program that calls XMM intrinsics.

#i ncl ude <xmm ntrin. h>
int main()({
_ m28, @A B, result;
A= mmset_ps(23.3, 43.7, 234.234, 98.746);
B = _mmset_ps(15.4, 34.3, 4.1, 8.6);
result = mmadd_ps(__A _ B);
return O;

Part |l. Reference I nformation

In Part I you learned how to use the PGI compilers as well as why certain options or tasks are useful in enhancing the
effectiveness and efficiency of the PGI compilers and tools. You may now be ready to learn more about specific areas
or specific topics. The chapters in this part of the guide provide more data and facts about the topics that you have
already learned about, including information about:

e Data types, as described in Chapter 15, “Fortran Data Types” on page 195.

e Detailed information about each of the command-line options, as described in Chapter 16, “Command-Line
Options Reference” on page 203.

e Details about the OpenMP directives and pragmas, as described in Chapter 17, “OpenMP Reference Information”
on page 293.

e PGI Accelerator directives, runtime routines, and environment variables, as described in Chapter 18, “PGI
Accelerator Compilers Reference” on page 321.

e C++ Name Mangling, as described in Chapter 19, “C++ Name Mangling” on page 343.

e Details about PGI directives and pragmas, as described in Chapter 20, “Directives and Pragmas Reference” on
page 347.

e Information about run-time environments, as described in Chapter 21, “Run-time Environment” on page 359.
e C++ dialect that are supported, as described in Chapter 22, “C++ Dialect Supported” on page 387.

e Fortran module and library interfaces that PGI uses to support the Win32 API and Unix/Linux/Mac OS X portability
libraries, as described in Chapter 23, Fortran Module/Library Interfaces for Windows” on page 391.

 Cand C++ Inline Intrinsics, as described in Chapter 24, “C/C++ MMX/SSE Inline Intrinsics” on page 421.

* Error messages, as described in Chapter 25, “Messages” on page 429.

Chapter 15. Fortran, C, and C++
Data Types

This chapter describes the scalar and aggregate data types recognized by the PGI Fortran, C, and C++
compilers, the format and alignment of each type in memory, and the range of values each type can have

on x86 or x64 processor-based systems running a 32-bit operating system. For more information on x86-
specific data representation, refer to the System V Application Binary Interface, Processor Supplement, listed in
“Related Publications,” on page xxviii. This chapter specifically does not address x64 processor-based systems
running a 64-bit operating system, because the application binary interface (ABI) for those systems is still
evolving. For the latest version of the ABI, refer to www.x86-64.0rg/abi.pdf.

Fortran Data Types

Fortran Scalars

A scalar data type holds a single value, such as the integer value 42 or the real value 112.6. The next table lists
scalar data types, their size, format and range. Table 15.2, “Real Data Type Ranges,” on page 196 shows the
range and approximate precision for Fortran real data types. Table 15.3, “Scalar Type Alignment,” on page
196 shows the alignment for different scalar data types. The alignments apply to all scalars, whether they are
independent or contained in an array, a structure or a union.

Table 15.1. Representation of Fortran Data Types

Fortran Data Type Format Range
INTEGER 2's complement integer 2310201
INTEGER*2 2's complement integer -32768 to 32767
INTEGER*4 2's complement integer 2910 201
INTEGER*8 2's complement integer 2% 19 2%3-1
LOGICAL 32-bit value true or false
LOGICAL*1 8-bit value true or false
LOGICAL*2 16-bit value true or false

195

Fortran Data Types

Fortran Data Type Format Range
LOGICAL*4 32-bit value true or false
LOGICAL*8 04-bit value true or false
BYTE 2's complement -128 to 127
REAL Single-precision floating point 1077 to 10%%
REAL*4 Single-precision floating point 107 t0 10 W
REAL*8 Double-precision floating point 10777 10 10 38
DOUBLE PRECISION Double-precision floating point 107 10 1078 (V
COMPLEX Single-precision floating point 107 10 10%%
DOUBLE COMPLEX Double-precision floating point 10777 10 10%8
COMPLEX*16 Double-precision floating point 10777 10 107
CHARACTER*n Sequence of n bytes

W Approximate value

The logical constants . TRUE. and . FALSE. are all ones and all zeroes, respectively. Internally, the value of a
logical variable is true if the least significant bit is one and false otherwise. When the option —Muni x| ogi cal
is set, a logical variable with a non-zero value is true and with a zero value is false.

Note

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 15.2. Real Data Type Ranges

Data Type |Binary Range Decimal Range |Digits of Precision
REAL 212019 2128 10 1010% D |7.8
REAL*8 210224991028 110715108 D 115.16
Table 15.3. Scalar Type Alignment

This Type... ...Is aligned on this size boundary

LOGICAL*1 1-byte

LOGICAL*2 2-byte

LOGICAL*4 4-byte

LOGICAL*8 8-byte

BYTE 1-byte

INTEGER*2 2-byte

INTEGER*4 4-byte

196

Chapter 15. Fortran, C, and C++ Data Types

This Type... ...Is aligned on this size boundary
INTEGER*8 8-byte
REAL*4 4-byte
REAL*8 8-byte
COMPLEX*8 4-byte
COMPLEX*16 8-byte

FORTRAN 77 Aggregate Data Type Extensions

The PGF77 compiler supports de facto standard extensions to FORTRAN 77 that allow for aggregate data
types. An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

* An array consists of one or more elements of a single data type placed in contiguous locations from first to
last.

e Astructure can contain different data types. The members are allocated in the order they appear in the
definition but may not occupy contiguous locations.

* Aunion is a single location that can contain any of a specified set of scalar or aggregate data types. A union
can have only one value at a time. The data type of the union member to which data is assigned determines
the data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object occupies and
how efficiently the processor can address members. Arrays use the alignment of their members.

Array types
align according to the alignment of the array elements. For example, an array of INTEGER*2 data aligns on
a 2byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In the next
example, the union aligns on a 4byte boundary since the alignment of c, the most restrictive element, is
four.

STRUCTURE / astr/

UNI ON

VAP

INTEGER*2 a ! 2 bytes
END MVAP

VAP

BYTE b ! 1 byte

END MVAP

VAP

I NTEGER*4 c ! 4 bytes
END MVAP
END UNI ON
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the structure is
called internal padding. Padding between the last member and the end of the space is called Zail padding.

197

C and C++ Data Types

The offset of a structure member from the beginning of the structure is a multiple of the member’s alignment.
For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an INTEGER*2 member from the
beginning of a structure is 2 multiple of two bytes.

Fortran 90 Aggregate Data Types (Derived Types)

The Fortran 90 standard added formal support for aggregate data types. The TYPE statement begins a derived
type data specification or declares variables of a specified user-defined type. For example, the following would
define a derived type ATTENDEE:

TYPE ATTENDEE
CHARACTER(LEN=30) NAVME
CHARACTER(LEN=30) ORGANI ZATI ON
CHARACTER (LEN=30) EMAI L

END TYPE ATTENDEE

In order to declare a variable of type ATTENDEE and access the contents of such a variable, code such as the
following would be used:

TYPE (ATTENDEE) ATTLI ST(100)

ATTLI ST(1) 9NAVE = * JOHN DOE’

C and C++ Data Types

C and C++ Scalars

198

Table 15.4, “C/C++ Scalar Data Types”lists C and C++ scalar data types, providing their size and format.

The alignment of a scalar data type is equal to its size. Table 15.5, “Scalar Alignment,” on page 199 shows
scalar alignments that apply to individual scalars and to scalars that are elements of an array or members of a
structure or union. Wide characters are supported (character constants prefixed with an L). The size of each
wide character is 4 bytes.

Table 15.4. C/C++ Scalar Data Types

Data Type Size Format Range
(bytes)
unsigned char 1 ordinal 0 to 255
[signed] char 1 2's complement integer |-128 to 127
unsigned short 2 ordinal 0 to 65535
[signed] short 2 2's complement integer |-32768 to 32767
unsigned int 4 ordinal 0to 2°%-1
[signed] int 4 2's complement integer |-2°" to 23'-1
[signed] long [int] (32-bit |4 2's complement integer 23102511
operating systems and win64)
[signed] long [int] 8 2's complement integer 291629
(linux86-64 and sua6b4)

Chapter 15. Fortran, C, and C++ Data Types

Data Type Size Format Range
(bytes)
unsigned long [int] (32-bit |4 ordinal 0to 2921
operating systems and win64)
unsigned long [int] 8 ordinal 0to 241
(linux86-64 and sua64)
[signed] long long [int] 8 2's complement integer 293402951
unsigned long long [int] ordinal 0t02%1
float IEEE single-precision [10™ to 10°® (1)
floating-point
double 8 IEEE double-precision 107 10 103 (1)
floating-point
long double 8 IEEE double-precision |10 to 10°%)
floating-point
bit field'” (unsigned value) [1t032 |ordinal 0 to 2571, where size is the
bits number of bits in the bit field
bit field® (signed value) 11032 |2's complement integer |-257" to 2711, where size
bits is the number of bits in the bit
field
pointer address 0to 2°*1
enum 2's complement integer 2102311
W Approximate value

@ Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a multiple of 8

bits (1 byte)
Table 15.5. Scalar Alignment

Data Type Alignment on this size boundary
char 1-byte boundary, signed or unsigned.
short 2-byte boundary, signed or unsigned.
int 4-byte boundary, signed or unsigned.
enum 4-byte boundary.
pointer 4-byte boundary.
float 4-byte boundary.
double 8-byte boundary.
long double 8-byte boundary.
long [int] 32-bit on Win64 4-byte boundary, signed or unsigned.
long [int] linux86-64, sua64 8-byte boundary, signed or unsigned..
long long [int] 00000000 C0COI0IR000C000Tn0o0ioobooIC oo Do

199

C and C++ Data Types

[

C and C++ Aggregate Data Types

An aggregate data type consists of one or more scalar data type objects. You can declare the following
aggregate data types:

array
consists of one or more elements of a single data type placed in contiguous locations from first to last.

class
(C++ only) is a class that defines an object and its member functions. The object can contain fundamental
data types or other aggregates including other classes. The class members are allocated in the order they
appear in the definition but may not occupy contiguous locations.

struct
is a structure that can contain different data types. The members are allocated in the order they appear in
the definition but may not occupy contiguous locations. When a struct is defined with member functions,
its alignment rules are the same as those for a class.

union
is a single location that can contain any of a specified set of scalar or aggregate data types. A union can
have only one value at a time. The data type of the union member to which data is assigned determines the
data type of the union after that assignment.

Class and Object Data Layout

200

Class and structure objects with no virtual entities and with no base classes, that is just direct data field
members, are laid out in the same manner as C structures. The following section describes the alignment and
size of these C-like structures. C++ classes (and structures as a special case of a class) are more difficult to
describe. Their alignment and size is determined by compiler generated fields in addition to user-specified
fields. The following paragraphs describe how storage is laid out for more general classes. The user is warned
that the alignment and size of a class (or structure) is dependent on the existence and placement of direct
and virtual base classes and of virtual function information. The information that follows is for informational
purposes only, reflects the current implementation, and is subject to change. Do not make assumptions about
the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence indicated):

e First, storage for all of the direct base classes (which implicitly includes storage for non-virtual indirect
base classes as well):

» When the direct base class is also virtual, only enough space is set aside for a pointer to the actual
storage, which appears later.

e In the case of a non-virtual direct base class, enough storage is set aside for its own non-virtual base
classes, its virtual base class pointers, its own fields, and its virtual function information, but no space is
allocated for its virtual base classes.

Chapter 15. Fortran, C, and C++ Data Types

e Next, storage for the class’s own fields.
e Next, storage for virtual function information (typically, a pointer to a virtual function table).

e Finally, storage for its virtual base classes, with space enough in each case for its own non-virtual base
classes, virtual base class pointers, fields, and virtual function information.

Aggregate Alignment

The alignment of an array, a structure or union (an aggregate) affects how much space the object occupies and
how efficiently the processor can address members.

Arrays
align according to the alignment of the array elements. For example, an array of short data type aligns on a
2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. In the following example, the
union unl aligns on a 4-byte boundary since the alignment of c, the most restrictive element, is four:

uni on unl {

short a; /* 2 bytes */
char b; /* 1 byte */
int ¢c; /* 4 bytes */

[¢

Structure alignment can result in unused space, called padding. Padding between members of a structure is
called internal padding. Padding between the last member and the end of the space occupied by the structure
is called tail padding. Figure 15.1, “Internal Padding in a Structure,” on page 201, illustrates structure
alignment. Consider the following structure:

struct strcl {

char a; /* occupies byte 0 */

short b; /* occupies bytes 2 and 3 */
char c; /* occupies byte 4 */
int d; /* occupies bytes 8 through 11 */
b

Figure 15.1. Internal Padding in a Structure

kb HHHH a byte 0
HHHH o tyrte 4
d ryte 8

Figure 15.2, “Tail Padding in a Structure,” on page 202, shows how tail padding is applied to a structure
aligned on a doubleword (8 byte) boundary.

201

C and C++ Data Types

struct strc2{

int mi[4]; /* occupies bytes

0 through 15 */

doubl e n2; /* occupies bytes 16 through 23 */
short mB; /* occupies bytes 24 and 25 */

} st

Bit-field Alignment

Bit-fields have the same size and alignment rules as other aggregates, with several additions to these rules:

* Bit-fields are allocated from right to left.

* A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross unit
boundaries.

» Bit-fields may share a storage unit with other structure/union members, including members that are not bit-
fields.

 Unnamed bit-field's types do not affect the alignment of a structure or union.

e Items of [signed/unsigned] long long type may not appear in field declarations on 32-bit systems.

Figure 15.2. Tail Padding in a Structure

st.ml[0] byte 0
st.ml[1] byte 4
st.ml[Z2] bt &
st.ml[3] byte 12

2 byte 16
2 bte 20
HHHH m3 byte 24
HHEMH byte 28

Other Type Keywords in C and C++

The void data type is neither a scalar nor an aggregate. You can use void or void* as the return type of
a function to indicate the function does not return a value, or as a pointer to an unspecified data type,
respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate attributes with other
types. Use const to specify that an identifier is a constant and is not to be changed. Use volatile to prevent
optimization problems with data that can be changed from outside the program, such as memory#mapped I/0
buffers.

202

Chapter 16. Command-Line Options
Reference

A command-line option allows you to specify specific behavior when a program is compiled and linked.
Compiler options perform a variety of functions, such as setting compiler characteristics, describing the
object code to be produced, controlling the diagnostic messages emitted, and performing some preprocessor
functions. Most options that are not explicitly set take the default settings. This reference chapter describes the
syntax and operation of each compiler option. For easy reference, the options are arranged in alphabetical
order.

For an overview and tips on which options are best for which tasks, refer to Chapter 2, “Using Command Line
Options,” on page 19, which also provides summary tables of the different options.

This chapter uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (1) separates
the choices.

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

PGI Compiler Option Summary

The following tables include all the PGI compiler options that are not language-specific. The options are
separated by category for easier reference.

For a complete description of each option, see the detailed information later in this chapter.

Build-Related PGI Options

The options included in the following table are the ones you use when you are initially building your program
or application.

203

PGI Compiler Option Summary

204

Table 16.1. PGI Build-Related Compiler Options

Option Description

—# Display invocation information.

—Hit# Shows but does not execute the driver commands (same as the
option —dryrun).

—Bdynamic Compiles for and links to the DLL version of the PGI runtime

libraries.

—Bstatic_pgi

Compiles for and links to the static version of the PGI runtime
libraries.

—C Stops after the assembly phase and saves the object code in
filename.o.

—D<args> Defines a preprocessor macro.

—dryrun Shows but does not execute driver commands.

—drystdinc Displays the standard include directories and then exists the
compiler.

—dynamiclib Invokes the libtool utility program provided by Mac OS X to create
the dynamic library. See the libtool man page for more information.

-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

—F Stops after the preprocessing phase and saves the preprocessed
file in filename.f (this option is only valid for the PGI Fortran
compilers).

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

—fpic (Linux and Mac OS X only) Generate position-independent code.

—{PIC (Linux and Mac OS X only) Equivalent to —fpic.

-G (Linux only) Passed to the linker. Instructs the linker to produce a
shared object file.

—g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

—help Display driver help message.

—I <dirname>

Adds a directory to the search path for #include files.

—i2, —i4 and —i8 —i2: Treat INTEGER variables as 2 bytes.
—i4: Treat INTEGER variables as 4 bytes.
—i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-
bits for INTEGER*8 operations.

—K<flag> Requests special compilation semantics with regard to conformance

to IEEE 754.

Chapter 16. Command-Line Options Reference

Option Description

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

—L<dirname> Specifies a library directory.

—I<library> Loads a library.

—m Displays a link map on the standard output.

—M<pgflag> Selects variations for code generation and optimization.

—mcmodel=medium

(—tp k8-64 and —tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64
environment.

—module <moduledir>

(F90/F95/HPF only) Save/search for module files in directory
<moduledir>.

—mp|[=all, align,bind,

Interpret and process user-inserted shared-memory parallel

[no]numa] programming directives (see Chapters 5 and 6).

—noswitcherror Ignore unknown command line switches after printing an warning
message.

—0 Names the object file.

—pc <val> (—tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

- -pedantic Prints warnings from included <system header files>

—pg Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (—qp is also supported,
and is equivalent).

—pgf77libs Append PGF77 runtime libraries to the link line.

—pgf90libs Append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

—R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the
search path for shared object files.

- Creates a relocatable object file.

—r4 and —r8 —r4: Interpret DOUBLE PRECISION variables as REAL.
—r8: Interpret REAL variables as DOUBLE PRECISION.

—rc file Specifies the name of the driver's startup file.

—s Strips the symbol-table information from the object file.

=S Stops after the compiling phase and saves the assembly—language
code in filename.s.

—shared (Linux only) Passed to the linker. Instructs the linker to generate a
shared object file. Implies —fpic.

—show Display driver's configuration parameters after startup.

205

PGI Compiler Option Summary

Option Description

—silent Do not print warning messages.

—soname Pass the soname option and its argument to the linker.
—time Print execution times for the various compilation steps.

—tp <target> [target...]

Specify the type(s) of the target processor(s).

—u <symbol> Initializes the symbol table with <symbol>, which is undefined for
the linker. An undefined symbol triggers loading of the first member
of an archive library.

—U <symbol> Undefine a preprocessor macro.

—V[release_number]

Displays the version messages and other information, or allows
invocation of a version of the compiler other than the default.

—v Displays the compiler, assembler, and linker phase invocations.
-W Passes arguments to a specific phase.
W Do not print warning messages.

PGI Debug-Related Compiler Options

The options included in the following table are the ones you typically use when you are debugging your

program or application.

Table 16.2. PGl Debug-Related Compiler Options

Option Description

—C (Fortran only) Generates code to check array bounds.

—C Instrument the generated executable to perform array bounds
checking at runtime.

—-E Stops after the preprocessing phase and displays the preprocessed
file on the standard output.

--flagcheck Simply return zero status if flags are correct.

—flags Display valid driver options.

-g Includes debugging information in the object module.

—gopt Includes debugging information in the object module, but forces
assembly code generation identical to that obtained when —gopt is
not present on the command line.

—K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker
command, preserves the temporary file instead of deleting it.

—M<pgflag> Selects variations for code generation and optimization.

206

Chapter 16. Command-Line Options Reference

Option

Description

—Mprof=time

Instrument the generated executable to produce a gprof-style
gmon.out sample-based profiling trace file (—qp is also supported,
and is equivalent).

—pc <val>

(—tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

—[no]traceback

Adds debug information for runtime traceback for use with the
environment variable PG _TERM

PGl Optimization-Related Compiler Options

The options included in the following table are the ones you typically use when you are optimizing your

program or application code.

Table 16.3. Optimization-Related PGl Compiler Options

Option Description

—fast Generally optimal set of flags for targets that support SSE capability.

—fastsse Generally optimal set of flags for targets that include SSE/SSE2
capability.

—M<pgflag> Selects variations for code generation and optimization.

—mp|[=all, align,bind,

Interpret and process user-inserted shared-memory parallel

[no]numa] programming directives (see Chapters 5 and 6).

—O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

—pc <val> (—tp px/p5/p6/piii targets only) Set precision globally for x87
floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

—Mprof=time Instrument the generated executable to produce a gprof-style

gmon.out sample-based profiling trace file (-gp is also supported,
and is equivalent).

PGI Linking and Runtime-Related Compiler Options

The options included in the following table are the ones you typically use to define parameters related to
linking and running your program or application code.

Table 16.4. Linking and Runtime-Related PGl Compiler Options

Option

Description

—Bdynamic

Compiles for and links to the DLL version of the PGI runtime
libraries.

—Bstatic_pgi

Compiles for and links to the static version of the PGI runtime
libraries.

207

C and C++ Compiler Options

Option Description

—byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice
versa on input/output of unformatted data

—fpic (Linux only) Generate position-independent code.

—{PIC (Linux only) Equivalent to —fpic.

-G (Linux only) Passed to the linker. Instructs the linker to produce a
shared object file.

—g77libs (Linux only) Allow object files generated by g77 to be linked into
PGI main programs.

—i2 Treat INTEGER variables as 2 bytes.

—i4 Treat INTEGER variables as 4 bytes.

—i8 Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER*8 operations.

—K<flag> Requests special compilation semantics with regard to conformance
to IEEE 754.

—M<pgflag> Selects variations for code generation and optimization.

—mcmodel=medium (—tp k8-64 and —tp p7-64 targets only) Generate code which
supports the medium memory model in the linux86-64
environment.

—shared (Linux only) Passed to the linker. Instructs the linker to generate a
shared object file. Implies —fpic.

—soname Pass the soname option and its argument to the linker.

- Specify the target accelerator.

ta=nvidia(,nvidia_suboptions),host

—tp <target> [target...] Specify the type(s) of the target processor(s).

C and C++ Compiler Options

208

There are a large number of compiler options specific to the PGCC and PGC++ compilers, especially PGC+
+. The next table lists several of these options, but is not exhaustive. For a complete list of available options,
including an exhaustive list of PGC++ options, use the —help command-line option. For further detail on a
given option, use —help and specify the option explicitly. The majority of these options are related to building
your program or application.

Table 16.5. C and C++ -specific Compiler Options

Option Description

—A (pgepp only) Accept proposed ANSI C++, issuing errors
for non-conforming code.

—a (pgepp only) Accept proposed ANSI C++, issuing
warnings for non-conforming code.

Chapter 16. Command-Line Options Reference

Option

Description

--[no_]alternative_tokens

(pgepp only) Enable/disable recognition of alternative
tokens. These are tokens that make it possible to write
C++ without the use of the , , [,],#, & and ” and
characters. The alternative tokens include the operator
keywords (e.g., and, bitand, etc.) and digraphs. The
default is -—no_alternative_tokens.

-B Allow C++ comments (using //) in G source.

—b (pgcpp only) Compile with cfront 2.1 compatibility. This
accepts constructs and a version of C++ that is not part
of the language definition but is accepted by cfront. EDG
option.

—b3 (pgcpp only) Compile with cfront 3.0 compatibility. See
—b.

--[no_]bool (pgepp only) Enable or disable recognition of bool. The

default value is —bool.

--[no_]builtin

Do/don’t compile with math subroutine builtin support,
which causes selected math library routines to be
inlined. The default is —builtin.

--cfront_2.1 (pgcpp only) Enable compilation of C++ with
compatibility with cfront version 2.1.
--cfront_3.0 (pgepp only) Enable compilation of C++ with

compatibility with cfront version 3.0.

--Compress_names

(pgepp only) Create a precompiled header file with the
name filename.

—d<arg>

(pgcc only) Prints additional information from the
preprocessor.

--dependencies (see —M)

(pgcpp only) Print makefile dependencies to stdout.

--dependencies_to_file f i | ename

(pgcpp only) Print makefile dependencies to file
filenane.

--display_error_number

(pgepp only) Display the error message number in any
diagnostic messages that are generated.

--diag_error tag (pgepp only) Override the normal error severity of the
specified diagnostic messages.

--diag_remark tag (pgcpp only) Override the normal error severity of the
specified diagnostic messages.

--diag_suppress tag (pgepp only) Override the normal error severity of the
specified diagnostic messages.

--diag_warning tag (pgepp only) Override the normal error severity of the

specified diagnostic messages.

209

C and C++ Compiler Options

210

Option

Description

-e<number>

(pgepp only) Set the C++ front-end error limit to the
specified <number>.

--[no_]exceptions

(pgepp only) Disable/enable exception handling
support. The default is —exceptions

--gnu_extensions

(pgcpp only) Allow GNU extensions like "include next"
which are required to compile Linux system header
files.

--gnu_version <num>

(pgepp only) Sets the GNU C++ compatibility version.

--[no]llalign (pgepp only) Do/don’t align longlong integers on
integer boundaries. The default is —llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

—MD filename (pgcpp only) Generate make dependence lists and print

them to file filename.

- -microsoft_version <num>

Sets the Microsoft C++ compatibility version.

--optk_allow_dollar_in_id_chars

(pgepp only) Accept dollar signs in identifiers.

P

Stops after the preprocessing phase and saves the
preprocessed file in filename.i.

-+p (pgepp only) Disallow all anachronistic constructs.
cfront option
--pch (pgepp only) Automatically use and/or create a

precompiled header file.

--pch_dir directoryname

(pgepp only) The directory dirname in which to search
for and/or create a precompiled header file.

--[no_]pch_messages

(pgcpp only) Enable/ disable the display of 2 message
indicating that a precompiled header file was created or
used.

--preinclude=<filename>

(pgcpp only) Specify file to be included at the beginning
of compilation so you can set system-dependent macros,
types, and so on.

—t

Control instantiation of template functions. EDG option

--use_pch filename

(pgepp only) Use a precompiled header file of the
specified name as part of the current compilation.

--[no_]using_std

(pgcpp only) Enable/disable implicit use of the std
namespace when standard header files are included.

—X

(pgepp only) Allow $ in names.

Chapter 16. Command-Line Options Reference

Generic PGl Compiler Options

—Hit

The following descriptions are for all the PGI options. For easy reference, the options are arranged in
alphabetical order. For a list of options by tasks, refer to the tables in the beginning of this chapter as well as to
Chapter 2, “Using Command Line Options,” on page 19.

Displays the invocations of the compiler, assembler and linker.
Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgfortran -# prog.f

Description: The —# option displays the invocations of the compiler, assembler and linker. These invocations
are command-lines created by the driver from your command-line input and the default value.

Related options: —Minfo, -V, —v.

Displays the invocations of the compiler, assembler and linker, but does not execute them.
Default: The compiler does not display individual phase invocations.

Usage: The following command-line requests verbose invocation information.

$ pgfortran -### nyprog.f

Description: Use the —### option to display the invocations of the compiler, assembler and linker but not to
execute them. These invocations are command lines created by the compiler driver from the r c files and the
command-line options.

Related options: —#, —dryrun, —Minfo, —V

—Bdynamic

Compiles for and links to the DLL version of the PGI runtime libraries.
Default: The compiler uses static libraries.

Usage: You can create the DLL obj 1. dI | and its import library obj 1. I i b using the following series of
commands:

% pgf ortran -Bdynam c -c objectl.f
% pgf ortran - Mrakedl | objectl.obj -o obj1.dll

Then compile the main program using this command:
$ pgfortran -# prog.f

For a complete example, refer to Example 9.1, “Build a DLL: Fortran,” on page 127.

211

Generic PGl Compiler Options

Description: Use this option to compile for and link to the DLL version of the PGI runtime libraries. This flag
is required when linking with any DLL built by the PGI compilers. This flag corresponds to the / MD flag used
by Microsoft’s cl compilers.

Note

On Windows, —Bdynani ¢ must be used for both compiling and linking.

When you use the PGI compiler flag —Bdynani c to create an executable that links to the DLL form of the
runtime, the executable built is smaller than one built without —Bdynani c. The PGI runtime DLLs, however,
must be available on the system where the executable is run. The —Bdynani c flag must be used when an
executable is linked against a DLL built by the PGI compilers.

Note

C++ on Windows does not support —Bdynari c.

Related options:—Bstatic, ~MmakedIl

—Bstatic

Compiles for and links to the static version of the PGI runtime libraries.
Default: The compiler uses static libraries.

Usage: The following command line explicitly compiles for and links to the static version of the PGI runtime
libraries:
% pgfortran -Bstatic -c objectl.f

Description: You can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

Note

On Windows, —Bst at i ¢ must be used for both compiling and linking.

For more information on using static libraries on Windows, refer to “Creating and Using Static Libraries on
Windows,” on page 124.

Related options: —Bdynamic, —Bstatic_pgi, —Mdll

—Bstatic_pgi

212

Linux only. Compiles for and links to the static version of the PGI runtime libraries. Implies —Mnor pat h.
Default: The compiler uses static libraries.

Usage: The following command line explicitly compiles for and links to the static version of the PGI runtime
libraries:
% pgfortran -Bstatic -c objectl.f

Description: You can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

Chapter 16. Command-Line Options Reference

Note

On Linux, —Bst at i c_pgi results in code that runs on most Linux systems without requiring a
Portability package.

For more information on using static libraries on Linux, refer to “Creating and Using Static Libraries on
Windows,” on page 124.

Related options: —Bdynamic, —Bstatic, —Mdll

—byteswapio
Swaps the byte-order of data in unformatted Fortran data files on input/output.
Default: The compiler does not byte-swap data on input/output.

Usage: The following command-line requests that byte-swapping be performed on input/output.

$ pgfortran -byteswapi o nyprog.f

Description: Use the —byt eswapi o option to swap the byte-order of data in unformatted Fortran data files
on input/output. When this option is used, the order of bytes is swapped in both the data and record control
words; the latter occurs in unformatted sequential files.

You can use this option to convert big-endian format data files produced by most RISC workstations and high-
end servers to the little-endian format used on x86 or x64 systems on the fly during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access files are the
same on the systems. It further assumes that the IEEE representation is used for floating-point numbers. In
particular, the format of unformatted data files produced by PGI Fortran compilers is identical to the format
used on Sun and SGI workstations; this format allows you to read and write unformatted Fortran data files
produced on those platforms from a program compiled for an x86 or x64 platform using the —byt eswapi o
option.

Related options: None.

Enables array bounds checking. This option only applies to the PGI Fortran compilers.
Default: The compiler does not enable array bounds checking.

Usage: In this example, the compiler instruments the executable produced from nypr og. f to perform array
bounds checking at runtime:

$ pgfortran -C nyprog. f

Description: Use this option to enable array bounds checking. If an array is an assumed size array, the
bounds checking only applies to the lower bound. If an array bounds violation occurs during execution, an
error message describing the error is printed and the program terminates. The text of the error message
includes the name of the array, the location where the error occurred (the source file and the line number in
the source), and information about the out of bounds subscript (its value, its lower and upper bounds, and its
dimension).

213

Generic PGl Compiler Options

Related options: —M[no]bounds.

—C
Halts the compilation process after the assembling phase and writes the object code to a file.
Default: The compiler produces an executable file (does not use the —c option).
Usage: In this example, the compiler produces the object file mypr og. o in the current directory.
$ pgfortran -c nyprog.f
Description: Use the —c option to halt the compilation process after the assembling phase and write the
object code to a file. If the input file is f i | enane. f , the output file is f i | ename. o.
Related options: —E, —-Mkeepasm, —o, and —S.
—d<arg>
Prints additional information from the preprocessor. [Valid only for ¢ (pgcc)]
Default: No additional information is printed from the preprocessor.
Syntax:
-d[D1|MN
-dD
Print macros and values from source files.
-dI
Print include file names.
-dM
Print macros and values, including predefined and command-line macros.
-dN
Print macro names from source files.
Usage: In the following example, the compiler prints macro names from the source file.
$ pgfortran -dN myprog. f
Description: Use the -d<arg> option to print additional information from the preprocessor.
Related options: —E, —D, —U.
-D

214

Creates a preprocessor macro with a given value.

Note

You can use the —D option more than once on a compiler command line. The number of active macro
definitions is limited only by available memory.

Chapter 16. Command-Line Options Reference

Syntax:

- Dnane[=val ue]
Where name is the symbolic name and value is either an integer value or a character string.

Default: If you define 2 macro name without specifying a value, the preprocessor assigns the string 1 to the
macro name.

Usage: In the following example, the macro PATHLENGTH has the value 256 until a subsequent compilation. If
the —D option is not used, PATHLENGTH is set to 128.

$ pgfortran - DPATHLENGTH=256 nyprog. F

The source text in mypr og. F is this:

#i f ndef PATHLENGTH

#def i ne PATHLENGTH 128
#endi f

SUBRQUTI NE SUB

CHARACTER* PATHLENGTH pat h

END
Description: Use the —D option to create a preprocessor macro with a given value. The value must be either

an integer or a character string.

You can use macros with conditional compilation to select source text during preprocessing. A macro defined
in the compiler invocation remains in effect for each module on the command line, unless you remove the
macro with an #undef preprocessor directive or with the —U option. The compiler processes all of the —U
options in a command line after processing the —D options.

Related options: —U
—dryrun
Displays the invocations of the compiler, assembler, and linker but does not execute them.

Default: The compiler does not display individual phase invocations.

Usage: The following command line requests verbose invocation information.

$ pgfortran -dryrun nyprog. f

Description: Use the —dr yr un option to display the invocations of the compiler, assembler, and linker but
not have them executed. These invocations are command lines created by the compiler driver from the r c files
and the command-line supplied with —dr yr un.

Related options: —Minfo, -V, —###

—drystdinc
Displays the standard include directories and then exits the compiler.
Default: The compiler does not display standard include directores.

Usage: The following command line requests a display for the standard include directories.

215

Generic PGl Compiler Options

$ pgfortran -drystdinc nyprog.f

Description: Use the —dr yst di nc option to display the standard include directories and then exit the
compiler.

Related options:None.

—dynamiclib

216

Invokes the | i bt ool utility program provided by Mac OS X to so you can create a dynamic library.
Default: The compiler does not invoke the libtool utility.

Usage: The following command line builds a dynamic library:
% pgfortran -dynamclib world.f90 -o world.dylib

Description: Use the —dynamiclib option to invoke the | i bt ool utility program provided by Mac OS X to so
you can create a dynamic library. For a complete example, refer to “Creating and Using Dynamic Libraries on
Mac OS X,” on page 123.

For more information on | i bt ool , refer to the | i bt ool man page.

Related options: —Bdynamic, —Bstatic

Halts the compilation process after the preprocessing phase and displays the preprocessed output on the
standard output.

Default: The compiler produces an executable file.

Usage: In the following example the compiler displays the preprocessed mypr og. f on the standard output.
$ pgfortran -E nyprog. f

Description: Use the —E option to halt the compilation process after the preprocessing phase and display the
preprocessed output on the standard output.

Related options: —C, —c, —Mkeepasm, —o, —F, -S.

Stops compilation after the preprocessing phase.
Default: The compiler produces an executable file.

Usage: In the following example the compiler produces the preprocessed file nypr og. f in the current
directory.

$ pgfortran -F nyprog. F

Description: Use the —F option to halt the compilation process after preprocessing and write the
preprocessed output to a file. If the input file is f i | enane. F, then the output file is f i | enane. f.

Related options: —c,—E, -Mkeepasm, —o, —S

Chapter 16. Command-Line Options Reference

—fast
Enables vectorization with SSE instructions, cache alignment, and flushz for 64-bit targets.
Default: The compiler enables vectorization with SSE instructions, cache alignment, and flushz.

Usage: In the following example the compiler produces vector SSE code when targeting a 64-bit machine.

$ pgfortran -fast vadd.f95

Description: When you use this option, a generally optimal set of options is chosen for targets that support
SSE capability. In addition, the appropriate —t p option is automatically included to enable generation of code
optimized for the type of system on which compilation is performed. This option enables vectorization with SSE
instructions, cache alignment, and flushz.

Note

Auto-selection of the appropriate —t p option means that programs built using the —f ast sse option
on a given system are not necessarily backward-compatible with older systems.

Note

C/C++ compilers enable —Maut oi nl i ne with —f ast .

Related options: —0, —Munroll, —Mnoframe, —Mscalarsse, —Mvect, —Mcache_align, —tp, -M[no]autoinline

—fastsse

Synonymous with —fast.

--flagcheck
Causes the compiler to check that flags are correct then exit without any compilation occuring.
Default: The compiler begins a compile without the additional step to first validate that flags are correct.

Usage: In the following example the compiler checks that flags are correct, and then exits.

$ pgfortran --flagcheck nyprog. f

Description: Use this option to make the compiler check that flags are correct and then exit. If flags are all
correct then the compiler returns a zero status. No compilation occurs.

Related options: None

—flags
Displays driver options on the standard output.
Default: The compiler does not display the driver options.

Usage: In the following example the user requests information about the known switches.

$ pgfortran -fl ags

217

Generic PGl Compiler Options

—fpic

Description: Use this option to display driver options on the standard output. When you use this option with
—v, in addition to the valid options, the compiler lists options that are recognized and ignored.

Related options: —#, —###, —v

(Linux only) Generates position-independent code suitable for inclusion in shared object (dynamically linked
library) files.

Default: The compiler does not generate position-independent code.

Usage: In the following example the resulting object file, mypr og. o, can be used to generate a shared object.
$ pgfortran -fpic nyprog.f

(Linux only) Use the -fpic option to generate position-independent code suitable for inclusion in shared object
(dynamically linked library) files.

Related options: —shared, —{PIC, -G, —R

—fPIC

-G

218

(Linux only) Equivalent to —fpic. Provided for compatibility with other compilers.

(Linux only) Instructs the linker to produce a shared object file.
Default: The compiler does not instruct the linker to produce a shared object file.

Usage: In the following example the linker produces a shared object file.
$ pgfortran -G nyprog. f

Description: (Linux only) Use this option to pass information to the linker that instructs the linker to
produce a shared object file.

Related options: —fpic, —shared, —R

Instructs the compiler to include symbolic debugging information in the object module.
Default: The compiler does not put debugging information into the object module.

Usage: In the following example, the object file mypr og. o contains symbolic debugging information.
$ pgfortran -c -g nyprog.f

Description: Use the —g option to instruct the compiler to include symbolic debugging information in the
object module. Debuggers, such as PGDBG, require symbolic debugging information in the object module to
display and manipulate program variables and source code.

If you specify the —g option on the command-line, the compiler sets the optimization level to —00 (zero),
unless you specify the —O option. For more information on the interaction between the —g and —O options, see
the —0 entry. Symbolic debugging may give confusing results if an optimization level other than zero is selected.

Chapter 16. Command-Line Options Reference

Note

Including symbolic debugging information increases the size of the object module.

Related options: -0, —gopt

—gopt

Instructs the compiler to include symbolic debugging information in the object file, and to generate optimized
code identical to that generated when —g is not specified.

Default: The compiler does not put debugging information into the object module.

Usage: In the following example, the object filemypr og. o contains symbolic debugging information.
$ pgfortran -c -gopt nyprog.f

Description: Using —g alters how optimized code is generated in ways that are intended to enable or improve
debugging of optimized code. The —gopt option instructs the compiler to include symbolic debugging
information in the object file, and to generate optimized code identical to that generated when —g is not
specified.

Related options: —g, -M<pgflag>
—g77libs

(Linux only) Used on the link line, this option instructs the pgfortran driver to search the necessary g77
support libraries to resolve references specific to g77 compiled program units.

Note

The g77 compiler must be installed on the system on which linking occurs in order for this option to
function correctly.

Default: The compiler does not search g77 support libraries to resolve references at link time.

Usage: The following command-line requests that g77 support libraries be searched at link time:
$ pgfortran -g77libs nyprog.f g77_object.o

Description: (Linux only) Use the —g77libs option on the link line if you are linking g77-compiled program
units into a pgfortran-compiled main program using the pgfortran driver. When this option is present, the
pgfortran driver searches the necessary g77 support libraries to resolve references specific to g77 compiled
program units.

Related options:—pgf77libs

—help

Used with no other options, —help displays options recognized by the driver on the standard output. When
used in combination with one or more additional options, usage information for those options is displayed to
standard output.

Default: The compiler does not display usage information.

219

Generic PGl Compiler Options

220

Usage: In the following example, usage information for —M nl i ne is printed to standard output.

$ pgcc -help -Mnline

-M nline[=lib:<inlib>|]<func>| except: <func>

nane: <f unc>| si ze: <n>| | evel s: <n>]

Enabl e function inlining

lib:<extlib> Use extracted functions fromextlib
<func> Inline function func

except: <func> Do not inline function func

nanme: <func> I nline function func

size:<n> Inline only functions smaller than n
levels:<n> Inline n | evels of functions

-Mnline Inline all functions that were extracted

In the following example, usage information for —help shows how groups of options can be listed or examined
according to function.

$ pgcc -help -help
- hel p[=gr oups| asnj debug| | anguage| | i nker | opt | ot her
overal | | phase| prepro| suffix|sw tch|target|vari abl e]

Description: Use the —help option to obtain information about available options and their syntax. You can use
—help in one of three ways:

e Use —hel p with no parameters to obtain a list of all the available options with a brief one-line description
of each.

* Add a parameter to —help to restrict the output to information about a specific option. The syntax for this
usage is this:

-hel p <conmand |ine option>

* Add a parameter to —help to restrict the output to a specific set of options or to a building process. The
syntax for this usage is this:

- hel p=<subgr oup>
The following table lists and describes the subgroups available with —help.

Table 16.6. Subgroups for —help Option

Use this -help option |To get this information...

—help=asm Alist of options specific to the assembly phase.

—help=debug A list of options related to debug information generation.

—help=groups A list of available switch classifications.

—help=language A list of language-specific options.

—help=linker Alist of options specific to link phase.

—help=opt A list of options specific to optimization phase.

—help=other A list of other options, such as ANSI conformance pointer aliasing
for C.

—help=overall A list of options generic to any PGI compiler.

—help=phase Alist of build process phases and to which compiler they apply.

Chapter 16. Command-Line Options Reference

Use this —help option |To get this information...

—help=prepro A list of options specific to the preprocessing phase.

—help=suffix A list of known file suffixes and to which phases they apply.

—help=switch Alist of all known options; this is equivalent to usage of —help
without any parameter.

—help=target A list of options specific to target processor.

—help=variable A list of all variables and their current value. They can be redefined
on the command line using syntax VAR=VALUE.

For more examples of —help, refer to “Help with Command-line Options,” on page 20.

Related options: —#, —###, —show, -V, —flags

Adds a directory to the search path for files that are included using either the INCLUDE statement or the
preprocessor directive #include.

Default: The compiler searches only certain directories for included files.

e For gcc-lib includes: / usr/1i b64/ gcc-1i b

e For system includes: / usr/ 1 i ncl ude

Syntax:

-ldirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage: In the following example, the compiler first searches the directory nydi r and then searches the
default directories for include files.

$ pgfortran -l nmydir

Description: Adds a directory to the search path for files that are included using the INCLUDE statement or
the preprocessor directive #include. Use the —I option to add a directory to the list of where to search for the
included files. The compiler searches the directory specified by the —I option before the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The compiler uses two
rules to locate the file:

1. If the file name specified in the INCLUDE statement includes a path name, the compiler begins reading from
the file it specifies.

2. If no path name is provided in the INCLUDE statement, the compiler searches (in order):
* Any directories specified using the —I option (in the order specified)
e The directory containing the source file

e The current directory

221

Generic PGl Compiler Options

For example, the compiler applies rule (1) to the following statements:

I NCLUDE '/ bob/include/filel (absolute path nane)
INCLUDE '../../filel" (relative path nane)

and rule (2) to this statement:
| NCLUDE ' fil el'

Related options: —Mnostdinc

—i2, -4 and —i8

Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
Default: The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage: In the following example, using the —i8 switch causes the integer variables to be treated as 64 bits.
$ pgfortran -i8 int.f

i nt.f isafunction similar to this:

int.f
print *, "lInteger size:", bit_size(i)
end

Description: Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
INTEGER*8 values not only occupy 8 bytes of storage, but operations use 64 bits, instead of 32 bits.

Related options: None

—K<flag>

222

Requests that the compiler provide special compilation semantics.
Default: The compiler does not provide special compilation semantics.
Syntax:

—K<flag>

Where flag is one of the following:

ieee Perform floating-point operations in strict conformance with the IEEE 754
standard. Some optimizations are disabled, and on some systems a more
accurate math library is linked if —Kieee is used during the link step.

noieee Default flag. Use the fastest available means to perform floating-point
operations, link in faster non-IEEE libraries if available, and disable
underflow traps.

PIC (Linux only) Generate position-independent code. Equivalent to —fpic.

Provided for compatibility with other compilers.

pic (Linux only) Generate position-independent code. Equivalent to —fpic.
Provided for compatibility with other compilers.

Chapter 16. Command-Line Options Reference

trap=option Controls the behavior of the processor when floating-point exceptions occur.
Possible options include:

e fp
e align (ignored)

[,option]...

e inv
¢ denorm
o divz
o ovf
e unf
e inexact

Usage: In the following example, the compiler performs floating-point operations in strict conformance with
the IEEE 754 standard

$ pgfortran -Ki eee nyprog. f
Description: Use —K to instruct the compiler to provide special compilation semantics.
The default is —Knoi eee.

—Kt r ap is only processed by the compilers when compiling main functions or programs. The options inv,
denorm, divz, ovf, unf, and inexact correspond to the processor’s exception mask bits: invalid operation,
denormalized operand, divide-by-zero, overflow, underflow, and precision, respectively. Normally, the
processor’s exception mask bits are o7, meaning that floating-point exceptions are masked—the processor
recovers from the exceptions and continues. If a floating-point exception occurs and its corresponding mask
bit is off, or "unmasked", execution terminates with an arithmetic exception (C's SIGFPE signal).

—Kt r ap=f p is equivalent to —Kt r ap=i nv, di vz, ovf.

Note

The PGI compilers do not support exception-free execution for—Kt r ap=i nexact . The purpose of
this hardware support is for those who have specific uses for its execution, along with the appropriate
signal handlers for handling exceptions it produces. It is not designed for normal floating point
operation code support.

Related options: None.

--keeplnk

(Windows only.) Preserves the temporary file when the compiler generates a temporary indirect file for a long
linker command.

Usage: In the following example the compiler preserves each temporary file rather than deleting it.

$ pgfortran --keepl nk nmyprog.f

223

Generic PGl Compiler Options

Description: If the compiler generates a temporary indirect file for a long linker command, use this option to
instruct the compiler to preserve the temporary file instead of deleting it.

Related options: None.

-L
Specifies a directory to search for libraries.
Note
Multiple —L options are valid. However, the position of multiple —L options is important relative to —1
options supplied.
Syntax:
-Ldirectory
Where di r ect ory is the name of the library directory.
Default: The compiler searches the standard library directory.
Usage: In the following example, the library directory is /1i b and the linker links in the standard libraries
required by PGFORTRAN from this directory.
$ pgfortran -L/lib nmyprog.f
In the following example, the library directory / | i b is searched for the library file I i bx. a and both the
directories /1i b and /| i bz are searched for | i by. a.
$ pgfortran -L/lib -Ix -L/libz -1y nyprog.f
Use the —L option to specify a directory to search for libraries. Using —L allows you to add directories to the
search path for library files.
Related options: -1
—I<library>
Instructs the linker to load the specified library. The linker searches <library> in addition to the standard
libraries.
Note
The linker searches the libraries specified with -1 in order of appearance before searching the
standard libraries.
Syntax:
-llibrary

Where library is the name of the library to search.

Usage: In the following example, if the standard library directoryis / | i b the linker loads the library / | i b/
l'i byl i b. a, in addition to the standard libraries.

$ pgfortran nmyprog.f -lnmylib

224

Chapter 16. Command-Line Options Reference

Description: Use this option to instruct the linker to load the specified library. The compiler prepends the
characters lib to the library name and adds the .a extension following the library name. The linker searches
each library specifies before searching the standard libraries.

Related options: —L

Displays a link map on the standard output.
Default: The compiler does display the link map and does not use the —m option.

Usage: When the following example is executed on Windows, pgfortran creates a link map in the file
mypr og. map.
$ pgfortran -m nyprog. f

Description: Use this option to display a link map.

* On Linux, the map is written to st dout .

e On Windows, the map is written to a . map file whose name depends on the executable. If the executable is
mypr og. f , the map file is in nypr og. map.

Related options: —c, —o, -s, —u
-m32

Use the 32-bit compiler for the default processor type.

Usage: When the following example is executed on Windows, pgfortran uses the 32-bit compiler for the
default processor type.
$ pgfortran -nB2 nyprog. f

Description: Use this option to specify the 32-bit compiler as the default processor type.

-m64

Use the 64-bit compiler for the default processor type.

Usage: When the following example is executed on Windows, pgfortran uses the 64-bit compiler for the
default processor type.
$ pgfortran -nb4 nyprog. f

Description: Use this option to specify the 64-bit compiler as the default processor type.

-M<pgflag>
Selects options for code generation. The options are divided into the following categories:
Code generation Fortran Language Controls Optimization
Environment (/C++ Language Controls Miscellaneous
Inlining

225

Generic PGl Compiler Options

The following table lists and briefly describes the options alphabetically and includes a field showing the
category. For more details about the options as they relate to these categories, refer to “—M Options by

226

Category,” on page 263.

Table 16.7. —M Options Summary

pgflag

Description

Category

allocatable=95103

Controls whether to use Fortran 95 or Fortran 2003
semantics in allocatable array assignments.

Fortran Language

anno

Annotate the assembly code with source code.

Miscellaneous

[no]autoinline

C/C++ when a function is declared with the inline
keyword, inline it at —02 and .

Inlining

[no]asmkeyword

Specifies whether the compiler allows the asm
keyword in C/C++ source files (pgcc and pgepp
only).

C/C++ Language

[no]backslash

Determines how the backslash character is treated
in quoted strings (pgf77, pgf95, pgfortran, and
pghpf only).

Fortran Language

[no]bounds

Specifies whether array bounds checking is enabled
or disabled.

Miscellaneous

--[no_]builtin

Do/don’t compile with math subroutine builtin
support, which causes selected math library routines
to be inlined (pgcc and pgepp only).

Optimization

byteswapio

Swap byte-order (big-endian to little-endian or vice
versa) during 1/0 of Fortran unformatted data.

Miscellaneous

cache_align

Where possible, align data objects of size greater
than or equal to 16 bytes on cache-line boundaries.

Optimization

chkfpstk

Check for internal consistency of the x87 FP stack
in the prologue of a function and after returning
from a function or subroutine call (—tp px/p5/p6/
piii targets only).

Miscellaneous

chkptr

Check for NULL pointers (pgf95, pgfortran, and
pghpf only).

Miscellaneous

chkstk

Check the stack for available space upon entry to
and before the start of a parallel region. Useful when
many private variables are declared.

Miscellaneous

concur

Enable auto-concurrentization of loops. Multiple
processors or cores will be used to execute
parallelizable loops.

Optimization

cpp

Run the PGI cpp-like preprocessor without
performing subsequent compilation steps.

Miscellaneous

Chapter 16. Command-Line Options Reference

pgflag Description Category

cray Force Cray Fortran (CF77) compatibility (pgf77, Optimization
pgf95, pgfortran, and pghpf only).

[no]daz Do/don’t treat denormalized numbers as zero. Code Generation

[no]dclchk Determines whether all program variables must be | Fortran Language
declared (pgf77, pgf95, pgfortran, and pghpf only).

[no] defaultunit Determines how the asterisk character ("*") is Fortran Language
treated in relation to standard input and standard
output (regardless of the status of I/O units 5 and 6,
pef77, pef9s, pgfortran, and pghpf only).

[no]depchk Checks for potential data dependencies. Optimization

[no]dse Enables [disables] dead store elimination phase for |Optimization
programs making extensive use of function inlining.

[no]dlines Determines whether the compiler treats lines Fortran Language
containing the letter "D" in column one as
executable statements (pgf77, pgf95, pgfortran, and
pghpf only).

dil Link with the DLL version of the runtime libraries |Miscellaneous
(Windows only).

dollar,char Specifies the character to which the compiler maps |Fortran Language
the dollar sign code (pgf77, pgf95, pgfortran, and
pghpf only).

[no]dwarf Specifies not to add DWARF debug information. Code Generation

dwarfl When used with —g, generate DWARF1 format debug |Code Generation
information.

dwarf2 When used with —g, generate DWARF2 format debug |Code Generation
information.

dwarf3 When used with —g, generate DWARF3 format debug |Code Generation
information.

extend Instructs the compiler to accept 132-column source |Fortran Language
code; otherwise it accepts 72-column code (pgf77,
pgf95, pgfortran, and pghpf only).

extract invokes the function extractor. Inlining

[no]m128 Instructs the compiler to treat floating-point C/C++ Language
constants as float data types (pgcc and pgepp only).

fixed Instructs the compiler to assume F77-style fixed Fortran Language
format source code (pgf95, pgfortran, and pghpf
only).

[no]flushz Do/don’t set SSE flush-to-zero mode Code Generation

227

Generic PGl Compiler Options

228

pgflag Description Category

[no]fpapprox Specifies not to use low-precision fp approximation |Optimization
operations.

[no]f[=option] Perform certain floating point intrinsic functions Optimization
using relaxed precision.

free Instructs the compiler to assume F90-style free Fortran Language
format source code (pgf95, pgfortran and pghpf
only).

func32 The compiler aligns all functions to 32-byte Code Generation
boundaries.

gcebug|s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding Miscellaneous
optimization and code generation to standard output
as compilation proceeds.

inform Specifies the minimum level of error severity that the | Miscellaneous
compiler displays.

inline Invokes the function inliner. Inlining

instrumentation Generates code to enable instrumentation of Miscellaneous
functions.

[no]ipa Invokes interprocedural analysis and optimization. | Optimization

[no]iomutex Determines whether critical sections are generated |Fortran Language
around Fortran I/0 calls (pgf77, pgf95, pgfortran,
and pghpf only).

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

largeaddressaware Enables support for 64-bit indexing and single static |Code Generation

data objects of size larger than 2GB.

[no]large_arrays

Enables support for 64-bit indexing and single static
data objects of size larger than 2GB.

Code Generation

Ifs Links in libraries that allow file I/0 to files of size ~ |Environment
larger than 2GB on 32-bit systems (32-bit Linux
only).

[no]loop32 Aligns/does not align innermost loops on 32 byte | Code Generation
boundaries with —tp barcelona

[no]lre Disable/enable loop-carried redundancy Optimization
elimination.

list Specifies whether the compiler creates a listing file. |Miscellaneous

[no]m128 Recognizes [ignores] __m128, __m128d, and Code Generation

__m128i datatypes. (C only)

Chapter 16. Command-Line Options Reference

pgflag Description Category

makedll Generate a dynamic link library (DLL) (Windows Miscellaneous
only).

makeimplib Passes the -def switch to the librarian without a Miscellaneous
deffile, when used without —def : deffi | e.

mpi=option Link to MPI libraries: MPICH1, MPICH2, or Code Generation
Microsoft MPI libraries

neginfo Instructs the compiler to produce information on |Miscellaneous
why certain optimizations are not performed.

noframe Eliminates operations that set up a true stack frame |Optimization
pointer for functions.

noi4 Determines how the compiler treats INTEGER Optimization
variables (pgf77, pgf95, pgfortran, and pghpf only).

nomain When the link step is called, don’t include the object | Code Generation
file that calls the Fortran main program. (pgf77,
pgf95, pgfortran, and pghpf only).

noopenmp When used in combination with the —mp option, Miscellaneous
the compiler ignores OpenMP parallelization
directives or pragmas, but still processes SGI-style
parallelization directives or pragmas.

nopgdllmain Do not link the module containing the default Miscellaneous
DIIMain() into the DLL (Windows only).

norpath On Linux, do not add —rpath paths to the link line. |Miscellaneous

nosgimp When used in combination with the —mp option, the |Miscellaneous
compiler ignores SGI-style parallelization directives
or pragmas, but still processes OpenMP directives or
pragmas.

[no]stddef Instructs the compiler to not recognize the standard |Environment
preprocessor macros.

nostdinc Instructs the compiler to not search the standard ~ |Environment
location for include files.

nostdlib Instructs the linker to not link in the standard Environment
libraries.

[no]onetrip Determines whether each DO loop executes at least |Language
once (pgf77, pgf95, pgfortran, and pghpf only).

novintr Disable idiom recognition and generation of calls to |Optimization
optimized vector functions.

pfi Instrument the generated code and link in Optimization

libraries for dynamic collection of profile and data
information at runtime.

229

Generic PGl Compiler Options

230

pgflag Description Category

pre Read a pgfi.out trace file and use the information to |Optimization
enable or guide optimizations.

[no]pre Force/disable generation of non-temporal moves Code Generation
and prefetching.

[no]prefetch Enable/disable generation of prefetch instructions. | Optimization

preprocess Perform cpp-like preprocessing on assembly Miscellaneous
language and Fortran input source files.

prof Set profile options; function-level and line-level Code Generation
profiling are supported.

[no]r8 Determines whether the compiler promotes REAL | Optimization
variables and constants to DOUBLE PRECISION
(pgf77, pgf95, pgfortran, and pghpf only).

[no]r8intrinsics Determines how the compiler treats the intrinsics | Optimization
CMPLX and REAL (pgf77, pgf95, pgfortran, and
pghpf only).

[no]recursive Allocate / do not allocate local variables on the Code Generation
stack, this allows recursion. SAVEd, data-initialized,
or namelist members are always allocated statically,
regardless of the setting of this switch (pgf77, pgf95,
pgfortran, and pghpf only).

[no]reentrant Specifies whether the compiler avoids optimizations |Code Generation

that can prevent code from being reentrant.

[no]ref externals

Do/don’t force references to names appearing in
EXTERNAL statements (pgf77, pgf95, pgfortran and
pghpf only).

Code Generation

safeptr

Instructs the compiler to override data dependencies
between pointers and arrays (pgcc and pgcpp only).

Optimization

safe_lastval

In the case where a scalar is used after a loop, but
is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop.
However, this option tells the compiler it is safe to
parallelize the loop. For a given loop, the last value
computed for all scalars make it safe to parallelize
the loop.

Code Generation

[no]save

Determines whether the compiler assumes that all
local variables are subject to the SAVE statement

(pef77, pgf95, pgfortran, and pghpf only).

Fortran Language

[no]scalarsse

Do/don’t use SSE/SSE2 instructions to perform
scalar floating-point arithmetic.

Optimization

Chapter 16. Command-Line Options Reference

pgflag Description Category

schar Specifies signed char for characters (pgcc and C/C++ Language
pgepp only - also see uchar).

[no]second_underscore |Do/don’t add the second underscore to the name |Code Generation
of a Fortran global if its name already contains an
underscore (pgf77, pgf95, pgfortran, and pghpf

only).

[no]signextend Do/don’t extend the sign bit, if it is set. Code Generation
[no]single Do/don’t convert float parameters to double C/C++ Language
parameter characters (pgcc and pgepp only).

[no]smart Do/don’t enable optional post-pass assembly Optimization
optimizer.

[no]smartalloc[=hugel |Add a call to the routine mallopt in the main routine. | Environment
huge: <n>|hugebss] Supports large TLBs on Linux and Windows. 7ip.

To be effective, this switch must be specified when
compiling the file containing the Fortran, G, or C++
main program.

standard Causes the compiler to flag source code that does |Fortran Language
not conform to the ANSI standard (pgf77, pgf95,
pgfortran, and pghpf only).

[no]stride0 Do/do not generate alternate code for a loop that | Code Generation
contains an induction variable whose increment may
be zero (pgf77, pgf95, pgfortran, and pghpf only).

uchar Specifies unsigned char for characters (pgcc and |C/C++ Language
pgepp only - also see schar).

unix Uses UNIX calling and naming conventions for Code Generation
Fortran subprograms (pgf77, pgf95, pgfortran, and
pghpf for Win32 only).

[no]unixlogical Determines how the compiler treats logical values. |Fortran Language
(pgf77, pgf95, pgfortran, and pghpf only).

[no]unroll Controls loop unrolling. Optimization

[no]upcase Determines whether the compiler preserves Fortran Language

uppercase letters in identifiers. (pgf77, pgf95,
pgfortran, and pghpf only).

varargs Forces Fortran program units to assume calls are Code Generation
to C functions with a varargs type interface (pgf77,
pgf95, and pgfortran only).

[no]vect Do/don’t invoke the code vectorizer. Optimization

231

Generic PGl Compiler Options

—mcmodel=medium

(For use only on 64-bit Linux targets) Generates code for the medium memory model in the linux86-64
execution environment. Implies —Mlarge_arrays.

Default: The compiler generates code for the small memory model.

Usage: The following command line requests position independent code be generated, and the option —
mcodel =nedi umbe passed to the assembler and linker:

$ pgfortran -ncnodel =medi um mypr og. f

Description: The default small memory model of the linux86-64 environment limits the combined area for
a user’s object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for
system routines, shared libraries, stacks, and so on. Programs are started at a fixed address, and the program
can use a single instruction to make most memory references.

