
 1

Parallelization Principles

R. Govindarajan
SERC, IISc

govind@iisc.ac.in

Overview

§  Introduction
§  Parallelization Steps
§  Example

Ø Shared Address Space
Ø Distributed Address Space

 2

Acknowledgments:

Slides for this tutorial are taken from presentation materials
available with the book “Parallel Computing Architecture: A
Hardware/Software Approach” (Culler, Singh and Gupta,
Morgan Kaufmann Pub.) and the associated course material.
They have been suitably adapted.

Parallel Architecture: Shared Memory

M

Network

° ° °

Centralized Shared Memory

M M

$
P

$
P

$
P

° ° °

Network

Distributed Shared Memory

M

$

P

M

$

P

° ° °

 3

Distributed Memory Architecture

Network

M $
P ° ° °

M $
P

M $
P Proc.

Node
Proc.
Node

Proc.
Node

 4

Hybrid Architecture

Memory Memory NIC NIC

Memory Memory NIC NIC

N/W
Switch

Node 0 Node 1

Node 3 Node 2

 5

Space of Parallel Computing

Programming Models
§  What programmer

uses in coding applns.
§  Specifies synch. And

communication.
§  Programming Models:

Ø Shared address
space, e.g., OpenMP

Ø Message passing,
e.g., MPI

Parallel Architecture
§  Shared Memory

Ø  Centralized shared
memory (UMA)

Ø Distributed Shared
Memory (NUMA)

§  Distributed Memory
Ø A.k.a. Message

passing
Ø  E.g., Clusters

 6

Parallel Programming

§  Shared, global, address space, hence
called Shared Address Space
Ø  Any processor can directly reference any

memory location
Ø Communication occurs implicitly as result of

loads and stores
§  Message Passing Architecture

Ø Memory is private to each node
Ø Processes communicate by messages

 7

Definitions

§ Speedup = ​𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒 𝑖𝑛
𝑈𝑛𝑖𝑃𝑟𝑜𝑐𝑒𝑠𝑜𝑟 /𝐸𝑥𝑒𝑐. 𝑇𝑖𝑚𝑒 𝑖𝑛 𝒏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠  

§ Efficiency = ​𝑆𝑝𝑒𝑒𝑑𝑢𝑝 /𝒏 

§ Amdahl’s Law:
Ø For a program with s part sequential

execution, speedup is limited by 1/s .

 8

Understanding Amdahl’s Law

Example: 2-phase calculation
Ø sweep over n x n grid and do some independent

computation
Ø sweep again and add each value to global sum

Ø Serial Execution Time = n2 + n2 = 2n2

co
nc

ur
re

nc
y

1
n2 n2

(a) Serial
Time

 9

Understanding Amdahl’s Law

Parallel Execution time:
Ø Time for first phase = n2/p
Ø Second phase serialized at global variable = n2;
Ø Speedup = (2n2/(n2 + n2/p)) or at most 2

Ø Localize the sum in p procs and then do serial sum.

Time

p

1
p

n2 /p

n2 /p

co
nc

ur
re

nc
y

(c) Parallel

n2/p n2

p

1 co
nc

ur
re

nc
y

(b) Naïve Parallel

Time

 10

Definitions
§ Task

Ø Arbitrary piece of work in parallel computation
Ø Executed sequentially; concurrency is only across

tasks
Ø Fine-grained versus coarse-grained tasks

§ Process (thread)
Ø Abstract entity that performs the tasks
Ø Communicate and synchronize to perform the tasks

§  Processor
Ø Physical engine on which process executes

 11

Tasks involved in Parallelizaton

§  Identify work that can be done in parallel
Ø  work includes computation, data access and I/O

§  Partition work and perhaps data among
processes

§  Manage data access, communication and
synchronization

 12

Parallelizing Computation vs. Data

§ Computation is decomposed and assigned
(partitioned) – task decomposition
Ø  Task graphs, synchronization among tasks

§ Partitioning Data is often a natural view
too – data or domain decomposition
Ø Computation follows data: owner computes
Ø Grid example; data mining;

 13

Domain Decomposition: Example

§  Some computation
performed on all elts. of
the array

 for i=1 to m
 for j= 1 to n
 a[i,j] = a[i,j] + v[i]

 14

Steps in Creating a Parallel Program

§ Decomposition of computation into tasks
§ Assignment of tasks to processes
§ Orchestration of data access, communication,

and synchronization.
§ Mapping processes to processors

 15

Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

 16

Decomposition

§ Identify concurrency
§ Break up computation into tasks to be divided among

processes
Ø Tasks may become available dynamically
Ø No. of available tasks may vary with time

§ Goal: Expose available parallelism à enough tasks to
keep all processors busy

 17

Assignment

§ Specifies how to group tasks together for a process
Ø Balance workload, reduce communication and

management cost

§ Structured approaches usually work well
Ø Code inspection (parallel loops) or understanding of

application
Ø Static versus dynamic assignment

§  Both decomposition and assignment are usually
independent of architecture or prog model
Ø But cost and complexity of using primitives may

affect decisions

 18

Orchestration

§ Goals
Ø Reduce cost of communication and synch.
Ø Preserve locality of data reference
Ø Schedule tasks to satisfy dependences early
Ø Reduce overhead of parallelism management

§ Choices depend on Programming Model,
Communication abstraction, and efficiency of
primitives

§ Architecture should provide appropriate
primitives efficiently

 19

Mapping

§ Two aspects:
Ø Which process runs on which particular processor?
Ø Will multiple processes run on same processor?

