

CUDA Fortran
Programming Guide and Reference

Published: v1.2 March 2010

Contents

1 Introduction .. 7
1.1 Structure of This Document ... 7
1.2 References .. 8

2 Programming Guide .. 9
2.1 CUDA Fortran Kernels ... 9
2.2 Thread Blocks .. 9
2.3 Memory Hierarchy .. 10
2.4 Subroutine / Function Qualifiers.. 10

2.4.1 Attributes(host).. 10
2.4.2 Attributes(global) ... 11
2.4.3 Attributes(device)... 11
2.4.4 Restrictions ... 11

2.5 Variable Qualifiers .. 11
2.5.1 Attributes(device)... 11
2.5.2 Attributes(constant).. 12
2.5.3 Attributes(shared) .. 12
2.5.4 Attributes(pinned) .. 12

2.6 Datatypes in Device Subprograms .. 12
2.7 Predefined Variables in Device Subprograms 13
2.8 Execution Configuration... 13
2.9 Asynchronous concurrent execution .. 14

2.9.1 Concurrent Host and Device Execution..................................... 14
2.9.2 Concurrent Stream Execution ... 14

2.10 Building a CUDA Fortran Program ... 14
2.11 Emulation Mode ... 14

3 Reference.. 17
3.1 New Subroutine and Function Attributes 17

3.1.1 Host Subroutines and Functions.. 17
3.1.2 Global Subroutines ... 17
3.1.3 Device Subroutines and Functions... 17
3.1.4 Device and Host Subroutines and Functions.............................. 18
3.1.5 Restrictions on Device Subprograms.. 18

3.2 Variable attributes .. 18
3.2.1 Device data ... 18
3.2.2 Constant data .. 19
3.2.3 Shared data... 20
3.2.4 Value dummy arguments... 20
3.2.5 Pinned arrays... 20

3.3 Allocating Device and Pinned Arrays.. 21
3.3.1 Allocating Device Memory .. 21
3.3.2 Allocating Device Memory Using Runtime Routines 21
3.3.3 Allocating Pinned Memory .. 22

3.4 Data transfer between host and device memory............................ 22
3.4.1 Data Transfer Using Assignment Statements 22
3.4.2 Implicit Data Transfer in Expressions....................................... 23
3.4.3 Data Transfer Using Runtime Routines..................................... 23

3.5 Invoking a kernel subroutine.. 23
3.6 Device code... 24

3.6.1 Datatypes allowed .. 24
3.6.2 Builtin variables ... 25
3.6.3 Fortran intrinsics .. 25
3.6.4 New Intrinsic Functions ... 29
3.6.5 Atomic Functions .. 30
3.6.6 Restrictions ... 31

3.7 Host code.. 32
3.7.1 SIZEOF Intrinsic ... 32

4 Runtime API .. 33
4.1 Initialization .. 33
4.2 Device Management ... 33

4.2.1 cudaGetDeviceCount... 33
4.2.2 cudaSetDevice ... 33
4.2.3 cudaGetDevice ... 33
4.2.4 cudaGetDeviceProperties ... 33
4.2.5 cudaChooseDevice.. 33

4.3 Thread Management ... 34
4.3.1 cudaThreadSynchronize... 34
4.3.2 cudaThreadExit .. 34

4.4 Memory Management.. 34
4.4.1 cudaMalloc .. 34
4.4.2 cudaMallocPitch.. 34
4.4.3 cudaFree ... 35
4.4.4 cudaMallocArray ... 35
4.4.5 cudaFreeArray ... 35
4.4.6 cudaMemset .. 35
4.4.7 cudaMemset2D .. 35
4.4.8 cudaMemcpy.. 35
4.4.9 cudaMemcpyAsync.. 36
4.4.10 cudaMemcpy2D.. 36
4.4.11 cudaMemcpy2DAsync.. 36
4.4.12 cudaMemcpyToArray... 36
4.4.13 cudaMemcpy2DToArray ... 37
4.4.14 cudaMemcpyFromArray ... 37
4.4.15 cudaMemcpy2DFromArray ... 37
4.4.16 cudaMemcpyArrayToArray ... 37
4.4.17 cudaMemcpy2DArrayToArray ... 37
4.4.18 cudaMalloc3D... 37
4.4.19 cudaMalloc3DArray ... 38
4.4.20 cudaMemset3D .. 38
4.4.21 cudaMemcpy3D.. 38
4.4.22 cudaMemcpy3DAsync.. 38
4.4.23 cudaMemcpyToSymbol .. 38
4.4.24 cudaMemcpyFromSymbol .. 38

4.4.25 cudaMemcpyToSymbolAsync .. 39
4.4.26 cudaMemcpyFromSymbolAsync .. 39
4.4.27 cudaGetSymbolAddress ... 39
4.4.28 cudaGetSymbolSize .. 39
4.4.29 cudaMallocHost .. 40
4.4.30 cudaFreeHost... 40

4.5 Stream Management... 40
4.5.1 cudaStreamCreate.. 40
4.5.2 cudaStreamQuery... 40
4.5.3 cudaStreamSynchronize .. 40
4.5.4 cudaStreamDestroy .. 40

4.6 Event Management... 41
4.6.1 cudaEventCreate .. 41
4.6.2 cudaEventRecord.. 41
4.6.3 cudaEventQuery... 41
4.6.4 cudaEventSynchronize .. 41
4.6.5 cudaEventDestroy .. 41
4.6.6 cudaEventElapsedTime.. 41

4.7 Error Handling ... 42
4.7.1 cudaGetLastError.. 42
4.7.2 cudaGetErrorString ... 42

5 Matrix Multiplication Example ... 43
5.1 Overview... 43
5.2 Source Code Listing .. 43
5.3 Source Code Discussion... 45

5.3.1 MMUL ... 45
5.3.2 MMUL_KERNEL... 45

CUDA Fortran Programming Guide and Reference 7

1 Introduction
Graphic processing units or GPUs have evolved into programmable, highly parallel
computational units with very high memory bandwidth, and tremendous potential for many
applications. GPU designs are optimized for the computations found in graphics rendering,
but are general enough to be useful in many data-parallel, compute-intensive programs.

NVIDIA introduced CUDA™, a general purpose parallel programming architecture, with
compilers and libraries to support the programming of NVIDIA GPUs. CUDA comes with an
extended C compiler, here called CUDA C, allowing direct programming of the GPU from a
high level language. The programming model supports four key abstractions: cooperating
threads organized into thread groups, shared memory and barrier synchronization within
thread groups, and coordinated independent thread groups organized into a grid. A CUDA
programmer must partition the program into coarse grain blocks that can be executed in
parallel. Each block is partitioned into fine grain threads, which can cooperate using shared
memory and barrier synchronization. A properly designed CUDA program will run on any
CUDA-enabled GPU, regardless of the number of available processor cores.

This document describes CUDA Fortran, a small set of extensions to Fortran that supports and
is built upon the CUDA computing architecture. The extensions described here allow the
following operations in a Fortran program:

 declaring variables that will be allocated in the GPU device memory

 allocating dynamic memory in the GPU device memory

 copying data from the host memory to the GPU memory, and back

 writing subroutines and functions to execute on the GPU

 invoking GPU subroutines from the host

1.1 Structure of This Document

This document has five chapters:

 Chapter 1 is a general introduction

 Chapter 2 serves as a programming guide for CUDA Fortran

 Chapter 3 is the CUDA Fortran language reference

 Chapter 4 describes the interface between CUDA Fortran and the CUDA Runtime
API

 Chapter 5 walks through the code of a simple example

Details about the capabilities and hardware in NVIDIA GPUs can be found in the appropriate
NVIDIA documentation.

.

8 CUDA Fortran Programming Guide and Reference

1.2 References

 ISO/IEC 1539-1:1997, Information Technology – Programming Languages –
FORTRAN, Geneva, 1997 (Fortran 95).

 NVIDIA CUDA™ Programming Guide, NVIDIA, Version 2.1, 12/8/2008. Available
online at http://www.nvidia.com/cuda.

 NVIDIA CUDA Compute Unified Device Architecture Reference Manual, NVIDIA,
Version 2.0, June 2008. Available at http://www.nvidia.com/cuda.

 PGI User’s Guide, The Portland Group, Release 9.0, June 2009. Available online at
http://www.pgroup.com/doc/pgiug.pdf.

CUDA Fortran Programming Guide and Reference 9

2 Programming Guide
This chapter introduces the CUDA programming model through examples written in CUDA
Fortran. A reference for CUDA Fortran can be found in Chapter 3.

