

TALK OUTLINE

Why debuggers?

What can they do to help you enhance your program

development?

Parallel program debugging

What are profilers and why you could need them?

M A I L T O : J L A K S H M I @ I I S C . A C . I N 2

PROGRAM DEBUGGING

Why do we need debuggers?

Programming errors not detectable by compilation or

linking

Such errors cause change in runtime behavior

M A I L T O : J L A K S H M I @ I I S C . A C . I N 3

WHAT IS A DEBUGGER?

M A I L T O : J L A K S H M I @ I I S C . A C . I N 4

“A software tool that is used to detect the source of

program or script errors, by performing step-by-step

execution of application code and viewing the

content of code variables.”

-MSDN

5/30/2019

WHAT IS A DEBUGGER? (CON'T)

A debugger is not an IDE

 Though the two can be integrated, they are separate

entities.

A debugger loads in a program (compiled executable,

or interpreted source code) and allows the user to

trace through the execution.

Debuggers typically can do disassembly, stack traces,

expression watches, and more.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 5

OTHER FORMS OF DEBUGGING

Periodic printf/cout/print/write … etc.

 Statements with relevant information

Assert statements

Desk Checking or Code Walkthroughs!

M A I L T O : J L A K S H M I @ I I S C . A C . I N 6

WHY USE A DEBUGGER?

No need for precognition of what the error might be.

Flexible

 Allows for “live” error checking – no need to re-write and

re-compile when you realize a certain type of error may

be occurring

 Dynamic

 Can view the entire relevant scope

M A I L T O : J L A K S H M I @ I I S C . A C . I N 7

RELUCTANCE TO USING A DEBUGGER

With simple errors, may not want to bother with

starting up the debugger environment.

 Obvious error

 Simple to check using prints/asserts

Hard-to-use debugger environment

Error occurs in optimized code

Changes execution of program (error doesn’t occur

while running debugger)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 8

DEBUGGERS FOR COMPILED LANGUAGES

Debuggers are special programs that can

 Read your executables and connect with the source code

 Maintain runtime order, scope and variables of your

program as it is being executed

 Generally, would like information about source code (not

normally included in compiled executables)

 Work on a lower level

Need special “debug” executables.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 10

FUNCTIONS OF A DEBUGGER

 Disassembly

 Execution Tracing/Stack tracing

 Symbol watches

M A I L T O : J L A K S H M I @ I I S C . A C . I N 11

DISASSEMBLY

 Most basic form of debugging

 Translating machine code into assembly

instructions that are more easily understood by the

user.

 Typically implementable as a simple lookup table

 No higher-level information (variable names, etc.)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 12

EXECUTION TRACING

 Follows the program through the execution.

Users can step through line-by-line, or use

breakpoints.

 Typically allows for “watches” on – registers,

memory locations, symbols

 Allows for tracing up the stack of runtime

errors (back traces)

 Allows user to trace the causes of unexpected

behavior and fix them

M A I L T O : J L A K S H M I @ I I S C . A C . I N 13

SYMBOL INFORMATION

 Problem – a compiler/assembler translates

variable names and other symbols into

internally consistent memory addresses

 How does a debugger know which location is

denoted by a particular symbol?

 We need a “debug” executable.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 14

DEBUG VS. RELEASE BUILDS

Debug builds usually are not optimized

Debug executables contain:

 program's symbol tables

 location of the source file

 line number tags for assembly instructions.

M A I L T O : J L A K S H M I @ I I S C . A C . I N 15

DEBUGGING PARALLEL PROGRAMS

Parallel programs introduce additional issues
like deadlocks and race conditions

Timing

Synchronization

Side-effects
Error behavior may not be repeatable!

Error location too may change in different runs!

Debugging Parallel Programs

16 M A I L T O : J L A K S H M I @ I I S C . A C . I N

https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf
https://groups.csail.mit.edu/cag/ps3/lectures/6.189-lecture9-debugging.pdf

TIMING YOUR CODE

/usr/bin/time –p a.out

real 9.95 user 9.86 sys 0.06

You can also time a portion of your code by using

clock() system call!

17 M A I L T O : J L A K S H M I @ I I S C . A C . I N

PROFILERS
What are profilers?

Profilers are tools that help you analyze where your program

spent its time or put its code in memory while in execution.

Time Profilers:

Tells you where your program spent its time

Tells you which functions called which other functions while it

was executing

Space Profilers:

Also called “heap profiling” or “memory profiling”

Space profiling is useful to help you reduce the amount of

memory your program uses.

18 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – TIME PROFILER?

Time profiler:

Profiling works by changing how every function in your

program is compiled so that when it is called, it will

stash away some information about where it was called

from.