The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units compiled
using either —ncnodel =medi umor —f pi ¢ require additional instructions to reference memory. The effect
on performance is a function of the data-use of the application. The —ncrmodel =nedi umswitch must be used
at both compile time and link time to create 64-bit executables. Program units compiled for the default small
memory model can be linked into medium memory model executables as long as they are compiled with the
option—f pi c, or position-independent.

The linux86-64 environment provides st at i ¢ | i bxxx. a archive libraries, that are built both with and
without —f pi ¢, and dynani ¢ | i bxxx. so shared object libraries that are compiled —f pi c. Using the link
switch —mcnodel =nedi umimplies the —f pi ¢ switch and utilizes the shared libraries by default. The $PG /
| i nux86- 64/ <rel >/ | i b directory contains the libraries for building small memory model codes; and the
$PG /1 i nux86- 64/ <rel >/ | i bso directory contains shared libraries for building both —f pi ¢ and —
mcnodel =nedi umexecutables.

Note

—nmenodel =nedi um - f pi c is not allowed to create shared libraries. However, you can create static
archive libraries (.a) that are —f pi c.

Related options:—Mlarge_arrays

—module <moduledir>

232

Allows you to specify a particular directory in which generated intermediate . nod files should be placed.

Default: The compiler places . nmod files in the current working directory, and searches only in the current
working directory for pre-compiled intermediate . mod files.

Usage: The following command line requests that any intermediate module file produced during compilation
of mypr og. f be placed in the directory mynods; specifically, the file . / mynods/ nypr og. mod is used.
$ pgfortran -nodul e nynods nyprog. f

Description: Use the —module option to specify a particular directory in which generated intermediate .mod
files should be placed. If the —module <moduledir> option is present, and USE statements are present in a

Chapter 16. Command-Line Options Reference

compiled program unit, then <moduledir> is searched for . mod intermediate files prior to a search in the
default local directory.

Related options: None.

—mp[=all, align,bind,[no]Jnuma]

Instructs the compiler to interpret user-inserted OpenMP shared-memory parallel programming directives and
pragmas, and to generate an executable file which will utilize multiple processors in a shared-memory parallel
system.

Default: The compiler ignores user-inserted shared-memory parallel programming directives and pragmas.
Usage: The following command line requests processing of any shared-memory directives present in
nyprog. f:

$ pgfortran -nmp myprog. f

Description: Use the —npoption to instruct the compiler to interpret user-inserted OpenMP shared-memory
parallel programming directives and to generate an executable file which utilizes multiple processors in a
shared-memory parallel system.

The sub-options are one or more of the following:

align
Forces loop iterations to be allocated to OpenMP processes using an algorithm that maximizes alignment
of vector sub-sections in loops that are both parallelized and vectorized for SSE. This allocation can
improve performance in program units that include many such loops. It can also result in load-balancing
problems that significantly decrease performance in program units with relatively short loops that contain
a large amount of work in each iteration. The numa suboption uses libnuma on systems where it is
available.

allcores
Instructs the compiler to all available cores. You specify this sub-option at link time.

bind
Instructs the compiler to bind threads to cores. You specify this sub-option at link time.

[no]numa
Uses [does not use] libnuma on systems where it is available.

For a detailed description of this programming model and the associated directives and pragmas, refer to
Chapter 5, “Using OpenMP”.

Related options: —Mconcur, —Mvect

—noswitcherror

Issues warnings instead of errors for unknown switches. Ignores unknown command line switches after
printing a warning message.

Default: The compiler prints an error message and then halts.

233

Generic PGl Compiler Options

Usage: In the following example, the compiler ignores unknown command line switches after printing a
warning message.

$ pgfortran -nosw tcherror nyprog.f

Description: Use this option to instruct the compiler to ignore unknown command line switches after printing
an warning message.

Tip

You can configure this behavior in the si t er c file by adding: set NOSW TCHERROR=1.

Related options: None.

—O<level>

234

Invokes code optimization at the specified level.

Default: The compiler optimizes at level 2.

Syntax:

-0 [level]

Where level is an integer from 0 to 4.

Usage: In the following example, since no —O option is specified, the compiler sets the optimization to level 1.
$ pgfortran nyprog.f

In the following example, since no optimization level is specified and a —O option is specified, the compiler
sets the optimization to level 2.

$ pgfortran -O nyprog. f

Description: Use this option to invoke code optimization at the specified level - one of the following:

0
creates a basic block for each statement. Neither scheduling nor global optimization is done. To specify
this level, supply a 0 (zero) argument to the —O option.

schedules within basic blocks and performs some register allocations, but does no global optimization.

performs all level-1 optimizations, and also performs global scalar optimizations such as induction
variable elimination and loop invariant movement.

level-three specifies aggressive global optimization. This level performs all level-one and level-two op-
timizations and enables more aggressive hoisting and scalar replacement optimizations that may or may
not be profitable.

Chapter 16. Command-Line Options Reference

level-four performs all level-one, level-two, and level-three optimizations and enables hoisting of guarded
invariant floating point expressions.

Table 16.8 shows the interaction between the —Ooption, —g option, —~Mvect , and —Mconcur options.

Table 16.8. Optimization and —-O, —g, -Mvect, and —Mconcur Options

Optimize Option |Debug Option |-M Option | Optimization Level
none none none 1

none none —Mvect 2

none none —Mconcur 2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel < 2 none or —g —Mvect 2

—Olevel < 2 none or —g —Mconcur |2

Unoptimized code compiled using the option —Q0 can be significantly slower than code generated at other
optimization levels. Like the —~Mvect option, the —Munr ol | option sets the optimization level to level-2 if no
—0 or —g options are supplied. The —gopt option is recommended for generation of debug information with
optimized code. For more information on optimization, see Chapter 3, “Optimizing & Parallelizing”.

Related options: —g, -M<pgflag>, —gopt

Names the executable file. Use the —o option to specify the filename of the compiler object file. The final output
is the result of linking.

Syntax:
—o filename
Where filename is the name of the file for the compilation output. The filename must not have a .f extension.

Default: The compiler creates executable filenames as needed. If you do not specify the —o option, the default
filename is the linker output file a. out .

Usage: In the following example, the executable file is nmypr og instead of the default a. out nypr og. exe.
$ pgfortran nyprog.f -o nyprog

Related options: —, —E, —F —§

Note

This option is available only for —tp px/p5/p6/piii targets.

235

Generic PGl Compiler Options

Allows you to control the precision of operations performed using the x87 floating point unit, and their
representation on the x87 floating point stack.

Syntax:

—pc{32164180}

Usage:
$ pgfortran -pc 64 nyprog.f

Description: The x87 architecture implements a floating-point stack using 8 80-bit registers. Each register
uses bits 0-63 as the significant, bits 64-78 for the exponent, and bit 79 is the sign bit. This 80-bit real format
is the default format, called the extended format. When values are loaded into the floating point stack they are
automatically converted into extended real format. The precision of the floating point stack can be controlled,
however, by setting the precision control bits (bits 8 and 9) of the floating control word appropriately. In

this way, you can explicitly set the precision to standard IEEE double-precision using 64 bits, or to single
precision using 32 bits." The default precision is system dependent. To alter the precision in a given program
unit, the main program must be compiled with the same -pc option. The command line option —pc val lets the
programmer set the compiler’s precision preference.

Valid values for val are:

32 single precision 64 double precision 80 extended precision

Extended Precision Option — Operations performed exclusively on the floating-point stack using extended
precision, without storing into or loading from memory, can cause problems with accumulated values within
the extra 16 bits of extended precision values. This can lead to answers, when rounded, that do not match
expected results.

For example, if the argument to si n is the result of previous calculations performed on the floating-point
stack, then an 80-bit value used instead of a 64-bit value can result in slight discrepancies. Results can

even change sign due to the sin curve being too close to an x-intercept value when evaluated. To maintain
consistency in this case, you can assure that the compiler generates code that calls a function. According to
the x86 ABI, a function call must push its arguments on the stack (in this way memory is guaranteed to be
accessed, even if the argument is an actual constant). Thus, even if the called function simply performs the
inline expansion, using the function call as a wrapper to sin has the effect of trimming the argument precision
down to the expected size. Using the —Mhobui | t i n option on the command line for C accomplishes this task
by resolving all math routines in the library | i bm performing a function call of necessity. The other method of
generating a function call for math routines, but one that may still produce the inline instructions, is by using
the —Ki eee switch.

A second example illustrates the precision control problem using a section of code to determine machine
precision:

program fi nd_preci sion

'According to Intel documentation, this only affects the x87 operations of add, subtract, multiply, divide, and square root. In particular, it does not
appear to affect the x87 transcendental instructions.

236

Chapter 16. Command-Line Options Reference

w=10

100 w=w+w

y=w+1

zZ=y-w

if (z .gt. 0) goto 100

C now wis just big enough that |((w+l)-w)-1| >= 1

print*, w
end

In this case, where the variables are implicitly real*4, operations are performed on the floating-point stack
where optimization removes unnecessary loads and stores from memory. The general case of copy propagation
being performed follows this pattern:

a
y

Instead of storing x into a, then loading a to perform the addition, the value of x can be left on the floating-
point stack and added to 2.0. Thus, memory accesses in some cases can be avoided, leaving answers in
the extended real format. If copy propagation is disabled, stores of all left-hand sides will be performed
automatically and reloaded when needed. This will have the effect of rounding any results to their declared
sizes.

When executed using default (extended) precision, the find_precision program has a value of 1.8446744E
+19. If, however, —Ki eee is set, the value becomes 1.6777216E+07 (single precision.) This difference is due
to the fact that —Ki eee disables copy propagation, so all intermediate results are stored into memory, then
reloaded when needed. Copy propagation is only disabled for floating-point operations, not integer. With this
particular example, setting the —pc switch will also adjust the result.

The —Ki eee switch also has the effect of making function calls to perform all transcendental operations.
Except when the —Vhobui | ti n switch is set in C, the function still produces the x86 machine instruction for
computation, and arguments are passed on the stack, which results in 2 memory store and load.

Finally, —Ki eee also disables reciprocal division for constant divisors. That is, for a/b with unknown a and
constant b, the expression is usually converted at compile time to a*(1/b), thus turning an expensive divide
into a relatively fast scalar multiplication. However, numerical discrepancies can occur when this optimization
is used.

Understanding and correctly using the —pc, —Mnobui | ti n, and —Ki eee switches should enable you to
produce the desired and expected precision for calculations which utilize floating-point operations.

Related options: —Kieee, —~Mnobuiltin

- -pedantic
Prints warnings from included <system header files> .
Syntax:
-- pedantic
Default: The compiler prints the warnings from the included system header files.

Usage: In the following example, the compiler prints the warnings from the included system header files.

237

Generic PGl Compiler Options

$ pgfortran --pedantic nyprog.f

Related options:

(Linux only) Instructs the compiler to instrument the generated executable for gprof-style sample-based
profiling.

Usage: In the following example the program is compiled for profiling using pgdbg or gprof.
$ pgfortran -pg nyprog.c

Default: The compiler does not instrument the generated executable for gprof-style profiling.

Description: Use this option to instruct the compiler to instrument the generated executable for gprof-style
sample-based profiling. You must use this option at both the compile and link steps. A gnon. out style trace is
generated when the resulting program is executed, and can be analyzed using gprof or pgprof.

—pgcpplibs

Instructs the compiler to append C++ runtime libraries to the link line for programs built using either PGF90
or PGF77.

Default: The C/C++ compilers do not append the C++ runtime libraries to the link line.

Usage: In the following example the C++ runtime libraries are linked with an object file compiled with pgf77.
$ pgf 90 mai n.f90 mycpp. o -pgcpplibs

Description: Use this option to instruct the compiler to append C++ runtime libraries to the link line for
programs built using either PGF90 or PGF77.

Related options:—pgf90libs, —pgf77libs

—pgf77libs
Instructs the compiler to append PGF77 runtime libraries to the link line.
Default: The C/C++ compilers do not append the PGF77 runtime libraries to the link line.

Usage: In the following example a .c main program is linked with an object file compiled with pgf77.
$ pgcc main.c myf77.0 -pgf 771 i bs

Description: Use this option to instruct the compiler to append PGF77 runtime libraries to the link line.

Related options:—pgcpplibs, —pgfo0libs
—pgf90libs

Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

Default: The C/C++ compilers do not append the PGF90/PGF95/PGFORTRAN runtime libraries to the link
line.

238

Chapter 16. Command-Line Options Reference

Usage: In the following example a .c main program is linked with an object file compiled with pgfortran.
$ pgcc main.c myf95.0 -pgf9o0libs

Description: Use this option to instruct the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries
to the link line.

Related options:—pgcpplibs, —pgf77libs

—R<directory>

(Linux only) Instructs the linker to hard-code the pathname <directory> into the search path for generated
shared object (dynamically linked library) files.

Note

There cannot be a space between R and <directory>.

Usage: In the following example, at runtime the a.out executable searches the specified directory, in this case
/ home. / Joe/ nyso, for shared objects.

$ pgfortran - Rm hone/ Joe/ nyso mypr og. f

Description: Use this option to instruct the compiler to pass information to the linker to hard-code the
pathname <directory> into the search path for shared object (dynamically linked library) files.

Related options: —fpic, —shared, —G

Linux only. Creates a relocatable object file.
Default: The compiler does not create a relocatable object file and does not use the —r option.
Usage: In this example, pgfortran creates a relocatable object file.

$ pgfortran -r nyprog.f

Description: Use this option to create a relocatable object file.

Related options: —c, —o, —s, —u

—r4 and —r8

Interprets DOUBLE PRECISION variables as REAL (—r4), or interprets REAL variables as DOUBLE PRECISION
(-r8).

Usage: In this example, the double precision variables are interpreted as REAL.

$ pgfortran -r4 nmyprog. f

Description: Interpret DOUBLE PRECISION variables as REAL (—r4) or REAL variables as DOUBLE
PRECISION (—8).

239

Generic PGl Compiler Options

Related options: —i2, —i4, —i8, —nor8

—IC
Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a full
pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path of the currently
executing driver). If a full pathname is supplied, that file is used for the driver configuration file.
Syntax:
-rc [path] fil ename
Where path is either a relative pathname, relative to the value of $DRIVER, or a full pathname beginning with
"/". Filename is the driver configuration file.
Default: The driver uses the configuration file . pgi r c.
Usage: In the following example, the file . pgf ort r anr ct est , relative to / usr/ pgi / | i nux86/ bi n, the
value of $DRIVER, is the driver configuration file.
$ pgfortran -rc .pgfortranrctest nyprog.f
Description: Use this option to specify the name of the driver startup configuration file. If the file or
pathname supplied is not a full pathname, the path for the configuration file loaded is relative to the $DRIVER
path - the path of the currently executing driver. If a full pathname is supplied, that file is used for the driver
configuration file.
Related options: —show

—rpath

240

(Linux only) Specifies the name of the driver startup configuration file.
Syntax:

-rpath path <lIdarg>

where path is either a relative pathname, or a full pathname beginning with "/".

Default: The driver uses the configuration file . pgi rc.

Usage: In the following example, the file . pgf ort r anr ct est , relative to / usr / pgi / | i nux86/ bi n, the
value of $DRIVER, is the driver configuration file.

$ pgfortran -rc .pgfortranrctest nyprog.f
Description: Use this option to specify the name of the driver startup configuration file. If the file or
pathname supplied is not a full pathname, the path for the configuration file loaded is relative to the $DRIVER

path - the path of the currently executing driver. If a full pathname is supplied, that file is used for the driver
configuration file.

With the ldarg option (Linux only), the ldarg information is passed to the linker and the directory is added to
the runtime shared library search path.

Related options: —show

Chapter 16. Command-Line Options Reference

-S
(Linux only) Strips the symbol-table information from the executable file.
Default: The compiler includes all symbol-table information and does not use the —s option.
Usage: In this example, pgfortran strips symbol-table information from the a. out . executable file.
$ pgfortran -s nyprog. f
Description: Use this option to strip the symbol-table information from the executable.
Related options: —c, —0, —u
-S
Stops compilation after the compiling phase and writes the assembly-language output to a file.
Default: The compiler does not produce a . s file.
Usage: In this example, pgfortran produces the file mypr og. s in the current directory.
$ pgfortran -S nyprog. f
Description: Use this option to stop compilation after the compiling phase and then write the assembly-
language output to a file. If the input file is f i | ename. f, then the output fileis f i | enane. s.
Related options: —c, —E, —F —Mkeepasm, —o
—shared
(Linux only) Instructs the compiler to pass information to the linker to produce a shared object (dynamically
linked library) file.
Default: The compiler does not pass information to the linker to produce a shared object file.
Usage: In the following example the compiler passes information to the linker to produce the shared object
file: nyso. so.
$ pgfortran -shared nmyprog.f -o nyso.so
Description: Use this option to instruct the compiler to pass information to the linker to produce a shared
object (dynamically linked library) file.
Related options: —fpic, -G, —R
-show

Produces driver help information describing the current driver configuration.
Default: The compiler does not show driver help information.

Usage: In the following example, the driver displays configuration information to the standard output after
processing the driver configuration file.

241

Generic PGl Compiler Options

$ pgfortran -show myprog. f

Description: Use this option to produce driver help information describing the current driver configuration.

Related options: -V, —v, —###, —help, —rc

—silent

Do not print warning messages.
Default: The compiler prints warning messages.

Usage: In the following example, the driver does not display warning messages.
$ pgfortran -silent nyprog.f

Description: Use this option to suppress warning messages.

Related options: —v, -V, —-w

—soname

(Linux only.) The compiler recognizes the —soname option and passes it through to the linker.
Default: The compiler does not recognize the —soname option.

Usage: In the following example, the driver passes the soname option and its argument through to the linker.
$ pgfortran -sonane library.so nyprog.f

Description: Use this option to instruct the compiler to recognize the —soname option and pass it through to
the linker.

Related options:

—stack

242

(Windows only.) Allows you to explicitly set stack properties for your program.

Default: If —st ack is not specified, then the defaults are as followed:

Win32
Setting is - st ack: 2097152, 2097152, which is approximately 2MB for reserved and committed bytes.
Win64
No default setting
Syntax:
-stack={ (reserved bytes)[,(comitted bytes)] }{, [no]check }

Usage: The following example demonstrates how to reserve 524,288 stack bytes (512KB), commit 262,144
stack bytes for each routine (256KB), and disable the stack initialization code with the nocheck argument.

$ pogfortran -stack=524288, 262144, nocheck nyprog. f

Chapter 16. Command-Line Options Reference

Description: Use this option to explicitly set stack properties for your program. The —st ack option takes
one or more arguments: (reserved bytes), (committed bytes), [no]check.

reserved bytes
Specifies the total stack bytes required in your program.

committed bytes
Specifies the number of stack bytes that the Operating System will allocate for each routine in your
program. This value must be less than or equal to the stack reserved bytes value.

Default for this argument is 4096 bytes

[no]check
Instructs the compiler to generate or not to generate stack initialization code upon entry of each routine.
Check is the default, so stack initialization code is generated.

Stack initialization code is required when a routine's stack exceeds the committed bytes size. When your
committed bytes is equal to the reserved bytes or equal to the stack bytes required for each routine, then
you can turn off the stack initialization code using the - st ack=nocheck compiler option. If you do this, the
compiler assumes that you are specifying enough committed stack space; and therefore, your program does
not have to manage its own stack size.

For more information on determining the amount of stack required by your program, refer to —Mchkst k
compiler option, described in “Miscellaneous Controls”.

Note

-stack=(reserved bytes), (conm tted bytes) are linker options.
- st ack=[no] check is a compiler option.

If you specify - st ack=(reserved bytes), (committed bytes) on your compile line, it
is only used during the link step of your build. Similarly, - st ack=[no] check can be specified on
your link line, but its only used during the compile step of your build.

Related options: —Mchkstk

—ta=nvidia(,nvidia_suboptions),host

Defines the target accelertator.

Note

This flag is valid only for Fortran and C.
Default: The compiler uses NVIDIA.

Usage: In the following example, NVIDEA is the accelerator target architecture and the accelerator generates
code for compute capability 1.3.

$ pgfortran -ta=nvidi a(ccl3)

243

Generic PGl Compiler Options

Description: Use this option to select the accelerator target and, optionally, to define the type of code to
genertate.

The —t a flag has the following options:

nvidia
Select NVIDIA accelerator target. This option has the following nvidia-suboptions:

analysis
Perform loop analysis only; do not generate GPU code.

ccl0
Generate code for compute capability 1.0.

ccll
Generate code for compute capability 1.1.

ccl2
Generate code for compute capability 1.2.

ccl3
Generate code for compute capability 1.3.

cc20
Generate code for compute capability 2.0.

cuda2.3 or 2.3
Specify the Nvidia CUDA 2.3 version of the toolkit.

cuda3.0 or 3.0
Specify the Nvidia CUDA 3.0 version of the toolkit.

fastmath
Use routines from the fast math library.

keepbin
Keep the binary (.bin) files.

keepgpu
Keep the kernel source (.gpu) files.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates no limit.

mul24
Use 24-bit multiplication for subscripting.

nofma
Do not generate fused multiply-add instructions.

time
Link in a limited-profiling library, as described in “Profiling Accelerator Kernels,” on page 104.

244

Chapter 16. Command-Line Options Reference

[no]wait
Wait for each kernel to finish before continuing in the host program.

host
Select NO accelerator target. Generate PGI Unified Binary Code, as described in “PGI Unified Binary for
Accelerators,” on page 102.

Related options: —#
—time
Print execution times for various compilation steps.

Default: The compiler does not print execution times for compilation steps.

Usage: In the following example, pgfortran prints the execution times for the various compilation steps.

$ pgfortran -time nyprog.f

Description: Use this option to print execution times for various compilation steps.

Related options: —#

—tp <target> [,target...]
Sets the target architecture.

Default: The PGI compilers produce code specifically targeted to the type of processor on which the
compilation is performed. In particular, the default is to use all supported instructions wherever possible when
compiling on a given system.

The default style of code generation is auto-selected depending on the type of processor on which compilation
is performed. Further, the —tp x64 style of unified binary code generation is only enabled by an explicit —tp x64
option.

Note

Executables created on a given system may not be usable on previous generation systems. (For
example, executables created on a Pentium 4 may fail to execute on a Pentium III or Pentium II.)

Usage: In the following example, pgfortran sets the target architecture to EMO4T:
$ pgfortran -tp p7-64 nyprog.f

Description: Use this option to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a given
system may not be usable on previous generation systems. For example, executables created on a Pentium 4
may fail to execute on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the —t p option. Thus, it is
possible to create executables that are usable on previous generation systems. With the exception of k8-64,
k8-64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64 processor-based system. The
k8-64, k8-64e, p7-64 and x64 options are valid only on x64 processor-based systems.

245

Generic PGl Compiler Options

The -t p x64 option generates unified binary object and executable files, as described in the section called
“Using —tp to Generate a Unified Binary”.

The following list contains the possible sub-options for —t p and the processors that each sub-option is
intended to target:

athlon
generate 32-bit code for AMD Athlon XP/MP and compatible processors.

barcelona
generate 32-bit code for AMD Opteron/Quadcore and compatible processors.

barcelona-32
generate 32-bit code for AMD Opteron/Quadcore and compatible processors. Same as bareclona
suboption.

barcelona-64
generate 64-bit code for AMD Opteron/Quadcore and compatible processors.

core2
generate 32-bit code for Intel Core 2 Duo and compatible processors.

core2-32
generate 32-bit code for Intel Core 2 Duo and compatible processors. Same as core2 option.

core2-64
generate 64-bit code for Intel Core 2 Duo EM64T and compatible processors.

istanbul
generate 32-bit code that is usable on any Istanbul processor-based system.

istanbul-32
generate 32-bit code that is usable on any Istanbul processor-based system.

istanbul-64
generate 64-bit code that is usable on any Istanbul processor-based system.

k8-32
generate 32-bit code for AMD Athlon64, AMD Opteron and compatible processors.

k8-64
generate 64-bit code for AMD Athlon64, AMD Opteron and compatible processors.

k8-64e
generate 64-bit code for AMD Opteron Revision E, AMD Turion, and compatible processors.

nehalem
generate 32-bit code that is usable on any Nehalem processor-based system.

nehalem-32
generate 32-bit code that is usable on any Nehalem processor-based system.

nehalem-64
generate 64-bit code that is usable on any Nehalem processor-based system.

246

Chapter 16. Command-Line Options Reference

po
generate 32-bit code for Pentium Pro/II/III and AthlonXP compatible processors.

p7
generate 32-bit code for Pentium 4 and compatible processors.

p7-32
generate 32-bit code for Pentium 4 and compatible processors. Same as p7 option.

p7-64
generate 64-bit code for Intel P4/Xeon EM64T and compatible processors.

penryn
generate 32-bit code for Intel Penryn Architecture and compatible processors.

penryn-32
generate 32-bit code for Intel Penryn Architecture and compatible processors. Same as penryn suboption.

penryn-64
generate 64-bit code for Intel Penryn Architecture and compatible processors.

piii
generate 32-bit code for Pentium IIT and compatible processors, including support for single-precision
vector code using SSE instructions.

pX
generate 32-bit code that is usable on any x86 processor-based system.

px-32
generate 32-bit code that is usable on any x86 processor-based system. Same as px suboption.

shanghai
generate 32-bit code that is usable on any AMD Shanghai processor-based system.

shanghai-32
generate 32-bit code that is usable on any AMD Shanghai processor-based system.

shanghai-64
generate 64-bit code that is usable on any AMD Shanghai processor-based system.

x64
generate 64-bit unified binary code including full optimizations and support for both AMD and Intel x64
processors.

Refer to the PGI Release Notes for a concise list of the features of these processors that distinguish them as
separate targets when using the PGI compilers and tools.

The syntax for 64-bit and 32-bit targets is similar, even though the target information varies.

Syntax for 64-bit targets:
-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Syntax for 32-bit targets:
-tp {k8-32 | p6 | p7 | core2 | piii | px}

247

Generic PGl Compiler Options

Using —tp to Generate a Unified Binary

Different processors have differences, some subtle, in hardware features such as instruction sets and

cache size. The compilers make architecture-specific decisions about such things as instruction selection,
instruction scheduling, and vectorization. Any of these decisions can have significant effects on performance
and compatibility. PGI unified binaries provide a low-overhead means for a single program to run well on a
number of hardware platforms.

You can use the —tp option to produce PGI Unified Binary programs. The compilers generate, and combine
into one executable, multiple binary code streams, each optimized for a specific platform. At runtime, this one
executable senses the environment and dynamically selects the appropriate code stream.

The target processor switch, —tp, accepts a comma-separated list of 64-bit targets and will generate code
optimized for each listed target. For example, the following switch generates optimized code for three targets:
k8-64, p7-64, and core2-64.

Syntax for optimizing for multiple targets:
-tp k8-64, p7-64, core2- 64

The —tp k8-64 and —tp k8-64e options result in generation of code supported on and optimized for AMD x64
processors, while the —tp p7-64 option results in generation of code that is supported on and optimized for
Intel x64 processors. Performance of k8-64 or k8-64e code executed on Intel x64 processors, or of p7-64
code executed on AMD x64 processors, can often be significantly less than that obtained with a native binary.

The special —tp x64 option is equivalent to —tp k8-64,p7-64. This switch produces PGI Unified Binary
programs containing code streams fully optimized and supported for both AMD64 and Intel EM64T
processors.

For more information on unified binaries, refer to “Processor-Specific Optimization & the Unified Binary,” on
page 40.

Related options: —M<pgflag> options that control environments

—[no]traceback

248

Adds debug information for runtime traceback for use with the environment variable PG _TERM

Default: The compiler enables traceback for FORTRAN 77 and Fortran 90/95 and disables traceback for C
and C++.

Syntax:
-traceback

Usage: In this example, pgfortran enables traceback for the program nypr og. f .
$ pgfortran -traceback nyprog. f

Description: Use this option to enable or disable runtime traceback information for use with the environment
variable PG _TERM

Setting set TRACEBACK=CFF; insiterc or. mypg*r c also disables default traceback.

Chapter 16. Command-Line Options Reference

Using ON instead of OFF enables default traceback.

Initializes the symbol-table with <symbol>, which is undefined for the linker.
Default: The compiler does not use the —u option.

Syntax:

- usynbol

Where symbol is a symbolic name.

Usage: In this example, pgfortran initializes symbol-table with t est .

$ pgfortran -utest nyprog.f

Description: Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker.
An undefined symbol triggers loading of the first member of an archive library.

Related options: —c, —o, —s

Undefines a preprocessor macro.

Syntax:

- Usynbol

Where symbol is a symbolic name.

Usage: The following examples undefine the macro test.

$ pgfortran -Uest nmyprog. F
$ pgfortran -Dtest -Utest myprog.F

Description: Use this option to undefine a preprocessor macro. You can also use the #undef preprocessor
directive to undefine macros.

Related options: —D, —Mnostddef.

-V[release_number]

Displays additional information, including version messages. Further, if a r el ease_nunber is appended, the
compiler driver attempts to compile using the specified release instead of the default release.

Note

There can be no space between - V and r el ease_nunber .

Default: The compiler does not display version information and uses the release specified by your path to
compile.

249

Generic PGl Compiler Options

250

Usage: The following command-line shows the output using the - V option.

% pgfortran -V nyprog. f

The following command-line causes pgcc to compile using the 5.2 release instead of the default release.

% pgcc -V5.2 nyprog.c

Description: Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using the specified release
instead of the default release.

The specified release must be co-installed with the default release, and must have a release number greater
than or equal to 4.1, which was the first release that supported this functionality.

Related options: —Minfo, —v

Displays the invocations of the compiler, assembler, and linker.
Default: The compiler does not display individual phase invocations.

Usage: In the following example you use —v to see the commands sent to compiler tools, assembler, and
linker.

$ pgfortran -v nmyprog. f 90

Description: Use the —v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the —-W options you specify on
the compiler command-line.

Related options: —dryrun, —Minfo, -V, —-W

Passes arguments to a specific phase.
Syntax:

-WO | a| | },option[,option...]

Note

You cannot have a space between the —W and the single-letter pass identifier, between the identifier
and the comma, or between the comma and the option.

0

(the number zero) specifies the compiler.
a

specifies the assembler.
|

(lowercase letter 1) specifies the linker.

Chapter 16. Command-Line Options Reference

option
is a string that is passed to and interpreted by the compiler, assembler or linker. Options separated by
commas are passed as separate command line arguments.

Usage: In the following example the linker loads the text segment at address Oxf f c00000 and the data
segment at address Oxf f e00000.

$ pgfortran -W, -k, -t, Oxf f c00000, - d, Oxf f e00000 nyprog. f

Description: Use this option to pass arguments to a specific phase. You can use the —W option to specify
options for the assembler, compiler, or linker.

Note

A given PGI compiler command invokes the compiler driver, which parses the command-line, and
generates the appropriate commands for the compiler, assembler, and linker.

Related options: —Minfo, -V, —v

Do not print warning messages.
Default: The compiler prints warning messages.

Usage: In the following example no warning messages are printed.

$ pgfortran -w nmyprog. f

Description: Use the —w option to not print warning messages. Sometimes the compiler issues many warning
in which you may have no interest. You can use this option to not issue those warnings.

Related options: —silent

Use legacy standard mode for C and C++.
Default: None.

Usage: In the following example the compiler uses legacy standard mode.
$ pgcc -Xs myprog.c

Description: Use this option to use legacy standard mode for C and C++. Further, this option implies -
alias=traditional.

Related options: —alias, —Xt

Use legacy transitional mode for C and C++.

Default: None.

251

C and C++ -specific Compiler Options

Usage: In the following example the compiler uses legacy transitional mode.

$ pgcc - Xt myprog.c

Description: Use this option to use legacy transitional mode for C and C++. Further, this option implies -
alias=traditional.

Related options: —alias, —Xs

C and C++ -specific Compiler Options

There are a large number of compiler options specific to the PGCC and PGC++ compilers, especially PGC+
+. This section provides the details of several of these options, but is not exhaustive. For a complete list of
available options, including an exhaustive list of PGC++ options, use the —help command-line option. For
further detail on a given option, use —help and specify the option explicitly, as described in —help .

(pgepp only) Instructs the PGC++ compiler to accept code conforming to the proposed ANSI C++ standard,
issuing errors for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.

Usage: The following command-line requests ANSI conforming C++.

$ pgcpp -A hello.cc

Description: Use this option to instruct the PGC++ compiler to accept code conforming to the proposed ANSI
C++ standard and to issues errors for non-conforming code.

Related options:—a, —b and +p.

(pgepp only) Instructs the PGC++ compiler to accept code conforming to the proposed ANSI C++ standard,
issuing warnings for non-conforming code.

Default: By default, the compiler accepts code conforming to the standard C++ Annotated Reference Manual.

Usage: The following command-line requests ANSI conforming C++, issuing warnings for non-conforming
code.

$ pgcpp -a hello.cc

Description: Use this option to instruct the PGC++ compiler to accept code conforming to the proposed ANSI
C++ standard and to issues warnings for non-conforming code.

Related options:—A, —b and +p.

-alias

252

select optimizations based on type-based pointer alias rules in C and C++.

Syntax:

Chapter 16. Command-Line Options Reference

-alias=[ansi|traditional]

Default: None.

Usage: The following command-line enables optimizations.
$ pgcpp -alias=ansi hello.cc

Description: Use this option to select optimizations based on type-based pointer alias rules in C and C++.

ansi

Enable optimizations using ANSI C type-based pointer disambiguation
traditional

Disable type-based pointer disambiguation

Related options: —Xt

--[no_]alternative_tokens

(pgcpp only) Enables or disables recognition of alternative tokens. These are tokens that make it possible to
write C++ without the use of the comma (,) , [,], #, &, *, and characters. The alternative tokens include the
operator keywords (e.g., and, bitand, etc.) and digraphs.

Default:. The default behavior is --no_alternative_tokens, that is, to disable recognition of alternative tokens.

Usage: The following command-line enables alternative token recognition.

$ pgcpp --alternative_tokens hello.cc

(pgepp only) Use this option to enable or disable recognition of alternative tokens. These tokens make it
possible to write C++ without the use of the comma (,), [,], #, & *, and characters. The alternative tokens
include digraphs and the operator keywords, such as and, bitand, and so on. The default behavior is disabled
recognition of alternative tokens: --no_alternative_tokens.

Related options:

(pgcc and pgepp only) Enables use of C++ style comments starting with // in C program units.
Default: The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage: In the following example the compiler accepts C++ style comments.
$ pgcc -B nyprog. cc
Description: Use this option to enable use of C++ style comments starting with // in C program units.

Related options: —Mcpp

(pgepp only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of anachronisms.

253

C and C++ -specific Compiler Options

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example the compiler accepts cfront constructs.
$ pgcpp -b nyprog.cc

Description: Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options: —cfront2.1, —b3 , —cfront3.0, +p, —A

(pgepp only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.
$ pgcpp -b3 nyprog. cc

Description: Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options: —cfront2.1, —b, —cfront3.0, +p, —A

--[no_]bool

(pgepp only) Enables or disables recognition of bool.
Default: The compile recognizes bool: --bool.

Usage: In the following example, the compiler does not recognize bool.

$ pgcpp --no_bool nyprog.cc

Description: Use this option to enable or disable recognition of bool.

Related options: None.

--[no_]builtin

254

Compile with or without math subroutine builtin support.
Default: The default is to compile with math subroutine support: --builtin.

Usage: In the following example, the compiler does not build with math subroutine support.

Chapter 16. Command-Line Options Reference

$ pgcpp --no_builtin myprog.cc

Description: Use this option to enable or disable compiling with math subroutine builtin support. When you
compile with math subroutine builtin support, the selected math library routines are inlined.

Related options:

--cfront_2.1
(pgcpp only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.
$ pgcpp --cfront_2.1 nyprog. cc

Description: Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options: —b, —b3, —cfront3.0, +p, —A

--cfront_3.0

(pgcpp only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of anachronisms.

Default: The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage: In the following example, the compiler accepts cfront constructs.
$ pgcpp --cfront_3.0 myprog.cc

Description: Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by the AT&T C++
Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

Related options: --cfront2.1, —b, —b3, +p, —A

--compress_names
Compresses long function names in the file.
Default: The compiler does not compress names: --no_compress_names.

Usage: In the following example, the compiler compresses long function names.

$ pgcpp --ccnpress_nanes nyprog. cc

255

C and C++ -specific Compiler Options

Description: Use this option to specify to compress long function names. Highly nested template parameters
can cause very long function names. These long names can cause problems for older assemblers. Users
encountering these problems should compile all C++ code, including library code with the switch - -

conpr ess_names. Libraries supplied by PGI work with --compress_names.

Related options: None.

--create_pch filename

(pgepp only) If other conditions are satisfied, create a precompiled header file with the specified name.

Note

If --pch (automatic PCH mode) appears on the command line following this option, its effect is
erased.

Default: The compiler does not create a precompiled header file.
Usage: In the following example, the compiler creates a precompiled header file, hdr 1.
$ pgcpp --create_pch hdrl nyprog.cc

Description: If other conditions are satisfied, use this option to create a precompiled header file with the
specified name.

Related options: --pch

--diag_error tag
(pgepp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options:--diag_remark tag, --diag_suppress tag, --diag_warning tag, --display_error_number

--diag_remark tag
(pgepp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options: --diag_error tag, --diag_suppress tag, --diag_warning tag, --display_error_number

--diag_suppress tag

(pgepp only) Overrides the normal error severity of the specified diagnostic messages.

256

Chapter 16. Command-Line Options Reference

Default: The compiler does not override normal error severity.

Usage: In the following example, the compiler overrides the normal error severity of the specified diagnostic
messages.

$ pgcpp --di ag_suppress error_tag prog.cc

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options:--diag_error tag, --diag_remark tag, --diag_warning tag, --diag_error_number

--diag_warning tag
(pgcpp only) Overrides the normal error severity of the specified diagnostic messages.
Default: The compiler does not override normal error severity.

Usage: In the following example, the compiler overrides the normal error severity of the specified diagnostic
messages.
$ pgcpp --diag_suppress an_error_tag myprog.cc

Description: Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options: --diag_error tag, --diag_remark tag, --diag_suppress tag, --diag_error_number

--display_error_number

(pgcpp only) Displays the error message number in any diagnostic messages that are generated. The option
may be used to determine the error number to be used when overriding the severity of a diagnostic message.

Default: The compiler does not display error message numbers for generated diagnostic messages.

Usage: In the following example, the compiler displays the error message number for any generated
diagnostic messages.PLEASE PROVIDE ONE

$ pgcpp --display_error_nunmber myprog.cc

Description: Use this option to display the error message number in any diagnostic messages that are
generated. You can use this option to determine the error number to be used when overriding the severity of a
diagnostic message.

Related options: --diag_error tag, --diag_remark tag, --diag_suppress tag, --diag_warning tag

-e<number>

(pgepp only) Set the C++ front-end error limit to the specified <number>.
--[no_]exceptions

(pgepp only) Enables or disables exception handling support.

Default: The compiler provides exception handling support: --exceptions.

257

C and C++ -specific Compiler Options

Usage: In the following example, the compiler does not provide exception handling support. PLEASE PROVIDE
ONE

$ pgcpp --no_exceptions nyprog. cc

Description: Use this option to enable or disable exception handling support.

Related options:--zc_eh

--gnu_extensions
(pgepp only) Allows GNU extensions.
Default: The compiler does not allow GNU extensions.

Usage: In the following example, the compiler allows GNU extensions.
$ pgcpp --gnu_extensi ons nyprog. cc

Description: Use this option to allow GNU extensions, such as "include next", which are required to compile
Linux system header files.

Related options:--zc_eh, --gnu_version

--gnu_version <num>
(pgepp only) Sets the GNU C++ compatibility version.
Default: The compiler uses the latest version.

Usage: In the following example, the compiler sets the GNU version to 4.3.4.
$ pgcpp --gnu_version 4.3.4 nmyprog. cc

Description: Use this option to set the GNU C++ compatibility version to use when you compile.

Related options:--gnu_extensions

--[no]llalign
(pgcpp only) Enables or disables alignment of long long integers on long long boundaries.
Default: The compiler aligns long long integers on long long boundaries: --llalign.

Usage: In the following example, the compiler does not align long long integers on long long boundaries.
$ pgcpp --nollalign nmyprog. cc

Description: Use this option to allow enable or disable alignment of long long integers on long long
boundaries.

Related options: —Mipa=[no]align

Generates a list of make dependencies and prints them to stdout.

258

Chapter 16. Command-Line Options Reference

Note

The compilation stops after the preprocessing phase.
Default: The compiler does not generate a list of make dependencies.
Usage: In the following example, the compiler generates a list of make dependencies.
$ pgcpp - M nyprog. cc
Description: Use this option to generate a list of make dependencies and prints them to stdout.

Related options:-MD, —P

Generates a list of make dependencies and prints them to a file.
Default: The compiler does not generate a list of make dependencies.

Usage: In the following example, the compiler generates a list of make dependencies and prints them to the
file myprog.d.

$ pgcpp - MD nyprog. cc

Description: Use this option to generate a list of make dependencies and prints them to a file. The name of
the file is determined by the name of the file under compilation.dependencies_file<file>.

Related options:—M, —P

--optk_allow_dollar_in_id_chars
(pgepp only) Accepts dollar signs ($) in identifiers.
Default: The compiler does not accept dollar signs (§$) in identifiers.

Usage: In the following example, the compiler allows dollar signs ($) in identifiers.
$ pgcpp -optk_allow dollar_in_id_chars myprog.cc

Description: Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

- -microsoft_version <num>
Sets the Microsoft C++ compatibility version.
Default: The compiler uses the latest version.

Usage: In the following example, the compiler sets the Microsoft C++ version to 1.5.
$ pgcpp -microsoft_version 1.5 nyprog.cc

Description: Use this option to set the GNU C++ compatibility version to use when you compile.

Related options:--gnu_extensions

259

C and C++ -specific Compiler Options

P
Halts the compilation process after preprocessing and writes the preprocessed output to a file.
Default: The compiler produces an executable file.
Usage: In the following example, the compiler produces the preprocessed file myprog.i in the current
directory.
$ pgcpp -P myprog. cc
Description: Use this option to halt the compilation process after preprocessing and write the preprocessed
output to a file. If the input file is f i | ename. c or fi | enane. cc. , then the output fileis f i | ename. i .
Related options: —C,—c,—E, -Mkeepasm, —o, —S
_+p
(pgepp only) Disallow all anachronistic constructs.
Default: The compiler disallows all anachronistic constructs.
Usage: In the following example, the compiler disallows all anachronistic constructs.
$ pgcpp -+p nyprog. cc
Description: Use this option to disallow all anachronistic constructs.
Related options: None.
--pch

(pgcpp only) Automatically use and/or create a precompiled header file.

Note

If --use_pch or --create_pch (manual PCH mode) appears on the command line following this
option, this option has no effect.

Default: The compiler does not automatically use or create a precompiled header file.
Usage: In the following example, the compiler automatically uses a precompiled header file.
$ pgcpp --pch nyprog. cc

Description: Use this option to automatically use and/or create a precompiled header file.

Related options:--create_pch, --pc_dir, --use_pch

--pch_dir directoryname
(pgcpp only) Specifies the directory in which to search for and/or create a precompiled header file.

The compiler searches your PATH for precompiled header files / use or create a precompiled header file.

260

Chapter 16. Command-Line Options Reference

Usage: In the following example, the compiler searches in the directory myhdr di r for a precompiled header
file.
$ pgcpp --pch_dir nyhdrdir myprog.cc

Description: Use this option to specify the directory in which to search for and/or create a precompiled
header file. You may use this option with automatic PCH mode (--pch) or manual PCH mode (--create_pch or
--use_pch).

Related options:--create_pch, --pch, --use_pch

--[no_]pch_messages

(pgepp only) Enables or disables the display of a message indicating that the current compilation used or
created a precompiled header file.

The compiler displays a message when it uses or creates a precompiled header file.

In the following example, no message is displayed when the precompiled header file located in myhdr di r is
used in the compilation.
$ pgcpp --pch_dir nyhdrdir --no_pch_nmessages myprog.cc

Description: Use this option to enable or disable the display of a message indicating that the current
compilation used or created a precompiled header file.

Related options:--pch_dir

--preinclude=<filename>
(pgepp only) Specifies the name of a file to be included at the beginning of the compilation.

In the following example, the compiler includes the filei ncl _fi | e. ¢ at the beginning of the compilation.
me
$ pgcpp --preinclude=incl _file.c nyprog.cc

Description: Use this option to specify the name of a file to be included at the beginning of the compilation.
For example, you can use this option to set system-dependent macros and types.

Related options: None.

--use_pch filename

(pgepp only) Uses a precompiled header file of the specified name as part of the current compilation.

Note

If --pch (automatic PCH mode) appears on the command line following this option, its effect is
erased.

Default: The compiler does not use a precompiled header file.

In the following example, the compiler uses the precompiled header file, hdr 1 as part of the current
compilation.

261

C and C++ -specific Compiler Options

$ pgcpp --use_pch hdrl myprog.cc

Use a precompiled header file of the specified name as part of the current compilation. If --pch (automatic
PCH mode) appears on the command line following this option, its effect is erased.

Related options:--create_pch, --pch_dir, --pch_messages

--[no_]using_std

262

(pgepp only) Enables or disables implicit use of the std namespace when standard header files are included.
Default: The compiler uses std namespace when standard header files are included: --using_std.

Usage: The following command-line disables implicit use of the std namespace:
$ pgcpp --no_using_std hello.cc

Description: Use this option to enable or disable implicit use of the std namespace when standard header
files are included in the compilation.

Related options: —M[no]stddef

(pgepp only) Control instantiation of template functions.

—t [arg]
Default: No templates are instantiated.

Usage: In the following example, all templates are instantiated.
$ pgcpp -tall nyprog. cc

Description: Use this option to control instantiation of template functions. The argument is one of the
following:

all
Instantiates all functions whether or not they are used.

local
Instantiates only the functions that are used in this compilation, and forces those functions to be local to
this compilation.

Note: This may cause multiple copies of local static variables. If this occurs, the program may not execute
correctly.

none
Instantiates no functions. This is the default.

used
Instantiates only the functions that are used in this compilation.

Usage: In the following example, all templates are instantiated.

$ pgcpp
-tall myprog.cc

Chapter 16. Command-Line Options Reference

(pgepp only) Generates cross-reference information and places output in the specified file.
Syntax:

—Xfoo

where foo is the specifies file for the cross reference information.

Default: The compiler does not generate cross-reference information.

Usage: In the following example, the compiler generates cross-reference information, placing it in the file:
xreffile.

$ pgcpp -Xxreffile nyprog. cc

Description: Use this option to generate cross-reference information and place output in the specified file.
This is an EDG option.

Related options: None.

--zC_eh

(Linux only) Generates zero-overhead exception regions.

Default: The compiler does not use --zc_eh but instead uses --sjlj_eh, which implements exception handling
with setjmp and longjmp.

Usage: The following command-line enables zero-overhead exception regions:

$ pgcpp --zc_eh ello.cc

Description: Use this option to generate zero-overhead exception regions. The --zc_eh option defers the
cost of exception handling until an exception is thrown. For a program with many exception regions and few
throws, this option may lead to improved run-time performance.

This option is compatible with C++ code that was compiled with previous version if PGI C++.

Note

The --zc_eh option is available only on newer Linux systems that supply the system unwind libraries in
libgec_eh and on Windows.

Related options: --[no]exceptions.

—M Options by Category

This section describes each of the options available with —M by the categories:

Code generation Fortran Language Controls ~ Optimization Environment

C/C++ Language Controls Inlining Miscellaneous
For a complete alphabetical list of all the options, refer to “ —M Options Summary,” on page 226.

263

—-M Options by Category

The following sections provide detailed descriptions of several, but not all, of the -M<pgflag> options. For a
complete alphabetical list of all the options, refer to “ —M Options Summary,” on page 226. These options

are grouped according to categories and are listed with exact syntax, defaults, and notes concerning similar or
related options. For the latest information and description of a given option, or to see all available options, use
the —help command-line option, described in“—help ,” on page 219.

Code Generation Controls
This section describes the —~M<pgflag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are these:

nodaz norecursive nosecond_underscore
noflushz noreentrant nostride0
largeaddressaware noref_externals signextend

Related options: -D, -, L, -1, -U

The following list provides the syntax for each—-M<pgflag> option that controls code generation. Each option
has a description and, if appropriate, any related options.

—Mdaz
Set IEEE denormalized input values to zero; there is a performance benefit but misleading results can
occur, such as when dividing a small normalized number by a denormalized number. To take effect, this
option must be set for the main program.

—Mnodaz
Do not treat denormalized numbers as zero.To take effect, this option must be set for the main program.

—Mnodwar f
Specifies not to add DWARF debug information; must be used in combination with —g.

—Mdwar f 1
Generate DWARF1 format debug information; must be used in combination with —g.

—Mdwar f 2
Generate DWARF2 format debug information; must be used in combination with —g.

—Mdwar f 3
Generate DWARF3 format debug information; must be used in combination with —g.

—Mf | ushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.To take effect, this
option must be set for the main program.

—Mnof | ushz
Do not set SSE flush-to-zero mode; generate underflows.To take effect, this option must be set for the main
program.

—Mf unc32
Align functions on 32-byte boundaries.

264

Chapter 16. Command-Line Options Reference

—Mi nst r ument [=functions] linx86-64 only
Generate additional code to enable instrumentation of functions. The option —
M nst runent =f unct i ons is the same as —M nst r unent .

Implies —M nf o=ccf f and —M r ane.

—MI ar geaddr essawar e=[no]
[Win64 only| Generates code that allows for addresses greater than 2GB, using RIP-relative addressing.

Use—M ar geaddr essawar e=no for a direct addressing mechanism that restricts the total addressable
memory.

Note

Do not use —M ar geaddr essawar e=no if the object file will be placed in a DLL.

If -M ar geaddr essawar e=no is used to compile any object file, it must also be used when linking.

—MI ar ge_arrays
Enable support for 64-bit indexing and single static data objects larger than 2GB in size. This option
is default in the presence of —nmcrmodel =nmedi um Can be used separately together with the default
small memory model for certain 64-bit applications that manage their own memory space. For more
information, refer to Chapter 13, “Programming Considerations for 64-Bit Environments”.

—Mnpi =opti on
—Mpi adds the include and library options to the compile and link commands necessary to build an MPI
application using MPI header files and libraries.

To use —Mhpi , you must have a version of MPI installed on your system.
This option tells the compiler to use the headers and libraries for the specified version of MPI.

On Windows, PGI compilers and tools support Microsoft’s implementation of MPI, MSMPI. This version of
MPI is available with Microsoft's HPC Pack 2008 SDK.

The -Mmpi options are as specified:

e —Mmpi=hpmpi - (Linux only) Select the HP-MPI communication libraries and associated header files if
they are installed.

e —Mmpi=mpichl - Selects preconfigured MPICH-1 communication libraries.
e —Mmpi=mpich2 - Selects preconfigured MPICH-2 communication libraries.
e —Mmpi=msmpi - Select Microsoft MSMPI libraries.

e —Mmpi=mvapichl - (Linux only) Selects default MVAPICH communication libraries that are available
only from the PGI Cluster Development Kit

For more information on these options, refer to Chapter 6, “Using MPI ,” on page 75.

Note

The user can set the environment variables MPI DI Rand MPI L1 BNAME to override the default
locations for the MPI directory and library name.

265

—-M Options by Category

266

On Windows, the user can set the appropriate environment variable, either CCP_HOVE or
CCP_SDK to override the default location for the directory associated with using MSMPI.

For —Mhpi =msnpi to work, the CCP_HOVE environment variable must be set. When the Microsoft HPC
Pack 2008 SDK is installed, this variable is typically set to point to the MSMPI library directory.

—Mnol arge_arrays
Disable support for 64-bit indexing and single static data objects larger than 2GB in size. When placed
after —nmcnodel =medi umon the command line, disables use of 64-bit indexing for applications that have
no single data object larger than 2GB.

—Mnonsi n
Instructs the compiler not to include the object file that calls the Fortran main program as part of the link
step. This option is useful for linking programs in which the main program is written in C/C++ and one or
more subroutines are written in Fortran (pgf77, pgf95, pgfortran, and pghpf only).

—M][no] movnt
Instructs the compiler to generate nontemporal move and prefetch instructions even in cases where the
compiler cannot determine statically at compile-time that these instructions will be beneficial.

—M[no] pre
enables or disables partial redundancy elimination.

—Mpr of [=option[,option,...]]
Set performance profiling options. Use of these options causes the resulting executable to create a
performance profile that can be viewed and analyzed with the PGPROF performance profiler. In the
descriptions that follow, PGI-style profiling implies compiler-generated source instrumentation. MPICH-
style profiling implies the use of instrumented wrappers for MPI library routines.

The option argument can be any of the following:

[no] ccff
Enable [disable] common compiler feedback format, CCFE, information.

dwar f
Generate limited DWARF symbol information sufficient for most performance profilers.

func
Perform PGI-style function-level profiling.

hpnpi
Use the profiled HPMPI communication library. Implies —Mpf i =hpnpi . For more information, refer
to “Using HP-MPI on Linux”.

hwet s
Generate a profile using event-based sampling of hardware counters via the PAPI interface.
(linux86-64 platform only; PAPI must be installed).

l'i nes
Perform PGI-style line-level profiling.

nmpi chl
Perform MPICH-style profiling for MPICH-1. Implies —Mpi =npi ch1. (Linux only).

Chapter 16. Command-Line Options Reference

nmpi ch2
Perform MPICH-style profiling for MPICH-2. Implies —Mpi =npi ch2. (Linux with MPI support
licence privileges only.) For more information, refer to “Using MPICH-2 on Linux”.

s Npi
Perform MPICH-style profiling for Microsoft MPL. Implies —Mhpi =nsnpi .

This option is valid only if Microsoft HPC Pack 2008 SDK is installed.

For more information, refer to “Using MSMPI on Windows”.

mvapi chl
Use profiled MVAPICH communication library. Implies —Mpi =mvapi ch1. (Linux only). For or
more information, refer to “Using MVAPICH on Linux”

time
Generate a profile using time-based instruction-level statistical sampling. This is equivalent to —pg,
except that the profile is saved to a file names pgpr of . out rather than gnon. out .

—Mr ecursi ve
instructs the compiler to allow Fortran subprograms to be called recursively.

—Mnor ecur si ve
Fortran subprograms may not be called recursively.

—Mr ef _external s
force references to names appearing in EXTERNAL statements (pgf77, pgf95, pgfortran, and pghpf only).

—Mnor ef _external s
do not force references to names appearing in EXTERNAL statements (pgf77, pgf95, pgfortran, and pghpf
only).

—Mr eent r ant
instructs the compiler to avoid optimizations that can prevent code from being reentrant.

—Mnor eent r ant
instructs the compiler not to avoid optimizations that can prevent code from being reentrant.

—Msecond_under scor e
instructs the compiler to add a second underscore to the name of a Fortran global symbol if its name
already contains an underscore. This option is useful for maintaining compatibility with object code
compiled using g77, which uses this convention by default (pgf77, pgf95, pgfortran, and pghpf only).

—Mnosecond_under scor e
instructs the compiler not to add a second underscore to the name of a Fortran global symbol if its name
already contains an underscore (pgf77, pgf95, pgfortran, and pghpf only).

—Msi gnext end
instructs the compiler to extend the sign bit that is set as a result of converting an object of one data type
to an object of a larger signed data type.

—Mnosi gnext end
instructs the compiler not to extend the sign bit that is set as the result of converting an object of one data
type to an object of a larger data type.

267

—-M Options by Category

—Msaf e_| ast val
When a scalar is used after a loop, but is not defined on every iteration of the loop, the compiler does not
by default parallelize the loop. However, this option tells the compiler it’s safe to parallelize the loop. For a
given loop the last value computed for all scalars makes it safe to parallelize the loop.

—Mstri de0
instructs the compiler to inhibit certain optimizations and to allow for stride 0 array references. This
option may degrade performance and should only be used if zero-stride induction variables are possible.

—Mnostri de0
instructs the compiler to perform certain optimizations and to disallow for stride 0 array references.

—Muni x
use UNIX symbol and parameter passing conventions for Fortran subprograms (pgf77, pgf95, pgfortran,
and pghpf for Win32 only).

—Mvar ar gs
force Fortran program units to assume procedure calls are to C functions with a varargs-type interface
(pef77, pgf95, and pgfortran only).

C/C++ Language Controls

268

This section describes the —~M<pgflag> options that affect C/C++ language interpretations by the PGI C and C+
+ compilers. These options are only valid to the pgcc and pgepp compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle

dollar,_ schar
Usage:
In this example, the compiler allows the asm keyword in the source file.
$ pgcc - Masnkeyword nyprog. c

In the following example, the compiler maps the dollar sign to the dot character.
$ pgcc -Mlol |l ar,. myprog.c

In the following example, the compiler treats floating-point constants as float values.
$ pgcc -Mcon nyprog.c

In the following example, the compiler does not convert float parameters to double parameters.
$ pgcc - Msingl e nyprog.c

Without —Muchar or with —Mschar, the variable ch is a signed character:

char ch;
signed char sch;

If —Muchar is specified on the command line:
$ pgcc - Muchar nyprog.c

char ch in the preceding declaration is equivalent to:

Chapter 16. Command-Line Options Reference

unsi gned char ch;

The following list provides the syntax for each—M<pgflag> option that controls code generation. Each option
has a description and, if appropriate, any related options.

—Masnkeywor d
instructs the compiler to allow the asm keyword in C source files. The syntax of the asm statement is as
follows:

asn("statenment");
Where statement is a legal assembly-language statement. The quote marks are required.

Note. The current default is to support gcc's extended asm, where the syntax of extended asm includes
asm strings. The —M[no]asmkeyword switch is useful only if the target device is a Pentium 3 or older cpu
type (—tp piiilp6lk7lathlonlathlonxplpx).

—Mnoasnkeywor d
instructs the compiler not to allow the asm keyword in G source files. If you use this option and your
program includes the asm keyword, unresolved references will be generated

—Mdol | ar, char
char specifies the character to which the compiler maps the dollar sign ($). The PGCC compiler allows the
dollar sign in names; ANSI C does not allow the dollar sign in names.

—M[no] eh_frane
instructs the linker to keep eh_frame call frame sections in the executable.

Note

The eh_frame option is available only on newer Linux or Windows systems that supply the system
unwind libraries.

—Mf con
instructs the compiler to treat floating-point constants as float data types, instead of double data types. This
option can improve the performance of single-precision code.

—M[no] mL28
instructs the compiler to recognize [ignore] __m128, __m128d, and __m128i datatypes. floating-point
constants as float data types, instead of double data types. This option can improve the performance of
single-precision code.

—Mschar
specifies signed char characters. The compiler treats "plain" char declarations as signed char.

—Msi ngl e
do not to convert float parameters to double parameters in non-prototyped functions. This option can
result in faster code if your program uses only float parameters. However, since ANSI C specifies that
routines must convert float parameters to double parameters in non-prototyped functions, this option
results in non#ANSI conformant code.

—Mnosi ngl e
instructs the compiler to convert float parameters to double parameters in non-prototyped functions.

269

—-M Options by Category

—Muchar
instructs the compiler to treat "plain" char declarations as unsigned char.

Environment Controls
This section describes the -M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

The following list provides the syntax for each —~M<pgflag> option that controls environments. Each option has
a description and, if appropriate,a list of any related options.

Ml fs
(32-bit Linux only) link in libraries that enable file I/0 to files larger than 2GB (Large File Support).

—Mnost art up
instructs the linker not to link in the standard startup routine that contains the entry point (_start) for the
program.

Note

If you use the —Mhost ar t up option and do not supply an entry point, the linker issues the
following error message: Warning: cannot find entry symbol _start

—M[no] smart al | oc[=huge| h[uge: <n>| hugebss| nohuge]
adds a call to the routine mallopt in the main routine. This option supports large TLBs on Linux and
Windows. This option must be used to compile the main routine to enable optimized malloc routines.

The option arguments can be any of the following:

huge
Link in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of TLB entries
required to execute a program. This option is most effective on Barcelona and Core 2 systems; older
architectures do not have enough TLB entries for this option to be beneficial. By itself, the huge
suboption tries to allocate as many huge pages as required.

huge:<n>
Link the huge page runtime library and allocate n huge pages. Use this suboption to limit the number
of huge pages allocated to n.

You can also limit the pages allocated by using the environment variable PG _ HUGE_PAGES.

hugebss
(64-bit only) Puts the BSS section in huge pages; attempts to put a program's uninitialized data
section into huge pages.

Note

This flag dynamically links the library | i bhuget | bf s_pgi even if —Bst at i c is used.

270

Chapter 16. Command-Line Options Reference

nohuge
Overrides a previous —Msmar t al | oc=huge setting.