§ Space-sharing
Ø Machine divided into subsets, only one app at a time in a

subset
Ø Processes can be pinned to processors, or left to OS

§ System allocation
§  Real world

Ø User specifies some aspects, system handles some

 20

High-level Goals

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

 21

Example: Grid Solver

§ Gauss-Seidel (near-neighbor) sweeps to
convergence
Ø interior n x n points of (n+2) x (n+2) updated in each

sweep
Ø difference from previous value computed
Ø accumulate partial diffs into global diff at end of

every sweep
Ø check if it has converged

§  to within a tolerance parameter
Ø updates array and iterate

 22

for i = 1 to n
 for j = 1 to n
 {
 B[i,j] = 0.2 * (A[i,j] +

 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(B[i,j] – A[i,j]);
 }
for i = 1 to n
 for j = 1 to n
 A[i,j] = B[i,j] ;

Grid solver (Simple Version)

 23

Sequential Version

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. float **A, diff = 0;
3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A ← malloc (a 2-d array of (n+2) x (n+2) doubles);
7. B ← malloc (a 2-d array of (n+2) x (n+2) doubles);
8. initialize(A); /*initialize the matrix A somehow*/
9. Solve (A); /*call the routine to solve equation*/
10. end main

 24

Sequential Version (contd.)

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i ← 1 to n do/*sweep over non-border points of grid*/
18. for j ← 1 to n do
19. B[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
20. A[i,j+1] + A[i+1,j]); /*compute average*/
21. diff += abs(B[i,j] – A[i,j]);
22. end for
23. end for
24. if (diff/(n*n) < TOL) then done = 1;
25. else Copy_Array (A ß B)
26. end while
27. end procedure

 25

for i = 1 to n
 for j = 1 to n
 {
 B[i,j] = 0.2 * (A[i,j] +

 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(B[i,j] – A[i,j]);
 }
for i = 1 to n
 for j = 1 to n
 A[i,j] = B[i,j] ;

Decomposition & Assignment

§  Decomposition
Ø  Both i and j loops can be

parallelized – no data
dependences

Ø  Each grid point can be a
task

Ø To compute diff, some
coordination would be
required!

§  Assignment
Ø  Each grid point
Ø  Each row or column
Ø A group of rows or columns

 26

for i = 1 to n
 for j = 1 to n
 {
 temp = A[i,j];

 A[i,j] = 0.2 * (A[i,j] +
 A[i-1,j] + A[i+1,j]+
 A[i,j-1] + A[i,j+1]);

 diff += abs(temp – A[i,j]);
 }

Grid solver (Update-in-place Version)

 27

Decomposition & Assignment

§  Decomposition
Ø Dependence on both

i and j loops
Ø  Each grid point can be

a task
Ø Need point-to-point

synchronization --
Very expensive

§  Assignment
Ø Grid points along

diagonal can a task
Ø  Restructure loop and

global synchronization
Ø  Load imbalance

 28

Exploiting Application Knowledge

§ Reorder grid traversal: red-
black ordering

§ Red sweep and black sweep
are each fully parallel:

§ Global synch between them
(conservative but convenient)

§ Different ordering of
updates: may converge
slower

 29

Red-Black Parallel Version

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. forall i ← 1 to n step 2 do/*sweep black points of grid*/
18. forall j ← 2 to n+1 step 2 do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end forall
24. end forall
24a /* similarly forall loop for red points of grid */
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Ensure
computation for
all black points
are complete!

 30

Red-Black Parallel Version (contd.)

§  Decomposition into elements: degree of concurrency
n2/2; 2 global synchronizations per n2 computation

§ forall loop to express the parallelism.
§  Too fine-grain parallelism ⇒ group tasks to form a

process.
§  Decompose into rows? Computation vs.

communication overhead?

 31

Assignment

§ Static assignment: decomposition into rows
– Block assignment of rows: Rows i*(n/p), … , (i+1)*(n/p) -
1 are assigned to process i

– Cyclic assignment of rows: process i is assigned rows i, i
+p, ...

§  Dynamic assignment
§ get a row index, work on the row, get a new row, …

§  Concurrency? Volume of Communication?

 32

Assignment (contd.)