2.1 CUDA Fortran Kernels

CUDA Fortran allows the definition of Fortran subroutines that execute in parallel on the
GPU when called from the Fortran program which has been invoked and is running on the
host. Such a subroutine is called a device kernel or kernel. A call to a kernel specifies how
many parallel instances of the kernel must be executed; each instance will be executed by a
different CUDA thread. The CUDA threads are organized into thread blocks, and each thread
has a global thread block index, and a local thread index within its thread block.

A kernel is defined using the attributes(global) specifier on the subroutine statement;
a kernel is called using special chevron syntax to specify the number of thread blocks and
threads within each thread block:

! Kernel definition
attributes(global) subroutine ksaxpy(n, a, x, y)
 real, dimension(*) :: x,y
 real, value :: a
 integer, value :: n, i
 i = (blockidx%x-1) * blockdim%x + threadidx%x
 if(i <= n) y(i) = a * x(i) + y(i)
end subroutine

! Host subroutine
subroutine solve(n, a, x, y)
 real, device, dimension(*) :: x, y
 real :: a
 integer :: n
 ! call the kernel
 call ksaxpy<<<n/64, 64>>>(n, a, x, y)
end subroutine

In this case, the call to the kernel ksaxpy specifies n/64 thread blocks, each with 64
threads. Each thread is assigned a thread block index accessed through the built-in
blockidx variable, and a thread index accessed through threadidx. In this example,
each thread performs one iteration of the common SAXPY loop operation.

2.2 Thread Blocks

Each thread is assigned a thread block index accessed through the built-in blockidx
variable, and a thread index accessed through threadidx. The thread index may be a one-,
two-, or three-dimensional index. In CUDA Fortran, the thread index for each dimension
starts at one. A unique thread ID is assigned to each thread, computed from the thread index.

10 CUDA Fortran Programming Guide and Reference

For a one-dimensional thread block, the thread index is equal to the thread ID. For a two-
dimensional thread block of size (Dx,Dy), the thread ID is equal to (x+Dx(y-1)). For a three-
dimensional thread block of size (Dx,Dy,Dz), the thread ID is (x+Dx(y-1+Dy(z-1)).

Threads in the same thread block may cooperate by using shared memory, and by
synchronizing at a barrier using the SYNCTHREADS() intrinsic. Each thread in the block
waits at the call to SYNCTHREADS()until all threads have reached that call. The shared
memory acts like a low-latency, high bandwidth software managed cache memory. Currently,
the maximum number of threads in a thread block is 512.

A kernel may be invoked with many thread blocks, each with the same thread block size. The
thread blocks are organized into a one- or two-dimensional grid of blocks, so each thread has
a thread index within the block, and a block index within the grid. When invoking a kernel,
the first argument in the chevron <<<>>> syntax is the grid size, and the second argument is
the thread block size. Thread blocks must be able to execute independently; two thread
blocks may be executed in parallel or one after the other, by the same core or by different
cores.

2.3 Memory Hierarchy

CUDA Fortran programs have access to several memory spaces. On the host side, the host
program can directly access data in the host main memory. It can also directly copy data to
and from the device global memory; such data copies require DMA access to the device, so
are slow relative to the host memory. The host can also set the values in the device constant
memory, again implemented using DMA access.

On the device side, data in global device memory can be read or written by all threads. Data
in constant memory space is initialized by the host program; all threads can read data in
constant memory. Accesses to constant memory are typically faster than accesses to global
memory, but it is read-only to the threads and limited in size. Threads in the same thread
block can access and share data in shared memory; data in shared memory has a lifetime of
the thread block. Each thread can also have private local memory; data in thread local
memory may be implemented as processor registers or may be allocated in the global device
memory; best performance will often be obtained when thread local data is limited to a small
number of scalars that can be allocated as processor registers.

2.4 Subroutine / Function Qualifiers

A subroutine or function in CUDA Fortran has an additional attribute, designating whether it
is executed on the host or on the device, and if the latter, whether it is a kernel, called from the
host, or called from another device subprogram. A subprogram declared with
attributes(host), or with the host attribute by default, is called a host subprogram. A
subprogram declared with attributes(global) or attributes(device) is called
a device subprogram. A subroutine declared with attributes(global) is also called a
kernel subroutine.

2.4.1 Attributes(host)
The host attribute, specified on the subroutine or function statement, declares that the
subroutine or function is to be executed on the host. Such a subprogram can only be called

CUDA Fortran Programming Guide and Reference 11

from another host subprogram. The default is attributes(host), if none of the host,
global, or device attributes is specified.

2.4.2 Attributes(global)
The global attribute may only be specified on a subroutine statement; it declares that the
subroutine is a kernel subroutine, to be executed on the device, and may only be called from
the host using a kernel call containing the chevron syntax and runtime mapping parameters.

2.4.3 Attributes(device)
The device attribute, specified on the subroutine or function statement, declares that the
subprogram is to be executed on the device; such a routine must be called from a subprogram
with the global or device attribute. A single subroutine or function may have both
device and host attributes; in this case, the subprogram is compiled once for the device
and once for the host. Such a subprogram is both a device and a host subprogram.

2.4.4 Restrictions
A device subprogram must not be recursive.

A device subprogram must not contain variables with the SAVE attribute, or with data
initialization.

A kernel subroutine may not also have the device or host attribute.

A device subprogram must not have optional arguments. Dummy arguments in a device
subprogram must not be assumed-shape arrays, and must not have the pointer attribute.

Calls to a kernel subroutine must specify the execution configuration, as in section 2.7. Such
a call is asynchronous, that is, the host routine making the call will continue execute before
the device has completed its execution of the kernel subroutine.

Arguments to a kernel subroutine are currently limited to a total size of 256 bytes.

Device subprograms may not be contained in a host subroutine or function, and may not
contain any subroutines or functions.

2.5 Variable Qualifiers

Variables in CUDA Fortran have a new attribute, which declares in which memory the data is
allocated. By default, variables declared in modules or host subprograms will be allocated in
the host main memory. At most one of the device, constant, shared, or pinned
attributes may be specified for a variable.

2.5.1 Attributes(device)
A variable with the device attribute is called a device variable, and will be allocated in the
device global memory. If declared in a module, the variable may be accessed by any device
subprogram in that module, and by any host subprogram in the module or that uses the
module. If declared in a host subprogram, the variable may be accessed by that subprogram
or subprograms contained in that subprogram. A device array may be an explicit-shape array,
an allocatable array, or, in a host subprogram, an assumed-shape dummy array. An
allocatable device variable has a dynamic lifetime, from when it is allocated until it is
deallocated. Other device variables have a lifetime of the entire application.

12 CUDA Fortran Programming Guide and Reference

2.5.2 Attributes(constant)
A variable with the constant attributes is called a device constant variable. Device
constant variables are allocated in the device constant memory space. If declared in a module,
the variable may be accessed by any device subprogram in that module, and by any host
subprogram in the module or that uses the module. Device constant data may not be assigned
or modified in any device subprogram, but may be modified in host subprograms. Device
constant variables may not be allocatable, and have a lifetime of the entire application.

2.5.3 Attributes(shared)
A variable with the shared attributed is called a device shared variable or a shared variable.
A shared variable may only be declared in a device subprogram, and may only be accessed
within that subprogram, or by other device subprograms to which it is passed as an argument.
A shared variable may not be data initialized. A shared variable is allocated in the device
shared memory for a thread block, and has a lifetime of the thread block. It can be read or
written by all threads in the block, though a write in one thread is only guaranteed to be
visible to other threads after the next call to the SYNCTHREADS() intrinsic.

2.5.4 Attributes(pinned)
A variable with the pinned attributes is called a pinned variable. A pinned variable must be
an allocatable array. When a pinned variable is allocated, it will be allocated in host page-
locked memory. The advantage of using pinned variables is that copies from page-locked
memory to device memory are faster than copies from normal paged host memory. Some
operating systems or installations may restrict the use, availability, or size of page-locked
memory; if the allocation in page-locked memory fails, the variable will be allocated in the
normal host paged memory.

2.6 Datatypes in Device Subprograms

The following intrinsic datatypes are allowed in device subprograms and device data:

Type Kind

integer 1,2,4,8

logical 1,2,4,8

real 4,8

double precision equivalent to real(kind=8)

complex 4,8

character(len=1) 1

Derived types may contain members with these intrinsic datatypes or other allowed derived
types.

CUDA Fortran Programming Guide and Reference 13

2.7 Predefined Variables in Device Subprograms

Device subprograms have access to block and grid indices and dimensions through several
builtin read-only variables. These variables are of type dim3; the module cudafor will
define the derived type dim3 as follows:

 type(dim3)
 integer(kind=4) :: x,y,z
 end type

The variable threadidx contains the thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components will have
the value one.