Tip

To be effective, this switch must be specified when compiling the file containing the Fortran, C, or
C++ main program.

—M] no] st ddef
instructs the compiler not to predefine any macros to the preprocessor when compiling a C program.

—Mnost di nc
instructs the compiler to not search the standard location for include files.

—Mnostdlib
instructs the linker not to link in the standard libraries | i bpgftnrtl.a,libm a,libc. a,and
| i bpgc. a in the library directory | i b within the standard directory. You can link in your own library
with the —I option or specify a library directory with the —L option.

Fortran Language Controls

This section describes the -M<pgflag> options that affect Fortran language interpretations by the PGI Fortran
compilers. These options are valid only for the pghpf, pgf77, pgf95, and pgfortran compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

nobackslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each—M<pgflag> option that affect Fortran language interpretations.
Each option has a description and, if appropriate, a list of any related options.

—Mal | ocat abl e=95| 03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array assignments. The
default behavior is to use Fortran 95 semantics; the 03 option instructs the compiler to use Fortran 2003
semantics.

—Mbacksl ash
the compiler treats the backslash as a normal character, and not as an escape character in quoted strings.

—Mnobacksl ash
the compiler recognizes a backslash as an escape character in quoted strings (in accordance with
standard C usage).

—Mcuda
the compiler enables Cuda Fortran.

The following suboptions exist:

Note

If more than one option is on the command line, all the specified options occur.

271

—-M Options by Category

ccl0
Generate code for compute capability 1.0.

ccll
Generate code for compute capability 1.1.

ccl2
Generate code for compute capability 1.2.

ccl3
Generate code for compute capability 1.3.

cc20
Generate code for compute capability 2.0.

cuda2.3 or 2.3
Sets the toolkit compatibility version to 2.3.

cuda3.0 or 3.0
Sets the toolkit compatibility version to 3.0.

emu
Enable Cuda Fortran emulation mode.

fastmath
Use routines from the fast math library.

keepbin
Keep the generated binary (.bin) file for CUDA Fortran.

keepgpu
Keep the generated GPU code for CUDA Fortran.

keepptx
Keep the portable assembly (.ptx) file for the GPU code.

maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates no limit.

nofma
Do not generate fused multiply-add instructions.

—Mdcl chk
the compiler requires that all program variables be declared.

—Mnodcl chk
the compiler does not require that all program variables be declared.

—Mdef aul t uni t
the compiler treats "*" as a synonym for standard input for reading and standard output for writing.

—Mnodef aul t uni t
the compiler treats "*" as a synonym for unit 5 on input and unit 6 on output.

—Mdl i nes
the compiler treats lines containing "D" in column 1 as executable statements (ignoring the "D").

272

Chapter 16. Command-Line Options Reference

—Mnodl i nes
the compiler does not treat lines containing "D" in column 1 as executable statements (does not ignore
the "D").

—Mdol | ar, char
char specifies the character to which the compiler maps the dollar sign. The compiler allows the dollar
sign in names.

—Mext end
the compiler accepts 132-column source code; otherwise it accepts 72-column code.

—Mf i xed
the compiler assumes input source files are in FORTRAN 77-style fixed form format.

—Mfree
the compiler assumes the input source files are in Fortran 90/95 freeform format.

—Mi onut ex
the compiler generates critical section calls around Fortran 1/0 statements.

—Mnoi onut ex
the compiler does not generate critical section calls around Fortran I/0 statements.

—Monetrip
the compiler forces each DO loop to execute at least once.

—Mnoonetrip
the compiler does not force each DO loop to execute at least once. This option is useful for programs
written for earlier versions of Fortran.

—Msave
the compiler assumes that all local variables are subject to the SAVE statement. Note that this may allow
older Fortran programs to run, but it can greatly reduce performance.

—Mnosave
the compiler does not assume that all local variables are subject to the SAVE statement.

—Mst andar d
the compiler flags non-ANSI-conforming source code.

—Muni xI ogi cal
directs the compiler to treat logical values as true if the value is non-zero and false if the value is zero
(UNIX F77 convention.) When —Munixlogical is enabled, a logical value or test that is non-zero is
. TRUE. , and a value or test that is zero is . FALSE. . In addition, the value of a logical expression is
guaranteed to be one (1) when the result is . TRUE. .

—Mnouni x| ogi cal
directs the compiler to use the VMS convention for logical values for true and false. Even values are true
and odd values are false.

—Mupcase
the compiler preserves uppercase letters in identifiers. With —~Mupcase, the identifiers "X" and "x" are
different. Keywords must be in lower case. This selection affects the linking process. If you compile and

273

—-M Options by Category

link the same source code using —Mupcase on one occasion and —~Vhoupcase on another, you may
get two different executables - depending on whether the source contains uppercase letters. The standard
libraries are compiled using the default —-Mnoupcase .

—Mnoupcase
the compiler converts all identifiers to lower case. This selection affects the linking process: If you compile
and link the same source code using —Mupcase on one occasion and —Mnoupcase on another, you may
get two different executables (depending on whether the source contains uppercase letters). The standard
libraries are compiled using —Mnoupcase.

Inlining Controls

274

This section describes the —-M<pgflag> options that control function inlining. Before looking at all the options,
let’s look at a couple examples.

Usage: In the following example, the compiler extracts functions that have 500 or fewer statements from the
source file mypr og. f and saves them in the file ext ract . i I .

$ pgfortran - Mextract=500 -o extract.il nyprog.f

In the following example, the compiler inlines functions with fewer than approximately 100 statements in the
source file nypr og. f .

$ pgfortran -M nline=size: 100 myprog. f
Related options: —o, —Mextract

The following list provides the syntax for each—M<pgflag> option that controls function inlining. Each option
has a description and, if appropriate, a list of any related options.

—M[no] aut oi nl i ne[=option[,option,...]]
instructs the compiler to inline [not to inline] a C/C++ function at —02, where the option can be any of
these:

levels:n
instructs the compiler to perform 7 levels of inlining. The default number of levels is 10.

maxsize:n
instructs the compiler not to inline functions of size > 7. The default size is 100.

totalsize:n
instructs the compiler to stop inlining when the size equals 7. The default size is 800.

—Mext r act [=option[,option,...]]

Extracts functions from the file indicated on the command line and creates or appends to the specified
extract directory where option can be any of:

name:func
instructs the extractor to extract function func from the file.

size:number
instructs the extractor to extract functions with number or fewer statements from the file.

Chapter 16. Command-Line Options Reference

lib:filename.ext
Use directory filename.ext as the extract directory (required in order to save and re-use inline
libraries).

If you specify both name and size, the compiler extracts functions that match func, or that have number or
fewer statements. For examples of extracting functions, see Chapter 4, “Using Function Inlining”.

—Mi nl i ne[=option[,option,...]]
This passes options to the function inliner, where the option can be any of these:

except:func
instructs the inliner to inline all eligible functions except func, a function in the source text. Multiple
functions can be listed, comma-separated.

[name:]func
instructs the inliner to inline the function func. The func name should be a non-numeric string that
does not contain a period. You can also use a name: prefix followed by the function name. If name: is
specified, what follows is always the name of a function.

[lib:]filename.ext
instructs the inliner to inline the functions within the library file f i I enane. ext . The compiler
assumes that a f i | ename. ext option containing a period is a library file. Create the library file
using the —Mext r act option. You can also use a lib: prefix followed by the library name. If lib: is
specified, no period is necessary in the library name. Functions from the specified library are inlined.
If no library is specified, functions are extracted from a temporary library created during an extract
prepass.

levels:number
instructs the inliner to perform number levels of inlining. The default number is 1.

[no]reshape
instructs the inliner to allow (disallow) inlining in Fortran even when array shapes do not match.
The default is —M nl i ne=nor eshape, except with ~Mconcur or —np, where the default is —
M nl i ne=r eshape,=reshape.

[size: Jnumber
instructs the inliner to inline functions with number or fewer statements. You can also use a size:
prefix followed by a number. If size: is specified, what follows is always taken as a number.

If you specify both func and number, the compiler inlines functions that match the function name or have
number or fewer statements. For examples of inlining functions, refer to Chapter 4, “Using Function
Inlining”.

Optimization Controls

This section describes the —-M<pgflag> options that control optimization. Before looking at all the options,
let’s look at the defaults.

Default: For arguments that you do not specify, the default optimization control options are as follows:

depchk noipa nounroll nor8

275

—-M Options by Category

i4 nolre novect nor8intrinsics
nofprelaxed noprefetch
Note

If you do not supply an option to —Mvect , the compiler uses defaults that are dependent upon the
target system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions enabled.
$ pgfortran - Wect=sse -Mache_align myprog.f
Related options: —g, -0

The following list provides the syntax for each—M<pgflag> option that controls optimization. Each option has a
description and, if appropriate, a list of any related options.

—Mcache_al i gn
Align unconstrained objects of length greater than or equal to 16 bytes on cache-line boundaries. An
unconstrained object is a data object that is not 2 member of an aggregate structure or common block.
This option does not affect the alignment of allocatable or automatic arrays.

Note

To effect cache-line alignment of stack-based local variables, the main program or function must
be compiled with ~Mcache_al i gn.

—Mconcur [=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If ~Mconcur is specified, multiple
processors will be used to execute loops that the compiler determines to be parallelizable. Where option
is one of the following:

allcores
Instructs the compiler to use all available cores. Use this option at link time.

[no]altcode:n
Instructs the parallelizer to generate alternate serial code for parallelized loops. If altcode is specified
without arguments, the parallelizer determines an appropriate cutoff length and generates serial code
to be executed whenever the loop count is less than or equal to that length. If altcode:n is specified,
the serial altcode is executed whenever the loop count is less than or equal to n. If noaltcode is
specified, the parallelized version of the loop is always executed regardless of the loop count.

bind
Instructs the parallelizer to bind threads to cores. Use this option at link time.
cncall
Calls in parallel loops are safe to parallelize. Loops containing calls are candidates for parallelization.

Also, no minimum loop count threshold must be satisfied before parallelization will occur, and last
values of scalars are assumed to be safe.

276

Chapter 16. Command-Line Options Reference

dist:block
Parallelize with block distribution (this is the default). Contiguous blocks of iterations of a
parallelizable loop are assigned to the available processors.

dist:cyclic
Parallelize with cyclic distribution. The outermost parallelizable loop in any loop nest is parallelized.
If a parallelized loop is innermost, its iterations are allocated to processors cyclically. For example,
if there are 3 processors executing a loop, processor 0 performs iterations 0, 3, 6, etc.; processor 1
performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

[no]innermost
Enable parallelization of innermost loops. The default is to not parallelize innermost loops, since it is
usually not profitable on dual-core processors.

102ss0C
Disables parallelization of loops with reductions.

When linking, the —~Mconcur switch must be specified or unresolved references will result. The NCPUS
environment variable controls how many processors or cores are used to execute parallelized loops.

Note

This option applies only on shared-memory multi-processor (SMP) or multi-core processor-
based systems.

—Mcr ay [=option[,option,...]]
(pgf77 , pgf95, and pgfortran only) Force Cray Fortran (CF77) compatibility with respect to the listed
options. Possible values of option include:

pointer
for purposes of optimization, it is assumed that pointer-based variables do not overlay the storage of
any other variable.

—Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.

—Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.

—Mdse
Enables a dead store elimination phase that is useful for programs that rely on extensive use of inline
function calls for performance. This is disabled by default.

—Mnodse
Disables the dead store elimination phase. This is the default.

—M[no] f pappr ox [=opt i on]
Perform certain fp operations using low-precision approximation.

—Mnof pappr ox specifies not to use low-precision fp approximation operations.

By default —M pappr ox is not used.

277

—-M Options by Category

If —M pappr ox is used without suboptions, it defaults to use approximate di v, sqrt,and r sqrt . The
available suboptions are these:
div

Approximate floating point division

sqrt
Approximate floating point square root

rsqrt
Approximate floating point reciprocal square root
—M[no] f pmi sal i gn
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory operands that are
not aligned on 16-byte boundaries. The default is —Vhof pami sal i gn on all processors.

Note

Applicable only with one of these options: —tp barcelona or —tp barcelona-64

—Mf [=opti on]
Instructs the compiler to use relaxed precision in the calculation of some intrinsic functions. Can result in
improved performance at the expense of numerical accuracy.

The possible values for option are:
div
Perform divide using relaxed precision.

noorder
Perform reciprocal square root (1/sqrt) using relaxed precision.

order
Perform reciprocal square root (1/sqrt) using relaxed precision.

recip
Perform reciprocal using relaxed precision.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

sqrt
Perform square root with relaxed precision.

With no options, —M pr el axed generates relaxed precision code for those operations that generate a
significant performance improvement, depending on the target processor.

—Mnof pr el axed
(default) instructs the compiler to not use relaxed precision in the calculation of intrinsic functions.

-Mi 4
(pgf77 , pef95, and pgfortran only) the compiler treats INTEGER variables as INTEGER*4.

—Mi pa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer.

278

Chapter 16. Command-Line Options Reference

Note

—M pa implies —02, and the minimum optimization level that can be specified in combination
with -M pa is —02.

For example, if you specify —M pa —OL on the command line, the optimization level is automatically
elevated to —02 by the compiler driver. Typically, as recommended, you would use —M pa=f ast .

Many of the following sub-options can be prefaced with no, which reverses or disables the effect of the
sub-option if it’s included in an aggregate sub-option such as —M pa=f ast . The choices of option are:

[no]align
recognize when targets of a pointer dummy are aligned. The default is noalign.

[no]arg
remove arguments replaced by const, ptr. The default is noarg.

[no]cg
generate call graph information for viewing using the pgi cg command-line utility. The default is
nocg.

[no]const
perform interprocedural constant propagation. The default is const.

except:<func>
used with inline to specify functions which should not be inlined. The default is to inline all eligible
functions according to internally defined heuristics. Valid only immediately following the inline
suboption.

[no]f90ptr
F90/F95 pointer disambiguation across calls. The default is nofoOptr.

fast
choose IPA options generally optimal for the target. To see settings for —M pa=f ast on a given
target, use —hel p.

force
force all objects to re-compile regardless of whether IPA information has changed.

[no]globals
optimize references to global variables. The default is noglobals.
inline[:n]
perform automatic function inlining. If the optional :n is provided, limit inlining to at most n levels.
IPA-based function inlining is performed from leaf routines upward.
ipofile
save IPA information in an . i po file rather than incorporating it into the object file.

jobs[:n]
recompile n jobs in parallel and print source file names as they are compiled.

279

—-M Options by Category

280

[no]keepobj
keep the optimized object files, using file name mangling, to reduce re-compile time in subsequent
builds. The default is keepobj.

[no]libc
optimize calls to certain standard C library routines. The default is nolibc.

[no]libinline
allow inlining of routines from libraries; implies —M pa=i nl i ne. The default is nolibinline.

[no]libopt
allow recompiling and optimization of routines from libraries using IPA information. The default is
nolibopt.

[no]localarg
equivalent to arg plus externalization of local pointer targets. The default is nolocalarg.

main:<func>
specify a function to appear as a global entry point; may appear multiple times; disables linking.

rsqrt
Perform reciprocal square root (1/sqrt) using relaxed precision.

[no]pfo
enable profile feedback information. The nopfo option is valid only immediately following the inline
suboption. —M pa=i nl i ne, nopf o tells IPA to ignore PFO information when deciding what
functions to inline, if PFO information is available.

[no]ptr
enable pointer disambiguation across procedure calls. The default is noptr.

[no]pure
pure function detection. The default is nopure.

required
return an error condition if IPA is inhibited for any reason, rather than the default behavior of linking
without IPA optimization.

[no]reshape
enables or disables Fortran inline with mismatched array shapes. Valid only immediately following the
inline suboption.

safe: [<function>|<library>|
declares that the named function, or all functions in the named library, are safe; a safe procedure does
not call back into the known procedures and does not change any known global variables.

Without —-M pa=saf e, any unknown procedures will cause IPA to fail.

[no]safeall
declares that all unknown procedures are safe; see —~M pa=saf e. The default is nosafeall.

[no]shape
perform Fortran 90 array shape propagation. The default is noshape.

Chapter 16. Command-Line Options Reference

summary
only collect IPA summary information when compiling; this prevents IPA optimization of this file, but
allows optimization for other files linked with this file.

[no]vestigial
remove uncalled (vestigial) functions. The default is novestigial.

—M[no] | oop32
Aligns or does not align innermost loops on 32 byte boundaries with —t p barcelona.

Small loops on barcelona may run fast if aligned on 32-byte boundaries; however, in practice, most
assemblers do not yet implement efficient padding causing some programs to run more slowly with this
default. Use —~M 0op32 on systems with an assembler tuned for barcleona. The default is —Mnol oop32.

—MI r e[=array | assoc | noassoc]
Enables loop-carried redundancy elimination, an optimization that can reduce the number of arithmetic
operations and memory references in loops.

array
treat individual array element references as candidates for possible loop-carried redundancy
elimination. The default is to eliminate only redundant expressions involving two or more operands.

assoc
allow expression re-association; specifying this sub-option can increase opportunities for loop-carried
redundancy elimination but may alter numerical results.

n0assoc
disallow expression re-association.

—Mnol re
Disables loop-carried redundancy elimination.

—Mnof rane
Eliminates operations that set up a true stack frame pointer for every function. With this option enabled,
you cannot perform a traceback on the generated code and you cannot access local variables.

—Mnoi 4
(pgf77 , pef95, and pgfortran only) the compiler treats INTEGER variables as INTEGER*2.

—Mpf i [=indirect]
generate profile-feedback instrumentation; this includes extra code to collect run-time statistics and dump
them to a trace file for use in a subsequent compilation.

When you use the indirect option,—Mpf i =i ndi r ect saves indirect function call targets.

—Mpf i must also appear when the program is linked. When the resulting program is executed, a profile
feedback trace file pgf i . out is generated in the current working directory; see —Mpf o.

Note

Compiling and linking with —Mpf i adds significant runtime overhead to almost any executable.
You should use executables compiled with —Mpf i only for execution of training runs.

281

—-M Options by Category

282

—Mpf o[=indirect | nolayout]
enable profile-feedback optimizations; requires the presence of a pgfi.out profile-feedback trace file in the
current working directory. See —Mpf i .

indirect
enable indirect function call inlining

nolayout
disable dynamic code layout.

—Mpr e
enables partial redundancy elimination.

—Mpr ef et ch[=option [,option...]]

enables generation of prefetch instructions on processors where they are supported. Possible values for
option include:

d:m
set the fetch-ahead distance for prefetch instructions to m cache lines.

n:p
set the maximum number of prefetch instructions to generate for a given loop to p.

nta
use the prefetch instruction.

plain
use the prefetch instruction (default).

t0
use the prefetcht0 instruction.

use the AMD-specific prefetchw instruction.

—Mnopr ef et ch
Disables generation of prefetch instructions.

—M] no] pr opcond
Enables or disables constant propagation from assertions derived from equality conditionals.

The default is enabled.

—Mr 8
(pgf77, pgf95, pgfortran,and pghpf only) the compiler promotes REAL variables and constants to DOUBLE
PRECISION variables and constants, respectively. DOUBLE PRECISION elements are 8 bytes in length.

—Mnor 8
(pef77, pef9s, pgfortran, and pghpf only) the compiler does not promote REAL variables and constants to
DOUBLE PRECISION. REAL variables will be single precision (4 bytes in length).

—Mr8intrinsics
(pef77, pgf95, and pgfortran only) the compiler treats the intrinsics CMPLX and REAL as DCMPLX and
DBLE, respectively.

Chapter 16. Command-Line Options Reference

—Mnor 8i ntrinsics
(pgf77, pgf95, and pgfortran only) the compiler does not promote the intrinsics CMPLX and REAL to
DCMPLX and DBLE, respectively.

—Msaf ept r [=option[,option,...]]
(pgcc and pgepp only) instructs the C/C++ compiler to override data dependencies between pointers of a
given storage class. Possible values of option include:

all
assume all pointers and arrays are independent and safe for aggressive optimizations, and in
particular that no pointers or arrays overlap or conflict with each other.

arg
instructs the compiler that arrays and pointers are treated with the same copyin and copyout
semantics as Fortran dummy arguments.

global
instructs the compiler that global or external pointers and arrays do not overlap or conflict with each
other and are independent.

local/auto
instructs the compiler that local pointers and arrays do not overlap or conflict with each other and are
independent.

static
instructs the compiler that static pointers and arrays do not overlap or conflict with each other and
are independent.

—Mscal ar sse
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic. (This option is valid only on option
—t p {p7 | k8-32 | k8-64} targets).

—Mnoscal ar sse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87 instructions instead.
(This option is not valid in combination with the —t p k8- 64 option).

—Msmar t
instructs the compiler driver to invoke a post-pass assembly optimization utility.

—Mnosmar t
instructs the compiler not to invoke an AMD64-specific post-pass assembly optimization utility.

—Munr ol | [=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no —Oor —g options are supplied. The option is
one of the following:

cm
instructs the compiler to completely unroll loops with a constant loop count less than or equal to m, a
supplied constant. If this value is not supplied, the m count is set to 4.

283

—-M Options by Category

m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for loops that have
conditional statements. If n is not supplied, then the default value is 4. The default setting is not to
enable —Munr ol | =m

n:<n>
instructs the compiler to unroll single-block loops n times, a loop that is not completely unrolled,
or has a non-constant loop count. If n is not supplied, the unroller computes the number of times a
candidate loop is unrolled.

—Mnounrol |
instructs the compiler not to unroll loops.

-M[no] vect [=option [,option,...]]
(disable) enable the code vectorizer, where option is one of the following:

altcode
Instructs the vectorizer to generate alternate code (altcode) for vectorized loops when appropriate.
For each vectorized loop the compiler decides whether to generate altcode and what type or types
to generate, which may be any or all of: altcode without iteration peeling, altcode with non-temporal
stores and other data cache optimizations, and altcode based on array alignments calculated
dynamically at runtime. The compiler also determines suitable loop count and array alignment
conditions for executing the altcode. This option is enabled by default.

noaltcode
This disables alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change the results of a
computation due to roundoff error. A typical optimization is to change an arithmetic operation to
an arithmetic operation that is mathematically correct, but can be computationally different, due to
round-off error

102ss0C
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache size of n. The
default is set per processor type, either using the —t p switch or auto-detected from the host computer.

[no]gather
Vectorize loops containing indirect array references, such as this one:

sum = 0.dO

do k=d(j),d(j+1)-1
sum = sum + a(k)*b(c(k))
enddo

The default is gather.

partial
Instructs the vectorizer to enable partial loop vectorization through innemost loop distribution.

284

Chapter 16. Command-Line Options Reference

prefetch

Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use of prefetch
instructions.

[no]short
Enable [disable] short vector operations. - Mvect =shor t enables generation of packed SSE

instructions for short vector operations that arise from scalar code outside of loops or within the body
of a loop iteration.

[no]sizelimit
Generate vector code for all loops where possible regardless of the number of statements in the
loop. This overrides a heuristic in the vectorizer that ordinarily prevents vectorization of loops with a
number of statements that exceeds a certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length is less than or equal to n. The

vectorizer uses this information to eliminate generation of the stripmine loop for vectorized loops
wherever possible. If the size n is omitted, the default is 100.

Note

No space is allowed on either side of the colon (:).

[no]sse

Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use of SSE,
SSE2, and prefetch instructions. The default is nosse.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and residual loops.

Note

This option may affect the performance of the residual loop.

—Mnovect

instructs the compiler not to perform vectorization; can be used to override a previous instance of —

Msect on the command-line, in particular for cases in which -Mvect is included in an aggregate option
such as —f ast sse.

—Mvect =[option]
instructs the compiler to enable loop vectorization, where option is one of the following:

partial
Instructs the vectorizer to enable partial loop vectorization through innemost loop distribution.

[no]short

Enable [disable] short vector operations. Enables [disables]| generation of packed SSE instructions

for short vector operations that arise from scalar code outside of loops or within the body of a loop
iteration.

285

—-M Options by Category

—Mnovi ntr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized vector
functions.

Miscellaneous Controls
Default: For arguments that you do not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Usage: In the following example, the compiler includes Fortran source code with the assembly code.

$ pgfortran -Manno -S nyprog. f

In the following example, the assembler does not delete the assembly file mypr og. s after the assembly pass.
$ pgfortran - Mkeepasm nypr og. f

In the following example, the compiler displays information about inlined functions with fewer than

approximately 20 source lines in the source file mypr og. f .

$ pgfortran -M nfo=inline -Mnline=20 nyprog. f

In the following example, the compiler creates the listing file mypr og. | st .

$ pgfortran -Mist nyprog.f

In the following example, array bounds checking is enabled.

$ pgfortran - Moounds myprog. f
Related options: —m, —S, -V, —v

The following list provides the syntax for each miscellaneous —M<pgflag> option. Each option has a
description and, if appropriate, a list of any related options.

—Manno
annotate the generated assembly code with source code. Implies —Mkeepasm.

—Mbounds
enables array bounds checking. If an array is an assumed size array, the bounds checking only applies
to the lower bound. If an array bounds violation occurs during execution, an error message describing
the error is printed and the program terminates. The text of the error message includes the name of the
array, the location where the error occurred (the source file and the line number in the source), and
information about the out of bounds subscript (its value, its lower and upper bounds, and its dimension).
The following is a sample error message:

PG-TN- F- Subscri pt out of range for array a (a.f: 2)
subscri pt=3, |ower bound=1, upper bound=2, di nensi on=2

—Mnobounds
disables array bounds checking.

—Mbyt eswapi o
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran unformatted
data files.

286

Chapter 16. Command-Line Options Reference

—Mchkf pst k (32-bit only)
instructs the compiler to check for internal consistency of the x87 floating-point stack in the prologue
of a function and after returning from a function or subroutine call. Floating-point stack corruption may
occur in many ways, one of which is Fortran code calling floating-point functions as subroutines (i.e., with
the CALL statement). If the PG _CONTI NUE environment variable is set upon execution of a program
compiled with —Mchkf pst k, the stack will be automatically cleaned up and execution will continue.
There is a performance penalty associated with the stack cleanup. If PG _CONTI NUE is set to verbose,
the stack will be automatically cleaned up and execution will continue after printing the warning message.

Note

This switch is only valid for 32-bit. On 64-bit it is ignored.

—Mchkpt r
instructs the compiler to check for pointers that are dereferenced while initialized to NULL (pgf95,
pgfortran, and pghpf only).

—Mchkst k
instructs the compiler to check the stack for available space in the prologue of a function and before the
start of a parallel region. Prints a warning message and aborts the program gracefully if stack space is
insufficient. Useful when many local and private variables are declared in an OpenMP program.

If the user also sets the PG _STACK_USAGE environment variable to any value, then the program
displays the stack space allocated and used after the program exits. For example, you might see something
similar to the following message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48KB of a 8180KB allocated stack. For more information on
the PG _STACK_USAGE, refer to “PGI_STACK_USAGE,” on page 143.

This information is useful when you want to explicitly set a reserved and committed stack size for your
programs, such as using the —st ack option on Windows.

—Mcpp[=option [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation steps. This option is
useful for generating dependence information to be included in makefiles.

Note

Only one of the m, md, mm or mmd options can be present; if multiple of these options are listed,
the last one listed is accepted and the others are ignored.

The option is one or more of the following;

m
print makefile dependencies to stdout.

md
print makefile dependencies to f i | ename. d, where filename is the root name of the input file being
processed.

287

—-M Options by Category

288

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependencies to f i | ename. d, where filename is the root name of the input file being
processed, ignoring system include files.

[no]comment
(don’t) retain comments in output.

[suffix: | <suff>
use <suff> as the suffix of the output file containing makefile dependencies.

—Mdl |
This Windows-only flag has been deprecated. Refer to —Bdynani c. This flag was used to link with the
DLL versions of the runtime libraries, and it was required when linking with any DLL built by any of The
Portland Group compilers. This option implied —D_DLL, which defines the preprocessor symbol _DLL.

—Mgccbug] s]
match the behavior of certain gcc bugs.
—Mi f ace[=opt i on]
adjusts the calling conventions for Fortran, where option is one of the following:
unix
(Win32 only) uses UNIX calling conventions, no trailing underscores.

cref
uses CREF calling conventions, no trailing underscores.

mixed_str_len_arg
places the lengths of character arguments immediately after their corresponding argument. Has affect
only with the CREF calling convention.

nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has affect only with the CREF
calling convention.
—Mi nf o[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the following:

all
instructs the compiler to produce all available —M nf o information. Implies a number of suboptions:

—Mnegi nf o=accel ,inline,ipa,loop,lre, np, opt, par, vect

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append common compiler feedback format information, such as
optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

Chapter 16. Command-Line Options Reference

hpf
instructs the compiler to enable HPF-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This option is not
useful without either the —-Mext r act or —M nl i ne option.

intensity
instructs the compiler to provide informational messages about the intensity of the loop. Specify <n>
to get messages on nested loops.

* For floating point loops, intensity is defined as the number of floating point operations divided by
the number of floating point loads and stores.

e For integer loops, the loop intensity is defined as the total number of integer arithmetic operations,
which may include updates of loop counts and addresses, divided by the total number of integer
loads and stores.

e By default, the messages just apply to innermost loops.
ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on vectorization.

Ire

instructs the compiler to enable LRE, loop-carried redundancy elimination, information.
mp

instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo

instructs the compiler to enable profile feedback information.
time

instructs the compiler to display compilation statistics.

unroll
instructs the compiler to display information about loop unrolling.

vect
instructs the compiler to enable vectorizer information.

—Mi nf or n¥l evel
instructs the compiler to display error messages at the specified and higher levels, where level is one of
the following;

289

—-M Options by Category

290

fatal
instructs the compiler to display fatal error messages.

[no]file
instructs the compiler to print or not print source file names as they are compiled. The default is to
print the names: —M nf or m=f i | e.

inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).

severe
instructs the compiler to display severe and fatal error messages.

warn
instructs the compiler to display warning, severe and fatal error messages.

—Mi nstrunent ati on=opti on
specifies the level of instrumentation calls generated. This option implies - M nf o=ccf f, - M r ame.

opt i on is one of the following:

level
specifies the level of instrumentation calls generated.

function (default)
generates instrumentation calls for entry and exit to functions.

Just after function entry and just before function exit, the following profiling functions are called with
the address of the current function and its call site. (linux86-64 only).

voi d cyg_profile_func_enter (void *this fn, void *call _site);

voi d cyg _profile_func_exit (void *this_fn, void *call _site);

In these calls, the first argument is the address of the start of the current function.

—Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the assembler deletes
this file when it is finished. The assembly file has the same filename as the source file, but with a .s
extension.

-Ml i st
instructs the compiler to create a listing file. The listing file is f i | enane. | st , where the name of the
source fileis f i | ename. f .

—Mmaked! |
(Windows only) generate a dynamic link library (DLL).

—Mnekei npli b
(Windows only) generate an import library for a DLL without creating the DLL. When used without -
def:deffile, passes the switch - def to the librarian without a deffile.

—Mnanes=I ower case| upper case
specifies the case for the names of Fortran externals .

¢ Jowercase - Use lowercase for Fortran externals.

Chapter 16. Command-Line Options Reference

e uppercase - Use uppercase for Fortran externals.

—Mnegi nf o[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the following:

all
instructs the compiler to produce all available information on why various optimizations are not
performed.

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to the object file.

concur
instructs the compiler to produce all available information on why loops are not automatically
parallelized. In particular, if a loop is not parallelized due to potential data dependence, the
variable(s) that cause the potential dependence are listed in the messages that you see when using the
option —Mhegi nf o.

ftn
instructs the compiler to enable Fortran-specific information.

hpf
instructs the compiler to enable HPF-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This option is not
useful without either the —Mext r act or —M nl i ne option.

ipa
instructs the compiler to display information about interprocedural optimizations.

loop
instructs the compiler to display information about loops, such as information on vectorization.

Ire
instructs the compiler to enable LRE, loop-carried redundancy elimination, information.

mp
instructs the compiler to display information about parallelization.

opt
instructs the compiler to display information about optimization.

par
instructs the compiler to enable parallelizer information.

pfo
instructs the compiler to enable profile feedback information.

vect
instructs the compiler to enable vectorizer information.

291

—-M Options by Category

292

—Mnol i st
the compiler does not create a listing file. This is the default.

—Mnoopennp
when used in combination with the —np option, the compiler ignores OpenMP parallelization directives or
pragmas, but still processes SGI-style parallelization directives or pragmas.

—Mnosgi np
when used in combination with the —np option, the compiler ignores SGI-style parallelization directives or
pragmas, but still processes OpenMP parallelization directives or pragmas.

—Mnopgd! | mai n
(Windows only) do not link the module containing the default DIIMain() into the DLL. This flag applies
to building DLLs with the PGFORTRAN and PGHPF compilers. If you want to replace the default DIIMain()
routine with a custom DIIMain(), use this flag and add the object containing the custom DIIMain() to
the link line. The latest version of the default DIIMain() used by PGFORTRAN and PGHPF is included in
the Release Notes for each release; the PGFORTRAN- and PGHPF-specific code in this routine must be
incorporated into the custom version of DIIMain() to ensure the appropriate function of your DLL.

—Mnor pat h
(Linux only) Do not add —rpath to the link line.

—Mpr epr ocess
perform cpp-like preprocessing on assembly and Fortran input source files.

—Mwri t abl e_strings
stores string constants in the writable data segment.

Note

Options —Xs and —Xst include —Mwritable_strings.

Chapter 17. OpenMP Reference
Information

The PGF77, PGF95, and PGFORTRAN Fortran compilers support the OpenMP Fortran Application Program
Interface. The PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface.

This chapter contains detailed descriptions of each of the OpenMP Fortran directives and C/C++ pragmas that
PGI supports. In addition, the section “Directive and Pragma Clauses,” on page 313 contains information
about the clauses associated with these directives and pragmas.

Tasks

Every part of an OpenMP program is part of a task. “Task Overview,” on page 60 provides a general overview
of tasks and general terminology associated with tasks. This section provides more detailed information about
tasks, including tasks scheduling points and the task construct.

Task Characteristics and Activities
A task, whose execution can be performed immediately or delayed, has these characteristics:

¢ Code to execute
¢ A data environment - that is, it owns its data

¢ An assigned thread that executes the code and uses the data.
There are two activities associated with tasks: packaging and execution.

* Packaging: Each encountering thread packages a new instance of a task - code and data.

e Execution: Some thread in the team executes the task at some later time.

Task Scheduling Points

PGI currently supports four task scheduling points: at the beginning of a task, at the end of a task, a taskwait,
and at a barrier.

293

Tasks

Task

294

* Beginning of a task.

At the beginning of a task, the task can be executed immediately or registered for later execution. A
programmer-specified "if" clause that is FALSE forces immediate execution of the task. The implementation
can also force immediate execution; for example, a task within a task is never registered for later execution,
it executes immediately.

o End of a task

At the end of a task, the behavior of the scheduling point depends on how the task was executed. If the task
was immediately executed, execution continues to the next statement. If it was previously registered and is
being executed "out of sequence”, control returns to where the task was executed.

o Taskwait

A taskwait executes all registered tasks at the time it is called. In addition to executing all tasks registered
by the calling thread, it also executes tasks previously registered by other threads. Let’s take a quick look at
this process; suppose the following is true:

e Thread 0 called taskwait and is executing tasks.

e Thread 1 is registering tasks.

Depending on the timing between thread 0 and thread 1, thread 0 may execute none of the tasks, all of the
tasks, or some of tasks.

Note

Taskwait waits only for immediate children tasks, not for descendant tasks. You can achieve waiting
on descendants but ensuring that each child also waits on its children.

¢ Barrier
A barrier can be explicit or implicit. An example of an implicit barrier is the end of a parallel region.

The barrier effectively contains taskwaits. All threads must arrive at the barrier for the barrier to complete.
This rule guarantees that all tasks have been executed at the completion of the barrier.

Construct

A task construct is a task directive plus a structured block, with the following syntax:

#pragma onp task [clause[[,]clause] ...]
struct ur ed- bl ock

where clause can be one of the following:

i f (expression)

unti ed

shared (list)

private (list)
firstprivate (list)
default(shared | none)

Consider the following simple example of a program using tasks. This example illustrates the difference
between registering tasks and executing tasks, a concept that is fundamental to understanding tasks.

Chapter 17. OpenMP Reference Information

This program contains a parallel region that contains a single region. The single region contains a loop that
registers 10 tasks. Before reading the explanation that follows the example, consider what happens if you use
four threads with this example.

Example 17.1. OpenMP Task C Example

i nt
mai n(int argc, char *argv[])
{
int i;
#pragma onp parallel private(i)
{

#pragma onp single

for(i=0;i<10;i++) {
sl eep(i %) ;
printf("task %2d registered by thread %@\ n", i,
onp_get _thread_num());
#pragma onp task firstprivate(i)

sl eep(i 9%B) ;
printf("task %2d executed by thread %\ n",i,
onp_get _thread_numn());
} /* end task */
} /* end for */

} /* end single */
} /'* end parallel */
} /* end main */

Example 17.2. OpenMP Task Fortran Example

PROGRAM MAI N
I NTEGER |
I NTEGER onp_get _t hread_num
1 $OVP PARALLEL PRI VATE(I)
1 $OVP SI NGLE
DOl =1, 10
CALL SLEEP(MOD(I, 2))
PRINT *, "TASK ",1," REGQ STERED BY THREAD ", onp_get _t hread_nun()
1 $OVP TASK FI RSTPRI VATE(1)
CALL SLEEP(MOX(I, 5))
PRINT *, "TASK ",1," EXECUTED BY THREAD ", onp_get _thread_nun()
1 $OVP END TASK
ENDDO
1 $OVP END S| NGLE
1 $OVP END PARALLEL
END

If you run this program with four threads, 0 through 3, one thread is in the single region registering tasks. The
other three threads are in the implied barrier at the end of the single region executing tasks. Further, when the
thread executing the single region completes registering the tasks, it joins the other threads and executes tasks.

The program includes calls to sl eep to slow the program and allow all threads to participate.

The output for the Fortran example is similar to the following. In this output, thread 1 was registering tasks
while the other three threads - 0,2, and 3 - were executing tasks When all 10 tasks were registered, thread 1
began executing tasks as well.

295

Parallelization Directives and Pragmas

TASK 1 REG STERED BY THREAD 1
TASK 2 REG STERED BY THREAD 1
TASK 1 EXECUTED BY THREAD 0O
TASK 3 REG STERED BY THREAD 1
TASK 4 REG STERED BY THREAD 1
TASK 2 EXECUTED BY THREAD 3
TASK 5 REG STERED BY THREAD 1
TASK 6 REG STERED BY THREAD 1
TASK 6 EXECUTED BY THREAD 3
TASK 5 EXECUTED BY THREAD 3
TASK 7 REG STERED BY THREAD 1
TASK 8 REG STERED BY THREAD 1
TASK 3 EXECUTED BY THREAD 0O
TASK 9 REG STERED BY THREAD 1
TASK 10 REGQ STERED BY THREAD 1
TASK 10 EXECUTED BY THREAD 1
TASK 4 EXECUTED BY THREAD 2
TASK 7 EXECUTED BY THREAD 0O
TASK 8 EXECUTED BY THREAD 3
TASK 9 EXECUTED BY THREAD 1

Parallelization Directives and Pragmas

Parallelization directives, as described in Chapter 5, “Using OpenMP”, are comments in a program that are
interpreted by the PGI Fortran compilers when the option - np is specified on the command line. The form of a
parallelization directive is:

sentinel directive _nane [cl auses]

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the PGCC C and
C++ compilers when the option -mp is specified on the command line. The form of a parallelization pragma
is:

#pragma onp pragma_nanme [cl auses]

The examples given with each section use the routines onp_get _num t hr eads() and

onp_get _t hr ead_nunt() . They return the number of threads currently in the team executing the parallel
region and the thread number within the team, respectively. For more information, refer to “Run-time Library
Routines,” on page 67.

Note

Directives which are presented in pairs must be used in pairs.

This section describes the details of these directives and pragmas that were summarized in Chapter 5, “Using
OpenMP”. For each directive and pragma, this section describes the overall purpose, the syntax, the clauses
associated with it, the usage, and examples of how to use it.

ATOMIC and atomic

The OpenMP ATOMIC directive or the omp critical pragma is semantically equivalent to a single statement in a
CRITICAL...END CRITICAL directive or the omp critical pragma.

Syntax:

296

Chapter 17. OpenMP Reference Information

1 $OWP ATOM C #pragna onp atomic
< C/ C++ expression statenent >

Usage:

The ATOMIC directive is semantically equivalent to enclosing the following single statement in a CRITICAL /
END CRITICAL directive pair. The omp atomic pragma is semantically equivalent to subjecting the following
single C/C++ expression statement to an omp critical pragma.

The statements must be one of the following forms:

For Directives: For Pragmas:

X = X operator expr x <bi nary_operat or >= expr
X = expr operator X X++

X = intrinsic (x, expr) ++X

X = intrinsic (expr, X) X- -

--X

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference x, intrinsic
is one of MAX, MIN, IAND, IOR, or IEOR, operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV., and
<binary_operator> is not overloaded and is one of +, *, -/, & ", |, << or >>.

BARRIER and barrier

The OpenMP BARRIER directive defines a point in a program where each thread waits for all other threads to
arrive before continuing with program execution.

Syntax:

| $OVP BARRI ER #pragma onp barrier

Usage:

There may be occasions in a parallel region when it is necessary that all threads complete work to that
point before any thread is allowed to continue. The BARRIER directive or omp barrier pragma synchronizes
all threads at such a point in a program. Multiple barrier points are allowed within a parallel region. The
BARRIER directive and omp barrier pragma must either be executed by all threads executing the parallel
region or by none of them.

CRITICAL ... END CRITICAL and critical

The CRITICAL...END CRITICAL directive and omp critical pragma require a thread to wait until no other thread
is executing within a critical section.

Syntax:
1$OWP CRITI CAL [(name)] #pragma onp critical [(nane)]
< Fortran code executed in body < C C++ structured bl ock >

of critical section >
I $OVP END CRI TI CAL [(nane)]

297

CRITICAL ... END CRITICAL and critical

298

Usage:

Within a parallel region, there may exist subregions of code that will not execute properly when executed by
multiple threads simultaneously. This issue is often due to a shared variable that is written and then read again.

The CRITICAL... END CRITICAL directive pair and the omp critical pragma define a subsection of code within a
parallel region, referred to as a critical section, which is executed one thread at a time.

The first thread to arrive at a critical section is the first to execute the code within the section. The second
thread to arrive does not begin execution of statements in the critical section until the first thread exits the
critical section. Likewise, each of the remaining threads waits to execute the statements in the critical section
until the previous thread exits the critical section.

You can use the optional name argument to identify the critical region. Names that identify critical regions
have external linkage and are in a name space separate from the name spaces used by labels, tags, members,
and ordinary identifiers. If a name argument appears on a CRITICAL directive, the same name must appear on
the END CRITICAL directive.

Note

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

Fortran Example of Critical...End Critical directive:

PROGRAM CRI Tl CAL_USE
REAL A(100, 100), MX, LMX

INTEGER |, J
MX =-1.0
LMK = -1.0

CALL RANDOM SEEDY)
CALL RANDOM NUVBER(A)
I $OMP PARALLEL PRI VATE(1), FIRSTPRI VATE(LMX)

I $OMP DO
DO J=1, 100
DO | =1, 100
LMX = MAX(A(I, J), LMX)
ENDDO
ENDDO

I $OVP CRI Tl CAL
MX = MAX(MX, LMX)
I $OMP END CRI Tl CAL
I $OMP END PARALLEL
PRINT *,"MAX VALUE OF A IS ", MX
END

C Example of omp critical pragma

#i ncl ude <stdlib. h>

mai n() {

int a[100][100], nx=-1,1nx=-1, i, j;

for (j=0; j<100; j++)

for (i=0; i<100; i++)
a[i][j]=1+(int)(10.0*rand()/(RAND_MAX+1.0));
#pragma onmp parallel private(i) firstprivate(lnx)
{

#pragma onp for

Chapter 17. OpenMP Reference Information

for (j=0; j<100; j++)
for (i=0; i<100; i++)

Ilmxk = (Imxk > ali][j]) 2 1Im : a[i][j];
#pragma onp critical

m = (nx > Inx) ? nk : |nx;

}

printf ("max value of a is %\ n", nx);
}

This program could also be implemented without the critical region by declaring MX as a reduction

variable and performing the MAX calculation in the loop using MX directly rather than using LMX. Refer to
“PARALLEL ... END PARALLEL and parallel ” and “DO...END DO and for ” for more information on how to use
the REDUCTION clause on a parallel DO loop.

C$DOACROSS

The C$DOACROSS directive, while not part of the OpenMP standard, is supported for compatibility with
programs parallelized using legacy SGI-style directives.

Syntax:
C$DOACRCSS [O auses] #pragma onp parallel [clauses]
< Fortran DO | oop to be executed < C/ C++ structured bl ock >

in parallel >

Clauses:
For Directives: For Pragmas:
[{PRIVATE | LOCAL} (list)] private | local (list)
[{SHARED | SHARE} (list)] shared | share(list)
[MP_SCHEDTYPE={SIMPLE | INTERLEAVE} | mp_schedule (simple | interleave)
[CHUNK=<integer_expression>] chunk=<integer_expression>
[IF (logical_expression) | if (logical_expression)
Usage:

The CSDOACROSS directive has the effect of a combined parallel region and parallel DO loop applied to the
loop immediately following the directive. It is very similar to the OpenMP PARALLEL DO directive, but provides
for backward compatibility with codes parallelized for SGI systems prior to the OpenMP standardization effort.

The C$DOACROSS directive must not appear within a parallel region. It is a shorthand notation that tells the
compiler to parallelize the loop to which it applies, even though that loop is not contained within a parallel
region. While this syntax is more convenient, it should be noted that if multiple successive DO loops are to be
parallelized it is more efficient to define a single enclosing parallel region and parallelize each loop using the
OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a CSDOACROSS loop is treated the same as a private variable in a
parallel region or DO. A variable declared SHARED or SHARE to a CSDOACROSS loop is shared among the
threads, meaning that only 1 copy of the variable exists to be used and/or modified by all of the threads. This is
equivalent to the default status of a variable that is not listed as PRIVATE in a parallel region or DO. This same

299

DO...

DO.

300

END DO and for

default status is used in CSDOACROSS loops as well. For more information on clauses, refer to “Directive and
Pragma Clauses,” on page 313.

..END DO and for

The OpenMP DO...END DO directive and omp for pragma support parallel execution and the distribution of
loop iterations across available threads in a parallel region.

Syntax:

1 $OWP DO [d auses] #pragma onp for [C auses]

< Fortran DO | oop to be executed < CC++ for |loop to be executed

in parallel in parallel >
I $OMP END DO [NOWAI T]

Clauses:

For Directives: For Pragmas:

PRIVATE (list) private (list)

FIRSTPRIVATE (list) firstprivate (list)

LASTPRIVATE (list) lastprivate (list)

REDUCTION ({operator | intrinsic } : list) reduction (operator: list)

SCHEDULE (type [, chunk]) schedule (kind[, chunk])

COLLAPSE (n) collapse (n)

ORDERED ordered

nowait

Usage:

The real purpose of supporting parallel execution is the distribution of work across the available threads. The
DO... END DO directive pair and the omp for pragma provide a convenient mechanism for the distribution of
loop iterations across the available threads in a parallel region.

While you can explicitly manage work distribution with constructs such as the following one, these constructs
are not in the form of directives or pragmas.

Examples:
For Directives: For Pragmas:
I F (onp_get _thread_nun() .EQ 0) if (onp_get _thread num() == 0) {
THEN L

L }
ELSE | F (onp_get _thread_num() .EQ 1) else if (onp_get_thread_nunm() == 1) {
THEN L
L }

ENDI F

Tips

Chapter 17. OpenMP Reference Information

Remember these items about clauses in the DO...END DO directives and omp for pragmas:

Variables declared in a PRIVATE list are treated as private to each thread participating in parallel execution
of the loop, meaning that a separate copy of the variable exists with each thread.

Variables declared in a FIRSTPRIVATE list are PRIVATE, and are initialized from the original object existing
before the construct.

Variables declared in a LASTPRIVATE list are PRIVATE, and the thread that executes the sequentially last
iteration updates the version of the object that existed before the construct.

The REDUCTION clause for the directive is described in “REDUCTION,” on page 316 and the reduction
clause for the pragma is described in “Directive and Pragma Clauses,” on page 313.

The SCHEDULE clause specifies how iterations of the DO or for loop are divided up between threads. For
more information on this clause, refer to “SCHEDULE,” on page 317.

If ORDERED code blocks are contained in the dynamic extent of the DO directive, the ORDERED clause
must be present. For more information on ORDERED code blocks, refer to “ORDERED and ordered ”.

The DO... END DO directive pair directs the compiler to distribute the iterative DO loop immediately
following the !$OMP DO directive across the threads available to the program. The DO loop is executed in
parallel by the team that was started by an enclosing parallel region. If the !$OMP END DO directive is not
specified, the !$OMP DO is assumed to end with the enclosed DO loop. DO... END DO directive pairs may
not be nested. Branching into or out of a '$OMP DO loop is not supported.

The omp for pragma directs the compiler to distribute the iterative for loop immediately following across
the threads available to the program. The for loop is executed in parallel by the team that was started by an
enclosing parallel region. Branching into or out of an omp for loop is not supported, and omp for pragmas
may not be nested.

By default, there is an implicit barrier after the end of the parallel loop; the first thread to complete its
portion of the work waits until the other threads have finished their portion of work. If NOWAIT is specified,
the threads will not synchronize at the end of the parallel loop.

In addition to the preceding items, remember these items about !$OMP DO loops and omp for loops:

The DO loop index variable is always private.
The for loop index variable is always private.

1$OMP DO loops and omp for loops must be executed by all threads participating in the parallel region or
none at all.

The END DO directive is optional, but if it is present it must appear immediately after the end of the
enclosed DO loop.

The for loop must be a structured block and its execution must not be terminated by break.

Values of the loop control expressions and the chunk expressions must be the same for all threads
executing the loop.

Examples:

301

FLUSH and flush

Fortran Example of DO...END DO directive

PROGRAM DO_USE
REAL A(1000), B(1000)
DO | =1, 1000
B(1) = FLOAT(I)
ENDDO
| $OVP PARALLEL
I $OMP DO
DO | =1, 1000
A(Cl) = SQRT(B(1));
ENDDO

C Example of omp for pragma

#i ncl ude <stdi o. h>

#i ncl ude <mat h. h>

mai n() {

float a[1000], b[1000];

int i;
for (i=0; i<1000; i++)
b[i] =1i;

#pragma onp parall el

{
#pragma onmp for

for (i=0; i<1000; i++)
a[i] = sqrt(b[i]);

END }

1 $OVP END PARALLEL

}...

FLUSH and flush

The OpenMP FLUSH directive and omp flush pragma ensure that processor-visible data item are written back to
memory at the point at which the directive appears.

Syntax:

1$OVP FLUSH [(list)] #pragma onp flush [(list)]

Usage:

The OpenMP FLUSH directive ensures that all processor-visible data items, or only those specified in | i st ,
when it is present, are written back to memory at the point at which the directive or pragma appears.

MASTER ... END MASTER and master

302

The MASTER...END MASTER directive and omp master pragma allow the user to designate code that must
execute on a master thread and that is skipped by other threads in the team of threads.

Syntax:

1 $OVP MASTER

< Fortran code executed in body of
MASTER section >

1 $OVP END MASTER

#pragnma onp naster
< C/ C++ structured bl ock >

Usage:

A master thread is a single thread of control that begins an OpenMP program and which is present for the
duration of the program. In a parallel region of code, there may be a sub-region of code that should execute
only on the master thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the MASTER... END MASTER directive pair or omp master pragma allows the user to
conveniently designate code that executes on the master thread and is skipped by the other threads.

e There is no implied barrier on entry to or exit from a master section of code.

* Nested master sections are ignored.

Chapter 17. OpenMP Reference Information

e Branching into or out of 2 master section is not supported.

Examples:

Example of Fortran MASTER...END MASTER directive

PROGRAM MASTER USE

| NTEGER A(0: 1)

I NTEGER onp_get _thread_num

A=-1
1 $OVP PARALLEL

A(onp_get _thread _num()) = onp_get _thread_num()
1 $OVWP MASTER

PRI NT *, "YOU SHOULD ONLY SEE THI S ONCE"
1 $OVWP END MASTER
1 $OVP END PARALLEL

PRINT *, "A(0)=", A(0), " A(1l)=", A(1)

END

Example of omp master pragma

#i ncl ude <stdi o. h>
#i ncl ude <onp. h>
mai n() {

int a[2] ={-1,-1};
#pragma onp parall el

{
a[onp_get _thread_num()] = onp_get _thread_num();

#pragma onp master
printf("YOU SHOULD ONLY SEE THI'S ONCE\n");

}
printf("a[0] =%, a[l]=%l\n",a[0],a[l]);

ORDERED and ordered

The OpenMP ORDERED directive and omp ordered pragma allow the user to identify a portion of code
within an ordered code block that must be executed in the original, sequential order, while allowing parallel
execution of statements outside the code block.

Syntax:
! $OVP ORDERED #pragma onp ordered
< Fortran code bl ock executed < C/ C++ structured bl ock >

by processor >
1 $OVP END ORDERED

Usage:

The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL DO directive that includes
the ORDERED clause. The ordered pragma can appear only in the dynamic extent of a for or parallel for
pragma that includes the ordered clause. The structured code block between the ORDERED / END ORDERED
directives or after the ordered pragma is executed by only one thread at a time, and in the order of the loop
iterations. This sequentializes the ordered code block while allowing parallel execution of statements outside
the code block. The following additional restrictions apply to the ORDERED directive and ordered pragma:

o The ordered code block must be a structured block.

303

PARALLEL ... END PARALLEL and parallel

e Itis illegal to branch into or out of the block.

e A given iteration of a loop with a DO directive or omp for pragma cannot execute the same ORDERED
directive or omp ordered pragma more than once, and cannot execute more than one ORDERED directive
or omp ordered pragma.

PARALLEL ... END PARALLEL and parallel

The OpenMP PARALLEL...END PARALLEL directive and OpenMP omp parallel pragma support a fork/join
execution model in which a single thread executes all statements until a parallel region is encountered.

Syntax:
1 $OVP PARALLEL [d auses] #pragma onp paral l el [clauses]
< Fortran code executed in body < ¢ C++ structured bl ock >

of parallel region >
1 $OVP END PARALLEL

Clauses:
For Directives: For Pragmas:
PRIVATE (list) private (list)
SHARED (list) shared (list)
DEFAULT (PRIVATE | SHARED | NONE) default(shared | none)
FIRSTPRIVATE (list) firstprivate (list)
REDUCTION([{operator | intrinsic}:] list) reduction (operator: list)
COPYIN(list) copyin (list)
IF(scalar_logical_expression) if (scalar_expression)
NUM_THREADS (scalar_integer_expression) num_threads(scalar_integer_expression)
Usage:

This directive pair or pragma declares a region of parallel execution. It directs the compiler to create an
executable in which the statements within the structured block, such as between PARALLEL and PARALLEL END
for directives, are executed by multiple lightweight threads. The code that lies within this structured block is
called a parallel region.

The OpenMP parallelization directives or pragmas support a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered. At the entrance to the parallel region, a
system-dependent number of symmetric parallel threads begin executing all statements in the parallel region
redundantly. These threads share work by means of work-sharing constructs such as parallel DO loops or FOR
loops.

e The number of threads in the team is controlled by the OVP_NUM_ THREADS environment variable. If
OVP_NUM _THREADS is not defined, the program executes parallel regions using only one processor.

e Branching into or out of a parallel region is not supported.

e All other shared-memory parallelization directives or pragmas must occur within the scope of a parallel
region. Nested PARALLEL... END PARALLEL directive pairs or omp parallel pragmas are not supported and
are ignored.

304

Chapter 17. OpenMP Reference Information

e There is an implicit barrier at the end of the parallel region, which, in the directive, is denoted by the END
PARALLEL directive. When all threads have completed execution of the parallel region, a single thread

resumes execution of the statements that follow.

Note

By default, there is no work distribution in a parallel region. Each active thread executes the entire
region redundantly until it encounters a directive or pragma that specifies work distribution. For work
distribution, see the DO, PARALLEL DO, or DOACROSS directives or the omp for pragma.

Examples:

PARALLEL...END PARALLEL directive example:

PROGRAM WHI CH_PROCESSOR _AM |
| NTEGER A(O0: 1)
| NTEGER onp_get _thread_num
A(0) = -1
A(l) = -1
1 $OVP PARALLEL
A(onp_get _thread_num())
= onp_get _t hread_num()
1 $OVP END PARALLEL
PRI NT *, "A(0)=", A(0),
AL =", A(D)
END

omp parallel pragma example

#i ncl ude <stdi o. h>
#i ncl ude <onp. h>
mai n(){

int a[2]={-1,-1};
#pragma onp parall el

a[onp_get _thread_nun()] =
onp_get _thread_num();
}
printf("a[0] = %,
a[1] = %", a[0],a[1]);

Clause Usage:

COPYIN: The COPYIN clause applies only to THREADPRIVATE common blocks. In the presence of the COPYIN
clause, data from the master thread’s copy of the common block is copied to the THREADPRIVATE copies upon

entry to the parallel region.

IF: In the presence of an IF clause, the parallel region is executed in parallel only if the corresponding
scal ar _I ogi cal _expr essi on evaluates to .TRUE.. Otherwise, the code within the region is executed by
a single processor, regardless of the value of the environment variable OVP_NUM_THREADS.

NUM_THREADS: If the NUM_THREADS clause is present, the corresponding

scal ar _i nt eger _expr essi on must evaluate to a positive integer value. This value sets the maximum
number of threads used during execution of the parallel region. A NUM_THREADS clause overrides either
a previous call to the library routine omp_set_num_threads() or the setting of the OMP_NUM_THREADS

environment variable.

PARALLEL DO

The OpenMP PARALLEL DO directive is a shortcut for a PARALLEL region that contains a single DO directive.

Note

The OpenMP PARALLEL DO or DO directive must be immediately followed by a DO statement (as
defined by R818 of the ANSI Fortran standard). If you place another statement or an OpenMP directive
between the PARALLEL DO or DO directive and the DO statement, the compiler issues a syntax error.

305

PARALLEL SECTIONS and parallel sections

Syntax:
1 $OVP PARALLEL DO [CLAUSES] #pragma onp paral l el [clauses]
< Fortran DO | oop to be executed < C C++ structured bl ock >

in parallel >
[!'$OVWP END PARALLEL DQ

Clauses:
For Directives: For Pragmas:
PRIVATE (list) private(list)
SHARED (list) shared (list)
DEFAULT (PRIVATE | SHARED | NONE) default(shared | none)
FIRSTPRIVATE (list) firstprivate (list)
LASTPRIVATE (list) reduction (operator: list)
REDUCTION([{operator | intrinsic}:] list) copyin (list)
COPYIN(list) if (scalar_expression)
IF(scalar_logical_expression) num_threads(scalar_integer_expression)

NUM_THREADS (scalar_integer_expression)
SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

Usage:

The semantics of the PARALLEL DO directive are identical to those of a parallel region containing only a single
parallel DO loop and directive. The available clauses are the same as those defined in “PARALLEL ... END
PARALLEL and parallel ,” on page 304 and “DO...END DO and for .

Note

The END PARALLEL DO directive is optional.

PARALLEL SECTIONS and parallel sections

The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair and the omp parallel sections pragma define
tasks to be executed in parallel; that is, they define a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

Syntax:

1 $OVP PARALLEL SECTI ONS [CLAUSES] #pragma onp paral l el sections [clauses]
[!$OWP SECTI ON|

< Fortran code bl ock executed [#pragnma onp secti on]

by processor i > < C C++ structured bl ock executed
[!$OWP SECTI ON| by processor i >

< Fortran code bl ock executed [#pragnma onp secti on]

by processor j > < C C++ structured bl ock executed

by processor j >
1 $OVP END SECTI ONS [NOMAI T]

Clauses:

306

Chapter 17. OpenMP Reference Information

For Directives: For Pragmas:
PRIVATE (list) private (list)
SHARED (list) shared (list)
DEFAULT (PRIVATE | SHARED | NONE) default(shared | none)
FIRSTPRIVATE (list) firstprivate (list)
LASTPRIVATE (list) lastprivate (list)
REDUCTION ({operator | intrinsic} : list) reduction ({operator: list)
COPYIN (list) copyin (list)
IF(scalar_logical_expression) if (scalar_expression)
NUM_THREADS (scalar_integer_expression) num_threads(scalar_integer_expression)
nowait
Usage:

The PARALLEL SECTIONS / END SECTIONS directive pair and the omp parallel sections pragma define a non-
iterative work-sharing construct without the need to define an enclosing parallel region. Each section is
executed by a single processor. If there are more processors than sections, some processors will have no work
and will jump to the implied barrier at the end of the construct. If there are more sections than processors,
one or more processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL SECTIONS / END
SECTIONS directives. In addition, the code within the PARALLEL SECTIONS / END SECTIONS directives must be
a structured block, and the code in each SECTION must be a structured block.

