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Processor Evolution Trends
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CPU and GPU are designed very differently

CPU GPU

Latency Oriented Cores Throughput Oriented Cores
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CPUs: Latency Oriented Design

— Powerful ALU
— Reduced operation latency
— Large caches

— Convert long latency memory
accesses to short latency cache
accesses

— Sophisticated control

— Branch prediction for reduced
branch latency

— Data forwarding for reduced data
latency

SAnvibia



GPUs: Throughput Oriented Design
— Small caches
% — To boost memory throughput
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!Q% — No branch prediction
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— Many, long latency but heavily
pipelined for high throughput

— Require massive number of
threads to tolerate latencies

— Threading logic
— Thread state



Winning Applications Use Both CPU and GPU

— CPUs for sequential parts — GPUs for parallel parts
where latency matters where throughput wins
— CPUs can be 10X+ faster — GPUs can be 10X+ faster
than GPUs for sequential than CPUs for parallel code
code
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Application Code

A } Rest of Sequential
Compute-Intensive Functions CPU Code

GPU Use GPU to Parallelize
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3 Ways to Accelerate Applications

Applications

: : Compiler Programmin
Libraries Omp! S S
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility
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Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications
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GPU Accelerated Libraries

FFT, BLAS, CUBLAS,
SPARSE, Matrix cuSPARSE
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Data Struct. & Al

Sort, Scan, Zero Sum

Visual Processing
Image & Video
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Software
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Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions




OpenACC

— Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(inputl[O:inputLength],input2[0:inputLength]),
copyout(output[O:inputLength])
for(i = 0; i < inputLength; ++i) {
output[i] = inputl][i] + input2]i];

}
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Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

Verbose: The programmer often needs to express more details
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Session Outline (HPC)

* Introduction to Heterogeneous Parallel Computing

Introduction

* How to program GPUs

» Benefits of using OpenACC

» Understanding OpenACC compute directives
Understanding OpenACC +  Applying OpenACC to a simple program

» Explicit data management in OpenACC

» Data movement and loop optimizations

OpenACC Hands-on * Guided hands-on on applying OpenACC to conjugate gradient

e Introduction to CUDA C
GPU Computing with CUDA + CUDA memory model

e CUDA thread model

CUDA Hands-on e Guided hands-on on CUDA acceleration of XXX




Session Goals

— Learn how to program GPUs using OpenACC and CUDA
— Learn how to profile, analyze and optimize for GPU performance
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