The variable blockdim contains the dimensions of the thread block; blockdim will have
the same value for all thread blocks in the same grid.

The variable blockidx contains the block index within the grid; as with threadidx, for
one-dimensional grids, blockidx%y will have the value one. The value of blockidx%z
is always one.

The variable griddim contains the dimensions of the grid; the value of griddim%z is
always one.

These four variables are not accessible in host subprograms.

An additional builtin read-only variable is warpsize, declared to be type integer. Threads
are executed in groups of 32, called warps; warpsize contains the number of threads in a
warp.

2.8 Execution Configuration

A call to a kernel subroutine must specify an execution configuration. The execution
configuration defines the dimensionality and extent of the grid and thread blocks that will
execute the subroutine. It may also specify a dynamic shared memory extent, in bytes, and a
stream identifier, to support concurrent stream execution on the device.

A kernel subroutine call looks like

 call kernel<<<grid,block[,bytes[,streamid]]>>>(arg1,arg2,…)

where grid and block are either integer expressions (for one-dimensional grids and thread
blocks), or are type(dim3), for one- or two-dimensional grids and one-, two-, or three-
dimensional thread blocks. If grid is type(dim3), the value of grid%z must be one, and
block%x and block%y must be equal to or greater than one. If block is type(dim3),
the value of each component must be equal to or greater than one, and the product of the
component values must be less than or equal to 512.

The value of bytes must be an integer; it specifies the number of bytes of shared memory to
be allocated for each thread block, in addition to the statically allocated shared memory. This
memory will be used for the assumed-size shared variables in the thread block; see Section
3.2.3. If not specified, its value is treated as zero.

The value of streamid must be an integer greater than or equal to zero; it specifies the
stream to which this call is associated.

14 CUDA Fortran Programming Guide and Reference

2.9 Asynchronous concurrent execution

There are two components to asynchronous concurrent execution with CUDA Fortran.

2.9.1 Concurrent Host and Device Execution
When a host subprogram calls a kernel subroutine, the call actually returns to the host
program before the kernel subroutine begins execution. The call can be treated as a kernel
launch operation, where the launch actually corresponds to placing the kernel on a queue for
execution by the device. In this way, the host can continue executing, including calling or
queueing more kernels for execution on the device. By calling the runtime routine
cudaThreadSynchronize,the host program can synchronize and wait for all previously
launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases
where the host program reads or modifies device or constant data, the host program should
synchronize with the device to avoid erroneous results.

2.9.2 Concurrent Stream Execution
Operations involving the device, including kernel execution and data copies to and from
device memory, are implemented using stream queues. An operation is placed at the end of
the stream queue, and will only be initiated when all previous operations on that queue have
been completed.

An application can manage more concurrency by using multiple streams. Each user-created
stream manages its own queue; operations on different stream queues may execute out-of-
order with respect to when they were placed on the queues, and may execute concurrently
with each other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is
special in that operations on the stream zero queue will begin only after all preceding
operations on all queues are complete, and no subsequent operations on any queue will begin
until the stream zero operation is complete.

2.10 Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename uses a CUDA
Fortran extension. The .cuf extension specifies that the file is a free-format CUDA Fortran
program; the .CUF extension may also be used, in which case the program is processed by
the preprocessor before being compiled. To compile a fixed-format program, add the
command line option –Mfixed. CUDA Fortran extensions can be enabled in any Fortran
source file by adding the –Mcuda command line option.

2.11 Emulation Mode

PGI Fortran compilers support an emulation mode for program development on workstations
or systems without a CUDA-enabled GPU and for debugging. To build a program using
emulation mode, compile and link with the –Mcuda=emu command line option. In
emulation mode, the device code is compiled for and runs on the host, allowing the
programmer to use a host debugger.

CUDA Fortran Programming Guide and Reference 15

It’s important to note that the emulation is far from exact. In particular, emulation mode may
execute a single thread block at a time. This will not expose certain errors, such as memory
races. In emulation mode, the host floating point units and intrinsics are used, which may
produce slightly different answers than the device units and intrinsics.

CUDA Fortran Programming Guide and Reference 17

3 Reference
This chapter is the CUDA Fortran Language Reference.

3.1 New Subroutine and Function Attributes

CUDA Fortran adds new attributes to subroutines and functions. This chapter describes how
to specify the new attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device
attribute. A Function may have the host or device attribute, or both. These attributes are
specified using the attributes(attr) prefix on the Subroutine or Function statement; if
there is no attributes prefix on the subprogram statement, then default rules are used, as
described below.

3.1.1 Host Subroutines and Functions
The host attribute may be explicitly specified on the Subroutine or Function statement as

 attributes(host) subroutine sub(…)
 attributes(host) integer function func(…)
 integer attributes(host) function func(…)

The host attributes prefix may be preceded or followed by any other allowable subroutine or
function prefix specifiers (recursive, pure, elemental, function return datatype). A subroutine
or function with the host attribute is called a host subroutine or function, or a host
subprogram. A host subprogram is compiled for execution on the host processor. A
subprogram with no attributes prefix has the host attribute by default.

3.1.2 Global Subroutines
The global attribute may be explicitly specified on the Subroutine statement as

 attributes(global) subroutine sub(…)

Functions may not have the global attribute. A subroutine with the global attribute is called a
kernel subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other
subroutine prefixes are allowed. A kernel subroutine is compiled as a kernel for execution on
the device, to be called from a host routine using an execution configuration. A kernel
subroutine may not be contained in another subroutine or function, and may not contain any
other subprogram.

3.1.3 Device Subroutines and Functions
The device attribute may be explicitly specified on the Subroutine or Function statement as

 attributes(device) subroutine sub(…)
 attributes(device) datatype function func(…)
 datatype attributes(device) function func(…)

A subroutine or function with the device attribute may not be recursive, pure, or elemental, so
no other subroutine or function prefixes are allowed, except for the function return datatype.
A subroutine or function with the device or kernel attribute is called a device subprogram. A
device subprogram is compiled for execution on the device. A subroutine or function with the

18 CUDA Fortran Programming Guide and Reference

device attribute must appear within a Fortran module, and may only be called from device
subprograms in the same module.

3.1.4 Device and Host Subroutines and Functions
A subroutine or function may have both the device and host attributes, if explicitly specified
on the Subroutine or Function statement:

 attributes(device,host) subroutine sub(…)
 attributes(device,host) datatype function func(…)
 datatype attributes(host,device) function func(…)

The device and host attributes keywords may appear in either order. A subprogram that has
both device and host attributes must appear within a Fortran module. It will be compiled both
for execution on the device and for execution on the host. It may be called from device
subprograms in the same Fortran module, in which case the device code will be called. It may
also be called from any host subprogram in the same module, or any subprogram that uses the
module or is contained in a subprogram that uses the module. Subprograms with both device
and host attributes must satisfy all the restrictions on device subprograms below, and must not
refer to any data that is only accessible from device subprograms, such as the threadidx or
blockidx builtin variables.

3.1.5 Restrictions on Device Subprograms
A subroutine or function with the device or global attribute must satisfy the following
restrictions:

 It may not be recursive, nor have the recursive prefix on the subprogram statement

 It may not be pure or elemental, nor have the pure or elemental prefix on the
subprogram statement

 It may not contain another subprogram

 It may not be contained in another subroutine or function

See also Section 3.6 on page 24.

3.2 Variable attributes

CUDA Fortran adds new attributes for variables and arrays. This section describes how to
specify the new attributes and their meaning and restriction.

Variables declared in a device subprogram may have one of four attributes: they may be
declared to be in device global memory, in constant memory space, in the thread block shared
memory, or in thread local memory. Variables in modules may be declared to be in device
global memory or constant memory space. CUDA Fortran also adds a new attribute for
allocatable arrays in host memory; the array may be declared to be in pinned memory, that is,
in page-locked host memory space. The advantage of using pinned memory is that transfers
between the device and pinned memory are faster and can be asynchronous.

3.2.1 Device data
A variable or array with the device attribute is defined to reside in the device global memory.
The device attribute can be specified with the attributes statement, or as an attribute on
the type declaration statement. The following example declares two arrays, a and b, to be
device arrays of size 100.