Semantics are identical to a parallel region containing only an omp sections pragma and the associated
structured block. The available clauses are as defined in “PARALLEL ... END PARALLEL and parallel ,” on page
304 and “DO...END DO and for ”.

PARALLEL WORKSHARE ... END PARALLEL WORKSHARE

The OpenMP PARALLEL WORKSHARE Fortran directive provides a short form method of including a
WORKSHARE directive inside a PARALLEL construct. The END PARALLEL WORKSHARE directive is optional.

Syntax:

1 $OVP PARALLEL WORKSHARE [CLAUSES]
< Fortran structured bl ock to be executed in parallel >
[!$OVP END PARALLEL WORKSHARE]

| $OVP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[! $OVWP END PARALLEL DQ|

Clauses:
PRIVATE (list) COPYIN (list)
SHARED (list) IF(scalar_logical_expression)
DEFAULT (PRIVATE | SHARED | NONE) NUM_THREADS (scalar_integer_expression)
FIRSTPRIVATE (list) SCHEDULE (type [, chunk])
LASTPRIVATE (list) COLLAPSE (n)
REDUCTION ({operator | intrinsic} : list) ORDERED

307

SECTIONS ... END SECTIONS and sections

Usage:

The OpenMP PARALLEL WORKSHARE directive provides a short form method of including 2 WORKSHARE
directive inside a PARALLEL construct. The semantics of the PARALLEL WORKSHARE directive are identical to
those of a parallel region containing a single WORKSHARE construct.

The END PARALLEL WORKSHARE directive is optional, and NOWAIT may not be specified on an END PARALLEL
WORKSHARE directive. The available clauses are as defined in “PARALLEL ... END PARALLEL and parallel ,” on
page 304.

SECTIONS ... END SECTIONS and sections

308

The OpenMP SECTIONS / END SECTIONS directive pair and the omp sections pragma define a non-iterative
work-sharing construct within a parallel region in which each section is executed by a single processor.

Syntax:
1 $OWP SECTIONS [d auses] #pragma onp sections [C auses]
[!$OWP SECTI ON|

< Fortran code bl ock executed [#pragma onp section]

by processor i > < C/ C++ structured bl ock executed
[!$OWP SECTI ON| by processor i >

< Fortran code bl ock executed [#pragma onp secti on]

by processor j > < C/ C++ structured bl ock executed

by processor j >
1 $OVP END SECTI ONS [NOWMAI T]

, .
Clauses:
For Directives: For Pragmas:
PRIVATE (list) private(list)
FIRSTPRIVATE (list) firstprivate (list)
LASTPRIVATE (list) lastprivate (list)
REDUCTION ({operator | intrinsic} : list) reduction({operator: list)
nowait
Usage:

The SECTIONS / END SECTIONS directive pair and the omp sections pragma define a non-iterative work-
sharing construct within a parallel region. Each section is executed by a single processor. If there are more
processors than sections, some processors have no work and thus jump to the implied barrier at the end of
the construct. If there are more sections than processors, one or more processors must execute more than
one section.

A SECTION directive or omp sections pragma may only appear within the lexical extent of the enclosing
SECTIONS / END SECTIONS directives or omp sections pragma. In addition, the code within the SECTIONS /
END SECTIONS directives or omp sections pragma must be a structured block.

The available clauses are as defined in “PARALLEL ... END PARALLEL and parallel ,” on page 304 and
“DO...END DO and for .

SINGLE ... END SINGLE and single

Chapter 17. OpenMP Reference Information

The SINGLE...END SINGLE directive or omp single pragma designate code that executes on a single thread and

that is skipped by the other threads.

Syntax:

1 $OMP SI NGLE [auses]

< Fortran code executed in body of

SI NGLE processor section >
1 $OVP END SI NGLE [NOMAI T]

#pragma onp single [clauses]
< C/ C++ structured bl ock >

Clauses:
For Directives: For Pragmas:
PRIVATE (list) private (list)
FIRSTPRIVATE (list) firstprivate (list)
COPYPRIVATE (list) copyprivate (list)
nowait
Usage:

In a parallel region of code, there may be a sub-region of code that only executes correctly on a single thread.
Instead of ending the parallel region before this subregion and then starting it up again after this subregion,
the SINGLE...END SINGLE directive pair lets you conveniently designate code that executes on a single thread
and is skipped by the other threads. There is an implied barrier on exit from a SINGLE...END SINGLE section of

code unless the optional NOWAIT clause is specified.

Nested single process sections are ignored. Branching into or out of a single process section is not supported.

Examples:

For Directives:

PROGRAM SI NGLE_USE
| NTEGER A(O: 1)
| NTEGER onp_get _t hread_num()
1 $OVP PARALLEL
A(onp_get _thread_num()) =
onp_get _t hread_num()
1 $OWP SI NGLE

PRINT *, "YOU ONLY SEE THI S ONCE"

I $OMP END SI NGLE
I $OMP END PARALLEL
PRINT *,"A(0)=", A(0),
" A(L) =", A(L)
END

For Pragmas:

singl e_use() {
int a[2]={0, 1};
#pragma onp parall el
{
a(onp_get _thread_nun()) =
onp_get _thread_num();
#pragma onp singl e
{
printf("You only see this once"
} /* end single */
} /* end parallel */
printf("a[0] = %, a[l] = %",
a[0], a[1]);
} /* end single_use */

309

TASK and task

TASK and task
The OpenMP TASK directive and the omp task pragma define an explicit task.
Syntax:
1 $OVP TASK [d auses] #pragma onp task [cl auses]
< Fortran code executed as task> < C/ C++ structured bl ock >

310

1 $OVP END TASK

Clauses:
For Directives: For Pragmas:
IF(scalar_logical_expression) if (scalar_expression)
UNTIED untied
DEFAULT (private | firstprivate | shared | none) ~ default(shared | none)
PRIVATE (list) private(list)
FIRSTPRIVATE (list) firstprivate (list)
SHARED (list) shared (list)

Usage:

The TASK / END TASK directive pair and the omp task pragma define an explicit task.

When a thread encounters a task construct, a task is generated from the code for the associated structured
block. The data environment of the task is created according to the data-sharing attribute clauses on the task
construct and any defaults that apply. The encountering thread may immediately execute the task, or delay its
execution. If the task execution is delayed, then any thread in the team may be assigned the task. Completion of
the task can be guaranteed using task synchronization constructs.

A task construct may be nested inside an outer task, but the task region of the inner task is not a part of the
task region of the outer task.

When an if clause is present on a task construct and the if clause expression evaluates to false, the
encountering thread must suspend the current task region and begin execution of the generated task
immediately, and the suspended task region may not be resumed until the generated task is completed.
The task still behaves as a distinct task region with respect to data environment, lock ownership, and
synchronization constructs.

Note

Use of a variable in an if clause expression of a task construct causes an implicit reference to the
variable in all enclosing constructs.

A thread that encounters a task scheduling point within the task region may temporarily suspend the task
region. By default, a task is tied and its suspended task region can only be resumed by the thread that started
its execution. If the untied clause is present on a task construct, any thread in the team can resume the task
region after a suspension.

Chapter 17. OpenMP Reference Information

The task construct includes a task scheduling point in the task region of its generating task, immediately
following the generation of the explicit task. Each explicit task region includes a task scheduling point at its
point of completion. An implementation may add task scheduling points anywhere in untied task regions.

Note

When storage is shared by an explicit task region, it is the programmer's responsibility to ensure,
by adding proper synchronization, that the storage does not reach the end of its lifetime before the
explicit task region completes its execution.

Restrictions:

The following restrictions apply to the TASK directive or omp task pragma:

e A program that branches into or out of a task region is non-conforming.

e A program must not depend on any ordering of the evaluations of the clauses of the task directive, or on any
side effects of the evaluations of the clauses.

* At most one if clause can appear on the directive.
e Unsynchronized use of Fortran I/0 statements by multiple tasks on the same unit has unspecified behavior.

* In C/C++, a throw executed inside a task region must cause execution to resume within the same task
region, and the same thread that threw the exception must catch it.

TASKWAIT and taskwait

The OpenMP TASKWAIT directive and the omp taskwait pragma specify a wait on the completion of child tasks
generated since the beginning of the current task.

Syntax:
1 $OVP TASKWAI T #pragma onp taskwait >

Clauses:
For Directives: For Pragmas:
IF(scalar_logical_expression) if (scalar_expression)
UNTIED untied
DEFAULT (private | firstprivate | shared | none) default(shared | none)
PRIVATE (list) private(list)
FIRSTPRIVATE (list) firstprivate (list)
SHARED (list) shared (list)

Usage:

The OpenMP TASKWAIT directive and the omp taskwait pragma specify a wait on the completion of child tasks
generated since the beginning of the current task.

311

THREADPRIVATE and threadprivate

Restrictions:

The following restrictions apply to the TASKWAIT directive or omp taskwait pragma:

e The TASKWAIT directive and the omp taskwait pragma may be placed only at a point where a base language
statement is allowed.

e The taskwait directive may not be used in place of the statement following an if; while,do, switch, or label.

THREADPRIVATE and threadprivate

312

The OpenMP THREADPRIVATE directive identifies a Fortran common block as being private to each thread.
The omp threadprivate pragma identifies a global variable as being private to each thread.

Syntax:

1 $OVP THREADPRI VATE (| i st) #pragma onp threadprivate (list)

Usage:

The I i st is a list of variables to be made private to each thread but global within the thread. For directives,
common block names must appear between slashes, such as / conmon_bl ock_nane/ .

This directive or pragma must appear in the declarations section of a program unit after the declaration of
any variables listed. On entry to a parallel region, data in a threadprivate variable is undefined unless copyin is
specified on the parallel directive or pragma. When a variable appears in an threadprivate directive or pragma,
each thread’s copy is initialized once at an unspecified point prior to its first use as the master copy would be
initialized in a serial execution of the program.

Restrictions:

The following restrictions apply to the THREADPRIVATE directive or omp threadprivate pragma:

¢ The THREADPRIVATE directive must appear after every declaration of a thread private common block.

e The omp threadprivate pragma must appear after the declaration of every threadprivate variable included in
lst.

e Only named common blocks can be made thread private.

e It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any clause other
than a COPYIN clause.

e Avariable can appear in a THREADRIVATE directive only in the scope in which it is declared. It must not be
an element of 2 common block or be declared in an EQUIVALENCE statement.

e Avariable that appears in a THREADPRIVATE directive and is not declared in the scope of 2 module must
have the SAVE attribute.

e If avariable is specified in an omp threadprivate pragma in one translation unit, it must be specified in an
omp threadprivate pragma in every translation unit in which it appears.

e The address of an omp threadprivate variable is not an address constant.

Chapter 17. OpenMP Reference Information

 An omp threadprivate variable must not have an incomplete type or a reference type.

WORKSHARE ... END WORKSHARE

The OpenMP WORKSHARE ... END WORKSHARE Fortran directive pair provides a mechanism to effect parallel
execution of non-iterative but implicitly data parallel constructs.

Syntax:

| $OVP WORKSHARE
< Fortran structured bl ock to be executed in parallel >
1 $OVP END WORKSHARE [NOWAI T]
Usage:

The Fortran structured block enclosed by the WORKSHARE ... END WORKSHARE directive pair can consist
only of the following types of statements and constructs:

e Array assignments

e Scalar assignments

FORALL statements or constructs

WHERE statements or constructs

OpenMP ATOMIC, CRITICAL or PARALLEL constructs

The work implied by these statements and constructs is split up between the threads executing the
WORKSHARE construct in a way that is guaranteed to maintain standard Fortran semantics. The goal of

the WORKSHARE construct is to effect parallel execution of non-iterative but implicitly data parallel array
assignments, FORALL, and WHERE statements and constructs intrinsic to the Fortran language beginning with
Fortran 90. The Fortran structured block contained within 2 WORKSHARE construct must not contain any user-
defined function calls unless the function is ELEMENTAL.

Directive and Pragma Clauses

Some directives and C/C++ pragmas accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all directives or pragmas,
so the clauses that are valid are included with the description of the directive or pragma. Typically, if no data
scope clause is specified for variables, the default scope is shared.

Table 5.2, “Directive and Pragma Clauses Summary Table ,” on page 64 provides a brief summary of the
clauses associated with OpenMP directives and pragmas that PGI supports. This section contains more
information about each of these clauses. For complete information and more details related to use of these
clauses, refer to the OpenMP documentation available on the WorldWide Web.

COLLAPSE (n)

The COLLAPSE (n) clause specifies how many loops are associated with the loop construct.

313

Directive and Pragma Clauses

The parameter of the collapse clause must be a constant positive integer expression. If no COLLAPSE clause
is present, the only loop that is associated with the loop construct is the one that immediately follows the
construct.

If more than one loop is associated with the loop construct, then the iterations of all associated loops are
collapsed into one larger iteration space, which is then divided according to the schedule clause. The
sequential execution of the iterations in all associated loops determines the order of the iterations in the
collapsed iteration space.

If the loop directive contains a COLLAPSE clause then there may be more than one associated loop.

COPYIN (list)

The COPYIN(list) clause allows threads to access the master thread's value, for a threadprivate variable. You
assign the same value to threadprivate variables for each thread in the team executing the parallel region;
that is, for each variable specified, the value of the variable in the master thread of the team is copied to the
threadprivate copies at the beginning of the parallel region.

The COPYIN clause applies only to THREADPRIVATE common blocks. If you specify a COPYIN clause, here are
a few tips:

¢ You cannot specify the same entity name more than once in the list.
* You cannot specify the same entity name in separate COPYIN clauses of the same directive.

* You cannot specify both a common block name and any variable within that same named common block in
the list.

* You cannot specify both a common block name and any variable within that same named common block in
separate COPYIN clauses of the same directive.

COPYPRIVATE(list)

The COPYPRIVATE(list) clause specifies that one or more variables should be shared among all threads. This
clause provides a2 mechanism to use a private variable to broadcast a value from one member of a team to the
other members.

You use a COPYPRIVATE (list) clause on an END SINGLE directive to cause the variables in the list to be copied
from the private copies in the single thread that executes the SINGLE region to the other copies in all other
threads of the team at the end of the SINGLE region.

Note

The COPYPRIVATE clause must not appear on the same END SINGLE directive as a NOWAIT clause.

The compiler evaluates a COPYPRIVATE clause before any threads have passed the implied BARRIER
directive at the end of that construct.

DEFAULT

The DEFAULT clause specifies the behavior of unscoped variables in a parallel region, such as the data-sharing
attributes of variables. The DEFAULT clause lets you specify the default attribute for variables in the lexical

314

Chapter 17. OpenMP Reference Information

extent of the parallel region. Individual clauses specifying PRIVATE, SHARED, and so on, override the declared
DEFAULT.

Specifying DEFAULT (NONE) declares that there is no implicit default. With this declaration, each variable in the
parallel region must be explicitly listed with an attribute of PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION.

FIRSTPRIVATE(list)

The FIRSTPRIVATE (list) clause specifies that each thread should have its own instance of a variable, and that
each variable in the list should be initialized with the value of the original variable, because it exists before the
parallel construct.

Variables that appear in the list of 2 FIRSTPRIVATE clause are subject to the same semantics as PRIVATE
variables; however, these variables are initialized from the original object that exists prior to entering the
parallel region.

If a directive construct contains a FIRSTPRIVATE argument to a Message Passing Interface (MPI) routine
performing non-blocking communication, the MPI communication must complete before the end of the
construct.

The IF() clause specifies whether a loop should be executed in parallel or in serial.

In the presence of an IF clause, the parallel region is executed in parallel only if the corresponding
scal ar _I ogi cal _expr essi on evaluates to .TRUE.. Otherwise, the code within the region is executed by
a single processor, regardless of the value of the environment variable OVP_NUM_THREADS.

LASTPRIVATE(list)

The LASTPRIVATE (list) clause specifies that the enclosing context's version of the variable is set equal to the
private version of whichever thread executes the final iteration (for-loop construct) or last section (#pragma
sections).

NOWAIT

The NOWAIT clause overrides the barrier implicit in a directive. When you specify NOWAIT, it removes the
implicit barrier synchronization at the end of a for or sections construct.

NUM_THREADS

The NUM_THREADS clause sets the number of threads in a thread team. The num_ threads clause allows a
user to request a specific number of threads for a parallel construct. If the num_threads clause is present,
then

ORDERED

The ORDERED clause specifies that a loop is executed in the order of the loop iterations. This clause is
required on a parallel FOR statement when an ordered directive is used in the loop.

315

Directive and Pragma Clauses

You use this clause in conjunction with 2 DO or SECTIONS construct to impose a serial order on the execution
of a section of code. If ORDERED constructs are contained in the dynamic extent of the DO construct, the
ordered clause must be present on the DO directive.

PRIVATE

The PRIVATE clause specifies that each thread should have its own instance of a variable. Therefore, variables
specified in a PRIVATE list are private to each thread in a team. In effect, the compiler creates a separate copy
of each of these variables for each thread in the team. When an assignment to a private variable occurs, each
thread assigns to its local copy of the variable. When operations involving a private variable occur, each thread
performs the operations using its local copy of the variable.

Tips about private variables:

e Variables declared private in a parallel region are undefined upon entry to the parallel region. If the first
use of a private variable within the parallel region is in a right-hand-side expression, the results of the
expression are undefined, indicating the probability of a coding error.

e Variables declared private in a parallel region are undefined when serial execution resumes at the end of
the parallel region.

REDUCTION

316

The REDUCTION clause specifies that one or more variables that are private to each thread are the subject of a
reduction operation at the end of the parallel region. It updates named variables declared on the clause within
the directive construct.

e Intermediate values of REDUCTION variables are not used within the parallel construct, other than in the
updates themselves.

e Variables that appear in the list of a REDUCTION clause must be SHARED.

e A private copy of each variable in | i st is created for each thread as if the PRIVATE clause had been
specified.

Each private copy is initialized according to the operator as specified in the following table:

Table 17.1. Initialization of REDUCTION Variables

For Directives For Pragmas

Operator / |Initialization Operator |Initialization
Intrinsic

+ 0 + 0

* 1 * 1

- 0 - 0

Chapter 17. OpenMP Reference Information

For Directives For Pragmas
Operator / |Initialization Operator |Initialization
Intrinsic

AND. .TRUE. & ~0
.OR. .FALSE. I 0
EQV. .TRUE. A 0
NEQV. FALSE. && 1
MAX Smallest Representable Number Il 0
MIN Largest Representable Number

IAND All bits on

IOR 0

IEOR 0

At the end of the parallel region, a reduction is performed on the instances of variables appearing in | i st
using operator or intrinsic as specified in the REDUCTION clause. The initial value of each REDUCTION

variable is included in the reduction operation. If the { operat or | intrinsic}: portion of the
REDUCTION clause is omitted, the default reduction operator is "+" (addition).
SCHEDULE

The SCHEDULE clause specifies how iterations of the DO or for loop are divided up between processors. Given
a SCHEDULE (type [, chunk]) clause, the type can be STATIC, DYNAMIC, GUIDED, or RUNTIME, defined in the
following list.

Note

For pragmas, the values for the clause are lower case static, dynamic, guided, or runtime. For
simplicity, we use the directive uppercase value in the following information.

e When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous blocks of size chunk.
The blocks of iterations are statically assigned to threads in a round-robin fashion in order of the thread ID
numbers. The chunk must be a scalar integer expression. If chunk is not specified, a default chunk size is
chosen equal to:

(nunber _of _iterations + onp_numthreads() - 1) / onp_numt hreads()

e When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous blocks of size
chunk. As each thread finishes a piece of the iteration space, it dynamically obtains the next set of iterations.
The chunk must be a scalar integer expression. If no chunk is specified, a default chunk size is chosen
equal to 1.

e When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an exponentially decreasing
manner with each dispatched piece of the iteration space. Chunk specifies the minimum number of
iterations to dispatch each time, except when there are less than chunk iterations remaining to be
processed, at which point all remaining iterations are assigned. If no chunk is specified, a default chunk
size is chosen equal to 1.

317

OpenMP Environment Variables

e When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is deferred until
runtime. The schedule type and chunk size can be chosen at runtime by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the resulting schedule is equivalent to
SCHEDULE (STATIC).

SHARED

The SHARED clause specifies variables that must be available to all threads. If you specify a variable as
SHARED, you are stating that all threads can safely share a single copy of the variable. When one or more
variables are shared among all threads, all threads access the same storage area for the shared variables.

UNTIED

The UNTIED clause specifies that any thread in the team can resume the task region after a suspension.

Note

The thread number may change at any time during the execution of an untied task. Therefore, the
value returned by onp_get _t hr ead_numis generally not useful during execution of such a task
region.

OpenMP Environment Variables

OpenMP environment variables allow you to control the behavior of OpenMP programs. These environment
variables allow you to set and pass information that can alter the behavior of directives and pragmas.

Table 5.4, “OpenMP-related Environment Variable Summary Table,” on page 72 provides a brief summary of
these variables. This section contains more information about each of them. For complete information and
more details related to these environment variables, refer to the OpenMP documentation available on the
WorldWide Web.

OMP_DYNAMIC

OVP_DYNAM C currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) the
dynamic adjustment of the number of threads.

OMP_NESTED

OVP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables (FALSE) nested
parallelism.

OMP_MAX_ACTIVE_LEVELS

OVP_NMAX_ACTI VE_LEVELS currently has no effect. Typically this variable specifies the maximum number of
nested parallel regions. PGI ignores this variable value since nested parallelism is not supported.

OMP_NUM_THREADS

OVP_NUM_THREADS specifies the number of threads to use during execution of parallel regions. The
default value for this variable is 1. For historical reasons, the environment variable NCPUS is supported with

318

Chapter 17. OpenMP Reference Information

the same functionality. In the event that both OVP_NUM THREADS and NCPUS are defined, the value of
OVP_NUM_THREADS takes precedence.

Note

OVP_NUM_THREADS defines the threads that are used to execute the program, regardless of the
number of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they execute correctly. However, performance of programs
executed in this manner can be unpredictable, and oftentimes will be inefficient.

OMP_SCHEDULE

OVP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO loop directives and
for omp for and omp parallel for loop pragmas that include the SCHEDULE (RUNTIME) clause, described in
“SCHEDULE,” on page 317. The default value for this variable is STATIC.

If the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a static schedule. For a
static schedule, the default is as defined in “DO...END DO and for ,” on page 300.

Examples of the use of OVP_SCHEDULE are as follows:

For Fortran: For C/C++:

% set env. OVP_SCHEDULE " STATIC, 5" % set env. OVP_SCHEDULE "static, 5"
% set env OVP_SCHEDULE " GUI DED, 8" % set env OVP_SCHEDULE " gui ded, 8"
% set env OVP_SCHEDULE " DYNAM C" % set env OVP_SCHEDULE "dynani c"

OMP_STACKSIZE

OVP_STACKSI ZE is an OpenMP 3.0 feature that controls the size of the stack for newly-created threads. This
variable overrides the default stack size for a newly created thread. The value is a decimal integer followed by

an optional letter B, K, M, or G, to specify bytes, kilobytes, megabytes, and gigabytes, respectively. If no letter is
used, the default is kilobytes. There is no space between the value and the letter; for example, one megabyte is

specified 1M. The following example specifies a stack size of 8 megabytes.
% set env OMP_STACKSI ZE 8M

The API functions related to OMP_STACKSIZE are onp_set _st ack_si ze and onp_get _st ack_si ze.

The environment variable OVP_STACKSI ZE is read on program start-up. If the program changes its own
environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKZ, described in “MPSTKZ,” on page 140. Once a
thread is created, its stack size cannot be changed.

In the PGI implementation, threads are created prior to the first parallel region and persist for the life of
the program. The stack size of the main thread (thread 0) is set at program start-up and is not affected by
OVP_STACKSI ZE. For more information on controlling the program stack size in Linux, refer to “Running
Parallel Programs on Linux,” on page 10.

OMP_THREAD_LIMIT

You can use the OVP_THREAD_LI M T environment variable to specify the absolute maximum number of
threads that can be used in a parallel program. Attempts to dynamically set the number of processes or threads

319

OpenMP Environment Variables

to a higher value, for example using set_omp_num_threads(), cause the number of processes or threads to
be set at the value of OVP_THREAD_LI M T rather than the value specified in the function call.

OMP_WAIT_POLICY

320

OVP_WAI T_POLI CY sets the behavior of idle threads - specifically, whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE, with ACTIVE the default. The behavior defined by OVP_WAI T_PQOLI CY is also
shared by threads created by auto-parallelization.

* Threads are considered idle when waiting at a barrier, when waiting to enter a critical region, or when
unemployed between parallel regions.

e Threads waiting for critical sections always busy wait (ACTIVE).

e Barriers always busy wait (ACTIVE), with calls to sched_yi el d determined by the environment variable
MP_SPI N, described in “MP_SPIN,” on page 141.

¢ Unemployed threads during a serial region can either busy wait using the barrier (ACTIVE) or politely wait
using 2 mutex (PASSIVE). This choice is set by OVP_WAI T_POLI CY, so the default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop waiting to
restart in a parallel region. This mechanism allows for very quick entry into parallel regions, a condition which
is good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex in the operating system and consume no CPU time until
being restarted. Passive idle is best when a program has long periods of serial activity or when the program
runs on a multi-user machine or otherwise shares CPU resources.

Chapter 18. PGI Accelerator
Compilers Reference

Chapter 7, “Using an Accelerator” describes the programming model that uses a collection of compiler
directives to specify regions of code in Fortran and C programs that can be offloaded from a hos? CPU to an
attached accelerator. The method described provides a model for accelerator programming that is portable
across operating systems and various types of host CPUs and accelerators.

PGI provides a set of Fortran and C accelerator compilers and tools for 64-bit x86-compatible processor-based
workstations and servers with an attached NVIDIA CUDA-enabled GPU or Tesla card.

Note

The PGI Accelerator compilers require a separate license key in addition to a normal PGI Workstation,
Server, or CDK license.

This chapter contains detailed descriptions of each of the PGI Accelerator directives and C pragmas that PGI
supports. In addition, the section “PGI Accelerator Directive Clauses,” on page 327 contains information
about the clauses associated with these directives and pragmas.

PGI Accelerator Directives

This section provides detailed descriptions of the Fortran and C directives used to delineate accelerator regions
and to augment information available to the compiler for scheduling of loops and classification of data.

e In C, PGI Accelerator directives are specified using the #pragma mechanism provided by the standard.

e In Fortran, PGI Accelerator directives are specified using special comments that are identified by a unique
sentinel.

This syntax enables compilers to ignore accelerator directives if support is disabled or not provided.

PGI currently supports these types of accelerator directives:

 An “Accelerator Compute Region Directive” defines information about the region of a program. These
directives are either an accelerator compute region directive, that defines the region of a program to be
compiled for execution on the accelerator device, or an accelerator data region directive that

321

PGI Accelerator Directives

An “Accelerator Loop Mapping Directive” describes the type of parallelism to use to execute the loop and
declare loop-private variables and arrays.

A “Combined Directive” is a combination of the Accelerator region and loop mapping directives, and
specifies a loop directive nested immediately inside an accelerator region directive.

An “Accelerator Declarative Data Directive” specifies an array or arrays are to be allocated in the device
memory for the duration of the implicit data region of a function, subroutine or program, and specifies
whether the data values are to be transferred from the host to the device memory upon entry to the implicit
data region, and from the device to the host memory upon exit from the implicit data region.

An “Accelerator Update Directive” used within an explicit or implicit data region, updates all or part of a
host memory array with values from the corresponding array in device memory, or updates all or part of a
device memory array with values from the corresponding array in host memory.

Accelerator Compute Region Directive

Syntax

This directive defines the region of the program that should be compiled for execution on an accelerator
device.

In G, the syntax of an accelerator region directive is:

#pragma acc region [clause [, clause].] newline
structured bl ock

In Fortran, the syntax is:

1$acc region [clause [, clause].]
structured bl ock
I'$acc end region

where clause is one of the following, described in more detail in “PGI Accelerator Directive Clauses”:

if(condition)

copy(list)

copyin(list)
copyout (list)
local (Iist)

updat e device(list)
update host(list)

Description

Loops within the structured block are compiled into accelerator kernels. Data is copied from the host memory
to the accelerator memory, as required, and result data is copied back. Any computation that cannot be
executed on the accelerator, perhaps because of limitations of the device, is executed on the host. This
approach may require data to move back and forth between the host and device.

At the end of the region, all results stored on the device that are needed on the host are copied back to the host
memory, and accelerator memory is deallocated.

Restrictions

322

The following restrictions apply to the accelerator compute region directive:

Chapter 18. PGI Accelerator Compilers Reference

e Accelerator regions may not be nested.
e A program may not branch into or out of an accelerator region.

e A program must not depend on the order of evaluation of the clauses, or on any side effects of the
evaluations.

e Atmost onei f clause may appear. In Fortran, the condition must evaluate to a scalar logical value; in C, the
condition must evaluate to a scalar integer value.

* A variable may appear in only one of the | ocal , copy, copyi n or copyout lists.

Accelerator Data Region Directive

This directive defines data, typically arrays, that should be allocated in the device memory for the duration of
the data region. Further, it defines whether data should be copied from the host to the device memory upon
region entry, and copied from the device to host memory upon region exit.

Syntax

In G, the syntax of an accelerator region directive is:

#pragma acc data region [clause [, clause].] newline
structured bl ock

In Fortran, the syntax is:

I$acc data region [clause [, clause].]
structured bl ock
! $acc end data region

where clause is one of the following, described in more detail in “PGI Accelerator Directive Clauses”:

copy(list)

copyin(list)
copyout (list)
local (list)

mrror(list)

updat e device(list)
update host(list)

Description

Data is allocated in the device memory and copied from the host memory to the device, or copied back, as
required.

The /ist argument to each data clause is a comma-separated collection of variable names, array names, or
subarray specifications. In all cases, the compiler allocates and manages a copy of the variable or array in
device memory, creating a visible device copy of that variable or array.

In C, a subarray is an array name followed by a range specification in brackets, such as this:

arr[2: high][l ow 100]

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications in
parentheses, such as this:

323

PGI Accelerator Directives

arr(2: hi gh, |l ow 100)

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if known, are
used. Using an array name in a data clause on a compute region directive without bounds tells the compiler to
analyze the references to the array to determine what bounds to use. Thus, every array reference is equivalent
to some subarray of that array.

Restrictions

The following restrictions apply to the accelerator data region directive:

e Avariable, array, or subarray may appear at most once in all data clauses for a compute or data region.
* Only one subarray of an array may appear in all data clauses for a region.

e If variable, array, or subarray appears in a data clause for a region, the same variable, array, or any subarray
of the same array may not appear in a data clause for any enclosed region.

e In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be specified.

e In C, a missing lower bound is assumed to be zero. A missing upper bound for a dynamically allocated array
must be specified.

e If a subarray is specified in a data clause, the compiler may choose to allocate memory for only that
subarray on the accelerator.

* The compiler may pad dimensions of arrays on the accelerator to improve memory alignment and program
performance.

e The mirror clause is valid only in Fortran. The /ist argument to the mirror clause, a comma-separated list
of array names. The arrays may be explicit shape, assumed shape, or allocatable; pointer arrays are not
allowed.

e In Fortran, pointer arrays may be specified, but pointer association is not preserved in the device memory.

Accelerator Loop Mapping Directive

An accelerator loop mapping directive specifies the type of parallelism to use to execute the loop and declare
loop-private variables and arrays.

Syntax

324

In C, the syntax of an accelerator loop mapping directive is

#pragma acc for [clause [,clause].] newline
for |oop

In Fortran, the syntax of an accelerator loop mapping directive is

!'$acc do [clause [,clause].]
do | oop

where clause is one of the following, described in more detail in “PGI Accelerator Directive Clauses”:

Chapter 18. PGI Accelerator Compilers Reference

cache (list)]

host [(wi dth)]

i ndependent

ker nel

parallel [(w dth)]
private(list)
seq [(w dth)]
short | oop

unrol |l [(wi dth)]
vector [(w dth)]

Description
An accelerator loop mapping directive applies to a loop which must appear on the following line. It can
describe what type of parallelism to use to execute the loop and declare loop-private variables and arrays.

Combined Directive

The combined accelerator region and loop mapping directive is a shortcut for specifying a loop directive
nested immediately inside an accelerator region directive. The meaning is identical to explicitly specifying a
region construct containing a loop directive. Any clause that is allowed in a region directive or a loop directive
is allowed in a combined directive.

Syntax
In C, the syntax of the combined accelerator region and loop directive is:

#pragma acc region for [clause [, clause]...] newline
for |oop

In Fortran the syntax of the combined accelerator region and loop directive is:

I $acc region do [clause [, clause]...]
do | oop

where clause is any of the region or loop clauses described previously in this chapter.

The associated region is the body of the loop which must immediately follow the directive.

Restrictions

The following restrictions apply to a combined directive:

* The combined accelerator region and loop directive may not appear within the body of another accelerator
region.

e All restrictions for the region directive and the loop directive apply.

Accelerator Declarative Data Directive

Declarative data directives specify that an array or arrays are to be allocated in the device memory for the
duration of the implicit data region of a function, subroutine, or program. They also specify whether the data
values are to be transferred from the host to the device memory upon entry to the implicit data region, and
from the device to the host memory upon exit from the implicit data region.

325

PGI Accelerator Directives

You use the declarative data directives in the declaration section of a Fortran subroutine, function, or module,
or just following an array declaration in C.

These directives create a visible device copy of the variable or array.

Syntax
In C, the syntax of the declarative data directive is:
#pragma acc decl cl ause [, declclause]... newline

In Fortran the syntax of the declarative data directive is:

I $acc decl cl ause [, declclause]..
where decl cl ause is one of the following:

copy(list)

copyin(list)

copyout (list)

local (list)

mrror(list)
reflected(list)

Description

The associated region is the implicit region associated with the function, subroutine, or program in which the
directive appears.

If the directive appears in a Fortran MODULE subprogram, the associated region is the implicit region for the
whole program.

Restrictions

e Avariable or array may appear at most once in all declarative data clauses for a function, subroutine,
program, or module.

e Subarrays are not allowed in declarative data clauses.

e If variable or array appears in a declarative data clause, the same variable or array may not appear in a data
clause for any region where the declaration of the variable is visible.

e In Fortran, assumed-size dummy arrays may not appear in declarative data clauses.

* The compiler may pad dimensions of arrays on the accelerator to improve memory alignment and program
performance.

e The mirror and reflected clauses are valid only in Fortran.

e In Fortran, pointer arrays may be specified, but pointer association is not preserved in the device memory.
Accelerator Update Directive

The update directive is used within an explicit or implicit data region to do one of the following:

e Update all or part of a host memory array with values from the corresponding array in device memory.

326

Chapter 18. PGI Accelerator Compilers Reference

e Update all or part of a device memory array with values from the corresponding array in host memory.

Syntax

In C, the syntax of the update directive is:
#pragma acc updat e updatecl ause[, updateclause]... newline
In Fortran the syntax of the update data directive is:

I $acc update updatecl ause [, updatecl ause]..

where updat ecl ause is one of the following:

host (list)
device(list)

Description

The effect of an update clause is to copy data from the device memory to the host memory for update host, and
from host memory to device memory for update device. The following is true:

e The /ist argument to an update clause is a comma-separated collection of variable names, array names, or
subarray specifications.

e Multiple subarrays of the same array may appear in a list.

¢ The updates are done in the order in which they appear on the directive.
Restrictions

These restrictions apply:

* The update directive is executable. It must not appear in place of the statement following an i f , whi | e,
do, swi t ch, or | abel in C, or in place of the statement following a | ogi cal i f in Fortran.

e Avariable or array which appears in the list of an update directive must have a visible device copy.

PGI Accelerator Directive Clauses

Accelerator directives accept clauses that further clarify the use of the directive. Some of these clauses are
specific to certain directives.

Accelerator Region Directive Clauses

The following clauses further clarify the use of the Accelerator Region directive.
if (condition)

Thei f clause is optional.

e When thereisnoi f clause, the compiler generates code to execute as much of the region on the
accelerator as possible.

327

PGl Accelerator Directive Clauses

e Whenanif clause appears, the compiler generates two copies of the region, one copy to execute on the
accelerator and one copy to execute on the host. The condition in the i f clause determines whether the
host or accelerator copy is executed.

e When the condition in the i f clause evaluates to zero in C, or . f al se. in Fortran, the host copy is
executed.

e When the condition in the i f clause evaluates to nonzero in C, or . t r ue. in Fortran, the accelerator
copy is executed.

Data Clauses

The data clauses for an accelerator region directive are one of the following:

copy(list)

copyout (list)
copyin(list)

local (list)

mrror(list)

updat e device(list)
update host(list)

Data clauses are optional, but may assist the compiler in generating code for an accelerator or in generating
more optimal accelerator kernels.

Note

By default, the PGI Accelerator compilers attempt to minimize data movement between the host

and accelerator. As a result, for many accelerator regions the compilers choose to copy sub-arrays
which may be non-contiguous. Performance of an accelerator may improve in these cases if the user
inserts explicit copy/copyin/copyout clauses on the accelerator region directive to specify to copy
whole arrays rather than sub-arrays. Depending on the architecture of the target accelerator memory,
performance also may improve if one or more dimensions of copied arrays are padded.

For each variable or array used in the region that does not appear in any data clause, the compiler analyzes all
references to the variable or array and determines:

e For arrays, how much memory needs to be allocated in the accelerator memory to hold the array;
e Whether the value in host memory needs to be copied to the accelerator memory;

* Whether a value computed on the accelerator will be needed again on the host, and therefore needs to be
copied back to the host memory.

When compiler analysis is unable to determine these items, it may fail to generate code for the accelerator; in
that case, it issues a message to notify the programmer why it failed. You can use data clauses to augment or
override this compiler analysis.

List arguments

328

When a data clause is used, the /ist argument is a comma-separated collection of variable names, array names,
or subarray specifications.

Chapter 18. PGI Accelerator Compilers Reference

e Using an array name without bounds tells the compiler to use the whole array. Thus, every array reference is
equivalent to some subarray of that array.

e In C, a subarray is an array name followed by a range specification in brackets, such as the following:
arr[2: hi gh]

e In Fortran, a subarray is an array name followed by a comma-separated list of range specifications in
parentheses, such as the following:

arr(2: high, | ow 100)
Array Restrictions

An accelerator region data clause has these restrictions related to arrays:

* If either the lower or upper bounds of an array are missing, the declared or allocated bounds of the array, if
known, are used.

e In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be specified.

* In C, a missing lower bound of an array is assumed to be zero. A missing upper bound for a dynamically
allocated array must be specified.

e If a subarray is specified, then only that subarray of the array needs to be copied.
e Only one subarray for an array may appear in any data clause for a region.

e The compiler may pad dimensions of allocated arrays or subarrays to improve memory alignment and
program performance.

copy (list)

You use the copy clause to declare that the variables, arrays or subarrays in the /ist have values in the host
memory that need to be copied to the accelerator memory, and are assigned values on the accelerator that
need to be copied back to the host.

¢ The data is copied to the device memory upon entry to the region.

e Data is copied back to the host memory upon exit from the region.
copyin (list)

You use the copyi n clause to declare that the variables, arrays or subarrays in the /ist have values in the host
memory that need to be copied to the accelerator memory.

e The data is copied to the device memory upon entry to the implicit region associated with the directive.

e If avariable, array ,or subarray appears in a copyin clause then that data need not be copied back from the
device memory to the host memory, even if those values were changed on the accelerator.

copyout (list)

You use the copyout clause to declare that the variables, arrays, or subarrays in the /st are assigned or
contain values in the accelerator memory that need to be copied back to the host memory.

329

PGl Accelerator Directive Clauses

e The data is copied back to the host memory upon exit from the region.
e If a variable, array or subarray appears in a copyout clause, then that data need not be copied to the device

memory from the host memory, even if those values are used on the accelerator.

local (list)

You use the | ocal clause to declare that the variables, arrays or subarrays in the /ist need to be allocated in
the accelerator memory, but the values in the host memory are not needed on the accelerator, and the values
computed and assigned on the accelerator are not needed on the host.

mirror (list)
You use the i rror clause to declare that the arrays in the list need to mirror the allocation state of the host
array within the implicit region.
o If the host array is allocated upon region entry, the device copy of the array is allocated at region entry to the

same size.

e If the host array is not allocated, the device copy is initialized to an unallocated state.

e If the host array is allocated or deallocated within the region, the device copy is allocated to the same size,
or deallocated, at the same point in the region.

e Ifit s still allocated at region exit, the device copy is automatically deallocated.

e When used in a Fortran module subprogram, the associated region is the implicit region for the whole
program.

Mirror Clause Restrictions

e The mirror clause is valid only in Fortran.

e The /ist argument to the mirror clause is a comma-separated list of array names. The arrays may be explicit
shape, assumed shape, or allocatable; pointer arrays are not allowed.

e The mirror clause may be used for Fortran allocatable arrays in module subprograms; the copy, copyi n,

copyout, | ocal ,and r ef | ect ed clauses may not be.

update device|host (list)

The updat e clauses allow you to update values of variables, arrays, or subarrays.

e The /ist argument to each update clause is a comma-separated collection of variable names, array names,
or subarray specifications.

e All variables or arrays that appear in the /is¢ argument of an update clause must have a visible device copy
outside the compute or data region.

e Multiple subarrays of the same array may appear in update clauses for the same region, potentially causing
updates of different subarrays in each direction.

330

Chapter 18. PGI Accelerator Compilers Reference

update device (list)

The updat e devi ce clause copies the variables, arrays, or subarrays in the /is¢ argument from host
memory to the visible device copy of the variables, arrays, or subarrays in device memory, before beginning
execution of the compute or data region.

update host (list)

The updat e host clause copies the visible device copies of the variables, arrays, or subarrays in the /st
argument to the associated host memory locations, after completion of the compute or data region.

Loop Scheduling Clauses

The loop scheduling clauses tell the compiler about loop level parallelism and how to map the parallelism
onto the accelerator parallelism.

The loop scheduling clauses for the accelerator loop mapping directive are one of the following:

cache (list)]

host [(width)]

i ndependent

ker nel

parallel [(w dth)]
private(list)
seq [(w dth)]
short | oop

unrol | [(w dth)]
vector [(w dth)]

The loop scheduling clauses tell the compiler about loop level parallelism and how to map the parallelism
onto the accelerator parallelism.

The loop scheduling clauses are optional.

For each loop without a scheduling clause, the compiler determines an appropriate schedule automatically.

loop scheduling clauses restrictions

The loop scheduling clauses have these restrictions:

e In some cases, there is a limit on the trip count of a parallel loop on the accelerator. For instance, some
accelerators have a limit on the maximum length of a vector loop. In such cases, the compiler strip-mines
the loop, so one of the loops has a maximum trip count that satisfies the limit.

For example, if the maximum vector length is 256, the compiler uses strip-mining to compile a vector loop
like the following one:

I $acc do vector
doi =1,n

into the following pair of loops:
do is = 1,n, 256

I $acc do vector
do i = is,mx(is+255, n)

331

PGl Accelerator Directive Clauses

The compiler then chooses an appropriate schedule for the outer, strip loop.

e If more than one scheduling clause appears on the loop directive, the compiler strip-mines the loop to get
at least that many nested loops, applying one loop scheduling clause to each level.

e If aloop scheduling clause has a width argument, the compiler strip-mines the loop to that width, applying
the scheduling clause to the outer strip or inner element loop, and then determines the appropriate
schedule for the other loop.

e The width argument must be a compile-time positive constant integer.

e If two or more loop scheduling clauses appear on a single loop mapping directive, all but one must have a
width argument.

¢ Some implementations or targets may require the width argument for the vector clause to be a compile-
time constant.

¢ Some implementations or targets may require the width argument for the vector or parallel clauses to be
a power of two, or a multiple of some power of two. If so, the behavior when the restriction is violated is
implementation-defined.

loop scheduling clause examples

In the following example, the compiler strip-mines the loop to 16 host iterations:

I $acc do host(16), parallel
doi =1,n

The parallel clause applies to the inner loop, as follows:

ns = ceil (n/16)
I $acc do host
dois =1, n, ns
I $acc do parall el
doi =1is, mn(n,is+ns-1)

cache (list)

The cache clause provides a hint to the compiler to try to move the variables, arrays, or subarrays in the /ist
to the highest level of the memory hierarchy.

Many accelerators have a software-managed fast cache memory, and the cache clause can help the compiler
choose what data to keep in that fast memory for the duration of the loop. The compiler is not required to
store all or even any of the data items in the cache memory.

host [(width)]

The host clause tells the compiler to execute the loop sequentially on the host processor. There is no
maximum number of iterations on a host schedule. If the host clause has a width argument, the compiler
strip mines the loop to that many strips, and determines an appropriate schedule for the remaining loop.

independent

The i ndependent clause tells the compiler that the iterations of this loop are data-independent of each
other. This allows the compiler to generate code to examine the iterations in parallel, without synchronization.

332

Chapter 18. PGI Accelerator Compilers Reference

Note

It is an error to use the i ndependent clause if any iteration writes to a variable or array element
that any other iterations also writes or reads.

kernel

The ker nel clause tells the compiler that the body of this loop is to be the body of the computational kernel.
Any loops contained within the kernel loop are executed sequentially on the accelerator.

kernel clause restrictions

The ker nel clause has this restriction:

* Loop mapping directives must not appear on any loop contained within the kernel loop.
parallel [(width)]

The par al | el clause tells the compiler to execute this loop in parallel mode on the accelerator. There may
be a target-specific limit on the number of iterations in a parallel loop or on the number of parallel loops
allowed in a given kernel. If there is a limit:

e If there is no width argument, or the value of the width argument is greater than the limit, the compiler
enforces the limit.

e If there is a width argument or a limit on the number of iterations in a parallel loop, then only that many
iterations can run in parallel at a time.

private (list)

You use the pri vat e clause to declare that the variables, arrays, or subarrays in the /ist argument need to be
allocated in the accelerator memory with one copy for each iteration of the loop.

Any value of the variable or array used in the loop must have been computed and assigned in that iteration of
the loop, and the values computed and assigned in any iteration are not needed after completion of the loop.

Using an array name without bounds tells the compiler to analyze the references to the array to determine
what bounds to use. If the lower or upper bounds are missing, the declared or allocated bounds, if known, are
used.

private clause restrictions

The pri vat e clause has these restrictions:

A variable, array or subarray may only appear once in any pr i vat e clause for a loop.

Only one subarray for an array may appear in any pr i vat e clause for a loop.

If a subarray appears in a pr i vat e clause, then the compiler only needs to allocate memory to hold that
subarray in the accelerator memory.

The compiler may pad dimensions of allocated arrays or subarrays to improve memory alignment and
program performance.

333

PGl Accelerator Directive Clauses

* If a subarray appears in a pr i vat e clause, it is an error to refer to any element of the array in the loop
outside the bounds of the subarray.

e Itis an error to refer to a variable or any element of an array or subarray that appears in a pri vat e clause
and that has not been assigned in this iteration of the loop.

e In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be specified.

e In C, a missing lower bound is assumed to be zero. A missing upper bound for a dynamically allocated array
must be specified.

seq [(width)]

The seq clause tells the compiler to execute this loop sequentially on the accelerator. There is no maximum
number of iterations for a seq schedule. If the seq clause has a width argument, the compiler strip mines the
loop and determines an appropriate schedule for the remaining loop.

shortloop

The shor t | oop clause tells the compiler that any accelerator target-specific limit on the number of iterations
supported in a parallel or vector loop is satisfied, either becuase the loop trip count or the value of the width
expression is small enough.

Note

It is an error to use a shortloop clause if the limits may be violated.

unroll [(width)]

The unr ol | clause tells the compiler to unroll width iterations for sequential execution on the accelerator.
The width argument must be a compile time positive constant integer.

unroll clause restrictions

The unr ol | clause has these restrictions:

e If two or more loop scheduling clauses appear on a single loop mapping directive, all but one must have a
width argument.

¢ Some implementations or targets may require the width expression for the vector clause to be a compile-
time constant.

 Some implementations or targets may require the width expression for the vector or parallel clauses to be
a power of two, or a multiple of some power of two. If this is the case, the behavior when the restriction is
violated is implementation-defined.

vector [(width)]

The vect or clause tells the compiler to execute this loop in vector mode on the accelerator. There may be
a target-specific limit on the number of iterations in a vector loop, the aggregate number of iterations in all
vector loops, or the number of vector loops allowed in a kernel.

334

Chapter 18. PGI Accelerator Compilers Reference

When there is a limit:

e If there is no width argument, or the value of the width argument is greater than the limit, the compiler
strip mines the loop to enforce the limit.

Declarative Data Directive Clauses

The clauses for a declarative data directive are one of the following:

copy(list)
copyout (list)
copyin(list)
local (list)
mrror(list)
reflected(list)

All of these clauses, except the r ef | ect ed(1i st) clause are the same as the clauses defined for the
accelerator region directive.

reflected (list)

You use the r ef | ect ed clause to declare that the actual argument arrays that are bound to the dummy
argument arrays in the /st need to have a visible copy at the call site.

e This clause is only valid in a Fortran subroutine or function.

e The /ist argument to the reflected clause is a comma-separated list of dummy argument array names. The
arrays may be explicit shape, assumed shape, or allocatable.

o If the reflected declarative clause is used, the caller must have an explicit interface to this subprogram.

e If a Fortran interface block is used to describe the explicit interface, a matching reflected directive must
appear in the interface block.

* The device copy of the array used within the subroutine or function is the device copy that is visible at the
call site.

Update Directive Clauses

The clauses for an accelerator update directive are one of the following:
device(list)
host (list)

The /ist argument to each update clause is a comma-separated collection of variable names, array names, or
subarray specifications. All variables or arrays that appear in the /ist argument of an update clause must have a
visible device copy outside the compute or data region.

Multiple subarrays of the same array may appear in update clauses for the same region, potentially causing
updates of different subarrays in each direction.

device (list)

The device clause for the update directive copies the variables, arrays, or subarrays in the /st argument from
host memory to the visible device copy of the variables, arrays, or subarrays in device memory. The copy
occurs before beginning execution of the compute or data region.

335

PGI Accelerator Runtime Routines

This clause has the same function as the update device clause for an acclerator compute region directive.

host (list)

The host clause for the update directive copies the visible device copies of the variables, arrays, or subarrays in
the /ist argument to the associated host memory locations. The copy occurs after completion of the compute
or data region.

This clause has the same function as the update host clause for an acclerator compute region directive.

PGI Accelerator Runtime Routines

This section defines specific details related to user-callable functions and library routines that are available
for use by programmers to query the accelerator features and to control behavior of accelerator-enabled
programs at runtime.

acc_get_device
The acc_get _devi ce routine returns the type of accelerator device being used.

Syntax

In G, the syntax is this:

int acc_get_device(void);

In Fortran, the syntax is this:

i nteger function acc_get _device()

Description

The acc_get _devi ce routine returns the type of accelerator device to use when executing an accelerator
compute region. Its return value is one of the predefined values in the C include file accel . h, the Fortran
include file accel _I i b. h or the Fortran module accel _|i b.

This routine is useful when a program is compiled to use more than one type of accelerator.

Restrictions

The acc_get _devi ce routine has the following restrictions:

e The routine may not be called during execution of an accelerator compute or data region.

e If the device type has not yet been selected, the value acc_devi ce_none is returned.

acc_get_num_devices

The acc_get_num_devices routine returns the number of accelerator devices of the given type attached to the
host.

Syntax

In C, the syntax is this:

336

Chapter 18. PGI Accelerator Compilers Reference

int acc_get_num devi ces(acc_device_t);

In Fortran, the syntax is this:

i nteger function acc_get _num devi ces(devi cetype)
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_get _num devi ces routine returns the number of accelerator devices of the given type attached
to the host. The devicetype argument determines what kind of device to count. The possible values for
devicetype are implementation-specific, and are listed in the C include file accel . h, the Fortran include file
accel _|i b. h and the Fortran module accel _| i b.

acc_init

The acc_i ni t routine connects to and initializes the accelerator device and allocates the control structures
in the accelerator library.

Syntax
In C, the syntax is this:
voi d acc_init(acc_device_t);

In Fortran, the syntax is this:

subroutine acc_init(devicetype)
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_i ni t routine connects to and initializes the accelerator device and allocates the control structures
in the accelerator library.

Restrictions

The acc_i ni t routine has the following restrictions:

e The acc_i ni t routine must be called before entering any accelerator regions or after an
acc_shut down call.

e The argument must be one of the predefined values in the C include file accel . h, the Fortran include file
accel _|ib. hor the Fortran module accel _|i b.

e The routine may not be called during execution of an accelerator region.

* If the device type specified is not available, the behavior is implementation-defined; in particular, the
program may abort.

e If the routine is called more than once with a different value for the device type argument and without an
intervening acc_shut down call, the behavior is implementation-defined.

e If some accelerator regions are compiled to only use one device type, calling this routine with a different
device type may produce undefined behavior.

337

PGI Accelerator Runtime Routines

acc_set_device

The acc_set _devi ce routine specifies which type of device the runtime uses when executing an accelerator
compute region.

Syntax

In C, the syntax is this:

voi d acc_set _devi ce(acc_device_t);

In Fortran, the syntax is this:

subroutine acc_set_devi ce(devicetype)
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_set _devi ce routine specifies which type of device the runtime uses when executing an accelerator
compute region. This is useful when the program has been compiled to use more than one type of accelerator.

Restrictions

The acc_set _devi ce routine has the following restrictions:

e The routine may not be called during execution of an accelerator compute or data region.

e If the device type specified is not available, the behavior is implementation-defined; in particular, the
program may abort.

e If the routine is called more than once with a different value for the device type argument and without an
intervening acc_shut down call, the behavior is implementation-defined.

e If some accelerator regions are compiled to only use one device type, calling this routine with a different
device type may produce undefined behavior.

acc_set_device_num

The acc_set _devi ce_numroutine tells the runtime which device to use when executing an accelerator
region.

Syntax

In C, the syntax is this:

int acc_set_device_nun(int, acc_device_t);

In Fortran, the syntax is this:

subroutine acc_set _devi ce_num(devi cenum devicetype)
i nt eger devi cenum
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_set _devi ce_numroutine tells the runtime which device to use among those attached of the given

type.
338

Chapter 18. PGI Accelerator Compilers Reference

o If the value of devicenum is zero, the runtime reverts to its default behavior, which is implementation-
defined.

e If the value of devicenum is greater than the value returned by acc_get _num devi ces for that device
type, the behavior is implementation-defined.

o If the value of the second argument is zero, the selected device number is used for all attached accelerator

types.

e Calling acc_set _devi ce_numimplies a call to acc_set _devi ce with the devicetype specified by this
routine.

Restrictions

The acc_set _devi ce_numroutine has the following restrictions:

e The routine may not be called during execution of an accelerator region.

acc_shutdown

The acc_shut down routine tells the runtime to shutdown the connection to the given accelerator device, and
free up any runtime resources.

Syntax

In G, the syntax is this:

voi d acc_shutdown (acc_device_t);

In Fortran, the syntax is this:

subrouti ne acc_shut down(devi cetype)
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_shut down routine disconnects the program from the accelerator device, and frees up any runtime
resources. If the program is built to run on different device types, you can use this routine to connect to a
different device.

Restrictions
The acc_shut down routine has the following restrictions:
e The routine may not be called during execution of an accelerator region.
acc_on_device
The acc_on_devi ce routine tells the program whether it is executing on a particular device.

Syntax

In G, the syntax is this:

int acc_on_device (acc_device_t);

339

Accelerator Environment Variables

In Fortran, the syntax is this:
| ogi cal function acc_on_devi ce(devicetype)
i nt eger (acc_devi ce_ki nd) devi cetype

Description

The acc_on_devi ce routine may be used to execute different paths depending on whether the code is
running on the host or on some accelerator.

e Ifthe acc_on_devi ce routine has a compile-time constant argument, it evaluates at compile time to a
constant. The argument must be one of the defined accelerator types.

e Ifacc_on_devi ce has the argument acc_devi ce_host , then outside of an accelerator compute
region, or in an accelerator compute region that is compiled for the host processor, this routine evaluates to
nonzero for C, and . t r ue. for Fortran; otherwise, it evaluates to zero for C and . f al se. for Fortran.

Accelerator Environment Variables

This section describes the environment variables that PGI supports to control behavior of accelerator-enabled

programs at execution and to modify the behavior of accelerator regions. The following are TRUE for all these
variables:

* The names of the environment variables must be upper case.

* The values assigned environment variables are case insensitive and may have leading and trailing white
space.

e The behavior is implementation-defined if the values of the environment variables change after the program
has started, even if the program itself modifies the values.

ACC_DEVICE

The ACC_DEVICE environment variable controls the default device type to use when executing accelerator
regions, if the program has been compiled to use more than one different type of device. The value of this
environment variable is implementation-defined.

When a program is compiled with the PGI Unified Binary, the ACC_DEVICE environment variable controls the
default device to use when executing a program. The value of this environment variable must be set to NvI DI A
or nvi di a, indicating to run on the NVIDIA GPU. Currently, any other value of the environment variable
causes the program to use the host version.

Example
The following example indicates to use the NVIDIA GPU when executing the program:
setenv ACC DEVI CE nvi di a
export ACC DEVI CE=nvi di a

ACC_DEVICE_NUM

The ACC_DEVICE_NUM environment variable controls the default device number to use when executing
accelerator regions. The value of this environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

340

Chapter 18. PGI Accelerator Compilers Reference

e If the value is zero, the implementation-defined default is used.

o If the value is greater than the number of devices attached, the behavior is implementation-defined.
Example

The following example indicates how to set the default device number to use when executing accelerator
regions:

setenv ACC_DEVI CE_NUM 1
export ACC_DEVI CE_NUM-1

ACC_NOTIFY

The ACC_NOTIFY environment variable, when set to a non-negative integer, indicates to print a short message

to the standard output when a kernel is executed on an accelerator. The value of this environment variable
must be a nonnegative integer.

e If the value is zero, no message is printed (the default behavior).
e If the value is nonzero, a one-line message is printed whenever an accelerator kernel is executed.
Example

The following example indicates to print a2 message for each kernel launched on the device:

setenv ACC_NOTI FY 1
export ACC_NOTI FY=1

341

342

Chapter 19. C++ Name Mangling

Name mangling transforms the names of entities so that the names include information on aspects of the
entity’s type and fully qualified name. This ability is necessary since the intermediate language into which
a program is translated contains fewer and simpler name spaces than there are in the C++ language;
specifically:

e Overloaded function names are not allowed in the intermediate language.

e (Classes have their own scopes in C++, but not in the generated intermediate language. For example, an
entity x from inside a class must not conflict with an entity x from the file scope.

e External names in the object code form a completely flat name space. The names of entities with external
linkage must be projected onto that name space so that they do not conflict with one another. A function f
from a class A, for example, must not have the same external name as a function f from class B.

 Some names are not names in the conventional sense of the word, they're not strings of alphanumeric
characters, for example: operator=.

There are two main problems here:

1. Generating external names that will not clash.

2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and alphanumeric
names for entities with strange names in C++. It also solves the problem of generating hidden names for some
behind-the-scenes language support in such a way that they match up across separate compilations.

You see mangled names if you view files that are translated by PGC++, and you do not use tools that demangle
the C++ names. Intermediate files that use mangled names include the assembly and object files created by the
pgepp command. To view demangled names, use the tool pgdecode, which takes input from stdin.

pr onpt > pgdecode

g__1ASFf
A :g(float)

The name mangling algorithm for the PGC++ compiler is the same as that for cfront, and, except for a few
minor details, also matches the description in Section 8.0, Function Name Encoding, of The Annotated C++
Reference Manual (ARM). Refer to the ARM for a complete description of name mangling.

343

Types of Mangling

Types of Mangling

The following entity names are mangled:

e Function names including non-member function names are mangled, to deal with overloading. Names of
functions with extern "C" linkage are not mangled.

e Mangled function names have the function name followed by ___followed by F followed by the mangled
description of the types of the parameters of the function. If the function is a member function, the mangled
form of the class name precedes the E If the member function is static, an S also precedes the E

int f(float); // f__Ff

class A

int f(float); // f__1AFf

static int g(float); // g__1ASFf

e Special and operator function names, like constructors and operator=(). The encoding is similar to that for
normal functions, but a coded name is used instead of the routine name:

class A
int operator+(float); // __pl__1Aff
A(float); // __ct__1Aff

int operator+(A, float); // __pl__F1Af

e Static data member names. The mangled form is the member name followed by ___ followed by the mangled
form of the class name:

class A
static int i; // i__1A

» Names of variables generated for virtual function tables. These have names like vt bl mangl ed- cl ass-
name or vt bl mangl ed- base- cl ass- namenangl ed- cl ass- nane.