P0

P1

P2

P3

P0

P0

 33

Orchestration

§  Different for different programming
models/architectures
Ø Shared address space

§ Naming: global addr. Space
§ Synch. through barriers and locks

Ø Distributed Memory /Message passing
§ Non-shared address space
§ Send-receive messages + barrier for synch.

 34

Shared Memory Version

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/
2. float **A, diff = 0;
2a. LockDec (diff_lock);
2b. BarrierDec (barrier1);
3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
5a. Read (nprocs);
6. A ← g_malloc (a 2-d array of (n+2) x (n+2) doubles);
6a. Create (nprocs -1, Solve, A);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
8a. Wait_for_End (nprocs-1);
9. end main

 35

Shared Memory Version
10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16.  mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barrier (barrier1, nprocs);
17. for i ← mybeg to myend do/*sweep for all points of grid*/
18. for j ← 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff_lock);
24b. diff += mydiff;
24c unlock (diff_lock);
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Reduce (mydif, diff);

Why do we need
this barrier?

Why do we need
this barrier?

 36

•  No red-black, simply ignore
dependences within sweep

•  Simpler asynchronous version,
may take longer to converge!

Shared Memory Program : Remarks

§ done condition evaluated redundantly by all
§ Each process has private mydiff variable
§ Most interesting special operations are for

synchronization provided by LOCK-UNLOCK around
criticalsection
Ø Set of operations we want to execute atomically
Ø accumulations into shared diff have to be mutually

exclusive
§  Good global reduction?

 37

Message Passing Version

§ Cannot declare A to be global shared array
Ø compose it from per-process private arrays
Ø usually allocated in accordance with the assignment of

work -- owner-compute rule
§  process assigned a set of rows allocates them locally

§ Structurally similar to SPMD Shared Memory
Version

§ Orchestration different
Ø data structures and data access/naming
Ø communication
Ø synchronization

§ Ghost rows
 38

Data Layout and Orchestration

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

 39

Message Passing Version

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/
2. float **myA;
3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
5a. read (nprocs);
/* 6. A ← g_malloc (a 2-d array of (n+2) x (n+2) doubles); */
6a. Create (nprocs -1, Solve, A);
/* 7. initialize(A); */ /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
8a. Wait_for_End (nprocs-1);
9. end main

 40

Message Passing Version

10. procedure Solve (A) /*solve the equation system*/
11. float A[n+2][n+2]; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. myend = (n/nprocs) ;
14b. myA = malloc (array of ((n/nprocs)+2) x (n+2) floats);
14c. If (pid == 0)

 Initialize (A)
14d. GetMyArray (A, myA); /* get n x (n+2) elts. from proess 0 */
15. while (!done) { /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize local difference to 0*/
16a. if (pid != 0) then

 SEND (&myA[1,0] , n*sizeof(float), (pid-1), row);
16b. if (pid != nprocs-1) then
 SEND (&myA[myend,0], n*sizeof(float), (pid+1), row);
16c. if (pid != 0) then
 RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row);
16d. if (pid != nprocs-1) then
 RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1), row);
16e.

 41

Message Passing Version – Solver
12. begin
 … … …
15. while (!done) do /*outermost loop over sweeps*/
 … … …
17. for i ← 1 to myend do/*sweep for all points of grid*/
18. for j ← 1 to n do
19. temp = myA[i,j]; /*save old value of element*/
20. myA[i,j] ← 0.2 * (myA[i,j] + myA[i,j-1] +myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]); /*compute average*/
22. mydiff += abs(myA[i,j] - temp);
23. end for
24. end for
24a if (pid != 0) then
24b. SEND (mydif, sizeof (float), 0, DIFF);
24c. RECEIVE (done, sizeof(int), 0, DONE);
24d. else
24e. for k ß 1 to nprocs-1 do
24f. RECEIVE (tempdiff, sizeof(float), k , DIFF);
24g. mydiff += tempdiff;
24h. Endfor
24i. if (diff/(n*n) < TOL) then done = 1;
24j. for k ß 1 to nprocs-1 do
24k. SEND (done, sizeof(float), k , DONE);
26. end while
27. end procedure 42

Message Passing Version : Remarks

§  Communication in whole rows, not element at a time
§  Code similar, but indices/bounds in local rather than global

space
§  Synchronization through sends and receives

Ø Update of global diff and event synch for done condition
Ø Could implement locks and barriers with messages

§  Can use REDUCE and BROADCAST library calls to simplify
code

§  Communication done at beginning of iteration,
synchronization only between neighboring processes

 43

Orchestration: Summary
§  Shared address space

Ø Shared and private data explicitly separate
Ø Communication implicit in access patterns
Ø Synchronization via atomic operations on shared data
Ø Synchronization explicit and distinct from data

communication

§ Message passing
Ø Data distribution among local address spaces needed
Ø No explicit shared structures (implicit in comm. patterns)
Ø Communication is explicit
Ø Synchronization implicit in communication (at least in

synch. case)

 44