CUDA Fortran Programming Guide and Reference 19

 real :: a(100)
 attributes(device) :: a
 real, device :: b(100)

An allocatable device array will dynamically allocate device global memory. Device
variables and arrays may not have the Pointer or Target attributes. Device variables and
arrays may appear in modules, but may not be in a Common block or an Equivalence
statement. Members of a derived type may not have the device attribute. Device variables
and arrays may be passed as actual arguments to host and device subprograms; in that case,
the subprogram interface must be explicit (in the Fortran sense), and the matching dummy
argument must also have the device attribute. Device variables and arrays declared in a host
subprogram cannot have the Save attribute.

In host subprograms, device data may only be used in the following manner:

 In declaration statements

 In Allocate and Deallocate statements

 As an argument to the Allocated intrinsic function

 As the source or destination in a data transfer assignment statement

 As an actual argument to a kernel subroutine

 As an actual argument to another host subprogram or runtime API call

 As a dummy argument in a host subprogram

A device array may have the allocatable attribute, or may have adjustable extent.

3.2.2 Constant data
A variable or array with the constant attribute is defined to reside in the device constant
memory space. The constant attribute can be specified with the attributes statement, or
as an attribute on the type declaration statement. The following example declares two arrays,
c and d, to be constant arrays of size 100.

 real :: c(100)
 attributes(constant) :: c
 real, constant :: d(100)

Constant data may not have the Pointer, Target, or Allocatable attributes. Constant variables
and arrays may appear in modules, but may not be in a Common block or an Equivalence
statement. Members of a derived type may not have the constant attribute. Arrays with the
constant attribute must have fixed size. Constant variables and arrays may be passed as actual
arguments to host and device subprograms, as long as the subprogram interface is explicit,
and the matching dummy argument also has the constant attribute. Within device
subprograms, variables and arrays with the constant attribute may not be assigned or
modified. Within host subprograms, variables and arrays with the constant attribute may be
read and written.

In host subprograms, data with the constant attribute may only be used in the following
manner:

 In declaration statements

 As the source or destination in a data transfer assignment statement

20 CUDA Fortran Programming Guide and Reference

 As an actual argument to another host subprogram

 As a dummy argument in a host subprogram

3.2.3 Shared data
A variable or array with the shared attribute is defined to reside in the shared memory space
of a thread block. A shared variable or array may only be declared and used inside a device
subprogram. The shared attribute can be specified with the attributes statement, or as an
attribute on the type declaration statement. The following example declares two arrays, s and
t, to be shared arrays of size 100.

 real :: c(100)
 attributes(shared) :: c
 real, shared :: d(100)

Shared data may not have the Pointer, Target, or Allocatable attributes. Shared variables may
not be in a Common block or Equivalence statement. Members of a derived type may not
have the shared attribute. Shared variables and arrays may be passed as actual arguments to
from a device subprogram to another device subprogram, as long as the interface is explicit
and the matching dummy argument has the shared attribute.

Shared arrays that are not dummy arguments may be declared as assumed-size arrays; that is,
the last dimension of a shared array may have an asterisk as its upper bound:

 real, shared :: x(*)

Such an array has special significance. Its size is determined at run time by the call to the
kernel. When the kernel is called, the value of the bytes argument in the execution
configuration is used to specify the number of bytes of shared memory that is dynamically
allocated for each thread block. This memory is used for the assumed-size shared memory
arrays in that thread block; if there is more than one assumed-size shared memory array, they
are all implicitly equivalenced, starting at the same shared memory address. Programmers
will have to take this into account when coding.

If a shared array is not a dummy argument and not assumed-size, it must be fixed size.

3.2.4 Value dummy arguments
In device subprograms, following the rules of Fortran, dummy arguments are passed by
default by reference. This means the actual argument must be stored in device global
memory, and the address of the argument is passed to the subprogram. Scalar arguments can
be passed by value, as is done in C, by adding the value attribute to the variable declaration.

 attributes(global) subroutine madd(a, b, n)
 real, dimension(n,n) :: a, b
 integer, value :: n

In this case, the value of n can be passed from the host without needing to reside in device
memory. The variable arrays corresponding to the dummy arguments a and b must be set up
before the call to reside on the device.

3.2.5 Pinned arrays
An allocatable array with the pinned attribute will be allocated in special page-locked host
memory, when such memory is available. An array with the pinned attribute may be declared
in a module or in a host subprogram. The pinned attribute can be specified with the

CUDA Fortran Programming Guide and Reference 21

attributes statement, or as an attribute on the type declaration statement. The following
example declares two arrays, p and q, to be pinned allocatable arrays.

 real :: p(:)
 allocatable :: p
 attributes(pinned) :: p
 real, allocatable, pinned :: q(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether the
interface is explicit, or whether the dummy argument has the pinned and allocatable attributes.
Where the array is deallocated, the declaration for the array must still have the pinned
attribute, or the deallocation may fail.

3.3 Allocating Device and Pinned Arrays

This section describes extensions to the Allocate statement, specifically for dynamically
allocating device arrays and host pinned arrays, and other supported methods for allocating
device memory.

3.3.1 Allocating Device Memory
Device arrays can have the allocatable attribute. These arrays are dynamically allocated in
host subprograms using the Allocate statement, and dynamically deallocated using the
Deallocate statement. If a device array declared in a host subprogram does not have the Save
attribute, it will be automatically deallocated when the subprogram returns.

 real, allocatable, device :: b(:)
 allocate(b(5024),stat=istat)
 …
 if(allocated(b)) deallocate(b)

Scalar variables can be allocated on the device using the Fortran 2003 allocatable scalar
feature. To use these, declare and initialize the scalar on the host as:

 integer, allocatable, device :: ndev
 allocate(ndev)
 ndev = 100

The language also supports the ability to create the equivalent of automatic and local device
arrays without using the allocate statement. These arrays will also have a lifetime of the
subprogram as is usual with the Fortran language:

 subroutine vfunc(a,c,n)
 real, device :: adev(n)
 real, device :: atmp(4)
 …
 end subroutine vfunc ! adev and atmp are deallocated

3.3.2 Allocating Device Memory Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran
interfaces to the CUDA memory management runtime routines are provided. These functions
return memory which will bypass certain Fortran allocatable properties such as automatic

22 CUDA Fortran Programming Guide and Reference

deallocation, and thus the arrays are treated more like C malloc’ed areas. Mixing standard
Fortran allocate/deallocate with the runtime Malloc/Free for a given array is not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported
intrinsic data-types, and cudaFree can be used to free it:

 real, allocatable, device :: v(:)
 istat = cudaMalloc(v, 100)
 …
 istat = cudaFree(v)

See section 4.4 for a complete list of the memory management runtime routines

3.3.3 Allocating Pinned Memory
Allocatable arrays with the pinned attribute are dynamically allocated using the Allocate
statement. The compiler will generate code to allocate the array in host page-locked memory,
if available. If no such memory space is available, or if it is exhausted, the compiler will
allocate the array in normal paged host memory. Otherwise, pinned allocatable arrays work
and act like any other allocatable array on the host.

 real, allocatable, pinned :: p(:)
 allocate(p(5000),stat=istat)
 …
 if(allocated(p)) deallocate(p)

To determine whether or not the allocation from page-locked memory was successful, an
additional PINNED keyword is added to the allocate statement. It returns a logical success
value.

 logical plog
 allocate(p(5000), stat=istat, pinned=plog)
 if (.not. plog) then
 . . .

3.4 Data transfer between host and device memory

3.4.1 Data Transfer Using Assignment Statements
Variables and arrays can be copied from the host memory to the device memory by using
simple assignment statements in host subprograms. An assignment statement where the left
hand side is a device variable or device array or array section, and the right hand is a host
variable or host array or array section, will copy data from the host memory to the device
global memory. An assignment statement where the left hand side is a host variable or host
array or array section, and the right hand side is a device variable or device array or array
section, will copy data from the device global memory to the host memory. An assignment
statement with a device variable or device array or array section on both sides of the
assignment statement will copy data between two device variables or arrays.

Similarly, simple assignment statements can be used to copy or assign variables or arrays with
the constant attribute.

Note that using assignment statements to read or write device or constant data implicitly uses
CUDA stream zero. This means such data copies are synchronous, meaning the data copy
will wait until all previous kernels and data copies complete.

CUDA Fortran Programming Guide and Reference 23

3.4.2 Implicit Data Transfer in Expressions
Some limited data transfer can be enclosed within expressions. In general, the rule of thumb
is all arithmetic or operations must occur on the host, which normally only allows one device
array to appear on the right-hand-side of an expression. Compiler-generated temporary arrays
will be generated to accommodate the host copies of device data as needed. For instance, if a,
b, and c are conforming host arrays, and adev, bdev, and cdev are conforming device arrays,
the following expressions are legal:

 a = adev
 adev = a
 b = a + adev
 c = x * adev + b

The following expressions are not legal as they either promote a false impression of where the
actual computation occurs, or would be more efficient written in another way, or both:

 c = adev + bdev
 adev = adev + a
 b = sqrt(adev)

Elemental transfers are supported by the language but will perform poorly. Array slices are
also supported, and their performance is dependent on the size of the slice, amount of
contiguous data in the slices, and the implementation.