» Names of variables generated to contain runtime type information. These have names like Tt ype-
encodi ng and TI Dt ype- encodi ng.

Mangling Summary

This section lists some of the C++ entities that are mangled and provides some details on the mangling
algorithm. For more details, refer to The Annotated C++ Reference Manual.

Type Name Mangling

344

Using PGC++, each type has a corresponding mangled encoding. For example, a class type is represented as
the class name preceded by the number of characters in the class name, as in 5abcde for abcde. Simple
types are encoded as lower-case letters, as in i for int or f for float. Type modifiers and declarators are encoded
as upper-case letters preceding the types they modify, as in U for unsigned or P for pointer.

Chapter 19. C++ Name Mangling

Nested Class Name Mangling

Nested class types are encoded as a Q followed by a digit indicating the depth of nesting, followed by a _,
followed by the mangled-form names of the class types in the fully-qualified name of the class, from outermost
to innermost:

class A
class B // Q@_1A1B

Local Class Name Mangling

The name of the nested class itself is mangled to the form described previously with a prefix __, which serves
to make the class name distinct from all user names. Local class names are encoded as L followed by a
number, followed by __, followed by the mangled name of the class. The number has no special meaning; it’s
just an identifying number assigned to the class. The name of the class is not in the ARM, and cfront encodes
local class names slightly differently.

void f()
class A// L1__ 1A}

This form is used when encoding the local class name as a type. It's not necessary to mangle the name of the
local class itself unless it's also a nested class.

Template Class Name Mangling

Template classes have mangled names that encode the arguments of the template:

tenpl at e<cl ass T1, class T2> class abc ;
abc<int, int> x;
abc__pt_ 3 ii

This describes two template arguments of type int with the total length of template argument list string,
including the underscore, and a fixed string, indicates parameterized type as well, the name of the class
template.

345

346

Chapter 20. Directives and Pragmas
Reference

As we mentioned in Chapter 8, “Using Directives and Pragmas,” on page 109, PGI Fortran compilers support
proprietary directives and pragmas.

Directives and pragmas override corresponding command-line options. For usage information such as the
scope and related command-line options, refer to “Using Directives and Pragmas”.

This chapter contains detailed descriptions of PGI's proprietary directives and pragmas.

PGI Proprietary Fortran Directive and C/C++ Pragma Summary

Directives are Fortran comments and pragmas are C/C++ comments that the user may supply in a source file
to provide information to the compiler. These comments alter the effects of certain command line options or
default behavior of the compiler. They provide pragmatic information that control the actions of the compiler
in a particular portion of a program without affecting the program as a whole. That is, while a command line
option affects the entire source file that is being compiled, directives and pragmas apply, or disable, the effects
of a command line option to selected subprograms or to selected loops in the source file, for example, to
optimize a specific area of code. Use directives and pragmas to tune selected routines or loops.

As outlined in Chapter 8, “Using Directives and Pragmas,” on page 109, the Fortran directives may have any
of the following forms:

| pgi $g directive
I pgi $r directive
I pgi $I directive
Ipgi $ directive

where the scope indicator follows the § and is either g (global), r (routine), or I (loop). This indicator
controls the scope of the directive, though some directives ignore the scope indicator.

Note

If the input is in fixed format, the comment character, !, * or C, must begin in column 1.

347

PGl Proprietary Fortran Directive and C/C++ Pragma Summary

Directives and pragmas override corresponding command-line options. For usage information such as the
scope and related command-line options, refer to Chapter 8, “Using Directives and Pragmas,” on page 109.

altcode (noaltcode)

348

The al t code directive or pragma instructs the compiler to generate alternate code for vectorized or
parallelized loops.

The noal t code directive or pragma disables generation of alternate code.

Scope: This directive or pragma affects the compiler only when —Mvect =sse or —Mconcur is enabled on
the command line.

cpgi$ altcode
Enables alternate code (altcode) generation for vectorized loops. For each loop the compiler decides
whether to generate altcode and what type(s) to generate, which may be any or all of: altcode without
iteration peeling, altcode with non-temporal stores and other data cache optimizations, and altcode based
on array alignments calculated dynamically at runtime. The compiler also determines suitable loop count
and array alignment conditions for executing the alternate code.

cpgi$ altcode alignment
For a vectorized loop, if possible, generates an alternate vectorized loop containing additional aligned
moves which is executed if 2 runtime array alignment test is passed.

cpgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the loop count is less
than or equal to n. If n is omitted or n is 0, the compiler determines a suitable value of n for each loop.

cpgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each auto-parallelized
reduction loop, generate an alternate serial loop to be executed if the loop count is less than or equal to n.
If n is omitted or n is 0, the compiler determines a suitable value of n for each loop.

cpgi$ altcode [(n)] nontemporal
For a vectorized loop, if possible, generates an alternate vectorized loop containing non-temporal stores
and other cache optimizations to be executed if the loop count is greater than n. If n is omitted or n is 1,
the compiler determines a suitable value of n for each loop. The alternate code is optimized for the case
when the data referenced in the loop does not all fit in level 2 cache.

cpgi$ altcode [(n)] nopeel
For a vectorized loop where iteration peeling is performed by default, if possible, generates an alternate
vectorized loop without iteration peeling to be executed if the loop count is less than or equal to n. If n is
omitted or n is 1, the compiler determines a suitable value of n for each loop, and in some cases it may
decide not to generate an alternate unpeeled loop.

cpgi$ altcode [(n)] vector
For each vectorized loop, generates an alternate scalar loop to be executed if the loop count is less than or
equal to n. If n is omitted or n is 1, the compiler determines a suitable value of n for each loop.

Chapter 20. Directives and Pragmas Reference

cpgi$ noaltcode
Sets the loop count thresholds for parallelization of all innermost loops to 0, and disables alternate code
generation for vectorized loops.

assoc (noassoc)

This directive or pragma toggles the effects of the -Mvect =noassoc command-line option, an optimization
—Mcontrol.

Scope: This directive or pragma affects the compiler only when —Mrect =sse is enabled on the command
line.

By default, when scalar reductions are present the vectorizer may change the order of operations, such as dot
product, so that it can generate better code. Such transformations may change the result of the computation
due to roundoff error. The noassoc directive disables these transformations.

bounds (nobounds)

This directive or pragma alters the effects of the -Moounds command line option. This directive enables
the checking of array bounds when subscripted array references are performed. By default, array bounds
checking is not performed.

cncall (nocncall)

This directive or pragma indicates that loops within the specified scope are considered for parallelization,
even if they contain calls to user-defined subroutines or functions. A nocncall directive cancels the effect of a
previous cncall.

concur (noconcur)

This directive or pragma alters the effects of the -Mconcur command-line option. The directive instructs the
auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive or pragma affects the compiler only when —Mconcur is enabled on the command line.

If concur is specified, the compiler uses multiple processors to execute loops which the auto-parallelizer
determines to be parallelizable. The noconcur directive disables these transformations; however, use of concur
overrides previous noconcur statements.

depchk (nodepchk)

This directive or pragma alters the effects of the -Mdepchk command line option. When potential data
dependencies exist, the compiler, by default, assumes that there is a data dependence that in turn may inhibit
certain optimizations or vectorizations. nodepchk directs the compiler to ignore unknown data dependencies.

eqvchk (noeqvchk)

The eqvchk directive or pragma specifies to check dependencies between EQUIVALENCE associated elements.
When examining data dependencies, noeqvchk directs the compiler to ignore any dependencies between
variables appearing in EQUI VALENCE statements.

349

PGl Proprietary Fortran Directive and C/C++ Pragma Summary

fcon (nofcon)

This C/C++ pragma alters the effects of the —~M con (a —M Language control) command-line option.

The pragma instructs the compiler to treat non-suffixed floating-point constants as float rather than double. By
default, all non-suffixed floating-point constants are treated as double.

Note

Only routine or global scopes are allowed for this C/C++ pragma.

invarif (noinvarif)

This directive or pragma has no corresponding command-line option. Normally, the compiler removes certain
invariant if constructs from within a loop and places them outside of the loop. The directive noinvarif directs
the compiler not to move such constructs. The directive invarif toggles a previous noinvarif.

ivdep

The ivdep directive assists the compiler's dependence analysis and is equivalent to the directive nodepchk.

Istval (nolstval)

This directive or pragma has no corresponding command-line option. The compiler determines whether the
last values for loop iteration control variables and promoted scalars need to be computed. In certain cases,
the compiler must assume that the last values of these variables are needed and therefore computes their last
values. The directive nolstval directs the compiler not to compute the last values for those cases.

prefetch

opt

350

The prefetch directive or pragma the compiler emits prefetch instructions whereby elements are fetched into
the data cache prior to first use. By varying the prefetch distance, it is sometimes possible to reduce the effects
of main memory latency and improve performance.

The syntax of this directive or pragma is:
c$mem prefetch <vari1>[, <var2>[,...]]

where <var n> is any valid variable, member, or array element reference.

The opt directive or pragma overrides the value specified by the command line option —On.
The syntax of this directive or pragma is:
cpgi $<scope> opt =<l evel >

where the optional <scope> is 7 or g and <level> is an integer constant representing the optimization level to
be used when compiling a subprogram (routine scope) or all subprograms in a file (global scope).

Chapter 20. Directives and Pragmas Reference

safe (nosafe)

This C/C++ pragma has no corresponding command-line option. By default, the compiler assumes that all
pointer arguments are unsafe. That is, the storage located by the pointer can be accessed by other pointers.

The formats of the safe pragma are:

#pragma [scope] [no]safe
#pragma safe (variable [, variable]...)

where scope is either global or routine.

e When the pragma safe is not followed by a variable name or a list of variable names:
e If the scope is routine, then the compiler treats all pointer arguments appearing in the routine as safe.
e If the scope is global, then the compiler treats all pointer arguments appearing in all routines as safe.

e When the pragma safe is followed by a variable name or a list of variable names, each name is the name of a
pointer argument in the current function, and the compiler considers that named argument to be safe.

Note

If only one variable name is specified, you may omit the surrounding parentheses.

safe_lastval

During parallelization, scalars within loops need to be privatized. Problems are possible if a scalar is accessed
outside the loop. If you know that a scalar is assigned on the last iteration of the loop, making it safe to
parallelize the loop, you use the safe_lastval directive or pragma to let the compiler know the loop is safe to
parallelize.

For example, use the following C pragma to tell the compiler that for a given loop the last value computed for
all scalars make it safe to parallelize the loop:

cpgi $I safe_lastva
#pragma | oop safe_| astva

The command-line option- Msaf e_| ast val provides the same information for all loops within the routines
being compiled, essentially providing global scope.

In the following example, a problem results since the value of t may not be computed on the last iteration of
the loop.

doi =1, N

if(f(x(i)) > 5.0 then)

t = x(i)

endi f

enddo
v =t

If a scalar assigned within a loop is used outside the loop, we normally save the last value of the scalar.
Essentially the value of the scalar on the "last iteration" is saved, in this case when i =N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult to determine on
what iteration t is last assigned, without resorting to costly critical sections. Analysis allows the compiler to

351

PGl Proprietary Fortran Directive and C/C++ Pragma Summary

determine if a scalar is assigned on every iteration, thus the loop is safe to parallelize if the scalar is used later.
An example loop is:

doi =1, N

if(x(i) >0.0) then
t =2.0

el se

t =3.0

endi f

y(i) = ...t...
enddo

v =t

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be privatizable.
If it is used after the loop, it is unsafe to parallelize. Examine this loop:
doi =1,N

if(x(i) >0.0) then
t = x(i)

y(i) = ...t..
endi f

enddo
Vv =t

where each use of t within the loop is reached by a definition from the same iteration. Here t is privatizable,
but the use of t outside the loop may yield incorrect results since the compiler may not be able to detect on
which iteration of the parallelized loop t is assigned last.

The compiler detects these cases. When a scalar is used after the loop, but is not defined on every iteration of
the loop, parallelization does not occur.

safeptr (nosafeptr)

352

The pragma safeptr directs the compiler to treat pointer variables of the indicated storage class as safe. The
pragma nosafeptr directs the compiler to treat pointer variables of the indicated storage class as unsafe. This
pragma alters the effects of the —Msafeptr command-line option.

The syntax of this pragma is:

cpgi $[] [no] safeptr={arg||ocal|auto|global|static|all},.
#pragma [scope] [no] safeptr={arg|local |auto| gl obal|static|all},..

where scope is global, routine, or loop.

Note

The values local and auto are equivalent.

all - All pointers are safe

e arg - Argument pointers are safe

local - local pointers are safe

global - global pointers are safe

Chapter 20. Directives and Pragmas Reference

e static - static local pointers are safe

In a file containing multiple functions, the command-line option —Msafeptr might be helpful for one function,
but can’t be used because another function in the file would produce incorrect results. In such a file, the
safeptr pragma, used with routine scope could improve performance and produce correct results.

single (nosingle)

The pragma single directs the compiler not to implicitly convert float values to double non-prototyped
functions. This can result in faster code if the program uses only float parameters.

Note

Since ANSI C specifies that floats must be converted to double, this pragma results in non-ANSI
conforming code. Valid only for routine or global scope.

tp
You use the directive or pragma tp to specify one or more processor targets for which to generate code.

cpgi$ tp [target]...

Note

The tp directive or pragma can only be applied at the routine or global level. For more information
about these levels, refer to“Scope of C/C++ Pragmas and Command-Line Options,” on page 113.

Refer to the PGI Workstation Release Notes for a list of targets that can be used as parameters to the tp
directive.

unroll (nounroll)

The unroll directive or pragma enables loop unrolling while nounroll disables loop unrolling.

Note

The unroll directive or pragma has no effect on vectorized loops.
The directive or pragma takes arguments ¢ and n.

* c specifies that ¢ complete unrolling should be turned on or off.

* n specifies that n (count) unrolling should be turned on or off. In addition, the following arguments may be
added to the unroll directive:

In addition, the following arguments may be added to the unroll directive:

c:v sets the threshold to which ¢ unrolling applies. v is a constant; and a loop whose constant loop count isless
than or equal to (<=) vis completely unrolled.

cpgi $ unroll = c:v

353

Prefetch Directives and Pragmas

n:v adjusts threshold to which n unrolling applies. v is a constant. A loop to which n unrolling applies is
unrolled v times.

cpgi $ unroll = n:v

The directives unroll and nounroll only apply if-Munr ol | is selected on the command line.

vector (novector)

The directive or pragma novector disables vectorization. The directive or pragma vector re-enables
vectorization after a previous novector directive. The directives vector and novector only apply if ~Mvect has
been selected on the command line.

vintr (novintr)

The directive or pragma novintr directs the vectorizer to disable recognition of vector intrinsics. The directive
vintr is re-enables recognition of vector intrinsics after a previous novintr directive. The directives vintr and
novintr only apply if —~Mvect has been selected on the command line.

Prefetch Directives and Pragmas

As mentioned in Chapter 8, “Using Directives and Pragmas,” on page 109, prefetch instructions can increase
the speed of an application substantially by bringing data into cache so that it is available when the processor
needs it. The PGI prefetch directive takes the form:

The syntax of a prefetch directive is as follows:

cSmem prefetch <var1>[, <var2>[,...]]
where <var n> is any valid variable, member, or array element reference.

The syntax of a prefetch pragma is as follows:

#pragma mem prefetch <var1>[, <var2>[,...]]
where <var n> is any valid variable, member, or array element reference.

For examples on how to use the prefetch directive or pragma, refer to “Prefetch Directives and Pragmas,” on
page 115.

IDECS Directives

As mentioned in Chapter 8, “Using Directives and Pragmas,” on page 109, PGI Fortran compilers for
Microsoft Windows support directives that help with inter-language calling and importing and exporting
routines to and from DLLs. These directives all take the form:

I DEC$ directive
For specific format requirements, refer to “!DEC$ Directives,” on page 117
ALIAS Directive

This directive specifies an alternative name with which to resolve a routine.

354

Chapter 20. Directives and Pragmas Reference

The syntax for the ALIAS directive is either of the following:

I DEC$ ALIAS routine_nane , external _nane
I DEC$ ALIAS routine_nane : external _nane

In this syntax, ext er nal _nane is used as the external name for the specified r out i ne_nane.

If ext er nal _name is an identifier name, the name (in uppercase) is used as the external name for the
specified r out i ne_nane. If ext er nal _nane is a character constant, it is used as-is; the string is not
changed to uppercase, nor are blanks removed.

You can also supply an alias for a routine using the ATTRIBUTES directive, described in the next section:

I DEC$ ATTI RIBUTES ALIAS : 'alias_nanme' :: routine_nane

This directive specifies an alternative name with which to resolve a routine, as illustrated in the following code
fragment that provides external names for three routines. In this fragment, the external name for sub1 is
nanel, for sub2 is nane2, and for sub3 is nanme3.

subroutine sub

IDEC$ alias subl , 'nanel'

I DEC$ alias sub2 : 'nane2'

I DEC$ attributes alias : 'nane3' :: sub3

ATTRIBUTES Directive
This directive lets you specify properties for data objects and procedures.

The syntax for the ATTRIBUTES directive is this:

| DEC$ ATTRI BUTES <l i st>

where <list> is one of the following:

ALIAS : 'alias_name' :: routine_name
Specifies an alternative name with which to resolve r out i ne_name.

C :: routine_name
Specifies that the routine r out i ne_name will have its arguments passed by value. When a routine
marked C is called, arguments, except arrays, are sent by value. For characters, only the first character is
passed. The standard Fortran calling convention is pass by reference.

DLLEXPORT :: name
Specifies that nane is being exported from a DLL.

DLLIMPORT :: name
Specifies that name is being imported from a DLL.

NOMIXED_STR_LEN_ARG
Specifies that hidden lengths are placed in sequential order at the end of the list, like - M f ace=uni x.

Note

This attribute only applies to routines that are CREF-style or that use the default Windows calling
conventions.

355

IDEC$ Directives

REFERENCE :: name
Specifies that the argument nane is being passed by reference. Often this attribute is used in conjunction
with STDCALL, where STDCALL refers to an entire routine; then individual arguments are modified with
REFERENCE.

STDCALL :: routine_name
Specifies that routine r out i ne_namne will have its arguments passed by value. When a routine marked
STDCALL is called, arguments (except arrays and characters) will be sent by value. The standard Fortran
calling convention is pass by reference.

VALUE :: name
Specifies that the argument 'name’ is being passed by value.

DECORATE Directive

The DECORATE directive specifies that the name specified in the ALIAS directive should have the prefix and
postfix decorations performed on it that are associated with the calling conventions that are in effect. These
declarations are the same ones performed on the name when ALIAS is not specified.

The syntax for the DECORATE directive is this:
| DECS DECORATE

Note

When ALIAS is not specified, this directive has no effect.

DISTRIBUTE Directive

This directive is front-end based, and tells the compiler at what point within a loop to split into two loops.

The syntax for the DISTRIBUTE directive is either of the following:
I DEC$ DI STRI BUTE POl NT

| DEC$ DI STRI BUTEPO NT

Example:

subroutine dist(a,b,n)
integer i

integer n

integer a(*)

i nteger b(*)

doi =1,n

a(i) = a(i)+2

| DEC$ DI STRI BUTE PO NT
b(i) = b(i)*4

enddo

end subroutine

IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank of the specified dummy
arguments in an interface of a procedure. The compiler also ignores the type, kind, and/or rank of the actual
arguments when checking all the specifics in a generic call for ambiguities.

356

Chapter 20. Directives and Pragmas Reference

The syntax for the IGNORE_TKR directive is this:
IDIRS IGNORE_TKR [[(<letter>) <dummy_arg>] ...]

<letter>
is one or any combination of the following:

T - type K - kind R - rank
For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the type, kind,
and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not specified, TKR
rules are ignored for all dummy arguments in the procedure that contains the directive.

Rules

The following rules apply to this directive:

* IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers, or assumed-
shape arrays.

* IGNORE_TKR may only appear in the body of an interface block and may specify dummy argument names
only.

» IGNORE_TKR may appear before or after the declarations of the dummy arguments it specifies.
e If dummy argument names are specified, IGNORE_TKR applies only to those particular dummy arguments.

e If no dummy argument names are specified, IGNORE_TKR applies to all dummy arguments except those
that are allocatable objects, Fortran 90 pointers, or assumed-shape arrays.

Example:

Consider this subroutine fragment:

subrouti ne exanpl e(A B, C, D)
IDIR$ IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 20.1 indicates which rules are ignored for which dummy arguments in the sample subroutine fragment:

Table 20.1. IGNORE_TKR Example

Dummy Ignored Rules
Argument

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

357

358

Chapter 21. Run-time Environment

This chapter describes the programming model supported for compiler code generation, including register
conventions and calling conventions for x86 and x64 processor-based systems. It addresses these conventions
for processors running linux86 or Win32 operating systems, for processors running linux86-64 operating
systems, and for processors running Win64 operating systems.

Note

In this chapter we sometimes refer to word, halfword, and double word. The equivalent byte
information is word (4 byte), halfword (2 byte), and double word (8 byte).

Linux86 and Win32 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x86
processor running a linux86 or Win32 operating system. These standards must be followed to guarantee that
compilers, application programs, and operating systems written by different people and organizations will
work together. The conventions supported by the PGCC ANSI C compiler implement the application binary
interface (ABI) as defined in the System V Application Binary Interface: Intel Processor Supplement and the
System V Application Binary Interface, listed in the "Related Publications" section in the Preface.

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage, and
parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The 32-bit x86 Architecture provides a number
of registers. All the integer registers and all the floating-point registers are global to all procedures in a
running program.

359

Linux86 and Win32 Programming Model

Table 21.1. Register Allocation

Type Name Purpose
General %eax integer return value
%edx dividend register (for divide operations)
%ecx count register (shift and string operations)
%ebx local register variable
%ebp optional stack frame pointer
%esi local register variable
%edi local register variable
%esp stack pointer
Floating-point %st(0) floating-point stack top, return value
%st(1) floating-point next to stack top
%st(...)
%st(7) floating-point stack bottom

In addition to the registers, each function has a frame on the run-time stack. This stack grows downward from
high addresses. The next table shows the stack frame organization.

Table 21.2. Standard Stack Frame

Position Contents Frame

4n+8 (%ebp) argument word n previous

argument words 1 to n-1

8 (%ebp) argument word 0

4 (%ebp) return address

0 (%ebp) caller's %ebp current
-4 (%ebp) n bytes of local

-n (%ebp) variables and temps

Several key points concerning the stack frame:

e The stack is kept double word aligned.

 Argument words are pushed onto the stack in reverse order so the rightmost argument in C call syntax has
the highest address. A dummy word may be pushed ahead of the rightmost argument in order to preserve
doubleword alignment. All incoming arguments appear on the stack, residing in the stack frame of the
caller.

* An argument’s size is increased, if necessary, to make it a multiple of words. This may require tail padding,
depending on the size of the argument.

360

Chapter 21. Run-time Environment

All registers on an x86 system are global and thus visible to both a calling and a called function. Registers
%ebp, %ebx, %edi, %esi, and %esp are non-volatile across function calls. Therefore, a function must preserve
these registers’ values for its caller. Remaining registers are volatile (scratch). If a calling function wants to
preserve such a register value across a function call, it must save its value explicitly.

Some registers have assigned roles in the standard calling sequence:

%esp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s bottom-
most, valid word. At all times, the stack pointer should point to a word-aligned area.

%ebp
The frame pointer holds a base address for the current stack frame. Consequently, a function has registers
pointing to both ends of its frame. Incoming arguments reside in the previous frame, referenced as
positive offsets from %ebp, while local variables reside in the current frame, referenced as negative offsets
from %ebp. A function must preserve this register value for its caller.

%eax
Integral and pointer return values appear in %eax. A function that returns a structure or union value
places the address of the result in %eax. Otherwise, this is a scratch register.

%esi, %edi
These local registers have no specified role in the standard calling sequence. Functions must preserve
their values for the caller.

%ecx, %edx
Scratch registers have no specified role in the standard calling sequence. Functions do not have to
preserve their values for the caller.

%st(0)
Floating-point return values appear on the top of the floating point register stack; there is no difference in
the representation of single or double-precision values in floating point registers. If the function does not
return a floating point value, then the stack must be empty.

%st(1) - %st(7)
Floating point scratch registers have no specified role in the standard calling sequence. These registers
must be empty before entry and upon exit from a function.

EFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The direction flag
must be set to the "forward" (i.e., zero) direction before entry and upon exit from a function. Other user
flags have no specified role in the standard calling sequence and are not reserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception masking.
This register is initialized at process initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on their
use of registers. Moreover, if a signal handling function returns, the process resumes its original execution
path with registers restored to their original values. Thus, programs and compilers may freely use all registers
without danger of signal handlers changing their values.

361

Linux86 and Win32 Programming Model

Function Return Values

Functions Returning No Value

Functions that return no value are also called procedures or void functions. These functions put no particular
value in any register.

Functions Returning Scalars

e A function that returns an integral or pointer value places its result in register %eax.

e A function that returns a long long integer value places its result in the registers %edx and %eax. The most
significant word is placed in %edx and the least significant word is placed in %eax.

* A floating-point return value appears on the top of the floating point stack. The caller must then remove
the value from the floating point stack, even if it does not use the value. Failure of either side to meet its
obligations leads to undefined program behavior. The standard calling sequence does not include any
method to detect such failures nor to detect return value type mismatches. Therefore, the user must declare
all functions properly. There is no difference in the representation of single-, double- or extended-precision
values in floating-point registers.

e A call instruction pushes the address of the next instruction (the return address) onto the stack. The return
instruction pops the address off the stack and effectively continues execution at the next instruction after the
call instruction. A function that returns a scalar or no value must preserve the caller's registers. Additionally,
the called function must remove the return address from the stack, leaving the stack pointer (%esp) with
the value it had before the call instruction was executed.

Functions Returning Structures or Unions

If a function returns a structure or union, then the caller provides space for the return value and places its
address on the stack as argument word zero. In effect, this address becomes a hidden first argument.

A function that returns a structure or union also sets %eax to the value of the original address of the caller's
area before it returns. Thus, when the caller receives control again, the address of the returned object resides
in register %eax and can be used to access the object. Both the calling and the called functions must cooperate
to pass the return value successfully:

e The calling function must supply space for the return value and pass its address in the stack frame,

e The called function must use the address from the frame and copy the return value to the object so
supplied,

e The called function must remove this address from the stack before returning.

Failure of either side to meet its obligation leads to undefined program behavior. The standard function
calling sequence does not include any method to detect such failures nor to detect structure and union type
mismatches. Therefore, you must declare the function properly.

The following table illustrates the stack contents when the function receives control, after the call instruction,
and when the calling function again receives control, after the r et instruction.

362

Chapter 21. Run-time Environment

Table 21.3. Stack Contents for Functions Returning struct/union

Position After Call After Return Position
4n+8 (%esp) argument wordn |argument word n | 4n-4 (%esp)
8 (%esp) argument word 1 |argument word 1 |0 (%esp)

4 (%esp) value address undefined

0 (%esp) return address

The following sections of this chapter describe where arguments appear on the stack. The examples in this
chapter are written as if the function prologue is used.

Argument Passing

Integral and Pointer Arguments

As mentioned, a function receives all its arguments through the stack; the last argument is pushed first. In the
standard calling sequence, the first argument is at offset 8(%ebp), the second argument is at offset 12(%ebp),
as previously shown in Table 21.3, “Stack Contents for Functions Returning struct/union”. Functions pass all
integer-valued arguments as words, expanding or padding signed or unsigned bytes and halfwords as needed.

Table 21.4. Integral and Pointer Arguments

Call Argument Stack Address
g(1,2, 3, (void ¥)0); 1 8 (%ebp)
2 12 (%ebp)
3 16 (%ebp)
(void *) 0 20 (%ebp)

Floating-Point Arguments

The stack also holds floating-point arguments: single-precision values use one word and double-precision use
two. The following example uses only double-precision arguments.

Table 21.5. Floating-point Arguments

Call Argument Stack Address
h(1.414, 1, 2.998e10); word 0, 1.414 8 (%ebp)
word 1, 1.414 12 (%ebp)
1 16 (%ebp)
word 0 2.998¢e10 20 (%ebp)
word 1, 2.998¢10 24 (%ebp)

Structure and Union Arguments

Structures and unions can have byte, halfword, or word alignment, depending on the constituents. An
argument’s size is increased, if necessary, to make it a multiple of words. This size increase may require tail

363

Linux86 and Win32 Programming Model

padding, depending on the size of the argument. Structure and union arguments are pushed onto the stack
in the same manner as integral arguments. This process provides call-by-value semantics, letting the called
function modify its arguments without affecting the calling function’s object. In the following example, the
argument, s, is a structure consisting of more than 2 words.

Table 21.6. Structure and Union Arguments

Call Argument Stack Address
i(1,s); 1 8 (%ebp)
word 0, s 12 (%ebp)
word 1, s 16 (%ebp)

Implementing a Stack

In general, compilers and programmers must maintain a software stack. Register %esp is the stack pointer.
Register %esp is set by the operating system for the application when the program is started. The stack must be
a grow-down stack.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on the stack
at run-time (e.g. alloca). Some languages can also return values from a routine allocated on stack space
below the original top-of-stack pointer. Such a routine prevents the calling function from using %esp-relative
addressing to get at values on the stack. If the compiler does not call routines that leave %esp in an altered
state when they return, a frame pointer is not needed and is not used if the compiler option —vnof r ane is
specified.

Although not required, the stack should be kept aligned on 8-byte boundaries so that 8-byte locals are
favorably aligned with respect to performance. PGI's compilers allocate stack space for each routine in
multiples of 8 bytes.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a special
method to access variable-count parameters. The st dar g. h and var ar gs. h files define several functions
to access these parameters. A C routine with variable parameters must use the va_st art macro to set up a
data structure before the parameters can be used. The va_ar g macro must be used to access the successive
parameters.

C Parameter Conversion

364

In C, for a called prototyped function, the parameter type in the called function must match the argument
type in the calling function. If the called function is not prototyped, the calling convention uses the types of
the arguments but promotes char or short to int, and unsigned char or unsigned short to unsigned int and
promotes float to double, unless you use the —Msi ngl e option. For more information on the —Msi ngl e
option, refer to Chapter 16, “Command-Line Options Reference”. If the called function is prototyped, the
unused bits of a register containing a char or short parameter are undefined and the called function must
extend the sign of the unused bits when needed.

Chapter 21. Run-time Environment

Calling Assembly Language Programs

The following example shows a C program calling an assembly-language routine sum 3.

Example 21.1. C Program Calling an Assembly-language Routine

/* File: testmain.c */

mai n() {

long | _paral = 0x3f800000;

float f_para2 = 1.0;

doubl e d_para3 = 0.5;

float f_return;

extern float sum3 (long paral, float para2, double para3);
f return = sum 3(| _paral, f_para2, d_para3);
printf("Paraneter one, type long = %98x\n",| _paral);
printf("Paraneter two, type float = %\n",f_para2);
printf("Paraneter three, type double = %g\n", d_para3);
printf("The sum after conversion = %\n",f_return);

File: sum3.s
Conputes (paral + para2) + para3

. text

.align 4

.l ong . EN1l-sum 3+0xc8000000
.align 16

.globl sum 3
sum 3:

pushl %ebp

nmovl %esp, Y%ebp

subl $8, %esp

.. EN1:

fildl 8(%bp)

fadds 12(%bp)

faddl 16(%bp)
fstps -4(%bp)

flds -4(%bp)

addl $8, %esp

| eave

ret

.type sum 3, @unction
.size sum3,.-sum3

Linux86-64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x64
processor running a linux86-64 operating system. These standards must be followed to guarantee that
compilers, application programs, and operating systems written by different people and organizations will
work together. The conventions supported by the PGCC ANSI C compiler implement the application binary
interface (ABI) as defined in the System V Application Binary Interface: AMDG4 Architecture Processor
Supplement and the System V Application Binary Interface, listed in the "Related Publications" section in the
Preface.

Note

The programming model used for Win64 and SUAG4 differs from the Linux86-64 model. For more
information, refer to “Win64 Programming Model,” on page 376.

365

Linux86-64 Programming Model

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage, and
parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The x64 Architecture provides a variety of
registers. All the general purpose registers, XMM registers, and x87 registers are global to all procedures in a

running program.
Table 21.7. Register Allocation

Type Name Purpose

General Jorax Ist return register
%rbx callee-saved; optional base pointer
%rex pass 4th argument to functions
%rdx pass 3rd argument to functions; 2nd return register
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%rsi pass 2nd argument to functions
%rdi pass 1st argument to functions
%18 pass 5th argument to functions
%19 pass 6th argument to functions
%110 temporary register; pass a function’s static chain pointer
%rl11 temporary register
%r12-r15 callee-saved registers

XMM %xmmO-%xmm1 |pass and return floating point arguments
%xmm2-%xmm7 | pass floating point arguments
%xmm8-%xmm1l5 |temporary registers

x87 %st(0) temporary register; return long double arguments
%st(1) temporary register; return long double arguments
%st(2) - %st(7) |temporary registers

In addition to the registers, each function has a frame on the run-time stack. This stack grows downward from
high addresses. Table 21.8 shows the stack frame organization.

Table 21.8. Standard Stack Frame

Position Contents Frame

8n+16 (%rbp) argument eightbyten |previous

366

Chapter 21. Run-time Environment

Position Contents Frame
16 (%rbp) argument eightbyte 0

8 (%rbp) return address current
0 (%rbp) caller's %rbp current
-8 (%rbp) unspecified

0 (%rsp) variable size

-128 (%rsp) red zone

Key points concerning the stack frame:

e The end of the input argument area is aligned on a 16-byte boundary.

* The 128-byte area beyond the location of %rsp is called the red zone and can be used for temporary local
data storage. This area is not modified by signal or interrupt handlers.

e A call instruction pushes the address of the next instruction (the return address) onto the stack. The return
instruction pops the address off the stack and effectively continues execution at the next instruction after
the call instruction. A function must preserve non-volatile registers, a register whose contents must be
preserved across subroutine calls. Additionally, the called function must remove the return address from the
stack, leaving the stack pointer (%rsp) with the value it had before the call instruction was executed.

All registers on an x64 system are global and thus visible to both a calling and a called function. Registers
%rbx, %rsp, %rbp, %r12, %rl3, %rl4, and %rl5 are non-volatile across function calls. Therefore, a function
must preserve these registers’ values for its caller. Remaining registers are volatile (scratch) registers, that is a
register whose contents need not be preserved across subroutine calls. If a calling function wants to preserve
such a register value across a function call, it must save its value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer and pointer arguments

are passed in these registers (listed in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9. The first eight floating point
arguments are passed in the first eight XMM registers: %xmm0, %xmml, ..., %xmm?7. The registers %rax
and %rdx are used to return integer and pointer values. The registers %xmm0 and %xmm1 are used to return
floating point values.

Additional registers with assigned roles in the standard calling sequence:

%1Sp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s bottom-
most, valid word. The stack must be 16-byte aligned.

%rbp
The frame pointer holds a base address for the current stack frame. Consequently, a function has registers
pointing to both ends of its frame. Incoming arguments reside in the previous frame, referenced as
positive offsets from %rbp, while local variables reside in the current frame, referenced as negative offsets
from %rbp. A function must preserve this register value for its caller.

367

Linux86-64 Programming Model

RFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The direction flag
must be set to the "forward" (i.e., zero) direction before entry and upon exit from a function. Other user
flags have no specified role in the standard calling sequence and are not preserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception masking.
This register is initialized at process initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on their
use of registers. Moreover, if a signal handling function returns, the process resumes its original execution
path with registers restored to their original values. Thus, programs and compilers may freely use all registers
without danger of signal handlers changing their values.

Function Return Values

Functions Returning Scalars or No Value

» A function that returns an integral or pointer value places its result in the next available register of the
sequence %rax, %rdx.

e A function that returns a floating point value that fits in the XMM registers returns this value in the next
available XMM register of the sequence %xmm0, %xmm]1.

e An X87 floating-point return value appears on the top of the floating point stack in %st(0) as an 80-bit X87
number. If this X87 return value is a complex number, the real part of the value is returned in %st(0) and
the imaginary part in %st(1).

* A function that returns a value in memory also returns the address of this memory in %rax.

e Functions that return no value (also called procedures or void functions) put no particular value in any
register.

Functions Returning Structures or Unions

368

A function can use either registers or memory to return a structure or union. The size and type of the structure
or union determine how it is returned. If a structure or union is larger than 16 bytes, it is returned in memory
allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or more return registers,
examine the first eight bytes of the structure or union. The type or types of the structure or union’s fields
making up these eight bytes determine how these eight bytes will be returned. If the eight bytes contain at least
one integral type, the eight bytes will be returned in %rax even if non-integral types are also present in the
eight bytes. If the eight bytes only contain floating point types, these eight bytes will be returned in %xmmO0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types of

the fields making up the second eight bytes of the structure or union. If these eight bytes contain at least one
integral type, these eight bytes will be returned in %rdx even if non-integral types are also present in the eight
bytes. If the eight bytes only contain floating point types, these eight bytes will be returned in %xmm1.

If a structure or union is returned in memory, the caller provides the space for the return value and passes its
address to the function as a "hidden" first argument in %rdi. This address will also be returned in %rax.

Chapter 21. Run-time Environment

Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the sequence %rdi,
%rsi, %rdx, %rex, %r8, %r9. After this list of registers has been exhausted, all remaining integral and pointer
arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register taken in the
order from %xmm0 to %xmm?7. After this list of registers has been exhausted, all remaining float and double
arguments are passed to the function via the stack.

Structure and Union Arguments

Structure and union arguments can be passed to a function in either registers or on the stack. The size and
type of the structure or union determine how it is passed. If a structure or union is larger than 16 bytes, it is
passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to a function in one or two
registers, examine the first eight bytes of the structure or union. The type or types of the structure or union’s
fields making up these eight bytes determine how these eight bytes will be passed. If the eight bytes contain

at least one integral type, the eight bytes will be passed in the first available general purpose register of the
sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types are also present in the eight bytes. If the
eight bytes only contain floating point types, these eight bytes will be passed in the first available XMM register
of the sequence from %xmm0 to %xmm?7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or types of the
fields making up the second eight bytes of the structure or union. If the eight bytes contain at least one integral
type, the eight bytes will be passed in the next available general purpose register of the sequence %rdi, %rsi,
%rdx, %rcx, %18, %r9 even if non-integral types are also present in the eight bytes. If these eight bytes only
contain floating point types, these eight bytes will be passed in the next available XMM register of the sequence
from %xmmO to %xmm?7.

If the first or second eight bytes of the structure or union cannot be passed in a register for some reason, the
entire structure or union must be passed in memory.

Passing Arguments on the Stack

If there are arguments left after every argument register has been allocated, the remaining arguments are
passed to the function on the stack. The unassigned arguments are pushed on the stack in reverse order, with
the last argument pushed first.

Table 21.9, “Register Allocation for Example A-2” shows the register allocation and stack frame offsets for
the function declaration and call shown in the following example. Both table and example are adapted from
System V Application Binary Interface: AMD64 Architecture Processor Supplement.

369

Linux86-64 Programming Model

Example 21.2. Parameter Passing

typedef struct {

int a, b;

doubl e d;

} struct param

struct param s;

int e, f, g, h, i, j, k;

float flt; double m n;

extern void func(int e, int f, structparams, int g, int h,

float flt, double m double n, int i, int j, int k);
voi d func2()

{

func(e, f, s, g, h, flt, m n, i, j, k);

}

Table 21.9. Register Allocation for Example A-2

General Purpose Floating Point Stack Frame
Registers Registers Offset

%rdi: e %xmm0: s.d 0:j

%rsi: f %xmml: flt 8.k

%rdx: s.a,s.b %xmm2: m

%1Cx: g %xmm3: n

%r8: h

%19: i

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer, register %rsp, is set
by the operating system for the application when the program is started. The stack must grow downwards from
high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on the stack
at run-time (e.g. alloca). Some languages can also return values from a routine allocated on stack space
below the original top-of-stack pointer. Such a routine prevents the calling function from using %rsp-relative
addressing for values on the stack. If the compiler does not call routines that leave %rsp in an altered state
when they return, a frame pointer is not needed and may not be used if the compiler option —Mnoframe is
specified.

The stack must be kept aligned on 16-byte boundaries.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a special
method to access variable-count parameters. The st dar g. h and var ar gs. h files define several functions
to access these parameters. A C routine with variable parameters must use the va_start macro to set up a
data structure before the parameters can be used. The va_ar g macro must be used to access the successive
parameters.

370

Chapter 21. Run-time Environment

For calls that use var ar gs or st dar gs, the register %rax acts as a hidden argument whose value is the
number of XMM registers used in the call.

C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must match the argument
type in the calling function. If the called function is not prototyped, the calling convention uses the types of
the arguments but promotes char or short to int, and unsigned char or unsigned short to unsigned int and
promotes float to double, unless you use the —Msi ngl e option. For more information on the —Msi ngl e
option, refer to Chapter 3.

Calling Assembly Language Programs

The following example shows a C program calling an assembly-language routine sum 3.

Example 21.3. C Program Calling an Assembly-language Routine

/[* File: testmain.c */

#i ncl ude <stdi o. h>

i nt

mai n() {

long | _paral = 2;

float f_para2 = 1.0;

doubl e d_para3 = 0.5;

float f_return;

extern float sum 3(long paral, float para2, double para3);
f _return = sum 3(| _paral, f_para2, d_para3);
printf("Paraneter one, type long = %d\n", | _paral);
printf("Paraneter two, type float = %\n", f_para2);
printf("Paraneter three, type double = %\n", d_para3);
printf("The sum after conversion = %\n", f_return);
return O;

}

File: sum3.s

Conputes (paral + para2) + para3

. text

.align 16

.globl sum3
sum 3:

pushqg % bp

nmovqg % sp, % bp
cvtsi2ssq %di, %mP
addss %m0, %m
cvt ss2sd 9%&nmR, %R
addsd 9%mil, %mR
cvtsd2ss %&mmR, %mmP
movaps %me, %m0
popgq % bp

ret

.type sum 3, @unction
.size sum3,.-sum3

Linux86-64 Fortran Supplement

Sections A2.4.1 through A2.4.4 of the ABI for x64 Linux and Mac OS X define the Fortran supplement. The
register usage conventions set forth in that document remain the same for Fortran.

371

Linux86-64 Programming Model

Fortran Fundamental Types

Table 21.10. Linux86-64 Fortran Fundamental Types

Fortran Type Size Alignment
(bytes) |(bytes)
INTEGER 4 4
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
LOGICAL
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8

BYTE
CHARACTER*n
REAL

REAL*4

REAL*8

DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
DOUBLE COMPLEX

[l B <2 I N SR I BN e o B BN I SO R

Q| 0| 0| 0| | B

—
N

QO | O | ™| N[CO| OO | | | ma | = | QO | N[DO | = | W OO | ™| DO | =

[
(=2}

A logical constant is one of:

e TRUE.
e FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0 respectively. A logical
expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Naming Conventions

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are converted
to lower-case. In addition, an underscore is appended to Fortran global names to distinguish the Fortran name
space from the C/C++ name space.

372

Chapter 21. Run-time Environment

Argument Passing and Return Conventions

Arguments are passed by reference (i.e. the address of the argument is passed, rather than the argument
itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the length of the
CHARACTER argument is also passed to the function. This length argument is a four-byte integer passed by
value, and is passed at the end of the parameter list following the other formal arguments. A length argument is
passed for each CHARACTER argument; the length arguments are passed in the same order as their respective
CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning of its argument
list. The first additional argument is the address of the area created by the caller for the return value; the
second additional argument is the length of the return value. If a Fortran function is declared to return a
character value of constant length, for example CHARACTER*4 FUNCTION CHF(), the second extra parameter
representing the length of the return value must still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for the return value and
passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The alternate return
function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures, pointer
arguments, assumed-shape arguments, functions returning arrays, and functions returning derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters and return
values match types. If a C/C++ function returns a value, call it from Fortran as a function, otherwise, call it as
a subroutine. If a Fortran function has type CHARACTER or COMPLEX,; call it from C/C++ as a void function.
If a Fortran subroutine has alternate returns, call it from C/C++ as a function returning int; the value of such
a subroutine is the value of the integer expression specified in the alternate RETURN statement. If a Fortran
subroutine does not contain alternate returns, call it from C/C++ as a void function.

Table 21.11 provides the C/C++ data type corresponding to each Fortran data type.

Table 21.11. Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x 8
DOUBLE PRECISION x double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1

373

Linux86-64 Programming Model

Fortran Type C/C++ Type Size (bytes)
INTEGER*2 x short x 2
INTEGER*4 x int X 4
INTEGER*8 x long x, or long long x 8
LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long x, or long long x 8

Table 21.12. Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x;
complex*8 x struct {float r,i;} x; 8
float complex x;
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16

Note

For C/C++, the conpl ex type implies C99 or later.

Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++ arrays start

at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran uses column-
major order and C/C++ use row-major order. For one-dimensional arrays, this poses no problems. For
two-dimensional arrays, where there are an equal number of rows and columns, row and column indexes
can simply be reversed. Inter-language function mixing is not recommended for arrays other than single

dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran union,

conform to the same alignment requirements used by C structures.

374

Chapter 21. Run-time Environment

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members correspond to
the members of the common block. The name of the structure in C/C++ must have the added underscore.

For example, the Fortran common block:

I NTEGER |, J
COMVPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECI SI ON D

COMVON /COM i, j, ¢, cd, d

is represented in C with the following equivalent:

extern struct {

int i;

int j;

struct {float real, img;} c;
struct {double real, inmag;} cd;
doubl e d;

} com;

and in C++ with the following equivalent:

extern "C' struct {

int i;

int j;

struct {float real, img;} c;
struct {double real, inmag;} cd;
doubl e d;

} com;

Note

The compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as calling other
types of Fortran functions. Additional arguments must be passed to the Fortran function by the C/C++ caller. A
Fortran COMPLEX function returns its value in memory; the first argument passed to the function must contain
the address of the storage for this value. A Fortran CHARACTER function adds two arguments to the beginning
of its argument list. The following example of calling a Fortran CHARACTER function from C/C++ illustrates
these caller-provided extra parameters:

CHARACTER* (*) FUNCTI ON CHF(CL, 1)
CHARACTER* (*) C1

| NTEGER |

END

extern void chf _();

char tnp[10];

char cl1[9];

int i;

chf (tnp, 10, c1, &, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the length of c1.
Refer to Section 2.8, Argument Passing and Return Conventions, for additional information.

375

Win64 Programming Model

Win64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects of an x64
processor running a Win64 operating system, including SUAG4. These standards must be followed to guarantee
that compilers, application programs, and operating systems written by different people and organizations

will work together. The conventions supported by the PGCC ANSI C compiler implement the application binary
interface (ABI) as defined in the AMDG64 Software Conventions document.

Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register usage, and
parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The 64-bit AMD64 and Intel 64 architectures
provide a number of registers. All the general purpose registers, XMM registers, and x87 registers are global to
all procedures in a running program.

Table 21.13. Register Allocation

Type Name Purpose
General %rax return value register
%rbx callee-saved
%rcx pass 1st argument to functions
%rdx pass 2nd argument to functions
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%rsi callee-saved
%rdi callee-saved
%18 pass 3rd argument to functions
%19 pass 4th argument to functions
%r10-%r11 temporary registers; used in syscall/sysret instructions
%r12-r15 callee-saved registers
XMM %xmm0 pass 1st floating point argument; return value register
%xmm1 pass 2nd floating point argument
%Xmm?2 pass 3rd floating point argument
%xmm3 pass 4th floating point argument
%xXmm4-%xmm5 temporary registers
%xmmO-%xmm15 | callee-saved registers

376

Chapter 21. Run-time Environment

In addition to the registers, each function has a frame on the run-time stack. This stack grows downward from
high addresses. Table 21.14 shows the stack frame organization.

Table 21.14. Standard Stack Frame

Position Contents Frame
8n-120 (%rbp) argument eightbyte n | previous
-80 (%rbp) argument eightbyte 5

-88 (%rbp) %19 home

-96 (%rbp) %18 home

-104 (%rbp) %rdx home

-112 (%rbp) %rcx home

-120 (%rbp) return address current
-128 (%rbp) caller's %rbp

0 (%rsp) variable size

Key points concerning the stack frame:

* The parameter area at the bottom of the stack must contain enough space to hold all the parameters needed
by any function call. Space must be set aside for the four register parameters to be "homed" to the stack
even if there are less than four register parameters used in a given call.

» Sixteen-byte alignment of the stack is required except within a function’s prolog and within leaf functions.

All registers on an x64 system are global and thus visible to both a calling and a called function. Registers
%rbx, %rsp, %rbp, %rsi, %rdi, %r12, %r13, %rl4, and %rl5 are non-volatile. Therefore, a called function
must preserve these registers’ values for its caller. Remaining registers are scratch. If a calling function wants
to preserve such a register value across a function call, it must save a value in its local stack frame.

Registers are used in the standard calling sequence. The first four arguments are passed in registers. Integral
and pointer arguments are passed in these general purpose registers (listed in order): %rcx, %rdx, %18, %r9.
Floating point arguments are passed in the first four XMM registers: %xmm0, %xmm1, %xmm2, %xmm3.
Registers are assigned using the argument’s ordinal position in the argument list. For example, if a function’s
first argument is an integral type and its second argument is a floating-point type, the first argument will be
passed in the first general purpose register (%rcx) and the second argument will be passed in the second
XMM register (%xmm1); the first XMM register and second general purpose register are ignored. Arguments
after the first four are passed on the stack.

Integral and pointer type return values are returned in %rax. Floating point return values are returned in
%xmmO.

Additional registers with assigned roles in the standard calling sequence:

377

Win64 Programming Model

%1Sp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s bottom-
most, valid word. The stack pointer should point to a 16-byte aligned area unless in the prolog or a leaf
function.

%rbp
The frame pointer, if used, can provide a way to reference the previous frames on the stack. Details are
implementation dependent. A function must preserve this register value for its caller.

MXCSR
The flags register MXCSR contains the system flags, such as the direction flag and the carry flag. The six
status flags (MXCSR[0:5]) are volatile; the remainder of the register is nonvolatile.

x87 - Floating Point Control Word (FPCSR)
The control word contains the floating-point flags, such as the rounding mode and exception masking.
This register is initialized at process initialization time and its value must be preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual restriction on their
use of registers. Moreover, if a signal handling function returns, the process resumes its original execution
path with registers restored to their original values. Thus, programs and compilers may freely use all registers
without danger of signal handlers changing their values.

Function Return Values

Functions Returning Scalars or No Value

* A function that returns an integral or pointer value that fits in 64 bits places its result in %rax.
* A function that returns a floating point value that fits in the XMM registers returns this value in %xmmO0.

e A function that returns a value in memory via the stack places the address of this memory (passed to the
function as a "hidden" first argument in %rcx) in %rax.

e Functions that return no value (also called procedures or void functions) put no particular value in any
register.

e A call instruction pushes the address of the next instruction (the return address) onto the stack. The return
instruction pops the address off the stack and effectively continues execution at the next instruction after the
call instruction. A function that returns a scalar or no value must preserve the caller's registers as previously
described. Further, the called function must remove the return address from the stack, leaving the stack
pointer (%rsp) with the value it had before the call instruction was executed.

Functions Returning Structures or Unions

378

A function can use either registers or the stack to return a structure or union. The size and type of the
structure or union determine how it is returned. A structure or union is returned in memory if it is larger than
8 bytes or if its size is 3, 5, 6, or 7 bytes. A structure or union is returned in %rax if its size is 1, 2, 4, or 8
bytes.

If a structure or union is to be returned in memory, the caller provides space for the return value and passes
its address to the function as a "hidden" first argument in %rcx. This address will also be returned in %rax.

Chapter 21. Run-time Environment

Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the sequence %rcx,
%rdx, %18, %r9. After this list of registers has been exhausted, all remaining integral and pointer arguments
are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register of the sequence
%xmm0, %xmm1, %xmm2, %xmm3. After this list of registers has been exhausted, all remaining XMM
floating-point arguments are passed to the function via the stack.

Array, Structure, and Union Arguments
Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were integers of the same
size. Structures and unions of other sizes will be passed as a pointer to a temporary, allocated by the caller, and
whose value contains the value of the argument. The caller-allocated temporary memory used for arguments of
aggregate type must be 16-byte aligned.

Passing Arguments on the Stack

Registers are assigned using the argument’s ordinal position in the argument list. For example, if a function’s
first argument is an integral type and its second argument is a floating-point type, the first argument will be
passed in the first general purpose register (%rcx) and the second argument will be passed in the second
XMM register (%xmm1); the first XMM register and second general purpose register are ignored. Arguments
after the first four are passed on the stack; they are pushed on the stack in reverse order, with the last
argument pushed first.

Table 21.15, “Register Allocation for Example A-4” shows the register allocation and stack frame offsets for the
function declaration and call shown in the following example.

Example 21.4. Parameter Passing

typedef struct {

int i;

float f;

} struct1;

int i;

float f;

doubl e d;

long |;

long long II;

structl si;

extern void func (int i, float f, structl s1, double d, long long Il, long |);
func (i, f, s1, d, II, I);

379

Win64 Programming Model

Table 21.15. Register Allocation for Example A-4

General Purpose Registers |Floating Point Registers Stack Frame Offset
%rex: i %xmm0: <ignored> 32:11
%rdx: <ignored> %xmm1: f 40: 1

%18: sl.i, s1.f

%xmm2: <ignored>

%19: <ignored>

%xmm3: d

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer, register %rsp, is set
by the operating system for the application when the program is started. The stack must grow downwards from
high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space on the stack
at run-time (e.g. alloca). Some languages can also return values from a routine allocated on stack space
below the original top-of-stack pointer. Such a routine prevents the calling function from using %rsp-relative
addressing to get at values on the stack. If the compiler does not call routines that leave %rsp in an altered
state when they return, a frame pointer is not needed and is not used if the compiler option —vnof r ame is
specified.

The stack must always be 16-byte aligned except within the prolog and within leaf functions.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a special
method to access variable-count parameters. The st dar g. h and var ar gs. h files define several functions
to access these parameters. A C routine with variable parameters must use the va_st art macro to set up a
data structure before the parameters can be used. The va_ar g macro must be used to access the successive
parameters.

For unprototyped functions or functions that use varargs, floating-point arguments passed in registers must be
passed in both an XMM register and its corresponding general purpose register.

C Parameter Conversion

In G, for a called prototyped function, the parameter type in the called function must match the argument type
in the calling function.

e If the called function is not prototyped, the calling convention uses the types of the arguments but promotes
char or short to int, and unsigned char or unsigned short to unsigned int and promotes float to double,
unless you use the —Msi ngl e option.

For more information on the —Msi ngl e option, refer to Chapter 16, “Command-Line Options
Reference”.

e If the called function is prototyped, the unused bits of a register containing a char or short parameter are
undefined and the called function must extend the sign of the unused bits when needed.

380

Chapter 21. Run-time Environment

Calling Assembly Language Programs

Example 21.5. C Program Calling an Assembly-language Routine

/[* File: testmain.c */

mai n() {

long | _paral = 0x3f800000;

float f_para2 = 1.0;

doubl e d_para3 = 0.5;

float f_return

extern float sum3 (long paral, float para2, double para3);
f return = sum 3(| _paral,f_para2, d_para3);
printf("Paraneter one, type long = %98x\n",| _paral);
printf("Paraneter two, type float = %\n",f_para2);
printf("Paraneter three, type double = %g\n", d_para3);
printf("The sum after conversion = %\n",f_return);
}
File: sum3.s
Conputes (paral + para2) + para3

. text

.align 16

.globl sum 3
sum 3:

pushqg % bp

l eaq 128(% sp), % bp

cvtsi 2ss %cx, %mo

addss %mml, %nm0D

cvtss2sd %m0, %m0

addsd %&mR, %nm0D

cvt sd2ss %m0, %m0

popg % bp

ret

.type sum 3, @unction

.size sum3,.-sum3

Win64/SUAG4 Fortran Supplement

Sections A3.4.1 through A3.4.4 of the AMD64 Software Conventions for Win64 define the Fortran supplement.
The register usage conventions set forth in that document remain the same for Fortran.

Fortran Fundamental Types

Table 21.16. Win64 Fortran Fundamental Types

Fortran Type Size Alignment
(bytes) |(bytes)
INTEGER 4 4
INTEGER*1 1 1
INTEGER*2 2 2
INTEGER*4 4 4
INTEGER*8 8 8
LOGICAL 4 4

381

Win64 Programming Model

Fortran Type Size Alignment
(bytes) |(bytes)
LOGICAL*1 1 1
LOGICAL*2 2 2
LOGICAL*4 4 4
LOGICAL*8 8 8
BYTE 1 1
CHARACTER*n n 1
REAL 4 4
REAL*4 4 4
RFAL*8 8 8
DOUBLE PRECISION 8 8
COMPLEX 8 4
COMPLEX*8 8 4
COMPLEX*16 16 8
DOUBLE COMPLEX 16 8

A logical constant is one of:

e TRUE.
e FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte value 1 and 0 respectively. A logical
expression is defined to be .TRUE. if its least significant bit is 1 and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Fortran Naming Conventions

Fortran Argument Passing and Return Conventions

382

By default, all globally visible Fortran symbol names (subroutines, functions, common blocks) are converted
to lower-case. In addition, an underscore is appended to Fortran global names to distinguish the Fortran name

space from the C/C++ name space.

Arguments are passed by reference, meaning the address of the argument is passed rather than the argument
itself. In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing the length of the
CHARACTER argument is also passed to the function. This length argument is a four-byte integer passed by
value, and is passed at the end of the parameter list following the other formal arguments. A length argument is
passed for each CHARACTER argument; the length arguments are passed in the same order as their respective

CHARACTER arguments.

Chapter 21. Run-time Environment

A Fortran function, returning a value of type CHARACTER, adds two arguments to the beginning of its argument
list. The first additional argument is the address of the area created by the caller for the return value; the
second additional argument is the length of the return value. If a Fortran function is declared to return a
character value of constant length, for example CHARACTER* 4 FUNCTI ON CHF() , the second extra
parameter representing the length of the return value must still be supplied.

A Fortran complex function returns its value in memory. The caller provides space for the return value and
passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The alternate return
function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures, pointer
arguments, assumed-shape arguments, functions returning arrays, and functions returning derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters and return
values match types. If a C/C++ function returns a value, call it from Fortran as a function, otherwise, call it as
a subroutine. If a Fortran function has type CHARACTER or COMPLEX; call it from C/C++ as a void function.
If a Fortran subroutine has alternate returns, call it from C/C++ as a function returning int; the value of such
a subroutine is the value of the integer expression specified in the alternate RETURN statement. If a Fortran
subroutine does not contain alternate returns, call it from C/C++ as a void function.

Table 21.17 provides the C/C++ data type corresponding to each Fortran data type.

Table 21.17. Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x 8
DOUBLE PRECISION x double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1
INTEGER*2 x short x 2
INTEGER*4 x int x 4
INTEGER*8 x long long x 8
LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long long x 0

383

Win64 Programming Model

il

Table 21.18 provides the Fortran and C/C++ representation of the COMPLEX type.

Table 21.18. Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x; 8
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16
Note

For C/C++, the conpl ex type implies C99 or later.

Arrays

For a number of reasons inter-language function mixing is not recommended for arrays other than single
dimensional arrays and square two-dimensional arrays.

e (/C++ arrays and Fortran arrays use different default initial array index values. By default, C/C++ arrays
start at 0 and Fortran arrays start at 1. However, a Fortran array can be declared to start at zero.

e Fortran and C/C++ arrays use different storage methods. Fortran uses column-major order and C/C++ use
row-major order. For one-dimensional arrays, this poses no problems. For two-dimensional arrays, where
there are an equal number of rows and columns, row and column indexes can simply be reversed.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran union,
conform to the same alignment requirements used by C structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members correspond to
the members of the common block. The name of the structure in C/C++ must have the added underscore.
Here is an example.

Fortran common block:
INTEGER |, J

384

Chapter 21. Run-time Environment

COMPLEX C
DOUBLE COVPLEX CD
DOUBLE PRECI SI ON D
COMVON /COM i, j, ¢, cd, d

C equivalent:

extern struct {

int i;

int j;

struct {float real, imag;} c;
struct {double real, inmag;} cd;
doubl e d;

} com;

C++ equivalent:

extern "C' struct {

int i;

int j;

struct {float real, imag;} c;
struct {double real, imag;} cd;
doubl e d;

} com;

Note

The compiler-provided name of the BLANK COMMON block is implementation-specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward as calling other
types of Fortran functions. Additional arguments must be passed to the Fortran function by the C/C++ caller. A
Fortran COMPLEX function returns its value in memory; the first argument passed to the function must contain
the address of the storage for this value. A Fortran CHARACTER function adds two arguments to the beginning
of its argument list. The following example of calling a Fortran CHARACTER function from C/C++ illustrates
these caller-provided extra parameters:

CHARACTER* (*) FUNCTI ON CHF(CL, I)

CHARACTER* (*) C1

I NTEGER |
END

extern void chf_();

char tnp[10];

char c1[9];

int i;

chf (tnp, 10, c1, &, 9);
The extra parameters t np and 10 are supplied for the return value, while 9 is supplied as the length of c1.
Refer to “Argument Passing and Return Values,” on page 159, for additional information.