From this, the profiler can figure out what function

called it, and can count how many times it was called

19 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – SPACE PROFILER?

Space Profiler:

Stops execution and examines the stack

Stops execution when a page of memory is allocated

Collects Data about which function asked for the

memory

20 M A I L T O : J L A K S H M I @ I I S C . A C . I N

HOW DO THEY WORK – PROFILED DATA?

 After the data is collected by the profiler, an

interpreter must be run to display the data in an

understandable format

 Can be text-based or graphical

21 M A I L T O : J L A K S H M I @ I I S C . A C . I N

WHY DO I NEED A TIME PROFILER?

Find where the program is spending most of it’s time

 That’s where you should focus optimization efforts

The program performs the proper functions, but is

too slow

 Important in real time systems

 Important to web applications

The program is too large or too complex to analyze

by reading the source

22 M A I L T O : J L A K S H M I @ I I S C . A C . I N

WHY DO I NEED A SPACE PROFILER?

 The program needs to use a fixed amount of memory

 The program is too large to conceive of the overall

memory usage or how often memory requests are

made

 Profilers can show the memory usage of libraries

used by your program

23 M A I L T O : J L A K S H M I @ I I S C . A C . I N

SOME PROFILER EXAMPLES – GPROF

gprof – OpenSource Profiler

(http://www.thegeekstuff.com/2012/08/gpro

f-tutorial/)

compile programs with the –pg option

execute program to generate data

 run gprof to interpret the profiled data

24 M A I L T O : J L A K S H M I @ I I S C . A C . I N

GPROF SAMPLE DATA – FLAT PROFILE

25

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 33.34 0.02 0.02 7208 0.00 0.00 open

 16.67 0.03 0.01 244 0.04 0.12 offtime

 16.67 0.04 0.01 8 1.25 1.25 memccpy

 16.67 0.05 0.01 7 1.43 1.43 write

 16.67 0.06 0.01 mcount

 0.00 0.06 0.00 236 0.00 0.00 tzset

 0.00 0.06 0.00 192 0.00 0.00 tolower

M A I L T O : J L A K S H M I @ I I S C . A C . I N

GPROF SAMPLE DATA – CALL GRAPH

26

index % time self children called name

 0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]

 0.00 0.03 8/8 timelocal [6]

 0.00 0.01 1/1 print [9]

 0.00 0.01 9/9 fgets [12]

 0.00 0.00 12/34 strncmp <cycle 1> [40]

 0.00 0.00 8/8 lookup [20]

 0.00 0.00 1/1 fopen [21]

 0.00 0.00 8/8 chewtime [24]

 0.00 0.00 8/16 skipspace [44]

M A I L T O : J L A K S H M I @ I I S C . A C . I N

SOME PROFILER EXAMPLES –

SPACE

Massif (http://valgrind.org/docs/manual/ms-

manual.html)

Space Profiler for C and C++

Provides relative space data on 5 different areas:

 Heap blocks

 Heap administration blocks

 Stack sizes

 Code size

 Data size

27 M A I L T O : J L A K S H M I @ I I S C . A C . I N

MASSIF SAMPLE DATA - BASIC

==1012== Total spacetime: 917,098,589 ms.B

==1012== heap: 0.0%

==1012== heap admin: 0.0%

==1012== stack(s): 0.0%

==1012== static code: 44.4%

==1012== static data: 55.3%

28 M A I L T O : J L A K S H M I @ I I S C . A C . I N

MASSIF SAMPLE DATA – SPACE-TIME GRAPH

29 M A I L T O : J L A K S H M I @ I I S C . A C . I N

READING LIST – DEBUGGING &

PROFILING PARALLEL CODES

Debugging and Profiling basics
(https://cvw.cac.cornell.edu/Profiling/debugging_
distributed)

Profiling and optimizing serial and parallel codes
(https://portal.tacc.utexas.edu/c/document_libra
ry/get_file?uuid=fc609b77-b727-4bff-81a4-
d30caa4013d4&groupId=13601)

Identifying bottlenecks in parallel codes
(http://www.it.northwestern.edu/bin/docs/resear
ch/bottlenecks-in-HPC.pdf)

M A I L T O : J L A K S H M I @ I I S C . A C . I N 30

https://cvw.cac.cornell.edu/Profiling/debugging_distributed
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=fc609b77-b727-4bff-81a4-d30caa4013d4&groupId=13601
http://www.it.northwestern.edu/bin/docs/research/bottlenecks-in-HPC.pdf

M A I L T O : J L A K S H M I @ I I S C . A C . I N 31