3.4.3 Data Transfer Using Runtime Routines
For programmers comfortable with the CUDA C programming environment, Fortran
interfaces to the CUDA memory management runtime routines are provided. These functions
can transfer data either from the host to device, device to host, or from one device array to
another.

The cudaMemcpy function can be used to copy data between the host and the GPU:

 real, device :: wrk(1024)
 real cur(512)
 istat = cudaMemcpy(wrk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routines is
optional in Fortran since the attributes of the arrays are explicitly declared. Counts expressed
in arguments to the Fortran runtime routines are expressed in terms of data type elements, not
bytes. See section 4.4 for a complete list of the memory management runtime routines

3.5 Invoking a kernel subroutine

A call to a kernel subroutine must give the execution configuration for the call. The execution
configuration gives the size and shape of the grid and thread blocks that will execute the
function, as well as the amount of shared memory to use for assumed-size shared memory
arrays, and the associated stream.

The execution configuration is specified after the subroutine name in the call statement; it has
the form:

24 CUDA Fortran Programming Guide and Reference

 <<< grid, block, bytes, stream >>>

 grid is an integer, or of type(dim3). If it is type(dim3), the value of
grid%z must be one. The product grid%x*grid%y gives the number of thread
blocks to launch. If grid is an integer, it is converted to dim3(grid,1,1).

 block is an integer, or of type(dim3). If it is type(dim3), the number of
threads per thread block is block%x*block%y*block%z, which must be less
than the maximum supported by the device. If block is an integer, it is converted to
dim3(block,1,1).

 bytes is optional; if present, it must be a scalar integer, and specifies the number of
bytes of shared memory to be allocated for each thread block to use for assumed-size
shared memory arrays. See Section 3.2.3 on page 20. If not specified, the value zero
is used.

 stream is optional; if present, it must be an integer, and have a value of zero, or a
value returned by a call to cudaStreamCreate. See Section 4.5 on page 40. It
specifies the stream to which this call is enqueued.

For instance, a kernel subroutine

 attributes(global) subroutine sub(a)

can be called like:

 call sub <<< DG, DB >>> (A)

The function call will fail if the grid or block arguments are greater than the maximum
sizes allowed, or if bytes is greater than the shared memory available, allowing for static
shared memory declared in the kernel and for other dedicated uses, such as the function
arguments and execution configuration arguments.

3.6 Device code

3.6.1 Datatypes allowed
Variables and arrays with the device, constant, or shared attributes, or declared in device
subprograms, are limited to the types described in this section. They may have any of the
intrinsic datatypes in the following table.

Type Kind

integer 1,2,4 (default),8

logical 1,2,4 (default),8

real 4 (default),8

double precision equivalent to real(kind=8)

complex 4 (default),8

character(len=1) 1 (default)

CUDA Fortran Programming Guide and Reference 25

Additionally, they may be of derived type, where the members of the derived type have one of
the allowed intrinsic datatypes, or another allowed derived type.

The system module cudafor includes definitions of the derived type dim3, defined as

 type(dim3)
 integer(kind=4) :: x,y,z
 end type

3.6.2 Builtin variables
The system module cudafor declares several predefined variables. These variables are read-
only. They are declared as follows:

 type(dim3) :: threadidx, blockdim, blockidx, griddim
 integer(4) :: warpsize

The variable threadidx contains the thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components will have
the value one.

The variable blockdim contains the dimensions of the thread block; blockdim will have
the same value for all threads in the same grid; for one- or two-dimensional thread blocks, the
blockdim%y and/or blockdim%z components will have the value one

The variable blockidx contains the block index within the grid; as with threadidx, for
one-dimensional grids, blockidx%y will have the value one. The value of blockidx%z
is always one. The value of blockidx will be the same for all threads in the same thread
block.

The variable griddim contains the dimensions of the grid; the value of griddim%z is
always one. The value of griddim will be the same for all threads in the same grid; the
value of griddim%z is always one; the value of griddim%y is one for one-dimensional
grids.

The variables threadidx, blockdim, blockidx, and griddim are available only in
device subprograms.

The variable warpsize contains the number of threads in a warp. It has constant value,
currently defined to be 32.

3.6.3 Fortran intrinsics
This section lists the Fortran intrinsic functions allowed in device subprograms.

3.6.3.1 Fortran Numeric and Logical Intrinsics

name argument datatypes

abs integer, real, complex

aimag complex

aint real

anint real

ceiling real

26 CUDA Fortran Programming Guide and Reference

cmplx real or (real,real)

conjg complex

dim integer, real

floor real

int integer, real, complex

logical logical

max integer, real

min integer, real

mod integer, real

modulo integer, real

nint real

real integer, real, complex

sign integer, real

3.6.3.2 Fortran Mathematical Intrinsics

name argument datatypes

acos real

asin real

atan real

atan2 (real,real)

cos real, complex

cosh real

exp real, complex

log real, complex

log10 real

sin real, complex

sinh real

sqrt real, complex

tan real

tanh real

CUDA Fortran Programming Guide and Reference 27

3.6.3.3 Fortran Numeric Inquiry Intrinsics

name argument datatypes

bit_size integer

digits integer, real

epsilon real

huge integer, real

maxexponent real

minexponent real

precision real, complex

radix integer, real

range integer, real, complex

selected_int_kind integer

selected_real_kind (integer,integer)

tiny real

3.6.3.4 Fortran Bit Manipulation Intrinsics

name argument datatypes

btest integer

iand integer

ibclr integer

ibits integer

ibset integer

ieor integer

ior integer

ishft integer

ishftc integer

not integer

mvbits integer

28 CUDA Fortran Programming Guide and Reference

3.6.3.5 Fortran Real Manipulation Intrinsics

name argument datatypes

exponent real

fraction real

nearest real

rrspacing real

scale (real,integer)

set_exponent (real,integer)

spacing real

3.6.3.6 Fortran Vector and Matrix Multiplication Intrinsics

name argument datatypes

dot_product integer, real, complex

matmul integer, real, complex

3.6.3.7 Fortran Reduction Intrinsics

name argument datatypes

all logical

any logical

count logical

maxloc integer, real

maxval integer, real

minloc integer, real

minval integer, real

product integer, real, complex

sum integer, real, complex

CUDA Fortran Programming Guide and Reference 29

3.6.3.8 Fortran Random Number Intrinsics

name argument datatypes

random_number real

random_seed integer

3.6.4 New Intrinsic Functions
This section describes the new intrinsic functions and subroutines supported in device
subprograms.

3.6.4.1 SYNCTHREADS

The syncthreads intrinsic subroutine acts as a barrier synchronization for all threads in a
single thread block; it has no arguments:

 call syncthreads()

Each thread in a thread block will pause at the syncthreads call until all threads have
reached that call. If any thread in a thread block issues a call to syncthreads, all threads
must also reach and execute the same call statement, or the kernel will fail to complete
correctly.

3.6.4.2 GPU_TIME

The gpu_time intrinsic returns the value of the clock cycle counter on the GPU. It has a
single argument:

 integer(8) clock
 call gpu_time(clock)

The argument to gpu_time is set to the value of the clock cycle counter. . The clock
frequency can be determined by calling cudaGetDeviceProperties; see Section 4.2.4.

3.6.4.3 ALLTHREADS

The allthreads function is a warp-vote operation; it is only supported by devices with
compute capability 1.2 and higher. It has a single scalar logical argument:

 if(allthreads(a(i)<0.0)) allneg = .true.

The function allthreads evaluates its argument for all threads in the current warp. The
value of the function is .true. only if the value of the argument is .true. for all threads
in the warp.

3.6.4.4 ANYTHREAD

The anythread function is a warp-vote operation; it is only supported by devices with
compute capability 1.2 and higher. It has a single scalar logical argument:

 if(anythread(a(i)<0.0)) allneg = .true.

The function anythread evaluates its argument for all threads in the current warp. The
value of the function is .false. only if the value of the argument is .false. for all
threads in the warp.

