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Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)
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Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)
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Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)
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Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)
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GE - Runtime

 Divisions  

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3



Parallel GE

 1st step – 1-D block partitioning along 
blocks of n columns by p processors
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1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 < 
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p 



2-D block

 To speedup the divisions
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2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)



Problem with block partitioning for 
GE

 Once a block is finished, the 
corresponding processor remains idle 
for the rest of the execution

 Solution? -



Onto cyclic

 The block partitioning algorithms waste 
processor cycles. No load balancing 
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations, 
but column factorization 
bottleneck

Has everything



Block cyclic

 Having blocks in a processor can lead 
to block-based operations (block 
matrix multiply etc.)

 Block based operations lead to high 
performance



GE: Miscellaneous
GE with Partial Pivoting

 1D block-column  partitioning: which is 
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot 
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search 
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by 
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)



Sparse Iterative Methods



Iterative & Direct methods – Pros 
and Cons.

 Iterative methods do not give 
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.



Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily 
parallelizable

 Gauss-Seidel and SOR need recent 
values. Hence ordering of updates 
and sequencing among processors

 But Gauss-Seidel and SOR can be 
parallelized using red-black ordering 
or checker board



2D Grid example
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Red-Black Ordering

 Color alternate nodes in each 
dimension red and black

 Number red nodes first and then 
black nodes

 Red nodes can be updated 
simultaneously followed by 
simultaneous black nodes updates



2D Grid example – Red Black 
Ordering

15

5

11

1

7

13

3

9

16

6

12

2

8

14

4

10

In general, reordering can 
affect convergence



Graph Coloring
 In general multi-colored graph coloring 

Ordering for parallel computing of Gauss-
Seidel and SOR