385

386

Chapter 22. C++ Dialect Supported

The PGC++ compiler accepts the C++ language of the ISO/IEC 14882:1998 C++ standard, except for
Exported Templates.PGC++ optionally accepts a number of features erroneously accepted by cfront version
2.1 or 3.0. Using the -b option, PGC++ accepts these features, which may never have been legal C++, but have
found their way into some user’s code.

Command-line options provide full support of many C++ variants, including strict standard conformance.
PGC++ provides command line options that enable the user to specify whether anachronisms and/or cfront
2.1/3.0 compatibility features should be accepted.

Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes, except when strict ANSI violations are diagnosed as errors,
described in the —A option:

* A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be "friend class B"
s

Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];
S
e In the declaration of a class member, a qualified name may be used:
struct A{
int A:f(); // Should be int f();
}

The preprocessing symbol c_plusplus is defined in addition to the standard __cplusplus.

e An assignment operator declared in a derived class with a parameter type matching one of its base classes
is treated as a "default"" assignment operator --- that is, such a declaration blocks the implicit generation of

387

cfront 2.1 Compatibility Mode

a copy assignment operator. (This is cfront behavior that is known to be relied upon in at least one widely
used library.) Here's an example:

struct A{ } ;

struct B : public A {
B& oper at or =(A&) ;

IS

* By default, as well as in cfront-compatibility mode, there will be no implicit declaration of

B::operator=(const B&), whereas in strict-ANSI mode B::operator=(A&) is not a copy assignment operator
and B::operator=(const B&) is implicitly declared.

e Implicit type conversion between a pointer to an extern "C" function and a pointer to an extern "C++"
function is permitted. Here’s an example:

extern "C' void
f(); // f's type has extern "C' |inkage
void (*pf) () // pf points to an extern
"C++" function

= &f; /] error unless

implicit conv is allowed

cfront 2.1 Compatibility Mode

388

The following extensions are accepted in cfront 2.1 compatibility mode in addition to the extensions listed in
the following section. These things were corrected in the 3.0 release of cfront:

 The dependent statement of an if, while, do-while, or for is not considered to define a scope. The dependent
statement may not be a declaration. Any objects constructed within the dependent statement are destroyed
at exit from the dependent statement.

e Implicit conversion from integral types to enumeration types is allowed.
* A non-const member function may be called for a const object. A warning is issued.
* A const void * value may be implicitly converted to a void * value, e.g., when passed as an argument.

e When, in determining the level of argument match for overloading, a reference parameter is initialized
from an argument that requires a non-class standard conversion, the conversion counts as a user-defined
conversion. (This is an outright bug, which unfortunately happens to be exploited in some class libraries.)

e When a builtin operator is considered alongside overloaded operators in overload resolution, the match
of an operand of a builtin type against the builtin type required by the builtin operator is considered a
standard conversion in all cases (e.g., even when the type is exactly right without conversion).

* A reference to 2 non-const type may be initialized from a value that is a const-qualified version of the same
type, but only if the value is the result of selecting a member from a const class object or a pointer to such
an object.

* A cast to an array type is allowed; it is treated like a cast to a pointer to the array element type. A warning is
issued.

e When an array is selected from a class, the type qualifiers on the class object (if any) are not preserved in
the selected array. (In the normal mode, any type qualifiers on the object are preserved in the element type
of the resultant array.)

Chapter 22. C++ Dialect Supported

An identifier in a function is allowed to have the same name as a parameter of the function. A warning is
issued.

An expression of type void may be supplied on the return statement in a function with a void return type. A
warning is issued.

cfront has a bug that causes a global identifier to be found when a member of a class or one of its base
classes should actually be found. This bug is not emulated in cfront compatibility mode.

A parameter of type "const void *'" is allowed on operator delete; it is treated as equivalent to "void *".

A period (".") may be used for qualification where "::" should be used. Only "::"" may be used as a global
qualifier. Except for the global qualifier, the two kinds of qualifier operators may not be mixed in a given
name (i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C). A period may not be used in a vacuous
destructor reference nor in a qualifier that follows a template reference such as A<T>::B.

cfront 2.1 does not correctly look up names in friend functions that are inside class definitions. In this
example function f should refer to the functions and variables (e.g., f1 and al) from the class declaration.
Instead, the global definitions are used.

int al;

int el;
void f1();

class A {

int ail;

void f1();

friend void f()

{

int il =al; // cfront uses global al
f1(); // cfront uses global f1
}
i

Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the following example.

int ai;

int bi;

struct A {
static int al;
class B {
static int bi;
friend void f()

{
int il =al; // cfront uses A :al
int j1 = bl; // cfront uses gl obal bl
}
}s
b

operator= may be declared as a nonmember function. (This is flagged as an anachronism by cfront 2.1)

A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For example:

class A {
A() const; // No error in cfront 2.1 node

H

389

cfront 2.1/3.0 Compatibility Mode

cfront 2.1/3.0 Compatibility Mode

390

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e., these are
features or problems that exist in both cfront 2.1 and 3.0):

* Type qualifiers on this parameter may to be dropped in contexts such as this example:

struct
A {
void f() const;

b
void (A:*fp)() = &A : f;

This is actually a safe operation. A pointer to a const function may be put into a pointer to non-const,
because a call using the pointer is permitted to modify the object and the function pointed to will actually
not modify the object. The opposite assignment would not be safe.

Conversion operators specifying conversion to void are allowed.

A nonstandard friend declaration may introduce a new type. A friend declaration that omits the elaborated
type specifier is allowed in default mode, but in cfront mode the declaration is also allowed to introduce a
new type name.

struct A {
friend B;

b
The third operator of the ? operator is a conditional expression instead of an assignment expression.

A reference to a pointer type may be initialized from a pointer value without use of a temporary even when
the reference pointer type has additional type qualifiers above those present in the pointer value. For
example,

int *p;

const int *& = p; // No
temporary used

A reference may be initialized with a null.

Chapter 23. Fortran Module/Library
Interfaces for Windows

PGI Fortran for Windows provides access to a number of libraries that export C interfaces by using Fortran
modules. PGI uses this mechanism to support the Win32 API and Unix/Linux/Mac OS X portability libraries.
This chapter describes the Fortran module library interfaces that PGI supports, describing each property
available.

Source Files

All routines described in this chapter have their prototypes and interfaces described in source files that are
included in the PGI Windows compiler installation. The location of these files depends on your operating
system version, either win32 or win64, and the release version that you have installed, such as 7.2-5 or 10.0-0.
These files are typically located in this directory:

C./Program Fil es/ PA/{w n32, wi n64}/[rel ease_version]/src
For example, if you have installed the Win32 version of the 10.0-0 release, look for your files in this location:

C./ Program Fil es/ PA /w n32/10.0-0/src

Data Types

Because the Win32 API and Portability interfaces resolve to C language libraries, it is important to understand
how the data types compare within the two languages. Here is a table summarizing how C types correspond
with Fortran types for some of the more common data types:

Table 23.1. Fortran Data Type Mappings

Windows Data Type |Fortran Data Type
BOOL LOGICAL(4)

BYTE BYTE

CHAR CHARACTER
SHORT, WORD INTEGER(2)

391

Using DFLIB and DFPORT

Windows Data Type |Fortran Data Type
DWORD, INT, LONG INTEGER (4)

LONG LONG INTEGER(8)

FLOAT REAL(4)

DOUBLE REAL(8)

x86 Pointers INTEGER(4)

x64 Pointers INTEGER(8)

For more information on data types, refer to “Fortran Data Types,” on page 195.

Using DFLIB and DFPORT

PGI includes Fortran module interfaces to libraries supporting some standard C library and Unix/Linux/Mac OS
X system call functionality. These functions are provided by the DFLI B and DFPORT modules. To utilize these

modules, add the appropriate USE statement:

use dflib
use df port
DFLIB

The following table lists the functions that DFLI B includes. In the table [Generi c] refers to a generic

routine. To view the prototype and interfaces, look in the location described in “Source Files,” on page 391.

Table 23.2. DFLIB Function Summary

Routine Result Description

commitqq LOGICAL*4 Executes any pending write operations for the file associated with
the specified unit to the file’s physical device.

delfilesqq INTEGER*4 Deletes the specified files in a specified directory.

findfileqq INTEGER*4 Searches for a file in the directories specified in the PATH
environment variable.

fullpathqq INTEGER*4 Returns the full path for a specified file or directory.

getdat INTEGER*2,*4,*8 | [Generic| Returns the date.

getdrivedirqq INTEGER*4 Returns the current drive and directory path.

getenvqq INTEGER*4 Returns a value from the current environment.

getfileinfoqq INTEGER*4 Returns information about files with names that match the specified
string.

getfileinfoqqi8 |INTEGER*4 Returns information about files with names that match the specified
string.

gettim INTEGER*2,*4,*8 | [Generic]| Returns the time.

packtimeqq INTEGER*4 Packs the time and date values for use by setfiletimeqq

renamefileqq LOGICAL*4 Renames the specified file.

392

Chapter 23. Fortran Module/Library Interfaces for Windows

Routine Result Description

runqq INTEGER*2 Calls another program and waits for it to execute.

setenvqq LOGICAL*4 Sets the values of an existing environment variable or adds a new
one.

setfileaccessqq | LOGICAL*4 Sets the file access mode for the specified file.

setfiletimeqq LOGICAL*4 Sets the modification time for the specified file.

signalqq INTEGER*8 Controls signal handling.

sleepqq None Delays execution of the program for a specified time.

splitpathqq LOGICAL*4 Breaks a full path into components.

systemqq LOGICAL*4 Executes 2 command by passing a command string to the operating
system’s command interpreter.

unpacktimeqq | Multiple Unpacks a file’s packed time and date value into its component

INTEGERS parts.
DFPORT

The following table lists the functions that DFPORT includes. In the table [Generi c] refers to a generic

routine. To view the prototype and interfaces, look in the location described in “Source Files,” on page 391.

Table 23.3. DFPORT Functions

Routine Result Description

abort None Immediately terminates the program. If the operating
systems supports a core dump, abort produces one that can
be used for debugging.

access INTEGER*4 Determines access mode or existence of a file.

alarm INTEGER*4 Executes a routine after a specified time.

besj0 REAL*4 Computes the BESSEL function of the first kind of order 0 of
X, where X is real.

besj1 REAL*4 Computes the BESSEL function of the first kind of order 1 of
X, where X is real.

besjn REAL*4 Computes the BESSEL function of the first kind of order N
of X, where N is an integer and X is real.

besy0 REAL*4 Computes the BESSEL function of the second kind of order
0 of X, where X is real.

besyl REAL*4 Computes the BESSEL function of the second kind of order
1 of X, where X is real.

besyn REAL*4 Computes the BESSEL function of the second kind of order
N of X, where N is an integer and X is real.

chdir INTEGER*4 Changes the current directory to the directory specified.
Returns 0, if successful or an error

393

Using DFLIB and DFPORT

394

Routine Result Description

chmod INTEGER*4 Changes the mode of a file by setting the access permissions
of the specified file to the specified mode. Returns 0 if
successful, or error

ctime STRING(24) | Converts and returns the specified time and date as a string.

date STRING Returns the date as a character string: dd-mm-yy.

dbesjo REAL*8 Computes the double-precision BESSEL function of the
first kind of order 0 of X, where X is a double-precision
argument.

dbesj1 REAL*8 Computes the double-precision BESSEL function of the
first kind of order 1 of X, where X is a double-precision
argument.

dbesjn REAL*8 Computes the double-precision BESSEL function of the
first kind of order N of X, where N is an integer and X is a
double-precision argument.

dbesy0 REAL*8 Computes the double-precision BESSEL function of the
second kind of order 0 of X, where X, where X is a double-
precision argument.

dbesyl REAL*8 Computes the double-precision BESSEL function of the
second kind of order 1 of X, where X, where X is a double-
precision argument.

dbesyn REAL*8 Computes the double-precision BESSEL function of the
second kind of order N of X, where N is an integer and X|
where X is a double-precision argument.

derf REAL*8 Computes the double-precision error function of X, where
X is a double-precision argument.

derfc REAL*8 Computes the complementary double-precision error
function of X, where X is a double-precision argument.

dffrac REAL*8 Returns fractional accuracy of a REAL*8 floating-point
value.

dflmax REAL*8 Returns the maximum positive REAL*8 floating-point value.

dflmin REAL*8 Returns the minimum positive REAL*8 floating-point value.

drandm REAL*8 Generates 2 REAL*8 random number.

dsecnds REAL*8 Returns the number of real time seconds since midnight
minus the supplied argument value.

dtime REAL*4 Returns the elapsed user and system time in seconds since
the last call to dtime.

erf REAL*4 Computes the error function of X, where X is Real.

Chapter 23. Fortran Module/Library Interfaces for Windows

Routine Result Description

erfc REAL Computes the complementary error function of X, where X
is Real.

etime REAL*4 Returns the elapsed time in seconds since the start of
program execution.

exit None Immediately terminates the program and passes a status to
the parent process.

fdate STRING Returns the current date and time as an ASCII string.

ffrac REAL*4 Returns the fractional accuracy of a REAL*4 floating-point
value.

fgetc INTEGER*4 Gets a character or word from an input stream. Returns the
next byte or and integer

fimax REAL*4 Returns the maximum positive REAL*4 floating-point value.

fimin REAL*4 Returns the minimum positive REAL*4 floating-point value.

flush None Writes the output to a logical unit.

fputc INTEGER*4 Writes a character or word from an input stream to a
logical unit. Returns 0 if successful or an error.

free None Frees memory previously allocated by MALLOC(). Intended
for users compiling legacy code. Use DEALLOCATE for
newer code.

fseek INTEGER*4 Repositions the file pointer associated with the specified
file. Returns 0 if successful, 1 otherwise.

fseekO4 INTEGER*4 Repositions the file pointer associated with the specified
stream. Returns 0 if successful, 1 otherwise.

fstat INTEGER*4 Returns file status information about the referenced open
file or shared memory object.

fstat64 INTEGER*4 Returns information in a 64-bit structure about the
referenced open file or shared memory object.

ftell INTEGER*4 Returns the current value of the file pointer associated with
the specified stream.

ftell64 INTEGER*8 Returns the current value of the file pointer associated with
the specified stream.

gerror STRING Writes system error messages.

getarg STRING Returns the list of parameters that were passed to the
current process when it was started.

getc INTEGER*4 Retrieves the character at the front of the specified
character list, or -1 if empty

getcwd INTEGER*4 Retrieves the pathname of the current working directory or

null if fails.

395

Using DFLIB and DFPORT

396

Routine Result Description

getenv Returns the value of the specified environment variable(s).

getfd INTEGER*4 Returns the file descriptor associated with a Fortran logical
unit.

getgid INTEGER*4 Returns the numerical group ID of the current process.

getlog STRING Stores the user’s login name in NAME. If the login name is
not found, then NAME is filled with blanks.

getpid INTEGER*4 Returns the process numerical identifier of the current
process.

getuid INTEGER*4 Returns the numerical user ID of the current process.

gmtime INTEGER*4 Converts and returns the date and time formats to GM
(Greenwich) time as month, day, and so on.

hostnm INTEGER*4 Sets or Gets the name of the current host. If setting the
hostname, returns 0 if successful, errno if not.

iargc INTEGER*4 Returns an integer representing the number of arguments
for the last program entered on the command line.

idate INTEGER*4 Returns the date in numerical form, day, month, year.

ierrno INTEGER*4 Returns the system error number for the last error.

inmax INTEGER*4 Returns the maximum positive integer value.

ioinit None Establishes the properties of file I/0 for files opened after
the call to ioinit, such as whether to recognize carriage
control, how to treat blanks and zeros, and whether to
open files at the beginning or end of the file.

irand1 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irand2 INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

irandm INTEGER*4 Generates pseudo-random integer in the range of 0 through
(2**31)-1, or (2**15)-1 if called with no argument.

isatty LOGICAL Finds the name of a terminal port. Returns TRUE if the
specified unit is a terminal.

itime numerical form |Fills and returns TARRAY with numerical values at the

of time current local time, with elements 1,2 and 3 of TARRY being

the hour (1-24), minute (1-60) and seconds (1-60).

kill INTEGER*4 Sends the specified signal to the specified process or group
of processes. Returns 0 if successful, -1 otherwise

link INTEGER*4 Creates an additional directory entry for the specified

existing file.

Chapter 23. Fortran Module/Library Interfaces for Windows

Routine Result Description

InbInk INTEGER*4 Returns the position of the last non-blank string character
in the specified string.

loc INTEGER*4 Returns the address of an object.

long INTEGER*4 Converts INTEGER*2 to INTEGER*4

Istat INTEGER*4 Obtains information about the referenced open file or
shared memory object in a large-file enables programming
environment.

Istat64 INTEGER*4 Obtains information in a 64-bit structure about the
referenced open file or shared memory object in a large-
file enables programming environment.

Itime Array of Converts the system time from seconds into TARRAY, which

INTEGER*4 contains GMT for the current local time zone.

malloc INTEGER*8 Allocates SIZE byes of dynamic memory, returning the
address of the allocated memory. Intended for users
compiling legacy code. Use ALLOCATE for newer code.

mclock INTEGER*4 Returns time accounting information about the current
process and its child processes in 1/100 or second units
of measure. The returned value is the sum of the current
process’s user time and system time of all child processes.

outstr INTEGER*4 Outputs the value of the specified character to the standard
output file.

perror None Writes a message to standard error output the describes
the last error encountered by a system call or library
subroutine.

putc INTEGER*4 Puts the specified character at the end of the character list.

putenv INTEGER*4 Sets the value of the specified environment variable or
creates a new environment variable.

gsort INTEGER*4 Uses quick-sort algorithm to sort a table of data.

randl REAL*4 Provides a method for generating a random number that
can be used as the starting point for the rand procedure.

rand2 REAL*4 Provides a random value between 0 and 1, which is
generated using the specified seed value, and computed for
each returned row when used in the select list.

random REAL*4 Uses a non-linear additive feedback random-number
generator to return pseudo-random numbers in the range
of 0 to (2°'-1)

rename INTEGER*4 Renames the specified directory or file

397

Using DFLIB and DFPORT

398

Routine Result Description

rindex INTEGER*4 Returns the index of the last occurrence of a specific string
of characters in a specified string.

rtc REAL*8 Returns the real-time clock value expressed as a number of
clock ticks.

secnds REAL*4 Gets the time in seconds from the real-time system clock.
If the value is zero, the time in seconds from midnight is
used.

short INTEGER*2 Converts INTEGER*4 to INTEGER*2.

signal INTEGER*4 Specifies the action to take upon delivery of a signal.

sleep None Puts the calling kernel thread to sleep, requiring it to wait
for a wakeup to be issued to continue to run. Provided for
compatibility with older code and should not be used with
new code.

srand1 None Sets the seed for the pseudo-random number generation
that rand1 provides.

srand2 None Sets the seed for the pseudo-random number generation
that rand2 provides.

stat INTEGER*4 Obtains information about the specified file.

stato4 INTEGER*4 Obtains information in a 64-bit structure about the
specified file.

stime INTEGER*4 Sets the current value of the specified parameter for the
system-wide timer.

symlnk INTEGER*4 Creates a symbolic link with the specified name to the
specified file.

system INTEGER*4 Runs a shell command.

time INTEGER*4 Returns the time in seconds since January 1, 1970.

timef REAL*8 Returns the elapsed time in milliseconds since the first call
to timef.

times INTEGER*4 Fills the specified structure with time-accounting
information.

ttynam STRING(100) |Either gets the path name of the terminal or determines if
the device is a terminal.

unlink INTEGER*4 Removes the specified directory entry, and decreases the
link count of the file referenced by the link.

wait INTEGER*4 Suspends the calling thread until the process receives a

signal that is not blocked or ignored, or until the calling
process’ child processes stop or terminate.

Chapter 23. Fortran Module/Library Interfaces for Windows

Using the DFWIN module

The DFW N module includes all the modules needed to access the Win32 APIL You can use modules
supporting specific portions of the Win32 API separately. DFW N is the only module you need to access the
Fortran interfaces to the Win32 APL To use this module, add the following line to your Fortran code.

use dfwin

To utilize any of the Win32 API interfaces, you can add a Fortran use statement for the specific library or
module that includes it. For example, to use user32.lib, add the following Fortran use statement:
use user 32

For information on the arguments and functionality of a given routine, refer to The Microsoft Windows API
documentation. The function calls made through the module interfaces ultimately resolve to C Language
interfaces, so some accommodation for inter-language calling conventions must be made in the Fortran
application. These accommodations include:

* On x04 platforms, pointers and pointer types such as HANDLE, HI NSTANCE, WPARAM and HWKD must
be treated as 8-byte quantities (I NTEGER(8)). On x86 (32-bit) platforms, these are 4-byte quantities
(I NTEGER(4)).

e In general, C makes calls by value while Fortran makes calls by reference.

e When doing Windows development one must sometimes provide callback functions for message processing,
dialog processing, etc. These routines are called by the Windows system when events are processed. To
provide the expected function signature for a callback function, the user may need to use the STDCALL
attribute directive (! DEC$ ATTRI BUTE: : STDCALL) in the declaration.

Supported Libraries and Modules

The following tables provide lists of the functions in each library or module that PGI supports in DFW N.

Note

For information on the interfaces associated with these functions, refer to the files located here:
C.\ Program Fi |l es\ PG \w n32\ 10. 0- 0\ src

or
C:.\ Program Fi |l es\ PG \ wi n64\ 10. 0- 0\ src

advapid2

The following table lists the functions that advapi 32 includes:
Table 23.4. DFWIN advapi32 Functions

AccessCheckAndAuditAlarm AccessCheckByType
AccessCheckByTypeAndAuditAlarm AccessCheckByTypeResultList
AccessCheckByTypeResultListAndAuditAlarm AccessCheckByTypeResultListAndAuditAlarmByHandle
AddAccessAllowedAce AddAccessAllowedAceEx

AddAccessAllowedObjectAce AddAccessDeniedAce

399

Supported Libraries and Modules

400

AddAccessDeniedAceEx
AddAce
AddAuditAccessAceEx
AdjustTokenGroups
AllocateAndInitializeSid
AreAllAccessesGranted
BackupEventLog
ClearEventLog

CloseEventLog

CopySid
CreatePrivateObjectSecurityEx
CreateProcessAsUser
CreateProcessWithTokenW
CreateWellKknownSid
DeleteAce
DestroyPrivateObjectSecurity
DuplicateTokenEx
EqualDomainSid

EqualSid

FindFirstFreeAce

GetAce

GetCurrentHwProfile
GetFileSecurity

GetLengthSid
GetOldestEventLogRecord
GetSecurityDescriptorControl
GetSecurityDescriptorGroup
GetSecurityDescriptorOwner
GetSecurityDescriptorSacl
GetSidLengthRequired
GetSidSubAuthorityCount
GetUserName
ImpersonateAnonymousToken
ImpersonateNamedPipeClient
InitializeAcl

AddAccessDeniedObjectAce
AddAuditAccessAce
AddAuditAccessObjectAce
AdjustTokenPrivileges
AllocateLocallyUniqueld
AreAnyAccessesGranted
CheckTokenMembership
CloseEncryptedFileRaw

ConvertToAutoInheritPrivateObjectSecurity

CreatePrivateObjectSecurity

CreatePrivateObjectSecurityWithMultipleInheritance

CreateProcessWithLogonW
CreateRestrictedToken
DecryptFile
DeregisterEventSource
DuplicateToken

EncryptFile

EqualPrefixSid
FileEncryptionStatus

FreeSid

GetAclInformation
GetEventLogInformation
GetKernelObjectSecurity
GetNumberOfEventLogRecords
GetPrivateObjectSecurity
GetSecurityDescriptorDacl
GetSecurityDescriptorLength
GetSecurityDescriptorRMControl
GetSidIdentifierAuthority
GetSidSubAuthority
GetTokenInformation
GetWindowsAccountDomainSid
ImpersonateLoggedOnUser
ImpersonateSelf

InitializeSecurityDescriptor

InitializeSid
IsTokenRestricted
IsValidAcl

IsValidSid

LogonUser
LookupAccountName
LookupPrivilegeDisplayName
LookupPrivilegeValue
MakeAbsoluteSD2
MapGenericMask
ObjectCloseAuditAlarm
ObjectOpenAuditAlarm
OpenBackupEventLog
OpenEventLog
OpenThreadToken
PrivilegedServiceAuditAlarm
ReadEventLog

ReportEvent
SetAclInformation
SetKernelObjectSecurity
SetPrivateObjectSecurityEx
SetSecurityDescriptorDacl
SetSecurityDescriptorOwner
SetSecurityDescriptorSacl

SetTokenInformation

comdlg32

Chapter 23. Fortran Module/Library Interfaces for Windows

IsTextUnicode
IsTokenUntrusted
IsValidSecurityDescriptor
IsWellKknownSid
LogonUserEx
LookupAccountSid
LookupPrivilegeName
MakeAbsoluteSD
MakeSelfRelativeSD
NotifyChangeEventLog
ObjectDeleteAuditAlarm
ObjectPrivilegeAuditAlarm
OpenEncryptedFileRaw
OpenProcessToken
PrivilegeCheck
ReadEncryptedFileRaw
RegisterEventSource
RevertToSelf

SetFileSecurity
SetPrivateObjectSecurity
SetSecurityDescriptorControl
SetSecurityDescriptorGroup
SetSecurityDescriptorRMControl
SetThreadToken
WriteEncryptedFileRaw

The following table lists the functions that condl g32 includes:

AfxReplaceText
CommDIgExtendedError
GetOpenFileName
PrintDIg

dfwbase

ChooseColor ChooseFont
FindText GetFileTitle
GetSaveFileName PageSetupDlg
PrintDIgEx ReplaceText

These are the functions that df wbase includes:

401

Supported Libraries and Modules

dfwinty

gdi32

402

chartoint LoByte
chartoreal LoWord
CopyMemory LoWord64
GetBlueValue MakelntAtom
GetGreenValue MakelntResource
GetRedValue MakeLangID
HiByte MakeLCID
HiWord MakeLong
HiWord64 MakeLParam
inttochar MakeLResult
These are the functions that df wi nt y includes:
dwNumberOfFunctionKeys rdFunction
These are the functions that gdi 32 includes:
AbortDoc AbortPath
AddFontResource AddFontResourceEx
AngleArc AnimatePalette
ArcTo BeginPath
CancelDC CheckColorsInGamut
Chord CloseEnhMetaFile
CloseMetaFile ColorCorrectPalette
CombineRgn CombineTransform
CopyMetaFile CreateBitmap
CreateBrushIndirect CreateColorSpace
CreateCompatibleDC CreateDC
CreateDIBPatternBrush CreateDIBPatternBrushPt
CreateDiscardableBitmap CreateEllipticRgn
CreateEnhMetaFile CreateFont
CreateFontIndirectEx CreateHalftonePalette
CreatelC CreateMetaFile
CreatePatternBrush CreatePen
CreatePolygonRgn CreatePolyPolygonRgn

MakeWord
MakeWparam
PaletteIndex
PaletteRGB
PrimaryLangID
RGB
RtlCopyMemory
SortIDFromLCID
SubLangID

AddFontMemResourceEx
AlphaBlend

Arc

BitBIt
ChoosePixelFormat
CloseFigure
ColorMatchToTarget
CopyEnhMetaFile
CreateBitmapIndirect
CreateCompatibleBitmap
CreateDIBitmap
CreateDIBSection
CreateEllipticRgnIndirect
CreateFontIndirect
CreateHatchBrush
CreatePalette
CreatePenIndirect

CreateRectRgn

CreateRectRgnIndirect
CreateSolidBrush
DeleteEnhMetaFile
DescribePixelFormat
DrawEscape
EndPage
EnumFontFamilies
EnumICMProfiles
EqualRgn
ExtCreatePen
ExtFloodFill

FillPath

FlattenPath
GdiComment
GdiSetBatchLimit
GetBitmapBits
GetBkMode
GetCharABCWidthsA
GetCharABCWidthsW
GetCharWidth32
GetClipBox
GetColorSpace
GetDCBrushColor
GetDeviceCaps
GetDIBits
GetEnhMetaFileDescriptionA
GetEnhMetaFilePaletteEntries
GetFontLanguagelnfo
GetGlyphOutline
GetICMProfileW
GetLogColorSpace
GetMetaFileBitsEx
GetNearestColor
GetObjectType
GetPath

Chapter 23. Fortran Module/Library Interfaces for Windows

CreateRoundRectRgn
DeleteColorSpace
DeleteMetaFile
DeviceCapabilities
Ellipse

EndPath
EnumFontFamiliesEx
EnumMetaFile

Escape
ExtCreateRegion
ExtSelectClipRgn
FillRgn

FloodFill

GdiFlush
GetArcDirection
GetBitmapDimensionEx
GetBoundsRect
GetCharABCWidthsFloat
GetCharacterPlacement
GetCharWidthFloat
GetClipRgn
GetCurrentObject
GetDCOrgEx
GetDeviceGammaRamp
GetEnhMetaFile
GetEnhMetaFileDescriptionW
GetEnhMetaFilePixelFormat
GetFontUnicodeRanges
GetGraphicsMode
GetKerningPairs
GetMapMode
GetMetaRgn
GetNearestPaletteIndex
GetOutlineTextMetrics
GetPixel

CreateScalableFontResource
DeleteDC
DeleteObject

DPtoLP

EndDoc
EnumEnhMetaFile
EnumFonts
EnumObjects
ExcludeClipRect
ExtEscape
ExtTextOut
FixBrushOrgEx
FrameRgn
GdiGetBatchLimit
GetAspectRatioFilterEx
GetBkColor
GetBrushOrgEx
GetCharABCWidthsI
GetCharWidth
GetCharWidthI
GetColorAdjustment
GetCurrentPositionEx
GetDCPenColor
GetDIBColorTable
GetEnhMetaFileBits
GetEnhMetaFileHeader
GetFontData
GetGlyphIndices
GetICMProfileA
GetLayout
GetMetaFile
GetMiterLimit
GetObject
GetPaletteEntries
GetPixelFormat

403

Supported Libraries and Modules

404

GetPolyFillMode
GetRegionData
GetStockObject
GetSystemPaletteUse
GetTextCharset
GetTextExtentExPoint
GetTextExtentPoint32
GetTextMetrics
GetWindowExtEx
GetWorldTransform
InvertRgn

LPtoDP

MoveToEx
OffsetViewportOrgEx
PatBlt
PlayEnhMetaFile
PlayMetaFileRecord
PolyBezierTo
Polyline

PolyPolyline
PtVisible
RectInRegion
RemoveFontResource
ResizePalette
SaveDC
SelectClipPath
SelectPalette
SetBitmapBits
SetBkMode
SetColorAdjustment
SetDCPenColor
SetDIBits
SetGraphicsMode
SetLayout
SetMetaFileBitsEx

GetRandomRgn
GetRgnBox
GetStretchBltMode
GetTextAlign
GetTextCharsetInfo
GetTextExtentExPointl
GetTextExtentPointl
GetViewportExtEx
GetWindowOrgEx
GradientFill

LineDD

MaskBlIt

OffsetClipRgn
OffsetWindowOrgEx
PathToRegion
PlayEnhMetaFileRecord
PlgBlt

PolyDraw

PolylineTo

PolyTextOut
RealizePalette
RectVisible
RemoveFontResourceEx
RestoreDC
ScaleViewportExtEx
SelectClipRgn
SetAbortProc
SetBitmapDimensionEx
SetBoundsRect
SetColorSpace
SetDeviceGammaRamp
SetDIBitsToDevice
SetiICMMode
SetMapMode
SetMetaRgn

GetRasterizerCaps
GetROP2
GetSystemPaletteEntries
GetTextCharacterExtra
GetTextColor
GetTextExtentPoint
GetTextFace
GetViewportOrgEx
GetWinMetaFileBits
IntersectClipRect
LineTo
ModifyWorldTransform
OffsetRgn

PaintRgn

Pie

PlayMetaFile
PolyBezier

Polygon

PolyPolygon
PtInRegion

Rectangle

RemoveFontMemResourceEx

ResetDC
RoundRect
ScaleWindowExtEx
SelectObject
SetArcDirection
SetBkColor
SetBrushOrgEx
SetDCBrushColor
SetDIBColorTable
SetEnhMetaFileBits
SetICMProfile
SetMapperFlags
SetMiterLimit

SetPaletteEntries
SetPixelV

SetROP2

SetTextAlign
SetTextJustification
SetWindowExtEx
SetWorldTransform
StretchBlt

StrokePath
TranslateCharsetInfo
UpdateColors
wglCreateContext
wglDescribeLayerPlane
wglGetLayerPaletteEntries
wglRealizeLayerPalette
wglSwapLayerBuffers
wglUseFontOutlines

kernel32

Chapter 23. Fortran Module/Library Interfaces for Windows

SetPixel
SetPolyFillMode
SetStretchBltMode
SetTextCharacterExtra
SetViewportExtEx
SetWindowOrgEx
StartDoc

StretchDIBits
SwapBulffers
TransparentBlt
UpdateICMRegKey
wglCreateLayerContext
wglGetCurrentContext
wglGetProcAddress
wglSetLayerPaletteEntries
wglSwapMultipleBuffers
WidenPath

These are the functions that ker nel 32 includes:

ActivateActCtx
AddConsoleAlias
AddVectoredContinueHandler
AllocateUserPhysicalPages
AreFileApisANSI
AttachConsole

BackupSeek

Beep
BindloCompletionCallback
BuildCommDCBAndTimeouts
CancelDeviceWakeupRequest
CancelTimerQueueTimer
CheckNameLegalDOS8Dot3
ClearCommBreak
CloseHandle

SetPixelFormat
SetRectRgn
SetSystemPaletteUse
SetTextColor
SetViewportOrgEx
SetWinMetaFileBits
StartPage
StrokeAndFillPath
TextOut
UnrealizeObject
wglCopyContext
wglDeleteContext
wglGetCurrentDC
wglMakeCurrent
wglShareLists
wglUseFontBitmaps

AddAtom

AddRefActCtx
AddVectoredExceptionHandler
AllocConsole
AssignProcessToJobObject
BackupRead

BackupWrite
BeginUpdateResource
BuildCommDCB
CallNamedPipe

Cancello

CancelWaitableTimer
CheckRemoteDebuggerPresent
ClearCommError

CommConfigDialog

405

Supported Libraries and Modules

406

CompareFileTime
ContinueDebugEvent
ConvertThreadToFiber
CopyFile

CreateActCtx
CreateDirectory
CreateEvent

CreateFiberEx
CreateFileMapping
CreateloCompletionPort
CreateJobSet
CreateMemoryResourceNotification
CreateNamedPipe
CreateProcess
CreateSemaphore
CreateThread
CreateTimerQueueTimer
DeactivateActCtx
DebugActiveProcessStop
DebugBreakProcess
DecodePointer
DefineDosDevice
DeleteCriticalSection
DeleteFile
DeleteTimerQueueEx
DeleteVolumeMountPoint
DisableThreadLibraryCalls
DnsHostnameToComputerName
DuplicateHandle
EncodeSystemPointer
EnterCriticalSection
EnumResourceNames
EnumSystemFirmwareTables
EscapeCommFunction
ExitThread

ConnectNamedPipe
ConvertFiberToThread
ConvertThreadToFiberEx
CopyFileEx
CreateConsoleScreenBuffer
CreateDirectoryEx
CreateFiber

CreateFile
CreateHardLink
CreateJobObject
CreateMailslot
CreateMutex

CreatePipe
CreateRemoteThread
CreateTapePartition
CreateTimerQueue
CreateWaitableTimer
DebugActiveProcess
DebugBreak
DebugSetProcessKillOnExit
DecodeSystemPointer
DeleteAtom

DeleteFiber
DeleteTimerQueue
DeleteTimerQueueTimer
DeviceloControl
DisconnectNamedPipe
DosDateTimeToFileTime
EncodePointer
EndUpdateResource
EnumResourceLanguages
EnumResourceTypes
EraseTape

ExitProcess

ExpandEnvironmentStrings

FatalAppExit
FileTimeToDosDateTime
FileTimeToSystemTime
FillConsoleOutputCharacter
FindActCtxSectionString
FindClose
FindFirstChangeNotification
FindFirstFileEx
FindFirstVolumeMountPoint
FindNextFile
FindNextVolumeMountPoint
FindResourceEx
FindVolumeMountPointClose
FlsFree

FlsSetValue

FlushFileBuffers
FlushViewOfFile
FreeConsole

FreeLibrary

FreeResource
GenerateConsoleCtrlEvent
GetBinaryType
GetCommConfig
GetCommModemStatus
GetCommb©tate
GetCompressedFileSize
GetConsoleAlias
GetConsoleAliasesLength
GetConsoleAliasExesLength
GetConsoleCursorInfo
GetConsoleFontSize
GetConsoleOutputCP
GetConsoleScreenBufferInfo
GetConsoleTitle
GetCurrentActCtx

Chapter 23. Fortran Module/Library Interfaces for Windows

FatalExit
FileTimeToLocalFileTime
FillConsoleOutputAttribute
FindActCtxSectionGuid
FindAtom
FindCloseChangeNotification
FindFirstFile
FindFirstVolume
FindNextChangeNotification
FindNextVolume
FindResource
FindVolumeClose

FlsAlloc

FlsGetValue
FlushConsolelnputBuffer
FlushInstructionCache
FormatMessage
FreeEnvironmentStrings
FreeLibraryAndExitThread
FreeUserPhysicalPages
GetAtomName
GetCommandLine
GetCommMask
GetCommProperties
GetCommTimeouts
GetComputerName
GetConsoleAliases
GetConsoleAliasExes
GetConsoleCP
GetConsoleDisplayMode
GetConsoleMode
GetConsoleProcessList
GetConsoleSelectionInfo
GetConsoleWindow

GetCurrentConsoleFont

407

Supported Libraries and Modules

408

GetCurrentDirectory
GetCurrentProcessld
GetCurrentThread
GetDefaultCommConfig
GetDiskFreeSpace
GetDIIDirectory
GetEnvironmentStrings
GetExitCodeProcess
GetFileAttributes
GetFileInformationByHandle
GetFileSizeEx

GetFileType
GetFullPathName
GetLargePageMinimum
GetLastError
GetLogicalDrives
GetLogicalProcessorInformation
GetMailslotInfo
GetModuleHandle
GetNamedPipeHandleState
GetNativeSystemInfo
GetNumaHighestNodeNumber
GetNumaProcessorNode
GetNumberOfConsoleMouseButtons
GetPriorityClass
GetPrivateProfileSection
GetPrivateProfileString
GetProcAddress
GetProcessHandleCount
GetProcessHeaps
GetProcessldOfThread
GetProcessPriorityBoost
GetProcessTimes
GetProcessWorkingSetSize
GetProfileInt

GetCurrentProcess
GetCurrentProcessorNumber
GetCurrentThreadld
GetDevicePowerState
GetDiskFreeSpaceEx
GetDriveType
GetEnvironmentVariable
GetExitCodeThread
GetFileAttributesEx

GetFileSize

GetFileTime
GetFirmwareEnvironmentVariable
GetHandleInformation
GetLargestConsoleWindowSize
GetLocalTime
GetLogicalDriveStrings
GetLongPathName
GetModuleFileName
GetModuleHandleEx
GetNamedPipelnfo
GetNumaAvailableMemoryNode
GetNumaNodeProcessorMask
GetNumberOfConsoleInputEvents
GetOverlappedResult
GetPrivateProfilelnt
GetPrivateProfileSectionNames
GetPrivateProfileStruct
GetProcessAffinityMask
GetProcessHeap

GetProcessId
GetProcessloCounters
GetProcessShutdownParameters
GetProcessVersion
GetProcessWorkingSetSizeEx
GetProfileSection

Chapter 23. Fortran Module/Library Interfaces for Windows

GetProfileString GetQueuedCompletionStatus
GetShortPathName GetStartuplInfo
GetStdHandle GetSystemDirectory
GetSystemFirmwareTable GetSystemInfo
GetSystemRegistryQuota GetSystemTime
GetSystemTimeAdjustment GetSystemTimeAsFileTime
GetSystemWindowsDirectory GetSystemWowO4Directory
GetTapeParameters GetTapePosition
GetTapeStatus GetTempFileName
GetTempPath GetThreadContext
GetThreadld GetThreadIOPendingFlag
GetThreadPriority GetThreadPriorityBoost
GetThreadSelectorEntry GetThreadTimes
GetTickCount GetTimeZonelnformation
GetVersion GetVersionEx
GetVolumelnformation GetVolumeNameForVolumeMountPoint
GetVolumePathName GetVolumePathNamesForVolumeName
GetWindowsDirectory GetWriteWatch
GlobalAddAtom GlobalAlloc
GlobalCompact GlobalDeleteAtom
GlobalFindAtom GlobalFix

GlobalFlags GlobalFree
GlobalGetAtomName GlobalHandle

GlobalLock GlobalMemoryStatus
GlobalMemoryStatusEx GlobalReAlloc

GlobalSize GlobalUnfix

GlobalUnlock GlobalUnWire

GlobalWire HeapAlloc

HeapCompact HeapCreate

HeapDestroy HeapFree

HeapLock HeapQueryInformation
HeapReAlloc HeapSetInformation
HeapSize HeapUnlock

HeapValidate HeapWalk

InitAtomTable InitializeCriticalSection

409

Supported Libraries and Modules

410

InitializeCriticalSectionAndSpinCount

InterlockedCompareExchange
InterlockedDecrement
InterlockedExchangeAdd
InterlockedIncrement
InterlockedPushEntrySList
IsBadHugeReadPtr
IsBadReadPtr
IsBadWritePtr
IsProcessInjob
IsSystemResumeAutomatic
LoadLibrary

LoadModule

LocalAlloc
LocalFileTimeToFileTime
LocalFree

LocalLock

LocalShrink

LocalUnlock

LockFileEx

Istrcat

Istrcmpi

Istrcpyn
MapUserPhysicalPages
MapViewOfFile

MoveFile
MoveFileWithProgress
NeedCurrentDirectoryForExePath
OpenFile

OpenJobObject
OpenProcess

OpenThread
OutputDebugString
PeekNamedPipe
PrepareTape

InitializeSListHead
InterlockedCompareExchange64
InterlockedExchange
InterlockedFlushSList
InterlockedPopEntrySList
IsBadCodePtr
IsBadHugeWritePtr
IsBadStringPtr
IsDebuggerPresent
IsProcessorFeaturePresent
LeaveCriticalSection
LoadLibraryEx
LoadResource
LocalCompact

LocalFlags

LocalHandle

LocalReAlloc

LocalSize

LockFile

LockResource

Istremp

Istrcpy

Istrlen
MapUserPhysicalPagesScatter
MapViewOfFileEx
MoveFileEx

MulDiv

OpenEvent
OpenFileMapping
OpenMutex
OpenSemaphore
OpenWaitableTimer
PeekConsolelnput
PostQueuedCompletionStatus

ProcessIdToSessionld

PulseEvent

QueryActCtxW
QueryDosDevice
QueryMemoryResourceNotification
QueryPerformanceFrequency
QueueUserWorkItem
ReadConsole
ReadConsoleOutput
ReadConsoleOutputCharacter
ReadFile

ReadFileScatter
RegisterWaitForSingleObject
ReleaseActCtx
ReleaseSemaphore
RemoveVectoredContinueHandler
ReOpenFile
RequestDeviceWakeup
ResetEvent

RestoreLastError
ScrollConsoleScreenBuffer
SetCommBreak
SetCommMask
SetCommTimeouts
SetComputerNameEx
SetConsoleCP
SetConsoleCursorInfo
SetConsoleMode
SetConsoleScreenBufferSize
SetConsoleTitle
SetCriticalSectionSpinCount
SetDefaultCommConfig
SetEndOfFile
SetEnvironmentVariable
SetEvent

SetFileApisTOOEM

Chapter 23. Fortran Module/Library Interfaces for Windows

PurgeComm
QueryDepthSList
QueryInformationJobObject
QueryPerformanceCounter
QueueUserAPC
RaiseException
ReadConsolelnput
ReadConsoleOutputAttribute
ReadDirectoryChangesW
ReadFileEx
ReadProcessMemory
RegisterWaitForSingleObjectEx
ReleaseMutex
RemoveDirectory
RemoveVectoredExceptionHandler
ReplaceFile
RequestWakeupLatency
ResetWriteWatch
ResumeThread

SearchPath

SetCommConfig
SetCommState
SetComputerName
SetConsoleActiveScreenBuffer
SetConsoleCtrlHandler
SetConsoleCursorPosition
SetConsoleOutputCP
SetConsoleTextAttribute
SetConsoleWindowlInfo
SetCurrentDirectory
SetDIIDirectory
SetEnvironmentStrings
SetErrorMode
SetFileApisTOANSI
SetFileAttributes

411

Supported Libraries and Modules

412

SetFilePointer
SetFileShortName
SetFileValidData
SetHandleCount
SetInformationJobObject
SetLocalTime
SetMessageWaitingIndicator
SetPriorityClass
SetProcessPriorityBoost
SetProcessWorkingSetSize
SetStdHandle
SetSystemTimeAdjustment
SetTapePosition
SetThreadContext
SetThreadIdealProcessor
SetThreadPriorityBoost
SetTimerQueueTimer
SetUnhandledExceptionFilter
SetVolumeLabel
SetWaitableTimer
SizeofResource

SleepEx

SwitchToFiber
SystemTimeToFileTime
TerminateJobObject
TerminateThread

TlsFree

TlsSetValue
TransmitCommChar
TzSpecificLocal TimeToSystemTime
UnlockFile
UnmapViewOfFile
UnregisterWaitEx
VerifyVersionInfo
VirtualAllocEx

SetFilePointerEx

SetFileTime
SetFirmwareEnvironmentVariable
SetHandleInformation
SetLastError

SetMailslotInfo
SetNamedPipeHandleState
SetProcessAffinityMask
SetProcessShutdownParameters
SetProcessWorkingSetSizeEx
SetSystemTime
SetTapeParameters
SetThreadAffinityMask
SetThreadExecutionState
SetThreadPriority
SetThreadStackGuarantee
SetTimeZonelnformation
SetupComm
SetVolumeMountPoint
SignalObjectAndWait

Sleep

SuspendThread
SwitchToThread
SystemTimeToTzSpecificLocalTime
TerminateProcess

TlsAlloc

TlsGetValue
TransactNamedPipe
TryEnterCriticalSection
UnhandledExceptionFilter
UnlockFileEx
UnregisterWait
UpdateResource
VirtualAlloc

VirtualFree

VirtualFreeEx
VirtualProtect
VirtualQuery
VirtualUnlock
WaitForDebugEvent
WaitForMultipleObjectsEx
WaitForSingleObjectEx
WinExec
Wow64EnableWow64FsRedirection
WriteConsole
WriteConsoleQutput
WriteConsoleQutputCharacter
WriteFileEx
WritePrivateProfileSection
WritePrivateProfileStruct
WriteProfileSection
WriteTapemark
ZombifyActCtx

_hwrite

_lcreat

_lopen

_Iwrite

shell32

These are the functions that shel | 32 includes:

DoEnvironmentSubst
DragAcceptFiles
DragFinish
DragQueryFile
DragQueryPoint
Duplicatelcon
ExtractAssociatedIcon
Extractlcon
ExtractlconEx
FindExecutable
ISLFNDrive

Chapter 23. Fortran Module/Library Interfaces for Windows

VirtualLock

VirtualProtectEx

VirtualQueryEx

WaitCommEvent
WaitForMultipleObjects
WaitForSingleObject
WaitNamedPipe
Wow64DisableWow64FsRedirection
Wow64RevertWow64FsRedirection
WriteConsolelnput
WriteConsoleOutputAttribute
WriteFile

WriteFileGather
WritePrivateProfileString
WriteProcessMemory
WriteProfileString
WTSGetActiveConsoleSessionld
_hread

_Iclose

_llseek

_lread

ShellExecuteEx
Shell_Notifylcon
SHEmptyRecycleBin
SHFileOperation
SHFreeNameMappings
SHGetDiskFreeSpaceEx
SHGetFileInfo
SHGetNewLinkInfo
SHInvokePrinterCommand
SHIsFileAvailableOffline
SHLoadNonloadedIconOverlayldentifiers

413

Supported Libraries and Modules

user3?2

414

SHAppBarMessage SHQueryRecycleBin

SHCreateProcessAsUserW SHSetLocalizedName

ShellAbout WinExecError

ShellExecute
These are the functions that user 32 includes:
ActivateKeyboardLayout AdjustWindowRect AdjustWindowRectEx
AllowSetForegroundWindow AnimateWindow AnyPopup
AppendMenu ArrangelconicWindows AttachThreadInput
BeginDeferWindowPos BeginPaint BringWindowToTop
BroadcastSystemMessage BroadcastSystemMessageEx CallMsgFilter
CallNextHooKEx CallWindowProc CascadeWindows
ChangeClipboardChain ChangeDisplaySettings ChangeDisplaySettingsEx
ChangeMenu CharLower CharLowerBuff
CharNext CharNextEx CharPrev
CharPrevEx CharToOem CharToOemBuff
CharUpper CharUpperBuff CheckDIgButton
CheckMenultem CheckMenuRadioltem CheckRadioButton
ChildWindowFromPoint ChildWindowFromPointEx ClientToScreen
ClipCursor CloseClipboard CloseDesktop
CloseWindow CloseWindowStation CopyAcceleratorTable
CopyCursor Copylcon Copylmage
CopyRect CountClipboardFormats CreateAcceleratorTable
CreateCaret CreateCursor CreateDesktop
CreateDialogIndirectParam CreateDialogParam Createlcon
CreatelconFromResource CreatelconFromResourceEx CreatelconIndirect
CreateMDIWindow CreateMenu CreatePopupMenu
CreateWindow CreateWindowEx CreateWindowStation
DeferWindowPos DefFrameProc DefMDIChildProc
DefRawInputProc DefWindowProc DeleteMenu
DeregisterShellHookWindow DestroyAcceleratorTable DestroyCaret
DestroyCursor Destroylcon DestroyMenu
DestroyWindow DialogBoxIndirectParam DialogBoxParam1
DialogBoxParam?2 DisableProcessWindowsGhosting DispatchMessage

DigDirList
DlgDirSelectEx
DrawAnimatedRects
DrawFocusRect
DrawIconIndirect
DrawText
EnableMenultem
EndDeferWindowPos
EndPaint
EnumClipboardFormats
EnumbDisplayDevices
EnumDisplaySettingsEx
EnumThreadWindows
EqualRect

FillRect

FlashWindow
GetActiveWindow
GetAsyncKeyState
GetCaretPos
GetClassLong
GetClassWord
GetClipboardFormatName
GetClipboardViewer
GetCursor

GetDC
GetDialogBaseUnits
GetDIgltemInt
GetFocus
GetGUIThreadInfo
GetKBCodePage
GetKeyboardLayoutName
GetKeyNameText
GetLastInputInfo
GetMenu
GetMenuContextHelpId

Chapter 23. Fortran Module/Library Interfaces for Windows

DlgDirListComboBox
DragDetect
DrawCaption
DrawFrameControl
DrawMenuBar
DrawTextEx
EnableScrollBar
EndDialog

EndTask
EnumDesktops
EnumDisplayMonitors
EnumProps
EnumWindows
ExcludeUpdateRgn
FindWindow
FlashWindowEx
GetAltTabInfo
GetCapture
GetClassInfo
GetClassLongPtr
GetClientRect
GetClipboardOwner
GetClipCursor
GetCursorInfo
GetDCEx
GetDIgCtrlID
GetDIgltemText
GetForegroundWindow
GetlconInfo
GetKeyboardLayout
GetKeyboardState
GetKeyState
GetLayeredWindowAttributes
GetMenuBarInfo
GetMenuDefaultltem

DlgDirSelectComboBoxEx
DragObject

DrawEdge

Drawlcon

DrawState
EmptyClipboard
EnableWindow
EndMenu
EnumChildWindows
EnumDesktopWindows
EnumDisplaySettings
EnumPropsEx
EnumWindowStations
ExitWindowsEx
FindWindowEx
FrameRect
GetAncestor
GetCaretBlinkTime
GetClassInfoEx
GetClassName
GetClipboardData
GetClipboardSequenceNumber
GetComboBoxInfo
GetCursorPos
GetDesktopWindow
GetDIgltem
GetDoubleClickTime
GetGuiResources
GetlnputState
GetKeyboardLayoutList
GetKeyboardType
GetLastActivePopup
GetListBoxInfo
GetMenuCheckMarkDimensions
GetMenulnfo

415

Supported Libraries and Modules

416

GetMenultemCount
GetMenultemRect
GetMessage
GetMessageTime
GetNextDlgGroupltem
GetParent
GetProcessWindowStation
GetRawInputBuffer
GetRawInputDeviceList
GetScrollInfo
GetShellWindow
GetSysColorBrush
GetTabbedTextExtent
GetTopWindow
GetUserObjectInformation
GetWindowContextHelpId
GetWindowLong
GetWindowPlacement
GetWindowRgnBox
GetWindowThreadProcessId
HideCaret
InSendMessage
InsertMenultem
InvalidateRect
IsCharAlpha

IsCharUpper
IsDialogMessage
IsHungAppWindow
IsRectEmpty
IsWindowUnicode
IsWow64Message
KillTimer

LoadCursor1

LoadIconl

LoadKeyboardLayout

GetMenultemID
GetMenuState
GetMessageExtralnfo
GetMonitorInfo
GetNextDIgTabItem
GetPriorityClipboardFormat
GetProp
GetRawInputData
GetRegisteredRawInputDevices
GetScrollPos
GetSubMenu
GetSystemMenu
GetThreadDesktop
GetUpdateRect
GetUserObjectSecurity
GetWindowDC
GetWindowLongPtr
GetWindowRect
GetWindowText
GetWindowWord
HiliteMenultem
InSendMessageEx
InternalGetWindowText
InvalidateRgn
IsCharAlphaNumeric
IsChild
IsDIgButtonChecked
IsIconic

IsWindow
IsWindowVisible
IsZoomed
LoadAccelerators
LoadCursor2
LoadIcon2
LoadMenul

GetMenultemInfo
GetMenuString
GetMessagePos
GetMouseMovePointsEx
GetOpenClipboardWindow
GetProcessDefaultLayout
GetQueueStatus
GetRawInputDevicelnfo
GetScrollBarInfo
GetScrollRange
GetSysColor
GetSystemMetrics
GetTitleBarInfo
GetUpdateRgn
GetWindow
GetWindowlInfo
GetWindowModuleFileName
GetWindowRgn
GetWindowTextLength
GrayString

InflateRect

InsertMenu
IntersectRect

InvertRect

IsCharLower
IsClipboardFormatAvailable
IsGUIThread

IsMenu
IsWindowEnabled
IsWinEventHookInstalled
keybd_event
LoadBitmap
LoadCursorFromFile
LoadImage

LoadMenu?2

LoadMenulndirect
LockWindowUpdate
LookupIconIdFromDirectoryEx
MapVirtualKey
MenultemFromPoint
MessageBoxEx
ModifyMenu2
MonitorFromWindow
MsgWaitForMultipleObjects
OemKeyScan

OffsetRect

Openlcon

PaintDesktop
PostQuitMessage
PrivateExtractIcons
RealGetWindowClass
RegisterClassEx
RegisterHotKey
RegisterWindowMessage
RemoveMenu
ScreenToClient
ScrollWindowEx
SendMessage
SendNotifyMessage
SetCaretBlinkTime
SetClassLongPtr
SetClipboardViewer
SetDebugErrorLevel
SetDoubleClickTime
SetKeyboardState
SetMenu

SetMenulnfo
SetMessageExtralnfo
SetProcessDefaultLayout
SetRect

Chapter 23. Fortran Module/Library Interfaces for Windows

LoadString
LockWorkStation
LRESULT
MapVirtualKeyEx
MessageBeep
MessageBoxIndirect
MonitorFromPoint
mouse_event
MsgWaitForMultipleObjectsEx
OemToChar
OpenClipboard
OpenInputDesktop
PeekMessage
PostThreadMessage
PtInRect

RedrawWindow
RegisterClipboardFormat
RegisterRawInputDevices
ReleaseCapture
RemoveProp

ScrollDC
SendDIgltemMessage
SendMessageCallback
SetActiveWindow
SetCaretPos
SetClassWord

SetCursor

SetDIgltemInt

SetFocus

SetLastErrorEx
SetMenuContextHelpId
SetMenultemBitmaps
SetMessageQueue
SetProcessWindowStation
SetRectEmpty

LockSetForegroundWindow
LookupIconIdFromDirectory
MapDialogRect
MapWindowPoints
MessageBox

ModifyMenul
MonitorFromRect
MoveWindow
NotifyWinEvent
OemToCharBuff
OpenDesktop
OpenWindowStation
PostMessage

PrintWindow
RealChildWindowFromPoint
RegisterClass
RegisterDeviceNotification
RegisterShellHookWindow
ReleaseDC

ReplyMessage
ScrollWindow

SendInput
SendMessageTimeout
SetCapture

SetClassLong
SetClipboardData
SetCursorPos
SetDIgltemText
SetForegroundWindow
SetLayeredWindowAttributes
SetMenuDefaultltem
SetMenultemInfo

SetParent

SetProp

SetScrollnfo

417

Supported Libraries and Modules

SetScrollPos
SetSystemCursor
SetUserObjectInformation
SetWindowLong
SetWindowPos
SetWindowsHookEx
SetWinEventHook
ShowOwnedPopups
ShowWindowAsync
SwitchDesktop
TabbedTextOut

ToAsciiEx
TrackMouseEvent
TranslateAccelerator
UnhookWindowsHook
UnionRect
UnregisterDeviceNotification
UpdateLayeredWindowIndirect
ValidateRect
VkKeyScanEx
WindowFromDC

wsprintf

winver

SetScrollRange
SetThreadDesktop
SetUserObjectSecurity
SetWindowLongPtr
SetWindowRgn
SetWindowText
ShowCaret
ShowScrollBar
SubtractRect
SwitchToThisWindow
TileWindows
ToUnicode
TrackPopupMenu
TranslateMDISysAccel
UnhookWindowsHookEx
UnloadKeyboardLayout
UnregisterHotKey
UpdateWindow
ValidateRgn
WaitForInputldle
WindowFromPoint

wvsprintf

These are the functions that wi nver includes:

GetFileVersionInfo

GetFileVersionInfoSize

wsock32

418

VerFindFile
VerInstallFile

These are the functions that wsock32 includes:

accept
closesocket
getpeername

getprotobynumber

AcceptEx
connect
gethostname

getservbyname

SetSysColors
SetTimer

SetWindowContextHelpId

SetWindowPlacement
SetWindowsHook
SetWindowWord
ShowCursor
ShowWindow
SwapMouseButton
SystemParametersInfo
ToAscii

ToUnicodeEx
TrackPopupMenuEx
TranslateMessage
UnhookWinEvent
UnregisterClass
UpdateLayeredWindow
UserHandleGrantAccess
VkKeyScan
WaitMessage
WinHelp

VerLanguageName
VerQueryValue

bind
GetAcceptExSockaddrs
getprotobyname

getservbyport

getsockname

htons

ioctlsocket

ntohs

send

shutdown
WSAAsyncGetHostByName
WSAAsyncGetServByName
WSACancelAsyncRequest
WSAGetLastError
WSASetBlockingHook

Chapter 23. Fortran Module/Library Interfaces for Windows

getsockopt

inet_addr

listen

recv

sendto

socket
WSAAsyncGetProtoByName
WSAAsyncGetServByPort
WSACancelBlockingCall
WSAIsBlocking
WSASetLastError

htonl

inet_ntoa

ntohl

select
setsockopt
TransmitFile
WSAAsyncGetProtoByNumber
WSAAsyncSelect
WSACleanup
WSARecvEx
WSAStartup

419

420

Chapter 24. C/C++ MMX/SSE Inline
Intrinsics

An intrinsic is a function available in a given language whose implementation is handled specifically by the
compiler. Typically, an intrinsic substitutes a sequence of automatically-generated instructions for the original
function call. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it
and optimize it for the situation.

PGI provides support for MMX (and SSE/SSE2/SSE3/SSSE3/SSE4a/ABM intrinsics in C/C++ programs.

Intrinsics make the use of processor-specific enhancements easier because they provide a C/C++ language
interface to assembly instructions. In doing so, the compiler manages things that the user would normally have
to be concerned with, such as register names, register allocations, and memory locations of data.