30 CUDA Fortran Programming Guide and Reference

3.6.5 Atomic Functions
The atomic functions read and write the value of their first operand, which must be a variable
or array element in shared memory (with the shared attribute) or in device global memory
(with the device attribute). Atomic functions are only supported by devices with compute
capability 1.1 and higher. Compute capability 1.2 or higher is required if the first argument
has the shared attribute. The atomic functions will return correct values even if multiple
threads in the same or different thread blocks try to read and update the same location without
any synchronization.

3.6.5.1 Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine
that value with the value of the second argument, depending on the function, and store the
combined value back to the first argument location. Both arguments must be of type
integer(kind=4). These functions are:

function return value additional atomic update

atomicadd(mem, value) mem mem = mem + value

atomicsub(mem, value) mem mem = mem – value

atomicmax(mem, value) mem mem = max(mem,value)

atomicmin(mem, value) mem mem = min(mem,value)

atomicand(mem, value) mem mem = iand(mem,value)

atomicor(mem, value) mem mem = ior(mem,value)

atomicxor(mem, value) mem mem = ieor(mem,value)

atomicexch(mem, value) mem mem = value

3.6.5.2 Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also compare the
first argument with the second argument, and stores a new value back to the first argument
location, depending on the result of the comparison. These functions are intended to
implement circular counters, counting up to or down from a maximum value specified in the
second argument. Both arguments must be of type integer(kind=4).

These functions are:

CUDA Fortran Programming Guide and Reference 31

function
return
value

additional atomic update

atomicinc(mem, imax) mem

if (mem<imax) then
 mem = mem+1
else
 mem = 0
endif

atomicdec(mem, imax) mem

if (mem<imax .and. mem>0) then
 mem = mem-1
else
 mem = imax
endif

3.6.5.3 Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares the
first argument with the second argument, and atomically stores a new value back to the first
argument location if the first and second argument are equal All three arguments must be of
type integer(kind=4).

The function is:

function return
value

additional atomic update

atomiccas(mem,comp,val) mem if (mem == comp) then
 mem = val
endif

3.6.6 Restrictions

This section lists restrictions on statements and features that can appear in device
subprograms.

 Objects with the Pointer and Allocatable attribute are not allowed

 Automatic arrays must be fixed size

 Assumed-shape array arguments are not allowed

 Optional arguments are not allowed

 Objects with character type must have LEN=1; character substrings are not supported

 Recursive subroutines and functions are not allowed

 STOP and PAUSE statements are not allowed

 Input/Output statements are not allowed: READ, WRITE, PRINT, FORMAT,
NAMELIST, OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE, INQUIRE

 Alternate return specifications are not allowed

32 CUDA Fortran Programming Guide and Reference

 ENTRY statements are not allowed

 Floating point exception handling is not supported

 Fortran intrinsic functions not listed in Section 3.6.3 are not supported

 Subroutine and function calls are supported only if they can be inlined

 Cray pointers are not supported

3.7 Host code

3.7.1 SIZEOF Intrinsic
Host subprograms may use the new sizeof intrinsic function. A call to sizeof(A),
where A is a variable or expression, will return the number of bytes required to hold the value
of A.

 integer(kind=4) :: i, j
 j = sizeof(i) ! this assigns the value 4 to j

CUDA Fortran Programming Guide and Reference 33

4 Runtime API
The system module cudafor defines the interfaces to the Runtime API routines.

Most of the runtime API routines are integer functions that return an error code; they return a
value of zero if the call was successful, and a nonzero value if there was an error. See Section
4.7 on page 42 to interpret the error codes.

4.1 Initialization

No explicit initialization is required; the runtime will initialize and connect to the device the
first time a runtime routine is called, or a device array is allocated. This initialization can add
some overhead, so programmers need to be aware of this when doing timing runs.

4.2 Device Management

4.2.1 cudaGetDeviceCount
 integer function cudaGetDeviceCount(numdev)
 integer, intent(out) :: numdev

cudaGetDeviceCount assigns the number of available devices to its first argument.

4.2.2 cudaSetDevice
 integer function cudaSetDevice(devnum)
 integer, intent(in) :: devnum

cudaSetDevice selects the device to associate with this host thread.

4.2.3 cudaGetDevice
 integer function cudaGetDevice(devnum)
 integer, intent(out) :: devnum

cudaGetDevice assigns the device number associated with this host thread to its first
argument.

4.2.4 cudaGetDeviceProperties
 integer function cudaGetDeviceProperties(prop, devnum)
 type(cudadeviceprop), intent(out) :: prop
 integer, intent(in) :: devnum

cudaGetDeviceProperties returns the properties of a given device.

4.2.5 cudaChooseDevice
 integer function cudaChooseDevice (devnum, prop)
 integer, intent(out) :: devnum
 type(cudadeviceprop), intent(in) :: prop

cudaChooseDevice assigns the device number that best matches the properties given in
prop to its first argument.

34 CUDA Fortran Programming Guide and Reference

4.3 Thread Management

4.3.1 cudaThreadSynchronize
 integer function cudaThreadSynchronize()

cudaThreadSynchronize blocks execution of the host subprogram until all preceding
kernels and operations are complete. It may return an error condition if one of the preceding
operations fails.

4.3.2 cudaThreadExit
 integer function cudaThreadExit()

cudaThreadExit explicitly cleans up all runtime-related CUDA resources associated with
the host thread. Any subsequent CUDA calls or operations will reinitialize the runtime.
Calling cudaThreadExit is optional; it is implicitly called when the host thread exits.

4.4 Memory Management

Many of the memory management routines can take device arrays as arguments. Some can
also take C types, provided through the Fortran 2003 iso_c_binding module, as arguments to
simplify interfacing to existing CUDA C code. CUDA Fortran has extended the F2003
derived type TYPE(C_PTR) by providing a C device pointer, defined in the cudafor module,
as TYPE(C_DEVPTR). Consistent use of TYPE(C_PTR) and TYPE(C_DEVPTR), as well
as consistency checks between Fortran device arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of a TYPE(C_DEVPTR) by
using an extension of the iso_c_binding subroutine c_f_pointer. Under CUDA Fortran,
c_f_pointer will take a TYPE(C_DEVPTR) as the first argument, an allocatable device array
as the second argument, a shape as the third argument, and in effect transfer the allocation to
the Fortran array. Similarly, there is also a function C_DEVLOC() defined which will create
a TYPE(C_DEVPTR) that holds the C address of the Fortran device array argument. Both of
these features are subject to change when, in the future, proper Fortran pointers for device
data are supported.

4.4.1 cudaMalloc
 integer function cudaMalloc(devptr, count)

cudaMalloc allocates data on the device. Devptr may be any allocatable, one-
dimensional device array of a supported type specified in section 3.6.1. The count is in
terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which case the count is
in bytes.

4.4.2 cudaMallocPitch
 integer function cudaMallocPitch(devptr, pitch, width,
height)

cudaMallocPitch allocates data on the device. Devptr may be any allocatable, two-
dimensional device array of a supported type specified in section 3.6.1. The width is in
terms of number of elements. The height is an integer. cudaMallocPitch may pad the
data, and the padded width is returned in the variable pitch. Devptr may also be of
TYPE(C_DEVPTR), in which case the integer values are expressed in bytes.

CUDA Fortran Programming Guide and Reference 35

4.4.3 cudaFree
 integer function cudaFree(devptr)

cudaFree deallocates data on the device. Devptr may be any allocatable device array of a
supported type specified in section 3.6.1. Or, devptr may be of TYPE(C_DEVPTR).

4.4.4 cudaMallocArray
 integer function cudaMallocArray(carray, cdesc, width,
height)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 integer :: width, height

cudaMallocArray allocates a data array on the device.

4.4.5 cudaFreeArray
 integer function cudaFreeArray(carray)
 type(cudaArrayPtr) :: carray

cudaFreeArray frees an array that was allocated on the device.

4.4.6 cudaMemset
 integer function cudaMemset(devptr, value, count)

cudaMemset sets a location or array to the specified value. Devptr may be any device
scalar or array of a supported type specified in section 3.6.1. The value must match in type
and kind. The count is in terms of elements. Or, devptr may be of TYPE(C_DEVPTR),
in which case the count is in term of bytes, and the lowest byte of value is used.

4.4.7 cudaMemset2D
 integer function cudaMemset2D(devptr, pitch, value, width,
height)

cudaMemset2D sets an array to the specified value. Devptr may be any device array of a
supported type specified in section 3.6.1. The value must match in type and kind. The
pitch, width, and height are in terms of elements. Or, devptr may be of
TYPE(C_DEVPTR), in which case the pitch, width, and height are in terms of
bytes, and the lowest byte of value is used.

