
Accelerated Computing

GPU Teaching Kit

Naga Vydyanathan

Introduction to GPU Computing

GPU Teaching Kit

2

Processor Evolution Trends

2

3

Rise of GPU Computing

3

4

CPU and GPU are designed very differently

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
o
n

tro
l

GPU
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD
Unit

T
h

re
a

d
in

g

5

CPUs: Latency Oriented Design

5

– Powerful ALU

– Reduced operation latency

– Large caches

– Convert long latency memory
accesses to short latency cache
accesses

– Sophisticated control

– Branch prediction for reduced
branch latency

– Data forwarding for reduced data
latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

6

GPUs: Throughput Oriented Design
– Small caches

– To boost memory throughput

– Simple control

– No branch prediction

– No data forwarding

– Energy efficient ALUs

– Many, long latency but heavily
pipelined for high throughput

– Require massive number of
threads to tolerate latencies

– Threading logic

– Thread state

6

DRAM

GPU

7

Winning Applications Use Both CPU and GPU

– CPUs for sequential parts
where latency matters
– CPUs can be 10X+ faster

than GPUs for sequential
code

– GPUs for parallel parts
where throughput wins
– GPUs can be 10X+ faster

than CPUs for parallel code

7

8

Small changes, big speedup

8

9

10

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

11

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-

depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,

thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions

encountered in a broad range of applications

12

GPU Accelerated Libraries

Linear Algebra
FFT, BLAS,

SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA

cuFFT,

cuBLAS,

cuSPARSE

NVIDIA

Math

Lib

NVIDIA

cuRAND

NVIDIA

NPP

NVIDIA

Video

Encode

GPU AI –

Board

Games

GPU AI –

Path

Finding

13

Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism

management and data movement

Portable: The code is generic, not specific to any type of hardware

and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

14

OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])

for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];

}

15

Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and

data movement

Flexible: The computation does not need to fit into a limited set of

library patterns or directive types

Verbose: The programmer often needs to express more details

16

GPU Programming Languages

CUDA FortranFortran

CUDA C/C++C/C++

PyCUDA, Copperhead, NumbaPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics

17

Session Outline (HPC)

Introduction
• Introduction to Heterogeneous Parallel Computing

• How to program GPUs

Understanding OpenACC

• Benefits of using OpenACC

• Understanding OpenACC compute directives

• Applying OpenACC to a simple program

• Explicit data management in OpenACC

• Data movement and loop optimizations

OpenACC Hands-on • Guided hands-on on applying OpenACC to conjugate gradient

GPU Computing with CUDA

• Introduction to CUDA C

• CUDA memory model

• CUDA thread model

CUDA Hands-on • Guided hands-on on CUDA acceleration of XXX

18

Session Goals

– Learn how to program GPUs using OpenACC and CUDA

– Learn how to profile, analyze and optimize for GPU performance

18

19

Acknowledgement

– Wen-mei Hwu (University of Illinois)

– David Kirk (NVIDIA)

– Joe Bungo (NVIDIA)

– Mark Ebersole (NVIDIA)

– Abdul Dakkak (University of Illinois)

– Izzat El Hajj (University of Illinois)

– Andy Schuh (University of Illinois)

– John Stratton (Colgate College)

– Isaac Gelado (NVIDIA)

– John Stone (University of Illinois)

– Javier Cabezas (NVIDIA)

– Michael Garland (NVIDIA)

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Naga Vydyanathan: nvydyanathan@nvidia.com

Prathu Bharti Tiwari: prtiwari@nvidia.com

Sayak Bhowmick: sayakb@nvidia.com

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

