GPU Teaching Kit
Accelerated Computing

Introduction to GPU Computing

Naga Vydyanathan

Processor Evolution Trends

7 =
10 = Transistors
. - - - : ; (thousands)

5
10" -
= Single-thread
Performance
(SpeciINT)

10° 5

Frequency
" (MHz)

10’ :

Typical Power
(Watts)

10°

Number of
" Cores

1o Y TS i W 5~ ol R,

" i i i
1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukolun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

C Moore, L

L Acd | 1 | T o Yol . b e | i 1 Al I «)
SAnvibia

GPU-Computing perf

1.5X pE‘V

CPU and GPU are designed very differently

CPU GPU

Latency Oriented Cores Throughput Oriented Cores
Chip Chip
Core Compute Unit

Cache/Local Mem
Local Cache

SIMD
SIMD Unit Unit

_|
>
-
D
Q
Q
S
!

LLINOIS

CPUs: Latency Oriented Design

— Powerful ALU
— Reduced operation latency
— Large caches

— Convert long latency memory
accesses to short latency cache
accesses

— Sophisticated control

— Branch prediction for reduced
branch latency

— Data forwarding for reduced data
latency

SAnvibia

GPUs: Throughput Oriented Design
— Small caches
% — To boost memory throughput

m [[T T T T T T T T T TTTT] _ Simple control
!Q% — No branch prediction
mm [[T [T T T T T T T T TTT] — No data forwarding
ml [[T T T T T TTTTTTTT] _ Energy efficient ALUs

mm| [[T T T T T T TTTTT] _
— Many, long latency but heavily
pipelined for high throughput

— Require massive number of
threads to tolerate latencies

— Threading logic
— Thread state

Winning Applications Use Both CPU and GPU

— CPUs for sequential parts — GPUs for parallel parts
where latency matters where throughput wins
— CPUs can be 10X+ faster — GPUs can be 10X+ faster
than GPUs for sequential than CPUs for parallel code
code

SAnvioia [@umuxos

Application Code

A } Rest of Sequential
Compute-Intensive Functions CPU Code

GPU Use GPU to Parallelize

#node 1

CUDA
v

A

b

- |CPU

Z o~

OpenMP

MPI+CUDA

How to control hybrid hardware:

P a
it

MPI - OpenMP - CUDA - OpenCL ...

3 Ways to Accelerate Applications

Applications

: : Compiler Programmin
Libraries Omp! S S
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

SAnvioia [@umuxos

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications

LLINOIS

GPU Accelerated Libraries

FFT, BLAS, CUBLAS,
SPARSE, Matrix cuSPARSE

o

Linear Algebra 3 {{Q\! cuLAltools REVLS i F

-NVIDIA

Math AArrayFire

Lib

L Fartr
Werarical Lary

Numerical & Math
RAND, Statistics

f
i
b

Data Struct. & Al

Sort, Scan, Zero Sum

Visual Processing
Image & Video

Sundog"

Software

nunoss [

ANVIDIA

Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

OpenACC

— Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(inputl[O:inputLength],input2[0:inputLength]),
copyout(output[O:inputLength])
for(i = 0; i < inputLength; ++i) {
output[i] = inputl][i] + input2]i];

}

LLINOIS

Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

Verbose: The programmer often needs to express more details

LLINOIS

NIl EIELE W aladd MATLAB Mathematica, LabVIEW

fisir-uld CUDA Fortran
of/d* M d CUDAC/C++

2Ll PyCUDA, Copperhead, Numba

F 84 Alea.cuBase

=
&

Session Outline (HPC)

* Introduction to Heterogeneous Parallel Computing

Introduction

* How to program GPUs

» Benefits of using OpenACC

» Understanding OpenACC compute directives
Understanding OpenACC + Applying OpenACC to a simple program

» Explicit data management in OpenACC

» Data movement and loop optimizations

OpenACC Hands-on * Guided hands-on on applying OpenACC to conjugate gradient

e Introduction to CUDA C
GPU Computing with CUDA + CUDA memory model

e CUDA thread model

CUDA Hands-on e Guided hands-on on CUDA acceleration of XXX

Session Goals

— Learn how to program GPUs using OpenACC and CUDA
— Learn how to profile, analyze and optimize for GPU performance

LLINOIS

Acknowledgement

— Wen-mei Hwu (University of lllinois)
— David Kirk (NVIDIA)

— Joe Bungo (NVIDIA)

— Mark Ebersole (NVIDIA)

— Abdul Dakkak (University of lllinois)
— lzzat El Hajj (University of Illinois)
— Andy Schuh (University of lllinois)
— John Stratton (Colgate College)

— lIsaac Gelado (NVIDIA)

— John Stone (University of Illinois)

— Javier Cabezas (NVIDIA)

— Michael Garland (NVIDIA)

LLINOIS

GPU Teaching Kit

Accelerated Computing

Naga Vydyanathan: nvydyanathan@nvidia.com
Prathu Bharti Tiwari: prtiwari@nvidia.com
Sayak Bhowmick: sayakb@nvidia.com

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