4.4.8 cudaMemcpy
 integer function cudaMemcpy(dst, src, count, kdir)

cudaMemcpy copies data from one location to another. Dst and src may be any device or
host, scalar or array, of a supported type specified in section 3.6.1. The count is in terms of
elements. Kdir may be optional; see section 3.4.3. If it is specified, it must be one of the
defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), in which case the count is in term of bytes.

36 CUDA Fortran Programming Guide and Reference

4.4.9 cudaMemcpyAsync
 integer function cudaMemcpyAsync(dst, src, count, kdir,
stream)

cudaMemcpy copies data from one location to another. Dst and src may be any device or
host, scalar or array, of a supported type specified in section 3.6.1. The count is in terms of
elements. Kdir may be optional; see section 3.4.3. If it is specified, it must be one of the
defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, or
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), in which case the count is in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument; otherwise the stream argument is optional and
defaults to zero.

4.4.10 cudaMemcpy2D
 integer function cudaMemcpy2D(dst, dpitch, src, spitch,
width, height, kdir)

cudaMemcpy2D copies data from one location to another. Dst and src may be any
device or host array, of a supported type specified in section 3.6.1. The width and
height are in terms of elements. Kdir may be optional; see section 3.4.3. If it is
specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src
may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and height
are in term of bytes.

4.4.11 cudaMemcpy2DAsync
 integer function cudaMemcpy2DAsync(dst, dpitch, src, spitch,
width, height, kdir, stream)

cudaMemcpy2D copies data from one location to another. Dst and src may be any
device or host array, of a supported type specified in section 3.6.1. The width and
height are in terms of elements. Kdir may be optional; see section 3.4.3. If it is
specified, it must be one of the defined enums cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice. Alternatively, dst and src
may be of TYPE(C_DEVPTR) or TYPE(C_PTR), in which case the width and height
are in term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument, otherwise the stream argument is optional and
defaults to zero.

4.4.12 cudaMemcpyToArray
 integer function cudaMemcpyToArray(dsta, dstx, dsty, src,
count, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, count, kdir

cudaMemcpyToArray copies array data to and from the device.

CUDA Fortran Programming Guide and Reference 37

4.4.13 cudaMemcpy2DToArray
 integer function cudaMemcpy2DToArray(dsta, dstx, dsty, src,
spitch, width, height, kdir)
 type(cudaArrayPtr) :: dsta
 integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array data to and from the device.

4.4.14 cudaMemcpyFromArray
 integer function cudaMemcpyFromArray(dst, srca, srcx, srcy,
count, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dstx, dsty, count, kdir

cudaMemcpyFromArray copies array data to and from the device.

4.4.15 cudaMemcpy2DFromArray
 integer function cudaMemcpy2DFromArray(dst, dpitch, srca,
srcx, srcy, width, height, kdir)
 type(cudaArrayPtr) :: srca
 integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array data to and from the device.

4.4.16 cudaMemcpyArrayToArray
 integer function cudaMemcpyArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, count, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, count, kdir

cudaMemcpyArrayToArray copies array data to and from the device.

4.4.17 cudaMemcpy2DArrayToArray
 integer function cudaMemcpy2DArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, width, height, kdir)
 type(cudaArrayPtr) :: dsta, srca
 integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMemcpy2DArrayToArray copies array data to and from the device.

4.4.18 cudaMalloc3D
 integer function cudaMalloc3D(pitchptr, cext)
 type(cudaPitchedPtr), intent(out) :: pitchptr
 type(cudaExtent), intent(in) :: cext

cudaMalloc3D allocates data on the device. Pitchptr is a derived type defined in the
cudafor module. cext is also a derived type which holds the extents of the allocated array.
Alternatively, pitchptr may be any allocatable, three-dimensional device array of a
supported type specified in section 3.6.1.

38 CUDA Fortran Programming Guide and Reference

4.4.19 cudaMalloc3DArray
 integer function cudaMalloc3DArray(carray, cdesc, cext)
 type(cudaArrayPtr) :: carray
 type(cudaChannelFormatDesc) :: cdesc
 type(cudaExtent) :: cext

cudaMalloc3DArray allocates array data on the device.

4.4.20 cudaMemset3D
 integer function cudaMemset3D(pitchptr, value, cext)
 type(cudaPitchedPtr) :: pitchptr
 integer :: value
 type(cudaExtent) :: cext

cudaMemset3D sets elements of an array, the extents in each dimension specified by cext,
which was allocated with cudaMalloc3D to a specified value.

4.4.21 cudaMemcpy3D
 integer function cudaMemcpy3D(p)
 type(cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the data held
in the derived type p.

4.4.22 cudaMemcpy3DAsync
 integer function cudaMemcpy3D(p, stream)
 type(cudaMemcpy3DParms) :: p
 integer :: stream

cudaMemcpy3DAsync copies elements from one 3D array to another as specified by the
data held in the derived type p. It operates on page-locked host memory only. The copy can
be associated with a stream by passing a non-zero stream argument.

4.4.23 cudaMemcpyToSymbol
 integer function cudaMemcpyToSymbol(symbol, src, count,
offset, kdir)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir

cudaMemcpyToSymbol copies data from the source to a device area in global or constant
memory space referenced by a symbol. another. Src may be any host scalar or array, of a
supported type specified in section 3.6.1. The count is in terms of elements.

4.4.24 cudaMemcpyFromSymbol
 integer function cudaMemcpyFromSymbol(dst, symbol, count,
offset, kdir)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir

cudaMemcpyFromSymbol copies data from a device area in global or constant memory
space referenced by a symbol to a destination on the host. Dst may be any host scalar or
array, of a supported type specified in section 3.6.1. The count is in terms of elements.

CUDA Fortran Programming Guide and Reference 39

4.4.25 cudaMemcpyToSymbolAsync
 integer function cudaMemcpyToSymbolAsync(symbol, src, count,
offset, kdir, stream)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyToSymbol copies data from the source to a device area in global or constant
memory space referenced by a symbol. Src may be any host scalar or array, of a supported
type specified in section 3.6.1. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument.

4.4.26 cudaMemcpyFromSymbolAsync
 integer function cudaMemcpyFromSymbolAsync(dst, symbol,
count, offset, kdir, stream)
 type(cudaSymbol) :: symbol
 integer :: count, offset, kdir
 integer, optional :: stream

cudaMemcpyFromSymbol copies data from a device area in global or constant memory
space referenced by a symbol to a destination on the host. Dst may be any host scalar or
array, of a supported type specified in section 3.6.1. The count is in terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument.

4.4.27 cudaGetSymbolAddress
 integer function cudaGetSymbolAddress(devptr, symbol)
 type(C_DEVPTR) :: devptr
 type(cudaSymbol) :: symbol

cudaGetSymbolAddress returns in the devptr argument the address of symbol on the
device. A symbol can be set to an external device name via a character string.

The following code sequence initializes a global device array “vx” from a CUDA C kernel:

 type(cudaSymbol) :: csvx
 type(c_devptr) :: cdvx
 real, allocatable, device :: vx(:)
 csvx = “vx”
 Istat = cudaGetSymbolAddress(cdvx, csvx)
 Call c_f_pointer(cdvx, vx, 100)
 Vx = 0.0

4.4.28 cudaGetSymbolSize
 integer function cudaGetSymbolSize(size, symbol)
 integer :: size
 type(cudaSymbol) :: symbol

cudaGetSymbolSize sets the variable size to the size of a device area in global or
constant memory space referenced by the symbol.

40 CUDA Fortran Programming Guide and Reference

4.4.29 cudaMallocHost
 integer function cudaMallocHost(hostptr, size)
 type(C_PTR) :: hostptr
 integer :: size

cudaMallocHost allocates pinned memory on the host. It returns in hostptr the
address of the page-locked allocation, or returns an error if the memory is unavailable. Size
is in bytes. The normal iso_c_binding subroutine c_f_pointer can be used to move the
type(c_ptr) to a Fortran pointer.

4.4.30 cudaFreeHost
 integer function cudaFreeHost(hostptr)
 type(C_PTR) :: hostptr

cudaFreeHost deallocates pinned memory on the host allocated with
cudaMalloHost.

4.5 Stream Management

4.5.1 cudaStreamCreate
 integer function cudaStreamCreate(stream)
 integer, intent(out) :: stream

cudaStreamCreate creates an asynchronous stream and assigns its identifier to its first
argument.

4.5.2 cudaStreamQuery
 integer function cudaStreamQuery(stream)
 integer, intent(in) :: stream

cudaStreamQuery tests whether all operations enqueued to the selected stream are
complete; it will return zero (success) if all operations are complete, and the value
cudaErrorNotReady if not. It may also return another error condition if some
asynchronous operations failed.