This chapter contains these seven tables associated with inline intrinsics:

¢ A table of MMX inline intrinsics (mmintrin.h)

A table of SSE inline intrinsics (xmmintrin.h)

A table of SSE2 inline intrinsics (emmintrin.h)

A table of SSE3 inline intrinsics (pmmintrin.h)

A table of SSSE3 inline intrinsics (tmmintrin.h)

A table of SSE4a inline intrinsics (ammintrin.h)

A table of ABM inline intrinsics (intrin.h)

Using Intrinsic functions

The definitions of the intrinsics are provided in the inline library | i bi nt ri nsi cs. i | , which is
automatically included when you compile.

Required Header File

To call these intrinsic functions from a C/C++ source, you must include the corresponding header file - one of
the following;

421

MMX Intrinsics

e For MMX, use nmi ntrin. h e For SSSE3 uset nmi ntrin. h
e For SSE, use xnmi ntrin. h e For SSE4a use anmi ntrin. h
e For SSE2, useenmi ntrin. h e ForABMuseintrin.h

For SSE3, use prmi ntrin. h

Intrinsic Data Types

The following table describes the data types that are defined for intrinsics:

Data Types |Defined in Description

_mb4 mmi ntrin. h |For use with MMX intrinsics, this 64-bit data type stores one 64-bit or
two 32-bit integer values.

__ml28 |xmmintrin. h |For use with SSE intrinsics, this 128-bit data type, aligned on 16-byte
boundaries, stores four single-precision floating point values.

__ml128d |emmintrin. h |For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on 16-
byte boundaries, stores two double-precision floating point values.

__ml28i |emmi ntrin. h |For use with SSE2/SSE3 intrinsics, this 128-bit data type, aligned on 16-
byte boundaries, stores two 64-bit integer values.

Intrinsic Example

The MMX/SSE intrinsics include functions for initializing variables of the types defined in the preceding table.
The following sample program, exanpl e. c, illustrates the use of the SSE intrinsics _mm_add_ps and
_mm_set_ps.

#i ncl ude<xmm ntrin. h>

int main(){

__ nml28 A B, result;

A = _mmset ps(23.3, 43.7, 234.234, 98.746); /* initialize A */

B = _mmset_ps(15.4, 34.3, 4.1, 8.6); /* initialize B */

result = _mmadd_ps(A, B)

return O;

}

To compile this program, use the following command:
$ pgcc exanple.c -o nmyprog

The inline library | i bi ntri nsics. il isautomatically inlined.

MMX Intrinsics

PGI supports a set of MMX Intrinsics which allow the use of the MMX instructions directly from C/C++ code,
without writing the assembly instructions. The following table lists the MMX intrinsics that PGI supports.

Note

Intrinsics with a * are only available on 64-bit systems.

422

Chapter 24. C/C++ MMX/SSE Inline Intrinsics

Table 24.1. MMX Intrinsics (mmintrin.h)

_mm_empty _m_paddd _m_psliw _m_pand
_m_empty _mm_add_si64 _mm_slli_pil6 _mm_andnot_si64
_mm_cvtsi32_sio4 _mm_adds_pi8 _m_psliwi _m_pandn
_m_from_int _m_paddsb _mm_sll_pi32 _mm_or_si64
_mm_cvtsib4x_si64* _mm_adds_pil6 _m_pslid _m_por
_mm_set_pi64x* _m_paddsw _mm_slli_pi32 _mm_xor_si64
_mm_cvisib4_si32 _mm_adds_pu8 _m_pslldi _m_pxor
_m_to_int _m_paddusb _mm_sll_si64 _mm_cmpeq_pi8
_mm_cvtsib4_si64x* _mm_adds_pul6 _m_psllq _m_pcmpegb
_mm_packs_pil6* _m_paddusw _mm_slli_si64 _mm_cmpgt_pi8
_m_packsswb _mm_sub_pi8 _m_psllqi _m_pcmpgth
_mm_packs_pi32 _m_psubb _mm_sra_pil6 _mm_cmpeq_pil6
_m_packssdw _mm_sub_pil6 _m_psraw _m_pcmpeqw
_mm_packs_pul6 _m_psubw _mm_srai_pil6 _mm_cmpgt_pil6
_m_packuswb _mm_sub_pi32 _m_psrawi _m_pcmpgtw
_mm_unpackhi_pi8 _m_psubd _mm_sra_pi32 _mm_cmpeq_pi32
_m_punpckhbw _mm_sub_si64 _m_psrad _m_pcmpeqd
_mm_unpackhi_pil6 _mm_subs_pi8 _mm_srai_pi32 _mm_cmpgt_pi32
_m_punpckhwd _m_psubsb _m_psradi _m_pcmpgtd
_mm_unpackhi_pi32 _mm_subs_pil6 _mm_srl_pil6 _mm_setzero_si64
_m_punpckhdq _m_psubsw _m_psrlw _mm_set_pi32
_mm_unpacklo_pi8 _mm_subs_pu8 _mm_srli_pil6 _mm_set_pil6
_m_punpcklbw _m_psubusb _m_psrlwi _mm_set_pi8
_mm_unpacklo_pil6 _mm_subs_pul6 _mm_srl_pi32 _mm_setr_pi32
_m_punpcklwd _m_psubusw _m_psrld _mm_setr_pil6
_mm_unpacklo_pi32 _mm_madd_pil6 _mm_srli_pi32 _mm_setr_pi8
_m_punpckldq _m_pmaddwd _m_psrldi _mm_setl_pi32
_mm_add_pi8 _mm_mulhi_pil6 _mm_srl_si64 _mm_setl_pil6
_m_paddb _m_pmulhw _m_psrlq _mm_setl_pi8
_mm_add_pil6 _mm_mullo_pil6 _mm_srli_si64

_m_paddw _m_pmullw _m_psrlqi

_mm_add_pi32 _mm_sll_pil6 _mm_and_si64

423

SSE Intrinsics

SSE Intrinsics

PGI supports a set of SSE Intrinsics which allow the use of the SSE instructions directly from C/C++ code,
without writing the assembly instructions. The following tables list the SSE intrinsics that PGI supports.

Note

Intrinsics with a * are only available on 64-bit systems.

Table 24.2. SSE Intrinsics (xmmintrin.h)

_mm_add_ss _mm_comige_ss _mm_load_ss
_mm_sub_ss _mm_comineq_ss _mm_load1_ps
_mm_mul_ss _mm_ucomieq_ss _mm_load_psl
_mm_div_ss _mm_ucomilt_ss _mm_load_ps
_mm_sqrt_ss _mm_ucomile_ss _mm_loadu_ps
_mm_rcp_ss _mm_ucomigt_ss _mm_loadr_ps
_mm_rsqrt_ss _mm_ucomige_ss _mm_set_ss
_mm_min_ss _mm_ucomineq_ss _mm_setl_ps
_mm_max_ss _mm_cvtss_si32 _mm_set_psl
_mm_add_ps _mm_cvt_ss2si _mm_set_ps
_mm_sub_ps _mm_cvtss_sio4x* _mm_setr_ps
_mm_mul_ps _mm_cvtps_pi32 _mm_store_ss
_mm_div_ps _mm_cvt_ps2pi _mm_store_ps
_mm_sqrt_ps _mm_ cvttss_si32 _mm_storel_ps
_mm_rcp_ps _mm_cvtt_ss2si _mm_store_psl
_mm_rsqrt_ps _mm_cvitss_sio4x* _mm_storeu_ps
_mm_min_ps _mm_cvitps_pi32 _mm_storer_ps
_mm_max_ps _mm_cvit_ps2pi _mm_move_sS
_mm_and_ps _mm_cvtsi32_ss _mm_extract_pil6
_mm_andnot_ps _mm_cvt_si2ss _m_pextrw
_mm_or_ps _mm_cvtsib4x_ss* _mm_insert_pil6
_mm_Xor_ps _mm_cvtpi32_ps _m_pinsrw
_mm_cmpeq_sS _mm_cvt_pi2ps _mm_max_pilG
_mm_cmplt_ss _mm_movelh_ps _M_pmaxsw
_mm_cmple_ss _mm_setzero_ps _mm_max_pu8
_mm_cmpgt_ss _mm_cvtpil6_ps _m_pmaxub
_mm_cmpge_ss _mm_cvtpul6_ps _mm_min_pil6
_mm_cmpneq_ss _mm_cvtpi8_ps _m_pminsw

424

_mm_cmpnlt_ss
_mm_cmpnle_ss
_mm_cmpngt_ss
_mm_cmpnge_ss
_mm_cmpord_ss
_mm_cmpunord_ss
_mm_cmpeq_ps
_mm_cmplt_ps
_mm_cmple_ps
_mm_cmpgt_ps
_mm_cmpge_ps
_mm_cmpneq_ps
_mm_cmpnlt_ps
_mm_cmpnle_ps
_mm_cmpngt_ps
_mm_cmpnge_ps
_mm_cmpord_ps
_mm_cmpunord_ps
_mm_comieq_ss
_mm_comilt_ss
_mm_comile_ss

_mm_comigt_ss

_mm_cvtpu8_ps
_mm_cvtpi32x2_ps
_mm_movehl_ps
_mm_cvtps_pil6
_mm_cvtps_pi8
_mm_shuffle_ps
_mm_unpackhi_ps
_mm_unpacklo_ps
_mm_loadh_pi
_mm_storeh_pi
_mm_loadl_pi
_mm_storel_pi
_mm_movemask_ps
_mm_getcsr
_MM_GET_EXCEPTION_STATE
_MM_GET_EXCEPTION_MASK
_MM_GET_ROUNDING_MODE

_MM_GET_FLUSH_ZERO_MODE

_mm_setcsr

_MM_SET_EXCEPTION_STATE
_MM_SET_EXCEPTION_MASK
_MM_SET_ROUNDING_MODE

_MM_SET_FLUSH_ZERO_MODE

Chapter 24. C/C++ MMX/SSE Inline Intrinsics

_mm_min_pu8
_m_pminub
_mm_movemask_pi8
_m_pmovmskb
_mm_mulhi_pul6
_m_pmulhuw
_mm_shuffle_pi16
_m_pshufw
_mm_maskmove_si64
_m_maskmovq
_mm_avg_pu8
_m_pavgb
_mm_avg_pulb
_M_pavgw
_mm_sad_pu8
_m_psadbw
_mm_prefetch
_mm_stream_pi
_mm_stream_ps
_mm_sfence
_mm_pause
_MM_TRANSPOSE4_PS

Table 24.3 lists the SSE2 intrinsics that PGI supports and that are available in emmintrin.h.
Table 24.3. SSE? Intrinsics (emmintrin.h)

_mm_load_sd
_mm_load1_pd
_mm_load_pd1
_mm_load_pd
_mm_loadu_pd
_mm_loadr_pd
_mm_set_sd
_mm_setl_pd
_mm_set_pdl

_mm_set_pd

_mm_cmpge_sd _mm_cvtps_pd _mm_srl_epi32
_mm_cmpneq_sd _mm_cvtsd_si32 _mm_srl_epi64
_mm_cmpnlt_sd _mm_cvisd_sio4x* _mm_slli_epil6
_mm_cmpnle_sd _mm_cvitsd_si32 _mm_slli_epi32
_mm_cmpngt_sd _mm_cvitsd_si64x* _mm_slli_epi64

_mm_cmpnge_sd
_mm_cmpord_sd
_mm_cmpunord_sd
_mm_comieq_sd

_mm_comilt_sd

_mm_cvtsd_ss
_mm_cvtsi32_sd
_mm_cvisib4x_sd*
_mm_cvtss_sd

_mm_unpackhi_pd

_mm_srai_epil6
_mm_srai_epi32
_mm_srli_epil6
_mm_srli_epi32

_mm_srli_epi64

425

SSE Intrinsics

426

_mm_setr_pd
_mm_setzero_pd
_mm_store_sd
_mm_store_pd
_mm_storel_pd
_mm_store_pd1
_mm_storeu_pd
_mm_storer_pd
_mm_move_sd
_mm_add_pd
_mm_add_sd
_mm_sub_pd
_mm_sub_sd
_mm_mul_pd
_mm_mul_sd
_mm_div_pd
_mm_div_sd
_mm_sqrt_pd
_mm_sqrt_sd
_mm_min_pd
_mm_min_sd
_mm_max_pd
_mm_max_sd
_mm_and_pd
_mm_andnot_pd
_mm_or_pd
_mm_xor_pd
_mm_cmpeq_pd
_mm_cmplt_pd
_mm_cmple_pd
_mm_cmpgt_pd
_mm_cmpge_pd
_mm_cmpneq_pd
_mm_cmpnlt_pd

_mm_cmpnle_pd

_mm_comile_sd
_mm_comigt_sd
_mm_comige_sd
_mm_comineq_sd
_mm_ucomieq_sd
_mm_ucomilt_sd
_mm_ucomile_sd
_mm_ucomigt_sd
_mm_ucomige_sd
_mm_ucomineq_sd
_mm_load_si128
_mm_Jloadu_sil28
_mm_loadl_epi64
_mm_store_sil28
_mm_storeu_sil28
_mm_storel_epi64
_mm_movepio4_pi64
_mm_move_epi64
_mm_setzero_sil28
_mm_set_epi64
_mm_set_epi32
_mm_set_epio4x*
_mm_set_epil6
_mm_set_epi8
_mm_setl_epi64
_mm_setl_epi32
_mm_setl_epi64x*
_mm_setl_epil6
_mm_setl_epi8
_mm_setr_epi64
_mm_setr_epi32
_mm_setr_epil6
_mm_setr_epi8
_mm_cvtepi32_pd
_mm_cvtepi32_ps

_mm_unpacklo_pd
_mm_loadh_pd
_mm_storeh_pd
_mm_loadl_pd
_mm_storel_pd
_mm_movemask_pd
_mm_packs_epil6
_mm_packs_epi32
_mm_packus_epil6
_mm_unpackhi_epi8
_mm_unpackhi_epil6
_mm_unpackhi_epi32
_mm_unpackhi_epi64
_mm_unpacklo_epi8
_mm_unpacklo_epil6
_mm_unpacklo_epi32
_mm_unpacklo_epi64
_mm_add_epi8
_mm_add_epil6
_mm_add_epi32
_mm_add_epi64
_mm_adds_epi8
_mm_adds_epil6
_mm_adds_epu8
_mm_adds_epul6
_mm_sub_epi8
_mm_sub_epil6
_mm_sub_epi32
_mm_sub_epi64
_mm_subs_epi8
_mm_subs_epil6
_mm_subs_epu8
_mm_subs_epul6
_mm_madd_epil6

_mm_mulhi_epil6

_mm_and_sil28
_mm_andnot_si128
_mm_or_sil28
_mm_xor_sil28
_mm_cmpeq_epi8
_mm_cmpeq_epil6
_mm_cmpeq_epi32
_mm_cmplt_epi8
_mm_cmplt_epil6
_mm_cmplt_epi32
_mm_cmpgt_epi8
_mm_cmpgt_epilo
_mm_srl_epil6
_mm_cmpgt_epi32
_mm_max_epil6
_mm_max_epud
_mm_min_epil6
_mm_min_epu8
_mm_movemask_epi8
_mm_mulhi_epul6
_mm_maskmoveu_si128
_mm_avg_epu8
_mm_avg_epul6
_mm_sad_epu8
_mm_stream_si32
_mm_stream_sil28
_mm_stream_pd
_mm_movpi64_epio4
_mm_Ifence
_mm_mfence
_mm_cvtsi32_sil28
_mm_cvisio4x_si128*
_mm_cvtsil28_si32
_mm_cvtsil28_sio4x*

_mm_srli_si128

Chapter 24. C/C++ MMX/SSE Inline Intrinsics

_mm_cmpngt_pd _mm_cvtpd_epi32 _mm_mullo_epil6 _mm_slli_si128
_mm_cmpnge_pd _mm_cvtpd_pi32 _mm_mul_su32 _mm_shuffle_pd
_mm_cmpord_pd _mm_cvtpd_ps _mm_mul_epu32 _mm_shufflehi_epil6
_mm_cmpunord_pd _mm_cvttpd_epi32 _mm_sll_epil6 _mm_shufflelo_epil6
_mm_cmpeq_sd _mm_cvttpd_pi32 _mm_sll_epi32 _mm_shuffle_epi32
_mm_cmplt_sd _mm_cvtpi32_pd _mm_sll_epi64 _mm_extract_epil6
_mm_cmple_sd _mm_cvtps_epi32 _mm_sra_epil6 _mm_insert_epil6
_mm_cmpgt_sd _mm_cvitps_epi32 _mm_sra_epi32

Table 24.4 lists the SSE3 intrinsics that PGI supports and that are available in pmmintrin.h.

Table 24.4. SSE3 Intrinsics (pmmintrin.h)

_mm_addsub_ps _mm_moveldup_ps _mm_loaddup_pd _mm_mwait
_mm_hadd_ps _mm_addsub_pd _mm_movedup_pd

_mm_hsub_ps _mm_hadd_pd _mm_lddqu_si128
_mm_movehdup_ps _mm_hsub_pd _mm_monitor

Table 24.5 lists the SSSE3 intrinsics that PGI supports and that are available in tmmintrin.h.

Table 24.5. SSSE3 Intrinsics (tmmintrin.h)

_mm_hadd_epil6 _mm_hsubs_pil6 _mm_sign_pil6
_mm_hadd_epi32 _mm_maddubs_epil6 _mm_sign_pi32
_mm_hadds_epil6 _mm_maddubs_pil6 _mm_alignr_epi8
_mm_hadd_pil6 _mm_mulhrs_epil6 _mm_alignr_pi8
_mm_hadd_pi32 _mm_mulhrs_pil6 _mm_abs_epi8
_mm_hadds_pil6 _mm_shuffle_epi8 _mm_abs_epil6
_mm_hsub_epil6 _mm_shuffle_pi8 _mm_abs_epi32
_mm_hsub_epi32 _mm_sign_epi8 _mm_abs_pi8
_mm_hsubs_epil6 _mm_sign_epil6 _mm_abs_pil6
_mm_hsub_pil6 _mm_sign_epi32 _mm_abs_pi32
_mm_hsub_pi32 _mm_sign_pi8

Table 24.6 lists the SSE4a intrinsics that PGI supports and that are available in ammintrin.h.

427

ABM Intrinsics

Table 24.6. SSE4a Intrinsics (ammintrin.h)

_mm_stream_sd _mm_extract_si64 _mm_insert_si64
_mm_stream_ss _mm_extracti_sio4 _mm_inserti_si64
ABM Intrinsics

PGI supports a set of ABM Intrinsics which allow the use of the ABM instructions directly from C/C++ code,
without writing the assembly instructions. The following table lists the ABM intrinsics that PGI supports.

Table 24.7. ABM Intrinsics (intrin.h)

__lzent16 __lzent64 __popent __rdtscp
__lzent __popentl6 __popcnto4

428

Chapter 25. Messages

This chapter describes the various messages that the compiler produces. These messages include the sign-on
message and diagnostic messages for remarks, warnings, and errors. The compiler always displays any error
messages, along with the erroneous source line, on the screen. If you specify the —Mlist option, the compiler
places any error messages in the listing file. You can also use the —v option to display more information about
the compiler, assembler, and linker invocations and about the host system. For more information on the —

M i st and —v options, refer to Chapter 2, “Using Command Line Options”.

Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text. Syntactic information
includes information such as syntax errors. Semantic information includes information such as unreachable
code.

You can specify that the compiler displays error messages at a certain level with the -Minform option.

The compiler messages refer to a severity level, a message number, and the line number where the error
occurs.

The compiler can also display internal error messages on standard error. If your compilation produces
any internal errors, contact The Portland Group’s technical reporting service by sending e-mail to
trs@pgroup.com.

If you use the listing file option —M i st , the compiler places diagnostic messages after the source lines in the
listing file, in the following format:

PGFTN- et ype- enum nessage (filenane: |ine)

Where:

etype

is a character signifying the severity level

enum
is the error number

429

Phase Invocation Messages

message
is the error message

filename
is the source filename

line
is the line number where the compiler detected an error.

Phase Invocation Messages

You can display compiler, assembler, and linker phase invocations by using the —v command line option. For
further information about this option, see Chapter 2, “Using Command Line Options”.

Fortran Compiler Error Messages

This section presents the error messages generated by the PGF77, PGF95, and PGFORTRAN compilers. The
compilers display error messages in the program listing and on standard output. They can also display internal
error messages on standard error.

Message Format

Each message is numbered. Each message also lists the line and column number where the error occurs. A
dollar sign ($) in a message represents information that is specific to each occurrence of the message.

Message List

Error message severities:

|

informative
W

warning
S

severe error
F

fatal error
\%

variable

V000 Internal conpiler error. $ $

This message indicates an error in the compiler, rather than a user error — although it may be possible for a
user error to cause an internal error. The severity may vary; if it is informative or warning, correct object code
was probably generated, but it is not safe to rely on this. Regardless of the severity or cause, internal errors
should be reported to trs@pgroup.com.

FOO1 Source input file name not specified
On the command line, source file name should be specified either before all the switches, or after them.

430

Chapter 25. Messages

FO02 Unable to open source input file: $
Source file name is misspelled, file is not in current working directory, or file is read protected.

FOO3 Unable to open listing file
Probably, user does not have write permission for the current working directory.

FOO4 $ $
Generic message for file errors.

FOO5 Unable to open tenporary file
Compiler uses directory "/ust/tmp" or "/tmp" in which to create temporary files. If neither of these directories
is available on the node on which the compiler is being used, this error will occur.

S006 Input file enpty
Source input file does not contain any Fortran statements other than comments or compiler directives.

FOO7 Subprogramtoo large to conpile at this optimzation |evel
$

Internal compiler data structure overflow, working storage exhausted, or some other non-recoverable problem
related to the size of the subprogram. If this error occurs at opt 2, reducing the opt level to 1 may work
around the problem. Moving the subprogram being compiled to its own source file may eliminate the problem.
If this error occurs while compiling a subprogram of fewer than 2000 statements it should be reported to the
compiler maintenance group as a possible compiler problem.

FOO8 Error limt exceeded
The compiler gives up because too many severe errors were issued; the error limit can be reset on the
command line.

FO09 Unable to open assenbly file
Probably, user does not have write permission for the current working directory.

FO10 File wite error occurred $
Probably, file system is full.

S011 Unrecogni zed comand line switch: $
Refer to PDS reference document for list of allowed compiler switches.

S012 Val ue required for conmand |ine switch: $
Certain switches require an immediately following value, such as "-opt 2".

S013 Unrecogni zed val ue specified for conmand line switch: $

S014 Anbi guous command |ine switch: $
Too short an abbreviation was used for one of the switches.

W15 Hexadeci mal or octal constant truncated to fit data type

1016 ldentifier, $, truncated to 31 chars
An identifier may be at most 31 characters in length; characters after the 31st are ignored.

S017 Unable to open include file: $
File is missing, read protected, or maximum include depth (10) exceeded. Remember that the file name
should be enclosed in quotes.

431

Fortran Compiler Error Messages

432

S018 Illegal |abel $ %
Used for label "field’ errors or illegal values. E.g., in fixed source form, the label field (first five characters) of
the indicated line contains a non-numeric character.

S019 Illegally placed continuation Iine
A continuation line does not follow an initial line, or more than 99 continuation lines were specified.

S020 Unrecogni zed conpil er directive
Refer to user’s manual for list of allowed compiler directives.

S021 Label field of continuation line is not blank
The first five characters of a continuation line must be blank.

S022 Unexpected end of file - mssing END statenent

S023 Syntax error - unbal anced $
Unbalanced parentheses or brackets.

W24 CHARACTER or Hollerith constant truncated to fit data type
A character or hollerith constant was converted to a data type that was not large enough to contain all of the
characters in the constant. This type conversion occurs when the constant is used in an arithmetic expression
or is assigned to a non-character variable. The character or hollerith constant is truncated on the right, that is,
if 4 characters are needed then the first 4 are used and the remaining characters are discarded.

W25 |11l egal character ($) - ignored

The current line contains a character, possibly non-printing, which is not a legal Fortran character (characters
inside of character or Hollerith constants cannot cause this error). As a general rule, all non-printing
characters are treated as white space characters (blanks and tabs); no error message is generated when

this occurs. If for some reason, a non-printing character is not treated as a white space character, its hex
representation is printed in the form dd where each d is a hex digit.

S026 Unnat ched quot e

S027 Illegal integer constant: $
Integer constant is too large for 32 bit word.

S028 Il legal real or double precision constant: $

S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0..9 and letters A..F or
a..f; any other character in a hexadecimal constant is illegal. An octal constant consists of digits 0..7; any other
digit or character in an octal constant is illegal. A binary constant consists of digits 0 or 1; any other digit or
character in a binary constant is illegal.

S030 Explicit shape nust be specified for $

S031 Il legal data type length specifier for $
The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that is 2 member of the set of
allowed values for this particular data type.

W32 Data type length specifier not allowed for $
The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g. DIMENSION
A(10)*4).

Chapter 25. Messages

S033 |1l egal use of constant $
A constant was used in an illegal context, such as on the left side of an assignment statement or as the target of
a data initialization statement.

S034 Syntax error at or near $

1035 Predefined intrinsic $ loses intrinsic property
An intrinsic name was used in a manner inconsistent with the language definition for that intrinsic. The
compiler, based on the context, will treat the name as a variable or an external function.

S036 Illegal inplicit character range
First character must alphabetically precede second.

S037 Contradictory data type specified for $
The indicated identifier appears in more than one type specification statement and different data types are
specified for it.

S038 Synbol, $, has not been explicitly declared
The indicated identifier must be declared in a type statement; this is required when the IMPLICIT NONE
statement occurs in the subprogram.

W39 Synbol, $, appears illegally in a SAVE statenent $
An identifier appearing in a SAVE statement must be a local variable or array.

S040 111 egal comon variable $
Indicated identifier is a dummy variable, is already in a common block, or has previously been defined to be
something other than a variable or array.

W41 111 egal use of dumry argunent $

This error can occur in several situations. It can occur if dummy arguments were specified on a PROGRAM
statement. It can also occur if 2 dummy argument name occurs in a DATA; COMMON, SAVE, or EQUIVALENCE
statement. A program statement must have an empty argument list.

S042 $ is a duplicate dumy argunent

S043 Illegal attenpt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of the same
symbol. This can happen for a number of reasons. The message attempts to indicate the situation that
occurred.

intrinsic - An attempt was made to redefine an intrinsic function. A symbol that represents an intrinsic function
may be redefined if that symbol has not been previously verified to be an intrinsic function. For example, the
intrinsic si n can be defined to be an integer array. If a symbol is verified to be an intrinsic function via the
INTRINSIC statement or via an intrinsic function reference then it must be referred to as an intrinsic function
for the remainder of the program unit.

symbol - An attempt was made to redefine a symbol that was previously defined. An example of this is to
declare a symbol to be a PARAMETER which was previously declared to be a subprogram argument.

S044 Multiple declaration for synbol $
A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a symbol as
an ENTRY when that symbol was previously declared as an ENTRY.

433

Fortran Compiler Error Messages

S045 Data type of entry point $ disagrees with function $
The current function has entry points with data types inconsistent with the data type of the current function. For
example, the function returns type character and an entry point returns type complex.

S046 Data type length specifier in wong position

The CHARACTER data type specifier has a different position for the length specifier from the other data types.
Suppose, we want to declare arrays ARRAYA and ARRAYB to have 8 elements each having an element length
of 4 bytes. The difference is that ARRAYA is character and ARRAYB is integer. The declarations would be
CHARACTER ARRAYA(8)*4 and INTEGER ARRAYB*4(8).

S047 More than seven di nensions specified for array

S048 Illegal use of "*' in declaration of array $
An asterisk may be used only as the upper bound of the last dimension.

S049 Illegal use of "*' in non-subroutine subprogram
The alternate return specifier *’ is legal only in the subroutine statement. Programs, functions, and block data
are not allowed to have alternate return specifiers.

S050 Assuned size array, $, is not a dummy argunent

S051 Unrecogni zed built-in % function
The allowable built-in functions are %VAL, %REF, %LOC, and %FILL. One was encountered that did not match
one of these allowed forms.

S052 |1l egal argument to %WAL or %.0C

S053 9%REF or %W/AL not legal in this context
The built-in functions %REF and %VAL can only be used as actual parameters in procedure calls.

W54 Inplicit character $ used in a previous inplicit statenent
An implicit character has been given an implied data type more than once. The implied data type for the
implicit character is changed anyway.

W55 Miultiple inplicit none statenents
The IMPLICIT NONE statement can occur only once in a subprogram.

W56 Inplicit type declaration
The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will produce a
warning message for IMPLICIT statements.

S057 111 egal equival ence of dunmy variable, $
Dummy arguments may not appear in EQUIVALENCE statements.

S058 Equi val enced variables $ and $ not in sanme conmon bl ock
A common block variable must not be equivalenced with a variable in another common block.

S059 Conflicting equival ence between $ and $
The indicated equivalence implies a storage layout inconsistent with other equivalences.

S060 |11 egal equival ence of structure variable, $
STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

S061 Equi val ence of $ and $ extends common bl ock backwards

434

Chapter 25. Messages

W62 Equi val ence forces $ to be unaligned
EQUIVALENCE statements have defined an address for the variable which has an alignment not optimal for
variables of its data type. This can occur when INTEGER and CHARACTER data are equivalenced, for instance.

1063 Gap in conmon block $ before $

S064 111 egal use of $ in DATA statenent inplied DO | oop
The indicated variable is referenced where it is not an active implied DO index variable.

S065 Repeat factor |ess than zero
S066 Too few data constants in initialization statenent
S067 Too many data constants in initialization statenent

S068 Nuneric initializer for CHARACTER $ out of range 0 through
255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or hexadecimal
constant if that constant is in the range 0 through 255.

S069 Illegal inplied DO expression
The only operations allowed within an implied DO expression are integer +, -, *, and /.

S070 Incorrect sequence of statenents $
The statement order is incorrect. For instance, an IMPLICIT NONE statement must precede a specification
statement which in turn must precede an executable statement.

S071 Executable statenents not allowed in bl ock data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be a variable, array reference, or vector reference. The
assignment operation may be by way of an assignment statement, a data statement, or the index variable of
an implied DO-loop. The compiler has determined that the identifier used as the destination is not a storage
location. The error message attempts to indicate the type of entity used.

entry point - An assignment to an entry point that was not a function procedure was attempted.

external procedure - An assignment to an external procedure or a Fortran intrinsic name was attempted. If
the identifier is the name of an entry point that is not a function, an external procedure.

S073 Intrinsic or predeclared, $, cannot be passed as an
ar gument

S074 111 egal nunmber or type of argunents to $ $
The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function, requiring a
certain number of arguments of a fixed data type.

S075 Subscript, substring, or argunent illegal in this context
for $

This can happen if you try to doubly index an array such as ra(2) (3). This also applies to substring and
function references.

S076 Subscripts specified for non-array variable $

435

Fortran Compiler Error Messages

436

S077 Subscripts onmtted fromarray $

S078 Wong nunber of subscripts specified for $

S079 Keyword form of argunent illegal in this context for 3
S080 Subscript for array $ is out of bounds

S081 Il1legal selector $ $

S082 |11 egal substring expression for variable $
Substring expressions must be of type integer and if constant must be greater than zero.

S083 Vector expression used where scal ar expression required
A vector expression was used in an illegal context. For example, i scal ar = i arr ay, where a scalar is
assigned the value of an array. Also, character and record references are not vectorizable.

S084 111 egal use of synbol $ $
This message is used for many different errors.

S085 I ncorrect nunber of argunents to statenent function $
S086 Dunmy argument to statenment function nust be a variable
S087 Non-const ant expressi on where constant expression required

S088 Recursive subroutine or function call of $
A function may not call itself.

S089 Il1egal use of synbol, $, with character length = *

Symbols of type CHARACTER* (*) must be dummy variables and must not be used as statement function dummy
parameters and statement function names. Also, a dummy variable of type CHARACTER* (*) cannot be used as
a function.

S090 Hol lerith constant nore than 4 characters
In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wong data type

S092 Illegal use of variable I ength character expression
A character expression used as an actual argument, or in certain contexts within I/0 statements, must not
consist of a concatenation involving a passed length character variable.

W93 Type conversion of expression perforned
An expression of some data type appears in a context which requires an expression of some other data type.
The compiler generates code to convert the expression into the required type.

S094 Variable $ is of wong data type $
The indicated variable is used in a context which requires a variable of some other data type.

S095 Expression has wong data type
An expression of some data type appears in a context which requires an expression of some other data type.

S096 |11 egal conplex conparison
The relations .IT., .GT., .GE., and .LE. are not allowed for complex values.

Chapter 25. Messages

S097 Statenent | abel $ has been defined nore than once
More than one statement with the indicated statement number occurs in the subprogram.

S098 Divide by zero

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted 1/0 statements,
and as parameters to subprograms. They may not appear, for example, in expressions. Also, records with
differing structure types may not be assigned to one another.

S100 Expression cannot be pronoted to a vector
An expression was used that required a scalar quantity to be promoted to a vector illegally. For example, the
assignment of a character constant string to a character array. Records, too, cannot be promoted to vectors.

S101 Vector operation not allowed on $
Record and character typed entities may only be referenced as scalar quantities.

S102 Arithnetic |IF expressi on has wong data type
The parenthetical expression of an arithmetic if statement must be an integer, real, or double precision scalar
expression.

S103 Type conversion of subscript expression for $
The data type of a subscript expression must be integer. If it is not, it is converted.

S104 11l egal control structure $

This message is issued for a number of errors involving IF-THEN statements and DO loops. If the line number
specified is the last line (END statement) of the subprogram, the error is probably an unterminated DO loop or
IF-THEN statement.

S105 Unmat ched ELSEIF, ELSE or ENDI F st at enent
An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN statement.

S106 DO i ndex vari able nust be a scal ar vari abl e
The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a function name,
a structure name, etc.

S107 111 egal assigned goto variable $

S108 Il1egal variable, $, in NAVELIST group $
A NAMELIST group can only consist of arrays and scalars which are not dummy arguments and pointer-based
variables.

109 Overflow in $ constant $, constant truncated at |eft
A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits produces an overflow.
The constant is truncated at left (e.g. '1234567890abcdef1’x will be '234567890abcdef1’x).

| 110 <reserved nessage number >
I 111 Underfl ow of real or double precision constant
| 112 Overfl ow of real or double precision constant

S113 Label $ is referenced but never defined

437

Fortran Compiler Error Messages

438

S114 Cannot initialize $
WL15 Assignnment to DO variable $ in | oop
S116 |11 egal use of pointer-based variable $ $

S117 Statenment not allowed within a $ definition
The statement may not appear in a STRUCTURE or derived type definition.

S118 Statenent not allowed in DO |F, or WHERE bl ock

| 119 Redundant specification for $
Data type of indicated symbol specified more than once.

| 120 Label $ is defined but never referenced

| 121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the operation. For
example, a logical expression can consist of only logical elements of type integer or logical. Real data would be
invalid.

| 122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER statement has been
truncated to fit the declared size of the corresponding identifier.

WL23 Hol lerith | ength specification too big, reduced

The length specifier field of a hollerith constant specified more characters than were present in the character
field of the hollerith constant. The length specifier was reduced to agree with the number of characters
present.

S124 Rel ational expression nixes character with nuneric data
A relational expression is used to compare two arithmetic expressions or two character expressions. A
character expression cannot be compared to an arithmetic expression.

| 125 Dunmy procedure $ not decl ared EXTERNAL

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram name in a
CALL statement, or is called as a function, and is therefore assumed to be a dummy procedure. This message
can result from a failure to declare a dummy array.

126 Name $ is not an intrinsic function
| 127 Optimization level for $ changed to opt 1 $

WL28 | nteger constant truncated to fit data type: $
An integer constant will be truncated when assigned to data types smaller than 32-bits, such as a BYTE.

I 129 Fl oating point overflow Check constants and const ant
expr essi ons

| 130 Fl oating point underflow Check constants and const ant
expr essi ons

| 131 I nteger overflow Check floating point expressions cast to
i nt eger

Chapter 25. Messages

132 Floating pt. invalid oprnd. Check constants and const ant
expr essi ons

| 133 Divide by 0.0. Check constants and constant expressions
S134 Illegal attribute $ $

WL35 M ssing STRUCTURE nane field
A STRUCTURE name field is required on the outermost structure.

WL36 Fi el d-naneli st not all owed
The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

WL37 Field-nanelist is required in nested structures

WL38 Multiply defined STRUCTURE nenber nane $
A member name was used more than once within a structure.

WL39 Structure $ in RECORD statenment not defined
A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.

S140 Variable $ is not a RECORD

S141 RECORD required on left of $
S142 $ is not a menber of this RECORD
S143 $ requires initializer

WL44 NEED ERROR MESSACE $ $
This is used as a temporary message for compiler development.

WL45 %1 LL only valid within STRUCTURE bl ock
The %FILL special name was used outside of a STRUCTURE multiline statement. It is only valid when used
within 2 STRUCTURE multiline statement even though it is ignored.

S146 Expression nust be character type
S147 Character expression not allowed in this context

S148 Reference to $ required
An aggregate reference to a record was expected during statement compilation but another data type was
found instead.

S149 Record where arithnetic value required
An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or nenber $ not allowed

in this context

A structure, record, or member reference was found in a context which is not supported. For example, the use
of structures, records, or members within a data statement is disallowed.

S151 Enpty TYPE, STRUCTURE, UNI ON, or NMAP
TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION MAP - ENDMAP declaration contains no
members.

439

Fortran Compiler Error Messages

S152 Al di nmension specifiers nust be
S153 Array objects are not conformable $

S154 DI STRI BUTE target, $, nust be a processor
S155 $ $

S156 Nunber of colons and triplets nmust be equal in ALIGN $
with $

S157 |11l egal subscript use of ALIGN dunmy $ - $

S158 Alternate return not specified in SUBROUTI NE or ENTRY
An alternate return can only be used if alternate return specifiers appeared in the SUBROUTINE or ENTRY
statements.

S159 Alternate return illegal in FUNCTI ON subprogram
An alternate return cannot be used in a FUNCTION.

S160 ENDSTRUCTURE, ENDUNI ON, or ENDMAP does not match top
S161 Vector subscript must be rank-one array

WL62 Not equal test of | oop control variable $ replaced with <
or > test.

S163 <reserved nmessage nunber>

S164 Overl apping data initializations of $
An attempt was made to data initialize a variable or array element already initialized.

S165 $ appeared nore than once as a subprogram
A subprogram name appeared more than once in the source file. The message is applicable only when an
assembly file is the output of the compiler.

S166 $ cannot be a common bl ock and a subprogram
A name appeared as a common block name and a subprogram name. The message is applicable only when an
assembly file is the output of the compiler.

| 167 I nconsistent size of comon bl ock $
A common block occurs in more than one subprogram of a source file and its size is not identical. The
maximum size is chosen. The message is applicable only when an assembly file is the output of the compiler.

S168 | nconpati ble size of conmon bl ock $

A common block occurs in more than one subprogram of a source file and is initialized in one subprogram.
Its initialized size was found to be less than its size in the other subprogram(s). The message is applicable only
when an assembly file is the output of the compiler.

WL69 Multiple data initializations of comobn bl ock $
A common block is initialized in more than one subprogram of a source file. Only the first set of initializations
apply. The message is applicable only when an assembly file is the output of the compiler.

WL70 P@ Fortran extension: $ $
Use of a nonstandard feature. A description of the feature is provided.

440

Chapter 25. Messages

WL71 PG Fortran extension: nonstandard statenment type $

W72 PA@ Fortran extension: nuneric initialization of CHARACTER
$

A CHARACTER*1 variable or array element was initialized with a numeric value.

WL73 PG Fortran extension: nonstandard use of data type |length
specifier

WL74 PG Fortran extension: type declaration contains data
initialization

WL75 PG Fortran extension: |IMPLICIT range contains nonal pha
characters

WL76 PG Fortran extension: nonstandard operator $

WL77 PG Fortran extension: nonstandard use of keyword argunent
$

WL78 <reserved nessage number >

W79 PGA Fortran extension: use of structure field reference $
W80 PA Fortran extension: nonstandard form of constant

W81 PA Fortran extension: & alternate return

WL82 PA Fortran extension: m xed non-character and character
el ements in COWON $

W83 PA Fortran extension: m xed non-character and character
EQUI VALENCE (%, $)

WL84 M xed type el enents (nuneric and/or character types) in
COVWON $

WL85 M xed nuneric and/or character type EQU VALENCE ($, $)
S186 Argunent mssing for formal argunment $

S187 Too nany argunents specified for $

S188 Argunent nunmber $ to $: type m smatch

S189 Argunent nunber $ to $: association of scal ar actual
argunment to array dunmy argunent

S190 Argunent nunmber $ to $: non-confornmabl e arrays

S191 Argunent nunber $ to $ cannot be an assuned-size array
S192 Argunent nunber $ to $ nust be a | abel

WL93 Argunment nunber $ to $ does not match | NTENT (OUT)
WL94 | NTENT(I N) argunent cannot be defined - $

441

Fortran Compiler Error Messages

442

S195 Statenent may not appear in an | NTERFACE bl ock $
S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS

st at enent

An illegal qualifier was found or a value was specified for a qualifier which does not expect a value. In either
case, the qualifier for which the error occurred is indicated in the error message.

S198 $ $ in ALLOCATE/ DEALLCCATE

WL99 Unal i gned nenory reference
A memory reference occurred whose address does not meet its data alignment requirement.

S200 M ssing UNI T/ FI LE specifier
S201 Illegal 1/O specifier - $
S202 Repeated |/ O specifier - $
S203 FORVAT statenment has no | abel

S204 $ %
Miscellaneous I/0 error.

S205 Il legal specification of scale factor
The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 I nteger constant expected in edit descriptor
S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent wi dth not used in the Ew. dEe or Gw. dEe edit
descriptors

S211 Internal 1/Onot allowed in this I/ O statenent

S212 Illegal NAMELIST 1/0O
Namelist I/0 cannot be performed with internal, unformatted, formatted, and list-directed 1/0. Also, I/0 lists
must not be present.

S213 $ is not a NAMELI ST group nane
S214 Input itemis not a variable reference

S215 Assuned sized array nane cannot be used as an I/Oitemor
specifier

An assumed size array was used as an item to be read or written or as an 1/0 specifier (i.e., FMT = array-
name). In these contexts the size of the array must be known.

S216 STRUCTURE/ UNI ON cannot be used as an /O item

Chapter 25. Messages

S217 ENCODE/ DECCODE buffer nust be a variable, array, or array
el ement

S218 Statenent |labeled $ $
S219 <reserved nmessage nunber>
S220 Redefining predefined macro $

S221 #elif after #el se
A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this context.

S222 #el se after #el se
A preprocessor #else directive was found after a #else directive; only #endif is allowed in this context.

S223 #if-directives too deeply nested
Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

S224 Actual paraneters too long for $
The total length of the parameters in 2 macro call to the indicated macro exceeded the maximum allowed
(currently 2048).

W25 Argunent msmatch for $
The number of arguments supplied in the call to the indicated macro did not agree with the number of
parameters in the macro’s definition.

F226 Can't find include file $
The indicated include file could not be opened.

S227 Definition too long for $
The length of the macro definition of the indicated macro exceeded the maximum allowed (currently 2048).

S228 ECF in conment
The end of a file was encountered while processing a comment.

S229 EOF in macro call to $
The end of a file was encountered while processing a call to the indicated macro.

S230 ECF in string
The end of a file was encountered while processing a quoted string.

S231 Formal paraneters too long for $
The total length of the parameters in the definition of the indicated macro exceeded the maximum allowed
(currently 2048).

S232 ldentifier too |ong
The length of an identifier exceeded the maximum allowed (currently 2048).

S233 <reserved nmessage nunber >

W34 |l legal directive nane
The sequence of characters following a # sign was not an identifier.

W35 ||l egal nmacro name
A macro name was not an identifier.

443

Fortran Compiler Error Messages

S236 |11 egal nunber $
The indicated number contained a syntax error.

F237 Line too |ong
The input source line length exceeded the maximum allowed (currently 2048).

W238 M ssing #endif
End of file was encountered before a required #endif directive was found.

W39 M ssing argunent list for $
A call of the indicated macro had no argument list.

S240 Nunber too |ong
The length of 2 number exceeded the maximum allowed (currently 2048).

W241 Redefinition of synbol $
The indicated macro name was redefined.

| 242 Redundant definition for synbol $
A definition for the indicated macro name was found that was the same as a previous definition.

F243 String too |ong
The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $ not identifier
A formal parameter that was not an identifier was used in a2 macro definition.

W245 Syntax error in #define, mssing blank after nane or
argli st
There was no space or tab between a macro name or argument list and the macro’s definition.

S246 Syntax error in #if
A syntax error was found while parsing the expression following a #if or #elif directive.

S247 Syntax error in #include
The #include directive was not correctly formed.

W248 Syntax error in #line
A #line directive was not correctly formed.

W249 Syntax error in #nodul e
A #module directive was not correctly formed.

W50 Syntax error in #undef
A #undef directive was not correctly formed.

W51 Token after #ifdef nust be identifier
The #ifdef directive was not followed by an identifier.

W52 Token after #ifndef nust be identifier
The #ifndef directive was not followed by an identifier.

S253 Too many actual paraneters to $
The number of actual arguments to the indicated macro exceeded the maximum allowed (currently 31).

444

Chapter 25. Messages

S254 Too many formal paraneters to $
The number of formal arguments to the indicated macro exceeded the maximum allowed (currently 31).

F255 Too nuch pushback
The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

W56 Undefined directive $
The identifier following a # was not a directive name.

S257 ECOF in #include directive
End of file was encountered while processing a #include directive.

S258 Unmat ched #el i f
A #elif directive was encountered with no preceding #if or #elif directive.

S259 Unmat ched #el se
A #else directive was encountered with no preceding #if or #elif directive.

S260 Unmat ched #endi f
A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

S261 Include files nested too deeply
The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterm nated macro definition for $
A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterm nated string or character constant
A newline with no preceding backslash was found in a quoted string.

| 264 Possi bl e nested comment
The characters /* were found within 2 comment.

S265 <reserved message nunber>
S266 <reserved message nunber>
S267 <reserved message nunber>
W268 Cannot inline subprogram common bl ock m snatch

W69 Cannot inline subprogram argunent type m smatch
This message may be Severe if the compilation has gone too far to undo the inlining process.

F270 M ssing -exlib option
W71 Can’t inline $ - wong nunber of argunents
| 272 Argunent of inlined function not used

S273 Inline library not specified on command line (-inlib
swit ch)

F274 Unable to access file $/ TCC
S275 Unable to open file $ while extracting or inlining

445

Fortran Compiler Error Messages

446

F276 Assignnent to constant actual paraneter in inlined
subprogram

1277 Inlining of function $ may result in recursion
S278 <reserved nmessage nunber>

W279 Possible use of $ before definitionin $

The optimizer has detected the possibility that a variable is used before it has been assigned a value. The names
of the variable and the function in which the use occurred are listed. The line number, if specified, is the line
number of the basic block containing the use of the variable.

W280 Syntax error in directive $
Messages 280-300 reserved for directives. handling

W81 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $
S301 $ nmust be TEMPLATE or PROCESSOR

S302 Unnmat ched END$ st at enent

S303 END statenment for $ required in an interface bl ock

S304 EXI T/ CYCLE statenent nust appear in a DO DOM LE | oop$$
S305 $ cannot be naned, $

S306 $ nanes nore than one construct

S307 $ nust have the construct nane $

S308 DO may not termnate at an EXIT, CYCLE, RETURN, STOP,
GOrTO, or arithmetic IF

S309 Incorrect name, $, specified in END statenent

S310 $ $
Generic message for MODULE errors.

WB11 Non-replicated mapping for $ array, $, ignored
WB12 Array $ should be decl ared SEQUENCE
WB13 Subprogram $ call ed w thin | NDEPENDENT | oop not PURE

E314 | PA: actual argunment $ is a l|abel, but dummy argunent $ is
not an asteri sk

The call passes a label to the subprogram; the corresponding dummy argument in the subprogram should be
an asterisk to declare this as the alternate return.

315 I PA: routine $, $ constant dummy argunents
This many dummy arguments are being replaced by constants due to interprocedural analysis.

1316 I PA: routine $, $ INTENT(IN) dunmy argunents
This many dummy arguments are being marked as INTENT (IN) due to interprocedural analysis.

Chapter 25. Messages

1317 IPA: routine $, $ array alignnments propagated
This many array alignments were propagated by interprocedural analysis.

1318 IPA: routine $, $ distribution formats propagated
This many array distribution formats were propagated by interprocedural analysis.

1319 IPA: routine $, $ distribution targets propagated
This many array distribution targets were propagated by interprocedural analysis.

320 I PA: routine $, $ comon bl ocks optim zed
This many mapped common blocks were optimized by interprocedural analysis.

321 IPA: routine $, $ common bl ocks not optini zed
This many mapped common blocks were not optimized by interprocedural analysis, either because they were
declared differently in different routines, or they did not appear in the main program.

| 322 | PA: anal yzing main program $
Interprocedural analysis is building the call graph and propagating information with the named main program.

323 I PA: collecting information for $
Interprocedural analysis is saving information for the current subprogram for subsequent analysis and
propagation.

WB24 | PA file $ appears to be out of date
WB25 IPA file $ is for wong subprogram $
WB26 Unable to open file $ to propagate |PA information to $

327 I PA: $ subprograns anal yzed

328 I PA: $ dummy argunents replaced by constants

1329 I PA: $ INTENT(IN) dummy argunents shoul d be | NTENT(I NOUT)
330 I PA: $ dumry argunments changed to | NTENT(I N)

1331 IPA: $ inherited array alignnents repl aced

1332 IPA: $ transcriptive distribution formats repl aced

1333 IPA: $ transcriptive distribution targets repl aced

1334 I PA: $ descriptivel/prescriptive array alignments verified
335 I PA: $ descriptivel/prescriptive distribution formats
verified

1336 | PA: $ descriptivel/prescriptive distribution targets
verified

1337 I PA: $ conmon bl ocks optin zed
1338 I PA: $ comon bl ocks not optim zed
S339 Bad | PA contents file: $

447

Fortran Compiler Error Messages

448

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing | PA information
S342 Unable to open file $ while analyzing | PA information
S343 Unable to open | PA contents file $

S344 Unable to create file $ while collecting | PA information

F345 Internal error in $: table overfl ow
Analysis failed due to a table overflowing its maximum size.

WB46 Subprogram $ appears tw ce
The subprogram appears twice in the same source file; IPA will ignore the first appearance.

F347 M ssing -ipalib option
Interprocedural analysis, enabled with the —i pacol | ect, —i paanal yze, or —i papr opagat e options,
requires the - i pal i b option to specify the library directory.

WB48 Common /$/ $ has different distribution target
The array was declared in a common block with a different distribution target in another subprogram.

VW849 Common /$/ $ has different distribution format
The array was declared in 2 common block with a different distribution format in another subprogram.

WB50 Common /$/ $ has different alignnent
The array was declared in 2 common block with a different alignment in another subprogram.

WB51 Wong nunber of argunments passed to $
The subroutine or function statement for the given subprogram has a different number of dummy arguments
than appear in the call.

WB52 Wong nunber of argunents passed to $ when bound to $
The subroutine or function statement for the given subprogram has a different number of dummy arguments
than appear in the call to the EXTERNAL name given.

WB53 Subprogram $ i s m ssing
A call to a subroutine or function with this name appears, but it could not be found or analyzed.

| 354 Subprogram $ is not called
No calls to the given subroutine or function appear anywhere in the program.

WB55 M ssing argunent in call to $
A nonoptional argument is missing in a call to the given subprogram.

| 356 Array section analysis inconplete
Interprocedural analysis for array section arguments is incomplete; some information may not be available for
optimization.

| 357 Expression anal ysis inconplete
Interprocedural analysis for expression arguments is incomplete; some information may not be available for
optimization.

Chapter 25. Messages

WB58 Dummy argunent $ is EXTERNAL, but actual is not subprogram
The call statement passes a scalar or array to a dummy argument that is declared EXTERNAL.

WB59 SUBROUTI NE $ passed to FUNCTI ON dummy argunent $
The call statement passes a subroutine name to a2 dummy argument that is used as a function.

VWB60 FUNCTION $ passed to FUNCTI ON dummy argunent $ with
different result type

The call statement passes a function argument to a function dummy argument, but the dummy has a different
result type.

WB61 FUNCTI ON $ passed to SUBROUTI NE dummy argunment $
The call statement passes a function name to a dummy argument that is used as a subroutine.

WB62 Argunent $ has a different type than dummy argunent $
The type of the actual argument is different than the type of the corresponding dummy argument.

WB63 Dummy argunment $ is a PO NTER but actual argunment $ is not
The dummy argument is a pointer, so the actual argument must be also.

WB64 Array or array expression passed to scal ar dunmy argunent
$

The actual argument is an array, but the dummy argument is a scalar variable.

WB65 Scal ar or scal ar expression passed to array dummy ar gunent
$

The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

An internal error occurred during interprocedural analysis; please report this to the compiler maintenance
group. If user errors were reported when collecting IPA information or during IPA analysis, correcting them
may avoid this error.

367 Array $ bounds cannot be matched to formal argunent

Passing a nonsequential array to a sequential dummy argument may require copying the array to sequential
storage. The most common cause is passing an ALLOCATABLE array or array expression to 2 dummy argument
that is declared with explicit bounds. Declaring the dummy argument as assumed shape, with bounds (:,:,:),
will remove this warning.

WB68 Array-val ued expression passed to scal ar dunmy argunment $
The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

WB69 Dummy argunent $ has different rank than actual argunent
The actual argument is an array or array-valued expression with a different rank than the dummy argument.

VWB70 Dummy argunent $ has different shape than actual argunent
The actual argument is an array or array-valued expression with a different shape than the dummy argument;
this may require copying the actual argument into sequential storage.

VWB71 Durmmy argunent $ is INTENT(IN) but may be nodified
The dummy argument was declared as INTENT(IN), but analysis has found that the argument may be modified;
the INTENT (IN) declaration should be changed.

449

Fortran Compiler Error Messages

450

WB72 Cannot propagate alignnment from$ to $
The most common cause is when passing an array with an inherited alignment to a dummy argument with non-
inherited alignment.

| 373 Cannot propagate distribution format from$ to $
The most common cause is when passing an array with a transcriptive distribution format to a dummy
argument with prescriptive or descriptive distribution format.

| 374 Cannot propagate distribution target from$ to $
The most common cause is when passing an array with a transcriptive distribution target to a dummy argument
with prescriptive or descriptive distribution target.

375 Distribution format m smatch between $ and $
Usually this arises when the actual and dummy arguments are distributed in different dimensions.

1376 Alignment stride nmismatch between $ and $
This may arise when the actual argument has a different stride in its alignment to its template than does the
dummy argument.

| 377 Alignment offset nmismatch between $ and $
This may arise when the actual argument has a different offset in its alignment to its template than does the
dummy argument.

| 378 Distribution target m snmatch between $ and $
This may arise when the actual and dummy arguments have different distribution target sizes.

379 Alignnent of $ is too conplex
The alignment specification of the array is too complex for interprocedural analysis to verify or propagate; the
program will work correctly, but without the benefit of IPA.

1380 Distribution format of $ is too conpl ex
The distribution format specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

381 Distribution target of $ is too conpl ex
The distribution target specification of the array is too complex for interprocedural analysis to verify or
propagate; the program will work correctly, but without the benefit of IPA.

1382 I PA: $ subprograns anal yzed
Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole program.

383 I PA: $ dummy argunents replaced by constants
Interprocedural analysis has found this many dummy arguments in the whole program that can be replaced by
constants.

1384 I PA: $ dummy argunments changed to | NTENT(I N)
Interprocedural analysis has found this many dummy arguments in the whole program that are not modified
and can be declared as INTENT(IN).

VB85 | PA: $ INTENT(IN) dummy argunents shoul d be | NTENT(I NOUT)
Interprocedural analysis has found this many dummy arguments in the whole program that were declared as
INTENT(IN) but should be INTENT (INOUT).

Chapter 25. Messages

1386 I PA: $ array alignnments propagated
Interprocedural analysis has found this many array dummy arguments that could have the inherited array
alignment replaced by a descriptive alignment.

1387 IPA: $ array alignnments verified
Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many array dummy
arguments match the alignments of the actual argument.

1388 IPA: $ array distribution formats propagat ed
Interprocedural analysis has found this many array dummy arguments that could have the transcriptive
distribution format replaced by a descriptive format.

1389 IPA: $ array distribution formats verified
Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of this many array
dummy arguments match the formats of the actual argument.

1390 IPA: $ array distribution targets propagated
Interprocedural analysis has found this many array dummy arguments that could have the transcriptive
distribution target replaced by a descriptive target.

1391 IPA: $ array distribution targets verified
Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this many array
dummy arguments match the targets of the actual argument.

1392 I PA: $ conmon bl ocks optimn zed
Interprocedural analysis has found this many common blocks that could be optimized.

1393 I PA: $ comon bl ocks not optim zed

Interprocedural analysis has found this many common blocks that could not be optimized, either because
the common block was not declared in the main program, or because it was declared differently in different
subprograms.

1394 I PA: $ replaced by constant val ue
The dummy argument was replaced by a constant as per interprocedural analysis.

1395 I PA: $ changed to I NTENT(IN)
The dummy argument was changed to INTENT(IN) as per interprocedural analysis.

1396 | PA: array alignnment propagated to $
The template alignment for the dummy argument was changed as per interprocedural analysis.

397 I PA: distribution fornat propagated to $
The distribution format for the dummy argument was changed as per interprocedural analysis.

1398 I PA: distribution target propagated to $
The distribution target for the dummy argument was changed as per interprocedural analysis.

1399 | PA: comon bl ock $ not optimn zed
The given common block was not optimized by interprocedural analysis either because it was not declared in
the main program, or because it was declared differently in different subprograms.

451

Fortran Compiler Error Messages

452

E400 | PA: dummy argument $ is an asterisk, but actual argunent
is not a | abel
The subprogram expects an alternate return label for this argument.

E401 Actual argunment $ is a subprogram but Dummy argunent $ is
not decl ared EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar variable or
array.

E402 Actual argunment $ is illegal

E403 Actual argunent $ and formal argunent $ have different
ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are declared with
the HPF SEQUENCE attribute.

E404 Sequential array section of $ in argunent $ is not

conti guous

When passing an array section to a formal argument that has the HPF SEQUENCE attribute, the actual argument
must be a whole array with the HPF SEQUENCE attribute, or an array section of such an array where the section
is a contiguous sequence of elements.

E405 Array expression argunent $ nay not be passed to

sequential dumry argunent $

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a whole array with
the HPF SEQUENCE attribute or a contiguous array section of such an array, unless an INTERFACE block is
used.

E406 Actual argunent $ and formal argunent $ have different
character |engths

The actual and formal array character arguments have different character lengths, which is allowed only if both
character arrays are declared with the HPF SEQUENCE attribute, unless an INTERFACE block is used.

W07 Argunment $ has a different character |ength than dumy
argunent $

The character length of the actual argument is different than the length specified for the corresponding dummy
argument.

WI08 Specified main program$ is not a PROGRAM
The main program specified on the command line is a subroutine, function, or block data subprogram.

WI09 More than one nmain programin | PA directory: $ and $
There is more than one main program analyzed in the IPA directory shown. The first one found is used.

WI10 No nmin program found; |PA analysis fails.
The main program must appear in the IPA directory for analysis to proceed.

W11 Formal argunment $ is DYNAM C but actual argunent is an
expr essi on

W12 Formal argunment $ is DYNAM C but actual argunent $ is not

Chapter 25. Messages

| 413 Formal argunment $ has two reaching distributions and may
be a candi date for cloning

1414 $ and $ may be aliased and one of themis assigned
Interprocedural analysis has determined that two formal arguments may be aliased because the same variable
is passed in both argument positions; or one formal argument and a global or COMMON variable may be
aliased, because the global or COMMON variable is passed as an actual argument. If either alias is assigned in
the subroutine, unexpected results may occur; this message alerts the user that this situation is disallowed by
the Fortran standard.

FA415 I PA fails: incorrect IPA file

Interprocedural analysis saves its information in special IPA files in the specified IPA directory. One of these
files has been renamed or corrupted. This can arise when there are two files with the same prefix, such as
a. hpf and a. f 90.