4.5.3 cudaStreamSynchronize
 integer function cudaStreamSynchronize(stream)
 integer, intent(in) :: stream

cudaStreamSynchronize blocks execution of the host subprogram until all preceding
kernels and operations associated with the given stream are complete. It may return error
codes from previous, asynchronous operations.

4.5.4 cudaStreamDestroy
 integer function cudaStreamDestroy(stream)
 integer, intent(in) :: stream

cudaStreamDestroy releases any resources associated with the given stream.

CUDA Fortran Programming Guide and Reference 41

4.6 Event Management

4.6.1 cudaEventCreate
 integer function cudaEventCreate(event)
 type(cudaEvent), intent(out) :: event

cudaEventCreate creates an event object and assigns the event identifier to its first
argument

4.6.2 cudaEventRecord
 integer function cudaEventRecord(event, stream)
 type(cudaEvent), intent(in) :: event
 integer, intent(in) :: stream

cudaEventRecord issues an operation to the given stream to record an event. The event is
recorded after all preceding operations in the stream are complete. If stream is zero, the
event is recorded after all preceding operations in all streams are complete.

4.6.3 cudaEventQuery
 integer function cudaEventQuery(event)
 type(cudaEvent), intent(in) :: event

cudaEventQuery tests whether an event has been recorded. It returns success (zero) if the
event has been recorded, and cudaErrorNotReady if it has not. It will return
cudaErrorInvalidValue if cudaEventRecord has not been called for this event.

4.6.4 cudaEventSynchronize
 integer function cudaEventSynchronize(event)
 type(cudaEvent), intent(in) :: event

cudaEventSynchronize blocks until the event has been recorded. It will return with a
value of cudaErrorInvalidValue if cudaEventRecord has not been called for this
event.

4.6.5 cudaEventDestroy
 integer function cudaEventDestroy(event)
 type(cudaEvent), intent(in) :: event

cudaEventDestroy destroys the resources associated with an event object.

4.6.6 cudaEventElapsedTime
 integer function cudaEventElapsedTime(time, start, end)
 float :: time
 type(cudaEvent), intent() :: start, end

cudaEventElapsedTime computes the elapsed time between two events (in
milliseconds). It returns cudaErrorInvalidValue if either event has not yet been
recorded. This function is only valid with events recorded on stream zero.

42 CUDA Fortran Programming Guide and Reference

4.7 Error Handling

4.7.1 cudaGetLastError
 integer function cudaGetLastError()

cudaGetLastError returns the error code that was most recently returned from any
runtime call in this host thread.

4.7.2 cudaGetErrorString
 function cudaGetErrorString(errcode)
 integer, intent(in) :: errcode
 character*(*) :: cudaGetErrorString

cudaGetErrorString returns the message string associated with the given error code.

CUDA Fortran Programming Guide and Reference 43

5 Matrix Multiplication Example

5.1 Overview

This example shows a program to compute the product C of two matrices A and B, as follows:

 Each thread block computes one 16x16 submatrix of C;

 Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size
(32) and is less than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program
computes the products by accumulating submatrix products; it reads a block submatrix of A
and a block submatrix of B, accumulates the submatrix product, then moves to the next
submatris of A rowwise and of B columnwise. The program caches the submatrices of A and
B in the fast shared memory.

For simplicity, the program assumes the matrix sizes are a multiple of 16, and has not been
highly optimized for execution time.

5.2 Source Code Listing

! start the module containing the matmul kernel
module mmul_mod
 use cudafor
contains
 ! mmul_kernel computes A*B into C where
 ! A is NxM, B is MxL, C is then NxL
 attributes(global) subroutine mmul_kernel(A, B, C, N, M, L)
 real :: A(N,M), B(M,L), C(N,L)
 integer, value :: N, M, L
 integer :: i, j, kb, k, tx, ty
 ! submatrices stored in shared memory
 real, shared :: Asub(16,16), Bsub(16,16)
 ! the value of C(i,j) being computed
 real :: Cij
 ! Get the thread indices
 tx = threadidx%x
 ty = threadidx%y
 ! This thread computes C(i,j) = sum(A(i,:) * B(:,j))
 i = (blockidx%x-1) * 16 + tx
 j = (blockidx%y-1) * 16 + ty
 Cij = 0.0
 ! Do the k loop in chunks of 16, the block size
 do kb = 1, M, 16
 ! Fill the submatrices
 ! Each of the 16x16 threads in the thread block
 ! loads one element of Asub and Bsub

44 CUDA Fortran Programming Guide and Reference

 Asub(tx,ty) = A(i,kb+ty-1)
 Bsub(tx,ty) = B(kb+tx-1,j)
 ! Wait until all elements are filled
 call syncthreads()
 ! Multiply the two submatrices
 ! Each of the 16x16 threads accumulates the
 ! dot product for its element of C(i,j)
 do k = 1,16
 Cij = Cij + Asub(tx,k) * Bsub(k,ty)
 enddo
 ! Synchronize to make sure all threads are done
 ! reading the submatrices before overwriting them
 ! in the next iteration of the kb loop
 call syncthreads()
 enddo
 ! Each of the 16x16 threads stores its element
 ! to the global C array
 C(i,j) = Cij
 end subroutine mmul_kernel

 ! The host routine to drive the matrix multiplication
 subroutine mmul(A, B, C)
 real, dimension(:,:) :: A, B, C
 ! allocatable device arrays
 real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
 ! dim3 variables to define the grid and block shapes
 type(dim3) :: dimGrid, dimBlock

 ! Get the array sizes
 N = size(A, 1)
 M = size(A, 2)
 L = size(B, 2)
 ! Allocate the device arrays
 allocate(Adev(N,M), Bdev(M,L), Cdev(N,L))

 ! Copy A and B to the device
 Adev = A(1:N,1:M)
 Bdev(:,:) = B(1:M,1:L)

 ! Create the grid and block dimensions
 dimGrid = dim3(N/16, L/16, 1)
 dimBlock = dim3(16, 16, 1)
 call mmul_kernel<<<dimGrid,dimBlock>>>(Adev, Bdev, Cdev, &
 N, M, L)
 ! Copy the results back and free up memory
 C(1:N,1:L) = Cdev
 deallocate(Adev, Bdev, Cdev)
 end subroutine mmul
end module mmul_mod

CUDA Fortran Programming Guide and Reference 45

5.3 Source Code Discussion

This source code module mmul_mod has two subroutines. The host subroutine mmul is a
wrapper for the kernel routine mmul_kernel.

5.3.1 MMUL
This host subroutine has two input arrays, A and B, and one output array, C, passed as
assumed-shape arrays. The routine performs the following operations:

 It determines the size of the matrices in N, M, and L

 It allocates device memory arrays Adev, Bdev, and Cdev

 It copies the arrays A and B to Adev and Bdev using array assignments

 It fills dimGrid and dimBlock to hold the grid and thread block sizes

 It calls mmul_kernel to compute Cdev on the device

 It copies Cdev back from device memory to C

 It frees the device memory arrays

Because the data copy operations are synchronous, no extra synchronization is needed
between the copy operations and the kernel launch.

5.3.2 MMUL_KERNEL
This kernel subroutine has two device memory input arrays, A and B, one device memory
output array, C, and three scalars giving the array sizes. The thread executing this routine is
one of 16x16 threads cooperating in a thread block. This routine computes the dot product of
A(i,:)*B(:,j) for a particular value of i and j, depending on the block and thread
index. It performs the following operations:

 It determines the thread indices for this thread

 It determines the i and j indices, for which element of C(i,j) it is computing

 It initializes a scalar in which it will accumulate the dot product

 It steps through the arrays A and B in blocks of size 16; for each block, it does the
following steps:

o It loads one element of the submatrices of A and B into shared memory

o It synchronizes to make sure both submatrices are loaded by all threads in the
block

o It accumulates the dot product of its row and column of the submatrices

o It synchronizes again to make sure all threads are done reading the
submatrices before starting the next block

 Finally, it stores the computed value into the correct element of C

46 CUDA Fortran Programming Guide and Reference

PGF95, PGF90 and PGI Accelerator are trademarks and PGI, PGI CDK, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran,
PVF, Cluster Development Kit, PGPROF, PGDBG and The Portland Group are registered trademarks of The Portland Group,
Incorporated, a wholly-owned subsidiary of STMicroelectronics, Inc.

All other marks are the property of their respective owners.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
The Portland Group, Incorporated.

© 2009-2010 The Portland Group, Incorporated. All rights reserved.