E416 Argunment $ has the SEQUENCE attribute, but the dunmy
paraneter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must have the
SEQUENGE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTI NE but should be a
FUNCTI ON

E418 Interface block for $ is a FUNCTI ON but should be a
SUBROUTI NE

E419 Interface block for $ is a FUNCTI ON has wong result type
W20 Earlier $ directive overrides $ directive

W21 $ directive can only appear in a function or subroutine
E422 Nonconstant DI M= argunent is not supported

E423 Constant DI M= argument is out of range

E424 Equi val ence using substring or vector triplets is not
al | owed

E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wong nunber of argunents
E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wong $

WI31 Programis too large for Interprocedural Analysis to
conpl ete

W32 Il 1l egal type conversion $

453

Fortran Compiler Error Messages

E433 Subprogram $ cal |l ed within | NDEPENDENT | oop not LOCAL
W34 | ncorrect hone array specification ignored

S435 Array declared with zero size
An array was declared with a zero or negative dimension bound, as 'real a(-1)’, or an upper bound less than
the lower bound, as 'real a(4:2)’.

W36 | ndependent | oop not parallelized$

W37 Type $ will be napped to $
Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for COMPLEX(16) or
COMPLEX*32.

E438 $ $ not supported on this platform
This construct is not supported by the compiler for this target.

S439 An internal subprogram cannot be passed as argunent - $

S440 Defined assignnment statenents nmay not appear in WHERE
statenment or WHERE bl ock

S441 $ may not appear in a FORALL bl ock

E442 Adj ustabl e-1ength character type not supported on this
host - $ $

S443 EQUI VALENCE of derived types not supported on this host -
$

S444 Derived type in EQU VALENCE st atenent nust have SEQUENCE
attribute - $

A variable or array with derived type appears in an EQUIVALENCE statement. The derived type must have the
SEQUENCE attribute, but does not.

E445 Array bounds nust be integer $ $
The expressions in the array bounds must be integer.

S446 Argunent nunmber $ to $: rank m smatch
The number of dimensions in the array or array expression does not match the number of dimensions in the
dummy argument.

S447 Argunent nunber $ to $ nust be a subroutine or function
name

S448 Argunent nunber $ to $ nust be a subroutine name
S449 Argunent nunber $ to $ nust be a function nane
S450 Argunent nunmber $ to $: kind m smatch

S451 Arrays of derived type with a distributed nenber are not
support ed

S452 Assuned | ength character, $, is not a dummy argunent

454

Chapter 25. Messages

S453 Derived type variable with pointer nenber not allowed in
l1O- $ %

S454 Subprogram $ is not a nodul e procedure
Only names of module procedures declared in this module or accessed through USE association can appear in
a4 MODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a nemnber
array section - $

A reference like A(:) %B(:), where 'A’ is a derived type array and 'B’ is a member array, is not allowed; a
section subscript may appear after A’ or after 'B’, but not both.

S456 Uni npl enented for data type for MATMUL

S457 |11l egal expression in initialization

S458 Argunent to NULL() mnust be a pointer

S459 Target of NULL() assignnment nmust be a pointer

S460 ELEMENTAL procedures cannot be RECURSI VE

S461 Dunmy arguenents of ELEMENATAL procedures nust be scal ar

S462 Argunents and return val ues of ELEMENATAL procedures
cannot have the PO NTER attribute

S463 Argunents of ELEMENATAL procedures cannot be procedures
S464 An ELEMENTAL procedure cannot be passed as argunent - $

Fortran Run-time Error Messages

This section presents the error messages generated by the run-time system. The run-time system displays error
messages on standard output.

Message Format

The messages are numbered but have no severity indicators because they all terminate program execution.

Message List

Here are the run-time error messages:

201 illegal value for specifier
An improper specifier value has been passed to an I/0 run-time routine. Example: within an OPEN statement,
form="unknown'.

202 conflicting specifiers
Conflicting specifiers have been passed to an I/0 run-time routine. Example: within an OPEN statement,
form="unformatted', blank="null'.

455

Fortran Run-time Error Messages

456

203 record I ength nust be specified
A recl specifier required for an I/O run-time routine has not been passed. Example: within an OPEN statement,
access='direct' has been passed, but the record length has not been specified (recl=specifier).

204 illegal use of a readonly file
Self explanatory. Check file and directory modes for readonly status.

205 ' SCRATCH and ' SAVE' /' KEEP' both specified
In an OPEN statement, a file disposition conflict has occurred. Example: within an OPEN statement,
status="scratch' and dispose="keep' have been passed.

206 attenpt to open a named file as ' SCRATCH
207 file is already connected to another unit
208 ' NEW specified for file that already exists
209 'OLD specified for file that does not exi st

210 dynam c nenory allocation failed
Memory allocation operations occur only in conjunction with namelist /0. The most probable cause of fixed
buffer overflow is exceeding the maximum number of simultaneously open file units.

211 invalid file nane

212 invalid unit numnber
A file unit number less than or equal to zero has been specified.

215 formatted/unformatted file conflict
Formatted/unformatted file operation conflict.

217 attenpt to read past end of file

219 attenpt to read/ wite past end of record
For direct access, the record to be read/written exceeds the specified record length.

220 wite after last internal record

221 syntax error in format string
A run-time encoded format contains a lexical or syntax error.

222 unbal anced parentheses in format string
223 illegal P or T edit descriptor - value mssing

224 illegal Hollerith or character string in format
An unknown token type has been found in a format encoded at run-time.

225 |l exical error -- unknown token type

226 unrecogni zed edit descriptor letter in format
An unexpected Fortran edit descriptor (FED) was found in a run-time format item.

228 end of file reached wi thout finding group

229 end of file reached while processing group

Chapter 25. Messages

230 scal e factor out of range -128 to 127
Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion
233 too many constants to initialize group item

234 invalid edit descriptor
An invalid edit descriptor has been found in a format statement.

235 edit descriptor does not match itemtype
Data types specified by I/0 list item and corresponding edit descriptor conflict.

236 formatted record | onger than 2000 characters
237 quad precision type unsupported

238 tab val ue out of range
A tab value of less than one has been specified.

239 entity name is not nenber of group

240 no initial left parenthesis in format string
241 unexpected end of format string

242 illegal operation on direct access file

243 format parent heses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification
249 error in format - illegal E, F, G or D descriptor
250 error in format - nunber mssing after ".', '-",
251 illegal character in format string

252 operation attenpted after end of file

253 attenpt to read non-existent record (direct access)

254 illegal repeat count in fornat

457

458

Index

Symbols
IDEC$ directive, 354
%eax, 361
%ebp, 361
%ecx, 361
%edi, 361
%edx, 361
%esi, 361
%esp, 361
%rax, 368
%tbp, 367, 378
%rdi, 368
%rsp, 367, 378
%st(0), 361
%st(1), 361
04-Bit Programming, 171
compiler options, 173
data types, 171
-Bdynamic, 129
-dryrun
as diagnostic tool, 28
-help
Options
-help, 28
-Mconcur, 37, 49
altcode option, 37
cncall option, 37
dist option, 37
suboptions, 37
-Mextract
suboptions, 53
-Minfo, 28
-Minline, 51

suboptions, 51
-Miomutex, 62
-Mipa, 41
-Mneginfo, 28
-mp, 49, 62
-Mpfi, 46
-Mpfo, 46
-Mreentrant, 62
-Msafe_lastval, 40
-Mvect, 32, 34
-tp, 41

using, 23

A
Accelerator
using, 85, 321
Agreements
License, 12
ALIAS
ATTRIBUTES list, 355
ALIAS directive, 354
Aliases
operand, 191
altcode directive, 348
altcode pragma, 348
AMD
Core Math Library, 11
ar command, 124
Arguments
floating point, 363, 369, 379
integral, 363, 369, 379
Inter-language calling, 159
passing, 159, 373, 379
passing by reference, 382
passing by value, 159, 382
passing on stack, 370
pointer, 363, 369, 379
structures, 363, 369, 379
unassigned, 369
union, 363, 369, 379
Arrays, 374
04-bit indexing, 172
64-bit options, 173
indices, 160
large, 173
Assembly

string modifier characters, 192

Assembly Language
called routine, 365
called routine in C, 371
assoc directive, 349
assoc pragma, 349
ATOMIC directive, 296
atomic pragma, 296
ATTRIBUTES Directive, 355
ALIAS, 355
G, 355
DLLEXPORT, 355
DLLIMPORT, 355

NOMIXED_STR_LEN_ARG, 355

REFERENCE, 356
STDCALL, 356
VALUE, 356
Auto-parallelization, 37
failure, 38
sub-options, 37

B
BARRIER directive, 297
Barriers
explicit, 294
implicit, 294
bash shell
initialization, 12
instance, 12
Bdynamic, 126
BLAS library, 133
Blocks
basic, defined, 26
blank common, 375, 385
common, 375, 384
common, Fortran, 158
Fortran named common, 158
Bounds checking, 286
bounds directive, 349
Bstatic, 127
Build
command-line options, 203
DLLS, 128

DLLS containing circular mutual

imports, 129

459

DLLS containing mutual imports,

131

DLLs example, 127
program using Make, 42
program with IPA, 43
program without IPA, 41, 42

C
C
ATTRIBUTES directive, 355
C/C++
builtin functions, 119
math header file, 119
C$PRAGMA C, 118
C++
classes, scopes, 343
name mangling, 343
parallelization pragmas, 61
pragmas, 61

Standard Template Library, 133

Cache tiling
failed cache tiling, 291
with -Mvect, 284
Calling conventions
CREE, 169
overview, 155
STDCALL, 168
UNIX, 169
Win32, 168
Calls
inter-language, 373, 383
CCP_HOME, 80
CCP_SDK, 80
Clauses
directives, 61
driectives, 64
pragmas, 64
Clobber list, 184
cncall directive, 349
cncall pragma, 349
Code
generation, 152
mutiple processors, 152
optimization, 25
parallelization, 25
position indendent, 173

460

processor-specific, 152
speed, 38
x86 generation, 152

Collection

IPA phase, 43

Command line

case sensitivity, 3
conflicting options rules, 20
include files, 5

option order, 3

suboptions, 20

Command-line Options, 3, 19, 203,
225

211
#4211

-+p, 260

-A, 252

-, 252

-alias, 252

-B, 253

-b, 253

-b3, 254

-Bdynamic, 211

-Bstatic, 212
-Bstatic_pgi, 212
Build-related, 203
-byteswapio, 213

-C, 213

-c, 214

--cfront_2.1, 255
--cfront_3.0, 255
--compress_names, 255
--create_pch, 256

-d, 214

D, 214

Debug-related, 206, 207, 207
--diag_error, 256
--diag_remark, 256
--diag_suppress, 256
--diag_warning, 257
--display_error_number, 257
-dryrun, 215, 215
-dynamiclib, 216

-E, 216

-e, 257

216

-fast, 217

-fastsse, 217

-flagcheck, 217

-flags, 217

fpic, 218

-fPIC, 218

-G, 218

-g, 218

-g77libs, 219

Generic PGI options, 211

--gnu_extensions, 258, 258, 259

-gopt, 219

help, 20

-help, 219

1,221

-i2, -i4 and -i8, 222
--keeplnk, 223
-Kflag, 222

-L, 224

1, 224

-m, 225

-M, 258

makefiles, 20
-Mallocatable, 271
-Manno, 286
-Masmkeyword, 269
-Mbackslash, 271
-Mbounds, 286
-Mbyteswapio, 286
-Mcache_align, 276
-Mchkfpstk, 287
-Mchkptr, 287
-Mchkstk, 287
-mcmodel=medium, 172
-mcmodel=small, 172
-Mconcur, 276
-Mcpp, 287

-Mcray, 277
-Mcuda, 271

-MD, 259

-Mdaz, 264
-Mdclchk, 272
-Mdefaultunit, 272
-Mdepchk, 277
-Mdlines, 272
-Mdll, 288

-Mdollar, 269, 273
-Mdse, 277
-Mdwarfl, 264, 264
-Mdwarf2, 264
-Mdwarf3, 264
-Mextend, 273
-Mextract, 274
-Mfcon, 269, 269
-Mfixed, 273
-Mflushz, 264
-Mfpapprox, 277
-Mfpmisalign, 278
-Mfprelaxed, 278
-Mfree, 273
-Mfunc32, 264
-Mgccbugs, 288, 288
-Mi4, 278

-Minfo, 288
-Minform, 289, 290
-Minline, 275
-Minstrument, 265
-Miomutex, 273
-Mipa, 278
-Mkeepasm, 290

-Mlarge_arrays, 172, 265
-Mlargeaddressaware, 265

-Mifs, 270

-Mlist, 290
-Mloop32, 281
-Mlre, 281

Mm128, 269
-Mmakedll, 290
-Mmakeimplib, 290
-Mnames, 290
-Mneginfo, 291
-Mnoasmkeyword, 269
-Mnobackslash, 271
-Mnobounds, 286
-Mnodaz, 264
-Mnodclchk, 272
-Mnodefaultunit, 272
-Mnodepchk, 277
-Mnodlines, 273
-Mnodse, 277
-Mnoflushz, 264
-Mnofpapprox, 277

-Mnofpmisalign, 278
-Mnofprelaxed, 278, 278
-Mnoframe, 281
-Mnoi4, 281
-Mnoiomutex, 273
-Mnolarge_arrays, 265, 266
-Mnolist, 292
-Mnoloop32, 281
-Mnolre, 281
-Mnom128, 269
-Mnomain, 266
-Mnoonetrip, 273
-Mnoopenmp, 292
-Mnopgdllmain, 292
-Mnoprefetch, 282
-Mnor8§, 282
-Mnor8intrinsics, 283
-Mnorecursive, 267
-Mnoreentrant, 267
-Mnoref_externals, 267
-Mnorpath, 292
-Mnosave, 273
-Mnoscalarsse, 283

-Mnosecond_underscore, 267

-Mnosgimp, 292
-Mnosignextend, 267
-Mnosingle, 269
-Mnosmart, 283
-Mnostartup, 270
-Mnostddef, 271
-Mnostdlib, 271, 271
-Mnostride0, 268
-Mnounixlogical, 273
-Mnounroll, 284
-Mnoupcase, 274
-Mnovect, 285
-Mnovintr, 285, 286
-module, 232
-Monetrip, 273

-mp, 233

-Mpfi, 281

-Mpfo, 282, 282
-Mpre, 266
-Mprefetch, 282
-Mpreprocess, 292
-Mprof, 266

Index

-Mr8, 282
-Mr8intrinsics, 282
-Mrecursive, 267
-Mreentrant, 267
-Mref_externals, 267
-Msafe_lastval, 268
-Msafeptr, 283

-Msave, 273
-Mscalarsse, 283
-Mschar, 269
-Msecond_underscore, 267
-Msignextend, 267
-Msingle, 269

-Msmart, 283
-Msmartalloc, 270
-Mstandard, 273
-Mstride0, 268
-Muchar, 270

-Munix, 268
-Munixlogical, 273
-Munroll, 283
-Mupcase, 273
-Mvarargs, 268

-Mvect, 284
-Mwritable_strings, 292
-Mtraceback, 248, 258, 266, 274,
282
--alternative_tokens, 253, 254,
257,261, 262
nontemporal move, 266
-noswitcherror, 233

-0, 234

-0, 235
optk_allow_dollar_in_id_chars,
259

-P, 260

-pc, 236

--pch, 260

--pch_dir, 260
--pedantic, 237

-pg, 238

-pgt77libs, 238, 238
-pgfo0libs, 238
--preinclude, 261

-R, 239

461

-1, 239

-r4 and -r8, 239

-rc, 240

redundancy elimination, 266

-rpath, 240

rules of use, 3

-s, 241

-S, 241

-shared, 241

-show, 241

-silent, 242

-soname, 242

-stack, 242

suboptions, 20

syntax, 2, 19

-t, 262

-time, 243, 245

-tp, 245

-u, 249

-U, 249

--use_pch, 261

-V, 249

-v, 250

-W, 250

-w, 251

X, 263

-Xs, 251

-Xt, 251

--zc_eh, 263, 269
Commands

ar, 124

dir, 54

Is, 54

ranlib, 125
Compiler

64-bit options, 173
Compiler options

04-bit, 173

effects on memory, array sizes,

174
Compilers

drivers, 1

inform, 347

Invoke at command level, 2

PGC++, xxvii

PGF77, xxvii

462

PGF95, xxvii

pgfortran, xxvii

PGHPE, xxvii
concur directive, 349
concur pragma, 349
Constants

logical, 372
Constraints

*190, 190

&, 190

%, 190

+, 190

=,190

character, 185

inline assembly, 185

machine, 187, 187

machine, example, 188

modifiers, 189

multiple alternative, 189, 189

operand, 185

operand aliases, 191

simple, 185
Control word, 361
Conventions

runtime on x86 processor, 359
Count

instructions, 47
cpp, 5
CPU_CLOCK, 47
Create

inline library, 53

shared object files, 120
CREF

calling conventions, 169
CRITICAL directive, 297
Critical pragma, 297
CUDA

Fortran Programming Guide and

Reference, 11
Customization

site-specific, 15

D

Data types, 7, 195, 373
64-bit, 171
Aggregate, 7

attributes, 202
bit-fields, 202
C/C++, 172
C/C++ aggregate alignment, 201
(/C++ scalar data types, 198
C/C++ struct, 200
C/C++ void, 202
C++ class and object layout, 200
C++ classes, 200
compatibility of Fortran and C/C+
+, 157
DEC structures, 197
DEC Unions, 197
F90 derived types, 198
Fortran, 172
Fortran representation, 195
Fortran scalars, 195
inter-language calling, 157
internal padding, 201
Linux large static, 172
Real ranges, 196
scalars, 7, 196
tail padding, 201
Debug
command-line options, 206
JIT, 147
Debugger
launch, 11
launch for x64, 11
DECORATE directive, 356
Default
Win32 calling conventions, 168
depchk directive, 349
depchk pragma, 349
Deployment, 149, 149
Linux 64-bit, 150
Development
common tasks, 16
Diagnostics
-dryrun, 28
dir command, 54
Directives, 109
ALIAS, 354
altcode, 348
assoc, 349
ATOMIC, 296

ATTRIBUTES, 355
BARRIER, 297

bounds, 349

C/C++,3

clauses, 61, 64

cncall, 349

concur, 349
CRITICAL...END CRITICAL, 297
DECORATE, 356

default scopes, 110
depchk, 349
DISTRIBUTE, 356, 357
eqvchk, 349

Fortran, 3, 3

Fortran parallization overview, 61
global scopes, 109
IDEC$, 117, 354

invarif, 350

ivdep, 350

loop scopes, 109, 110
Istval, 350

-Miomutex option, 62
-mp option, 62
-Mreentrant option, 62
name, 61

noaltcode, 348

n0assoc, 349

nobounds, 349

nocncall, 349

noconcur, 349
nodepchk, 349
noeqvchk, 349

noinvarif, 350

nolstval, 350
nosafe_lastval, 351
nounroll, 353

novector, 354

novintr, 354
optimization, 109, 347
Parallelization, 57, 293, 347
parallelization, 61
prefetch, 115, 350, 350, 354
prefetch example, 116
prefetch sentinel, 116
prefetch syntax, 116, 354
recognition, 62

routine scopes, 109
safe_lastval, 351
scope, 112
scope indicator, 109, 347
Summary table, 62, 110, 117
syntax, 61
tp, 353
Unified Binary, 153
unroll, 353
valid scopes, 109
vector, 354
vintr, 354
Distribute
files, 149
DISTRIBUTE directive, 356, 357
DLLEXPORT
ATTRIBUTES directive, 355
DLLIMPORT
ATTRIBUTES directive, 355
DLLs
Bdynamic, 126
Bstatic, 127
Build steps in C, 128
Build steps in Fortran, 127
example, 128
generate .def file, 127
import library, 127
library without dll, 127
Mmakedll, 127
name, 127
DOACROSS directive, 299
Documentation
AMD Core Math Library, 11
CUDA Fortran Programming
Guide and Reference, 11
Fortran Language Reference, 11
PGI Tools Guide, 11
PGI User’s Guide, 11
PVF Installation Guide, 11
PVF Release Notes, 11
DO directive, 300
Dynamic
large dynamically allocated data,
172
libraries on Mac OS X, 123
link libraries on Windows, 126

Index

EFLAGS, 361
Environment variables, 135

directives, 72, 76
FLEXLM_BATCH, 137, 139
FORTRAN_OPT, 137, 139, 139,
139, 139

GMON_OUT_PREFIX, 137, 139
HP-MPL, MPL_ROOT, 79
LD_LIBRARY PATH, 121, 137,
139

LM_LICENSE_FILE, 137, 140
MANPATH, 137, 140

MCPUS, 38, 137

MP_BIND, 137, 140
MP_BLIST, 137, 141

MP_SPIN, 137, 141

MP_WARN, 137, 141
MPI_ROOT, 79

MPI, CCP_HOME, 80

MPI, CCP_SDK, 80

MPI, MPIDIR, 78, 78, 79
MPIDIR, 78, 78, 79

MPSTKZ, 137, 140

NCPUS, 141

NCPUS_MAX, 137, 142
NO_STOP_MESSAGE, 137, 142
OMP_DYNAMIC, 138, 138
OMP_NESTED, 138
OMP_NUM_THREADS, 138
OMP_STACK_SIZE, 10, 13, 14,
73, 138, 319

OMP_THREAD _LIMIT, 319
OMP_WAIT_POLICY, 73, 138, 320
OpenMP, 72, 76, 318

OpenMP, OMP_DYNAMIC, 318
OpenMP,
OMP_MAX_ACTIVE_LEVELS, 318
OpenMP, OMP_NESTED, 318
OpenMP, OMP_NUM_THREADS,
318

OpenMP, OMP_SCHEDULE, 319
OpenMP, OMP_STACK_SIZE, 319
OpenMP, OMP_THREAD_LIMIT,
319

463

OpenMP, OMP_WAIT_POLICY,
320
OpenMP Summary Table, 72
PATH, 138, 142
PGI, 138, 138, 142
PGI_CONTINUE, 138, 143
PGI_OBJSUFFIX, 138, 143
PGI_STACK_USAGE, 143, 287
PGI_TERM, 138, 143
PGI_TERM_DEBUG, 138, 138,
144, 145
PGI-related, 137
PWD, 145
setting, 135
setting on Linux, 135
setting on Mac OS X, 136
setting on Windows, 10, 10, 136
STATIC_RANDOM_SEED, 138,
145
TMP, 138, 146
TMPDIR, 138, 146
using, 146
eqvchk directive, 349
eqvchk pragma, 349
Errors
inlining, 55
Examples
Build DLL in C, 128
Build DLL in Fortran, 127
Build DLLs, 129
Hello program, 2
Makefile, 54
MPI Hello World, 78
OpenMP Task in C, 295
OpenMP Task in Fortran, 295
prefecth pragma, 117
prefetch directives, 116
SYSTEM_CLOCK use, 48
Vector operation using SSE, 35
Executable
make available, 121
Execution
timing, 47
Extended asm macros, 193

464

F
F90
aggregate data types, 198
fcon pragma, 350
FFTs library, 133
Filename
conventions, 4
extensions, 4
input files conventions, 4
output file conventions, 6
Files
.def for DLL, 127
case, 290
distributing, 149
licensing redistributable files, 151
names, 4
redistributable, 150
Flags
floating point, 368, 378
MXCSR, 378
register, 361
RFLAGS, 368
Floating point
control word, 368, 378
flags, 361
return values, 361
scratch registers, 361
stack, 236
FLUSH directive, 302
Focus
Accelerator tab
Accelerator, 104
Fortran
Calling C++ Example, 164
data type representation, 195
directive summary, 110, 117
Language Reference, 11
Linux86-64 types, 372
named common blocks, 158
program calling C++ function,
164
types in Win64, 381
Fortran Parallelization Directives
DOACROSS, 299, 299
ORDERED, 303
fPIC, 171, 173

Frames
pointer, 361, 364, 367, 370, 378,
380

Function Inlining
and makefiles, 54
examples, 55
restrictions, 55

Functions, 156
calling sequence, 359, 376
Calling sequence, 366
inlining, 54
inlining for optimization, 26
overloaded names, 343
returning scalars, 362, 368, 378
return structures, 362, 368, 378
return unions, 362, 368, 378
return values, 362, 368, 373, 378
stack contents, 362

G

Generate
License, 12

H
header files
Mac OS X, 14
SUA/SFU, 13
Hello example, 2
Help
on command-line options, 20
parameters, 21
using, 20
HP-MPI
using, 79

I
i8, 171, 173
Information
compiler, 347
Inline assembly
C/C++, 179
clobber list, 184, 184
extended, 180
extended, input operands, 183
extended, output operands, 181
Inlining

automatic, 51
C/C++ restrictions, 56
controls, 274
create inline library, 53
error detection, 55
implement library, 54
invoke function inliner, 51
libraries, 51, 52
Makefiles, 54
-Mextract option, 53
-Minline option, 51
restrictions, 51, 55
specify calling levels, 52
specify library file, 52
suboptions, 51
update libraries, 54
Input
operands, 183
Install
Linux portability package, 150
PVF Installation Guide, 11
Instruction
counting, 47
integral
return values, 361
Inter-language Calling, 155, 383
%VAL, 159
arguments and return values, 159
array indices, 160
C$PRAGMA C, 118
C++ calling C, 163
C++ calling Fortran, 165
C calling C++, 163
character case conventions, 157
character return values, 159
compatible data types, 157
Fortran calling C, 161
Fortran calling C++, 164
mechanisms, 156
underscores, 118, 157
Inter-language calling, 373
Interprocedural Analysis, 41
Intrinsics, 179
header file organization, 194
invarif directive, 350
invarif pragma, 350

Invoke
function inliner, 51

IPA, 23, 26
build file location, 45
building without, 41, 42
collection phase, 43
large object file, 45
mangled names, 45
-MIPA issues, 45
multiple-step program, 44
phases, 43
program example, 43
program using Make, 44
propagation phase, 43
recompile phase, 43
single step program, 43

ivdep directive, 350

J
JIT debugging, 147

K

Keywords
C/C++, 202

L
Language options, 268
LAPACK library, 133
Levels
optimization, 46
LIB3F library, 133
libnuma, 48
PGI library, 49
libpgbind, 48
PGI library, 48
Libraries
-Bdynamic option, 129, 211
BLAS, 133
-Bstatic_pgi option, 212
-Bstatic option, 212
C++
standard template, 133
create inline, 53
defined, 119
dynamic, 127
dynamic-link on Windows, 126

Index

dynamic on MAC OS X, 123
FFTs, 133
import, 127
import DLL, 127
inline directory, 54
inlining, 51
LAPACK, 133
LD_LIBRARY_PATH, 121
lib.il, 53
LIB3F, 133
-Mextract option, 53
name, 127
options, 119
portability-related, 48
runtime considerations, Linux,
149
runtime on Windows, 124
runtime routines, 67
SFU/SUA shared object files, 122
shared object files, 120
static, 127
static on Windows, 124
STLPort Standard C++, 133
using inline, 52
Licensing
Agreement, 12
Generate license, 12
Limitations
large array programming; Arrays:
limitations, 174
link
static libraries, 212
Linux
04-bit deployment considerations,
150
deploying, 149
header files, 9
large static data, 172
parallelization, 10
portability package install, 150
portability restrictions, 150
redistributable file licensing, 151
redistributable files, 150
use PGI compilers, 9
Listing Files, 286, 290, 290
Loops

465

failed auto-parallelization, 38
innermost, 38
optimizing, 26
parallelizing, 37
privatization, 39
scalars, 39
timing, 38
unrolling, 26, 31, 353
unrolling, instruction scheduler,
31
unrolling, -Minfo option, 32
Is command, 54
Istval directive, 350, 350
Istval pragma, 350

M
Mac OS X
debug requirements, 14
dynamic libraries, 123
header files, 14
Parallelization, 14
use PGI compilers, 14
MACOS X
linking, 14
Macros
extended asm, 193
GET_SP, 193
va_arg, 370
Make
IPA program example, 44
utility, 42
Makefiles
example, 54
with options, 20
Mangling
C++ names, 343
function names, 344
operator function names, 344
runttime variable names, 344
static data member names, 344
types, 344
virtual function table variables,
344
Maskedll, 127
MASTER directive, 302
mcmodel=medium, 173

466

Menu items
AMD Core Math Library, 11
CUDA Fortran Reference, 11
Fortran Language Reference, 11
Installation Guide, 11
Licensing, 12
Licensing, License Agreement, 12
PGDBG Debugger, 11
PGDBG Debugger (64), 11
PGI Bash, 10
PGI Bash (64), 10
PGI Cmd, 10
PGI Cmd (64), 10
PGPROF Performance Profiler, 11
Release Notes, 11
Tools Guide, 11
User’s Guide, 11
Menus
PGI Start, 10
Mlarge_arrays, 173
Mlargeaddressaware, 173
Mmakeimplib, 127
Modifiers
assembly string, 191
characters, 191
MPI
generate profile data, 80
Hello World Example, 78
HP-MPIL, 79
implementation options, 76
implementations, 75
Mpich-1 libraries, 77
Mpich-2 libraries, 78
MSMPI, 80
Mvapich libraries, 78
Profile Applications, 77
using, 75
MPI_ROOT, 79
use with HP-MPI, 79
MPICH-1
using, 77
MPICH-2
using, 78
MPIDIR, 78, 78, 79
use with MPICH-1, 78, 78, 79
MPI environment variables

CCP_HOME, 80
CCP_SDK, 80
MPI_ROOT, 79
MPIDIR, 78, 78, 79
MSMPI
using, 80
Multiple systems
-tp option, 23
Multi-Threaded Programs
portability, 48
Mvapich
using, 78
MXCSR register, 378

N
Name mangling
local class, 345
nested class, 345
template class, 345
type, 344
Names
conventions, 372
entities, 343
external, 343
Fortran conventions, 382
mangled name format, 344
mangled runtine variables, 344
mangled static data members, 344
mangled virtual function table
variables, 344
NCPUS; Environment variables
NCPUS, 38
noaltcode directive, 348
noaltcode pragma, 348
noassoc directive, 349
1n0assoc pragma, 349
nobounds directive, 349
nocncall directive, 349
nocncall pragma, 349
noconcur directive, 349
noconcur pragma, 349
nodepchk directive, 349
nodepchk pragma, 349
noeqvchk directive, 349
noeqvchk pragma, 349
nofcon pragma, 350

noinvarif directive, 350
noinvarif pragma, 350
nolstval pragma, 350
NOMIXED_STR_LEN_ARG
ATTRIBUTES directive, 355
nosafe_lastval directive, 351
nosafe_lastval pragma, 351
nosafe pragma, 351
nosafeptr pragma, 352
nosingle pragma, 353
nounroll directive, 353
nounroll pragma, 353
novector directive, 354
novector pragma, 354
novintr directive, 354
novintr pragma, 354

O

OMP_DYNAMIC, 72, 318
omp_get_ancestor_thread_num(),
08

OMP_MAX_ACTIVE_LEVELS, 72, 318

OMP_NESTED, 72, 318
OMP_NUM_THREADS, 72, 318
OMP_SCHEDULE, 73, 319
OMP_STACK_SIZE, 73, 319
OMP_THREAD_LIMIT, 73, 319
OMP_WAIT_POLICY, 320
omp flush pragma, 302
omp for pragma, 300
omp master pragma, 302
omp ordered pragma, 303
omp parallel pragma, 304, 309
omp parallel sections pragma, 306
omp sections pragma, 308
omp threadprivate pragma, 312
on Linux, 149
OpenMP
barrier, 294
environment variables, 318
Fortran Directives, 57
task, 60, 293
task scheduling, 293
taskwait, 294
using, 57
OpenMP C/C++ Pragmas, 57, 293

flush, 302

omp critical, 297

omp master, 302

omp ordered, 303

omp parallel, 309

omp parallel sections, 306
omp sections, 308

omp threadprivate, 312
parallel, 304

parallel sections, 307

OpenMP C/C++ Support Routines

omp_destroy_lock(), 71
omp_get_active_level(), 68
omp_get
_ancestor_thread_num(), 68
omp_get_dynamic(), 70
omp_get_max_threads(), 68, 68,
09

omp_get_nested(), 70
omp_get_num_threads(), 67, 67
omp_get_schedule(), 70, 71, 71
omp_get_stack_size(), 69
omp_get_team_size(), 69
omp_get _thread_num(), 68
omp_get_wtick(), 71
omp_in_parallel(), 70
omp_init_lock(), 71
omp_set_dynamic(), 70
omp_set_lock(), 71
omp_set_nested(), 70
omp_set_num_threads(), 68
omp_set_stack_size(), 69
omp_test_lock(), 72
omp_unset_lock(), 72

OpenMP environment variables

MPSTKZ, 140

OMP_DYNAMIC, 72, 138, 138,
318
OMP_MAX_ACTIVE_LEVELS, 72,
318

OMP_NESTED, 72, 138, 318
OMP_NUM_THREADS, 72, 138,
318

OMP_SCHEDULE, 73, 319
OMP_THREAD_LIMIT, 73

Index

OpenMP Fortran Directives, 293,
347

ATOMIC, 296

BARRIER, 297

CRITICAL, 297

DO, 300

FLUSH, 302

MASTER, 302

ORDERED, 303
PARALLEL, 304
PARALLEL DO, 305, 305
PARALLEL SECTIONS, 306
PARALLEL WORKSHARE, 307, 308
SECTIONS, 308

SINGLE, 309

TASK, 310, 311
THREADPRIVATE, 312
WORKSHARE, 313

OpenMP Fortran Support Routines

omp_destroy_lock(), 71
omp_get_ancestor_thread_num(),
68

omp_get_dynamic(), 70
omp_get_level(), 68, 68
omp_get_max_threads(), 68
omp_get_nested(), 70
omp_get_num_procs(), 69
omp_get_num_threads(), 67
omp_get_schedule(), 70, 70
omp_get_stack_size(), 69
omp_get_team_size(), 69
omp_get_thread_num(), 68
omp_get_wtick(), 71
omp_get_wtime(), 71
omp_in_parallel(), 69
omp_init_lock(), 71
omp_set_dynamic(), 70
omp_set_lock(), 71
omp_set_nested(), 70
omp_set_num_threads(), 68
omp_set_stack_size(), 69
omp_test_lock(), 72
omp_unset_lock(), 72

OpenMP pragmas

omp atomic, 296

OpenMP Pragmas

467

omp for, 300 Profile-Feedback Optimization, 27 Parallel Programming

Operand profiler, 25 automatic shared-memory, 7
aliases, 191 using -Mipa, 41 data parallel shared-memory, 7
constraints, see constraints, 185 vectorization, 26, 32 distributed-memeory, 7
modifier *, 190, 190 Options Linux, 10
modifier &, 190 alter effects, 347 OpenMP shared-memory, 7
modifier %, 190 cache size, 33 run HPF program, 8
modifier +, 190 -dryrun, 28 run SMP program, 8
modifier =, 190 frequently used, 23 styles, 7

Operand constraints Mchkfpstk, 143 PARALLEL SECTIONS directive, 306
machine, 187 -Minfo, 28 PARALLEL WORKSHARE directive,

Optimization, 25 -Mneginfo, 28 307
C/C++ pragmas, 47, 110 optimizing code, 25 Parameters
C/C++ pragmas scope, 113 perfromance-related, 22 passing in registers, 364, 370,
cache tiling, 284 prefetch, 34 380
default level, 30 SSE-related, 33 type, 364, 365, 380
default levels, 46 opt pragma, 350 type, in G, 371
defined, 26 ORDERED directive, 303 Performance
Fortran directives, 47, 109, 347 fast, 22
Fortran directives scope, 112 P -fastsse, 22
function inlining, 16, 26, 51 Parallalization -Mipa, 23
global, 26, 30 code speed, 16 -Mpi=fast, 23
global optimization, 30 PARALLEL directive, 304 options, 22
inline libraries, 52 PARALLEL DO directive, 305 overview, 21
Inter-Procedural Analysis, 26 Parallelization, 25, 26 PGDBG
IPA, 26 auto-parallelization, 37 launch, 11
local, 26, 29, 47 C++ Pragmas, 61 launch for x64, 11
loops, 26, 281, 281, 281 Directives, 57, 296 PGI Start menu, 11, 11
loop unrolling, 26, 31 directives, 347 PGI_Term
-Munroll, 31 Directives, defined, 61 abort value, 144
no level specified, 29 directives format, 61 debug value, 144
none, 29 directives usage, 40 signal value, 144
-0, 234 failed auto-parallelization, 38, trace value, 144
-00, 29 291 PGI_TERM
-01, 29 Mac 0S X, 14 noabort value, 144
-02, 29 _Mconcur=a1tcode, 37 nodebug Value, 144
-03, 29 Mconcur=cncall, 37 nosignal value, 144
-04, 29 Mconcur=dist, 37 notrace value, 144
-Olevel, 29 -Mconcur auto-parallelization, PGI CDK, 78
options, 25 276 PGPROF
parallelization, 37 NCPUS environment variable, 38 launch, 11
PFO, 27 Pragmas, 57, 296 overview, 25
PGPROE, 25 pragmas, 293 PGI Start menu, 11
pointers, 283 pragmas usage, 40 profile MPI applications, 77
prefetching, 282, 282, 282 safe_lastval, 39 profiler, 25
profile-feedback (PFO), 46 user-directed, 233 Platforms

468

specific considerations, 9
supported, 9
Pointers
%rsp, 3607, 367, 378, 378
frame, 361, 364, 370, 380
return values, 361
stack, 361
Portability
Linux, 150
Linux package, 150
multi-threaded programs, 48
Pragmas, 109
altcode, 348
assoc, 349
bounds
bounds pragma, 349
C/C++,3
clauses, 64
cncall, 349
concur, 349
default scope, 110
defined, 61
depchk, 349
eqvchk, 349
fcon, 350
format, 62
global scope, 110
invarif, 350
loop scope, 110
Istval, 350
noaltcode, 348
n0assoc, 349
nobounds
nobounds pragma, 349
nocncall, 349
noconcur, 349
nodepchk, 349
noeqvchk, 349
nofcon, 350
noinvarif, 350
nolstval, 350
nosafe, 351
nosafe_lastval, 351
nosafeptr, 352
nosingle, 353
nounroll, 353

novector, 354
novintr, 354
omp atomic, 296
OpenMP C/C++, 57, 293
opt, 350
optimization, 110
PGI Proprietary, 110
prefetch, 350
prefetch example, 117
prefetch syntax, 117, 354
recognition, 62
routine scope, 110
safe, 351
safe_lastval, 351
safeptr, 352
scope, 110, 113
scope rules, 115
see OpenMP, 307
single, 353
Summary table, 62
summary table, 110
syntax, 110
tp, 353
unroll, 353
vector, 354
vintr, 354
Prefetch, 34
directives, 115, 354
directives example, 116
directives sentinel, 116
directives syntax, 116, 354
-Mprefetch, 282
pargma example, 117
pargma syntax, 117, 354
prefetch directive, 350, 350
prefetch pragma, 350
Preprocessor
cpp, 5
Fortran, 5
Processors
architecture, 152
Profile
generate data, 80
MPI applications, 77
Profiler, 25
launch, 11

Index

PGPROE, 77

Programs
extracting, 55

Propagation
IPA phase, 43

Proprietary environment variables
FORTRAN_OPT, 137, 139
GMON_OUT_PREFIX, 137
MP_BIND, 137
MP_BLIST, 137
MP_SPIN, 137
MP_WARN, 137
MPSTKZ, 137
NCPUS, 137
NCPUS_MAX, 137
NO_STOP_MESSAGE, 137
PGI, 138
PGI_CONTINUE, 138
PGI_OBJSUFFIX, 138
PGI_STACK_USAGE, 138
PGI_TERM, 138
PGI_TERM_DEBUG, 138, 138
STATIC_RANDOM_SEED, 138
TMP, 138
TMPDIR, 138

R

ranlib command, 125
Recompile

IPA phase, 43
Redistributable files

licensing on Linux, 151

Linux, 150
Redistributables

Microsoft Open Tools, 151

PGI directories, 151
REFERENCE

ATTRIBUTES directive, 356
Registers

%rax, 371

allocation, 366, 376

flags, 361

floating point, 361

local, 361

MXCSR, 378

non-volatile, 377

469

parameter passing, 364, 370, 380
RFLAGS, 368
runtime allocation, 360
scratch, 361, 361
usage, 376
usage conventions, 359
X04 systems, 377
Release
PVF Release Notes, 11
Restrictions
inlining, 55
Return values, 159
character, 159
complex, 160
inegral, 361
none, 362
pointers, 361
types, 373
RFLAGS register, 368
Runtime
environment, 359
libraries on Windows, 124
library routines, 67
Linux considerations, 149
Runtime Environment, 359

S

safe_lastval directive, 351
safe_lastval pragma, 351
safe pragma, 351
safeptr pragma, 352
Scalars
alignment, 196, 199
C/C++, 198
Fortran data types, 195
last value, 39
Scopes
C++ classes, 343
directives, 109
pragma rules, 115
pragmas, 110
SECTIONS directive, 308
Server
documentation, 11
Set
environment variables, 135

470

SFU/SUA

use PGI compilers, 13
Shared object files

creating, 120

creating in SFU/SUA, 122

using, 120

using in SFU/SUA, 122
Shells

PGI bash, 10

PGI bash for x64, 10

PGI command, 10

PGI command for x64, 10
Signals

handlers, 368, 378
SINGLE directive, 309
single pragma, 353
siterc files, 15
SSE

example, 35

scalar code generation, 30

vectorization example, 34
Stacks

alignment, 377

argument order, 369

contents, 362

frame, 360, 377

frames, 366

implementing, 364, 370

passing arguments, 379

pointer, 361, 367, 378

traceback, 147

usage conventions, 367
Start

menu, PGDBG, 11, 11

menu, PGPROF, 11
Static

data in Linux, 172
Static libraries

on Windows, 124
STDCALL

ATTRIBUTES directive, 356

calling conventions, 168
Strings

modifiers, assembly, 192
SUA/SFU

Header Files, 13

header files, 13
Parallelization, 13
shared object files, 122
Subroutines, 156
Symbol
name construction, 167
Syntax
command-line options, 2
pragmas, 110
prefetch directives, 116, 116, 354
prefetch pragmas, 117, 354
System
flags, 361
SYSTEM_CLOCK, 47
usage, 47

T
Table
Fortran Data Type Representation,
195
Fortran Directives, 110, 117
MPI Implementation Options, 76
OpenMP Environment Variables,
72
Real Data Type Ranges, 196
Scalar Type Alignment, 196
TASK directive, 310, 311
Tasks
C example, 295
construct, 294
Fortran example, 295
OpenMP overview, 60, 293
scheduling points, 293
taskwait call, 294
thread-compliant, HP-MPI, 79
THREADPRIVATE directive, 312
Timing
CPU_CLOCK, 47
execution, 47
SYSTEM_CLOCK, 47
TOC file, 54
Tools
PGDBG, xxvii
PGPROF, xxvii, xxvii
usage documentation, 11
tp directive, 353

tp pragma, 353

Types
derived, 374, 384, 384
Fortran, 372
Fortran in Win64, 381

U

Underscores
inter-language calling usage, 157
Unified Binaries
command-line switches, 153, 153
directives, 153
-Mipa option, 41
optimization, 40
-tp option, 41
UNIX
calling conventions, 169
unroll directive, 353
unroll pragma, 353
Use
PGI compiler, 1
User rc files, 15

V
VALUE
ATTRIBUTES directive, 356
vector directive, 354
vector intrinsics
recognition of, 354
Vectorization, 26, 32, 284
associativity conversions, 33
cache size, 33
disable, 354
example using SSE/SSE2, 34
generate packed instructions, 33
generate prefetch instructions, 34
-Mvect, 32
operation control, 33
SSE
option, 33
SSE instructions, 285, 285
sub-options, 32
vector pragma, 354
vintr directive, 354
vintr pragma, 354

W
Win32 Calling Conventions
C, 166, 168
default, 166, 168, 168
STDCALL, 166, 168
symbol name construction, 167
UNIX-style, 166, 168
Windows
deploying
Deployment, 151
dynamic-link libraries, 126
PGI Start Menu, 10
runtime libraries, 124
static libraries, 124
use PGI compilers, 12
WORKSHARE directive, 313
Workstation
documentation, 11

Index

471

472

	PGI® User’s Guide
	Contents
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	Part I. Compiler Usage
	Chapter 1. Getting Started
	Overview
	Invoking the Command-level PGI Compilers
	Command-line Syntax
	Command-line Options
	Fortran Directives and C/C++ Pragmas

	Filename Conventions
	Input Files
	Output Files

	Fortran, C, and C++ Data Types
	Parallel Programming Using the PGI Compilers
	Running SMP Parallel Programs
	Running Data Parallel HPF Programs

	Platform-specific considerations
	Using the PGI Compilers on Linux
	Linux Header Files
	Running Parallel Programs on Linux

	Using the PGI Compilers on Windows
	PGI on the Windows Start Menu
	Command Shell Submenus
	Debugger & Profiler Submenu
	Documentation Submenu
	Licensing Submenu

	PGI on the Windows Desktop
	BASH Shell Environment (Cygwin)
	ar or ranlib

	Using the PGI Compilers on SUA and SFU
	Subsystem for Unix Applications (SUA and SFU)
	SUA/SFU Header Files
	Running Parallel Programs on SUA and SFU
	Using Shared object files in SFU and SUA

	Using the PGI Compilers on Mac OS X
	Mac OS X Header Files
	Mac OS Debugging Requirements
	Linking on Mac OS X
	Running Parallel Programs on Mac OS X

	Site-specific Customization of the Compilers
	Using siterc Files
	Using User rc Files

	Common Development Tasks

	Chapter 2. Using Command Line Options
	Command Line Option Overview
	Command-line Options Syntax
	Command-line Suboptions
	Command-line Conflicting Options

	Help with Command-line Options
	Getting Started with Performance
	Using –fast and –fastsse Options
	Other Performance-related Options

	Targeting Multiple Systems - Using the -tp Option
	Frequently-used Options

	Chapter 3. Optimizing & Parallelizing
	Overview of Optimization
	Local Optimization
	Global Optimization
	Loop Optimization: Unrolling, Vectorization, and Parallelization
	Interprocedural Analysis (IPA) and Optimization
	Function Inlining
	Profile-Feedback Optimization (PFO)

	Getting Started with Optimizations
	Common Compiler Feedback Format (CCFF)
	Local and Global Optimization using -O
	Scalar SSE Code Generation

	Loop Unrolling using –Munroll
	Vectorization using –Mvect
	Vectorization Sub-options
	Assoc Option
	Cachesize Option
	SSE Option
	Prefetch Option

	Vectorization Example Using SSE/SSE2 Instructions

	Auto-Parallelization using -Mconcur
	Auto-parallelization Sub-options
	Altcode Option
	Dist Option
	Cncall Option

	Loops That Fail to Parallelize
	Innermost Loops
	Timing Loops
	Scalars
	Scalar Last Values

	Processor-Specific Optimization & the Unified Binary
	Interprocedural Analysis and Optimization using –Mipa
	Building a Program Without IPA – Single Step
	Building a Program Without IPA - Several Steps
	Building a Program Without IPA Using Make
	Building a Program with IPA
	Building a Program with IPA - Single Step
	Building a Program with IPA - Several Steps
	Building a Program with IPA Using Make
	Questions about IPA

	Profile-Feedback Optimization using –Mpfi/–Mpfo
	Default Optimization Levels
	Local Optimization Using Directives and Pragmas
	Execution Timing and Instruction Counting
	Portability of Multi-Threaded Programs on Linux
	libpgbind
	libnuma

	Chapter 4. Using Function Inlining
	Invoking Function Inlining
	Using an Inline Library

	Creating an Inline Library
	Working with Inline Libraries
	Dependencies

	Updating Inline Libraries - Makefiles

	Error Detection during Inlining
	Examples
	Restrictions on Inlining

	Chapter 5. Using OpenMP
	OpenMP Overview
	OpenMP Shared-Memory Parallel Programming Model
	Terminology
	OpenMP Example

	Task Overview
	Fortran Parallelization Directives
	C/C++ Parallelization Pragmas
	Directive and Pragma Recognition
	Directive and Pragma Summary Table
	Directive and Pragma Clauses
	Run-time Library Routines
	Environment Variables

	Chapter 6. Using MPI
	MPI Overview
	Compiling and Linking MPI Applications
	Debugging MPI Applications
	Profiling MPI Applications

	Using MPICH-1 on Linux
	Using MPICH-2 on Linux
	Using MVAPICH on Linux
	Using HP-MPI on Linux
	Using OpenMPI on Linux
	Compiling using OpenMPI
	Generate MPI Profile Data

	Using MSMPI on Windows
	MSMPI Environment
	Compiling using MSMPI
	Generate MPI Profile Data

	Using OpenMPI on Mac OS X
	Compiling using OpenMPI
	Generate MPI Profile Data

	Site-specific Customization
	Use Alternate MPICH Installation
	Use Alternate MVAPICH Installation
	Use Alternate HPMPI Installation
	Use Alternate MSMPI Installation

	Chapter 7. Using an Accelerator
	Overview
	Components
	Availability
	User-directed Accelerator Programming
	Features Not Covered or Implemented

	Terminology
	System Requirements
	Supported Processors and GPUs
	Installation and Licensing
	Required Files
	Command Line Flag

	Execution Model
	Host Functions
	Levels of Parallelism

	Memory Model
	Separate Host and Accelerator Memory Considerations
	Accelerator Memory
	Cache Management

	Running an Accelerator Program
	Accelerator Directives
	Enable Accelerator Directives
	Format
	C Directives
	Free-Form Fortran Directives
	Fixed-Form Fortran Directives
	Accelerator Directive Summary

	Accelerator Directive Clauses
	PGI Accelerator Compilers Runtime Libraries
	Runtime Library Definitions
	Runtime Library Routines

	Environment Variables
	Applicable Command Line Options
	PGI Unified Binary for Accelerators
	Multiple Processor Targets

	Profiling Accelerator Kernels
	Related Accelerator Programming Tools
	PGPROF pgcollect
	NVIDIA CUDA Profile
	TAU - Tuning and Analysis Utility

	Supported Intrinsics
	Supported Fortran Intrinsics Summary Table
	Supported C Intrinsics Summary Table

	References related to Accelerators

	Chapter 8. Using Directives and Pragmas
	PGI Proprietary Fortran Directives
	PGI Proprietary C and C++ Pragmas
	PGI Proprietary Optimization Directive and Pragma Summary
	Scope of Fortran Directives and Command-Line options
	Scope of C/C++ Pragmas and Command-Line Options
	Prefetch Directives and Pragmas
	Prefetch Directive Syntax
	Prefetch Directive Format Requirements
	Sample Usage of Prefetch Directive
	Prefetch Pragma Syntax
	Sample Usage of Prefetch Pragma

	!DEC$ Directives
	Format Requirements
	Summary Table

	C$PRAGMA C

	Chapter 9. Creating and Using Libraries
	Using builtin Math Functions in C/C++
	Using System Library Routines
	Creating and Using Shared Object Files on Linux
	Creating and Using Shared Object Files in SFU and 32-bit SUA
	Shared Object Error Message
	Shared Object-Related Compiler Switches

	Creating and Using Dynamic Libraries on Mac OS X
	PGI Runtime Libraries on Windows
	Creating and Using Static Libraries on Windows
	ar command
	ranlib command

	Creating and Using Dynamic-Link Libraries on Windows
	Using LIB3F
	LAPACK, BLAS and FFTs
	The C++ Standard Template Library

	Chapter 10. Using Environment Variables
	Setting Environment Variables
	Setting Environment Variables on Linux
	Setting Environment Variables on Windows
	Setting Environment Variables on Mac OSX

	PGI-Related Environment Variables
	PGI Environment Variables
	FLEXLM_BATCH
	FORTRANOPT
	GMON_OUT_PREFIX
	LD_LIBRARY_PATH
	LM_LICENSE_FILE
	MANPATH
	MPSTKZ
	MP_BIND
	MP_BLIST
	MP_SPIN
	MP_WARN
	NCPUS
	NCPUS_MAX
	NO_STOP_MESSAGE
	PATH
	PGI
	PGI_CONTINUE
	PGI_OBJSUFFIX
	PGI_STACK_USAGE
	PGI_TERM
	PGI_TERM_DEBUG
	PWD
	STATIC_RANDOM_SEED
	TMP
	TMPDIR

	Using Environment Modules on Linux
	Stack Traceback and JIT Debugging

	Chapter 11. Distributing Files - Deployment
	Deploying Applications on Linux
	Runtime Library Considerations
	64-bit Linux Considerations
	Linux Redistributable Files
	Restrictions on Linux Portability
	Installing the Linux Portability Package
	Licensing for Redistributable Files

	Deploying Applications on Windows
	PGI Redistributables
	Microsoft Redistributables

	Code Generation and Processor Architecture
	Generating Generic x86 Code
	Generating Code for a Specific Processor

	Generating One Executable for Multiple Types of Processors
	PGI Unified Binary Command-line Switches
	PGI Unified Binary Directives and Pragmas

	Chapter 12. Inter-language Calling
	Overview of Calling Conventions
	Inter-language Calling Considerations
	Functions and Subroutines
	Upper and Lower Case Conventions, Underscores
	Compatible Data Types
	Fortran Named Common Blocks

	Argument Passing and Return Values
	Passing by Value (%VAL)
	Character Return Values
	Complex Return Values

	Array Indices
	Examples
	Example - Fortran Calling C
	Example - C Calling Fortran
	Example - C++ Calling C
	Example - C Calling C++
	Example - Fortran Calling C++
	Example - C++ Calling Fortran

	Win32 Calling Conventions
	Win32 Fortran Calling Conventions
	Symbol Name Construction and Calling Example
	Using the Default Calling Convention
	Using the STDCALL Calling Convention
	Using the C Calling Convention
	Using the UNIX Calling Convention
	Using the CREF Calling Convention

	Chapter 13. Programming Considerations for 64-Bit Environments
	Data Types in the 64-Bit Environment
	C/C++ Data Types
	Fortran Data Types

	Large Static Data in Linux
	Large Dynamically Allocated Data
	64-Bit Array Indexing
	Compiler Options for 64-bit Programming
	Practical Limitations of Large Array Programming
	Medium Memory Model and Large Array in C
	Medium Memory Model and Large Array in Fortran
	Large Array and Small Memory Model in Fortran

	Chapter 14. C/C++ Inline Assembly and Intrinsics
	Inline Assembly
	Extended Inline Assembly
	Output Operands
	Input Operands
	Clobber List
	Additional Constraints
	Simple Constraints
	Machine Constraints
	Multiple Alternative Constraints
	Constraint Modifiers

	Operand Aliases
	Assembly String Modifiers
	Extended Asm Macros

	Intrinsics

	Part II. Reference Information
	Chapter 15. Fortran, C, and C++ Data Types
	Fortran Data Types
	Fortran Scalars
	FORTRAN 77 Aggregate Data Type Extensions
	Fortran 90 Aggregate Data Types (Derived Types)

	C and C++ Data Types
	C and C++ Scalars
	C and C++ Aggregate Data Types
	Class and Object Data Layout
	Aggregate Alignment
	Bit-field Alignment
	Other Type Keywords in C and C++

	Chapter 16. Command-Line Options Reference
	PGI Compiler Option Summary
	Build-Related PGI Options
	PGI Debug-Related Compiler Options
	PGI Optimization-Related Compiler Options
	PGI Linking and Runtime-Related Compiler Options

	C and C++ Compiler Options
	Generic PGI Compiler Options
	C and C++ -specific Compiler Options
	–M Options by Category
	Code Generation Controls
	C/C++ Language Controls
	Environment Controls
	Fortran Language Controls
	Inlining Controls
	Optimization Controls
	Miscellaneous Controls

	Chapter 17. OpenMP Reference Information
	Tasks
	Task Characteristics and Activities
	Task Scheduling Points
	Task Construct

	Parallelization Directives and Pragmas
	ATOMIC and atomic
	BARRIER and barrier
	CRITICAL ... END CRITICAL and critical
	C$DOACROSS
	DO...END DO and for
	FLUSH and flush
	MASTER ... END MASTER and master
	ORDERED and ordered
	PARALLEL ... END PARALLEL and parallel
	PARALLEL DO
	PARALLEL SECTIONS and parallel sections
	PARALLEL WORKSHARE ... END PARALLEL WORKSHARE
	SECTIONS … END SECTIONS and sections
	SINGLE ... END SINGLE and single
	TASK and task
	TASKWAIT and taskwait
	THREADPRIVATE and threadprivate
	WORKSHARE ... END WORKSHARE
	Directive and Pragma Clauses
	COLLAPSE (n)
	COPYIN (list)
	COPYPRIVATE(list)
	DEFAULT
	FIRSTPRIVATE(list)
	IF()
	LASTPRIVATE(list)
	NOWAIT
	NUM_THREADS
	ORDERED
	PRIVATE
	REDUCTION
	SCHEDULE
	SHARED
	UNTIED

	OpenMP Environment Variables
	OMP_DYNAMIC
	OMP_NESTED
	OMP_MAX_ACTIVE_LEVELS
	OMP_NUM_THREADS
	OMP_SCHEDULE
	OMP_STACKSIZE
	OMP_THREAD_LIMIT
	OMP_WAIT_POLICY

	Chapter 18. PGI Accelerator Compilers Reference
	PGI Accelerator Directives
	Accelerator Compute Region Directive
	Accelerator Data Region Directive
	Accelerator Loop Mapping Directive
	Combined Directive
	Accelerator Declarative Data Directive
	Accelerator Update Directive

	PGI Accelerator Directive Clauses
	if (condition)
	Data Clauses
	copy (list)
	copyin (list)
	copyout (list)
	local (list)
	mirror (list)
	update device|host (list)
	update device (list)
	update host (list)

	Loop Scheduling Clauses
	cache (list)
	host [(width)]
	independent
	kernel
	parallel [(width)]
	private (list)
	seq [(width)]
	shortloop
	unroll [(width)]
	vector [(width)]
	Declarative Data Directive Clauses
	reflected (list)
	Update Directive Clauses
	device (list)
	host (list)

	PGI Accelerator Runtime Routines
	acc_get_device
	acc_get_num_devices
	acc_init
	acc_set_device
	acc_set_device_num
	acc_shutdown
	acc_on_device

	Accelerator Environment Variables
	ACC_DEVICE
	ACC_DEVICE_NUM
	ACC_NOTIFY

	Chapter 19. C++ Name Mangling
	Types of Mangling
	Mangling Summary
	Type Name Mangling
	Nested Class Name Mangling
	Local Class Name Mangling
	Template Class Name Mangling

	Chapter 20. Directives and Pragmas Reference
	PGI Proprietary Fortran Directive and C/C++ Pragma Summary
	altcode (noaltcode)
	assoc (noassoc)
	bounds (nobounds)
	cncall (nocncall)
	concur (noconcur)
	depchk (nodepchk)
	eqvchk (noeqvchk)
	fcon (nofcon)
	invarif (noinvarif)
	ivdep
	lstval (nolstval)
	prefetch
	opt
	safe (nosafe)
	safe_lastval
	safeptr (nosafeptr)
	single (nosingle)
	tp
	unroll (nounroll)
	vector (novector)
	vintr (novintr)

	Prefetch Directives and Pragmas
	!DEC$ Directives
	ALIAS Directive
	ATTRIBUTES Directive
	DECORATE Directive
	DISTRIBUTE Directive
	IGNORE_TKR Directive

	Chapter 21. Run-time Environment
	Linux86 and Win32 Programming Model
	Function Calling Sequence
	Register Usage Conventions

	Function Return Values
	Argument Passing

	Linux86-64 Programming Model
	Function Calling Sequence
	Function Return Values
	Argument Passing
	Linux86-64 Fortran Supplement
	Fortran Fundamental Types
	Naming Conventions
	Argument Passing and Return Conventions
	Inter-language Calling
	Arrays
	Common Blocks

	Win64 Programming Model
	Function Calling Sequence
	Function Return Values
	Argument Passing
	Win64/SUA64 Fortran Supplement
	Fortran Fundamental Types
	Fortran Naming Conventions
	Fortran Argument Passing and Return Conventions
	Inter-language Calling

	Chapter 22. C++ Dialect Supported
	Extensions Accepted in Normal C++ Mode
	cfront 2.1 Compatibility Mode
	cfront 2.1/3.0 Compatibility Mode

	Chapter 23. Fortran Module/Library Interfaces for Windows
	Source Files
	Data Types
	Using DFLIB and DFPORT
	DFLIB
	DFPORT

	Using the DFWIN module
	Supported Libraries and Modules
	advapi32
	comdlg32
	dfwbase
	dfwinty
	gdi32
	kernel32
	shell32
	user32
	winver
	wsock32

	Chapter 24. C/C++ MMX/SSE Inline Intrinsics
	Using Intrinsic functions
	Required Header File
	Intrinsic Data Types
	Intrinsic Example

	MMX Intrinsics
	SSE Intrinsics
	ABM Intrinsics

	Chapter 25. Messages
	Diagnostic Messages
	Phase Invocation Messages
	Fortran Compiler Error Messages
	Message Format
	Message List

	Fortran Run-time Error Messages
	Message Format
	Message List

	Index

