High Performance Numerical Libraries

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1

for each column i
zero it out below the diagonal by adding multiples of row i to later rows
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
add a multiple of row i to row j
for $k=i$ to n

$$
A(j, k)=A(j, k)-A(j, i) / A(i, i) * A(i, k)
$$

Gaussian Elimination - Review

Version 2 - Remove $A(j, i) / A(i, i)$ from inner loop

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
$m=A(j, i) / A(i, i)$
for $k=i$ to n

$$
A(j, k)=A(j, k)-m^{*} A(i, k)
$$

Gaussian Elimination - Review

Version 3 - Don't compute what we already know

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $\mathrm{j}=\mathrm{i}+1$ to n
$m=A(j, i) / A(i, i)$
for $k=i+1$ to n

$$
A(j, k)=A(j, k)-m^{*} A(i, k)
$$

Gaussian Elimination - Review

Version 4 - Store multipliers m below diagonals

 for each column izero it out below the diagonal by adding multiples of row i to later rows

for $\mathrm{i}=1$ to $\mathrm{n}-1$

for each row j below row i
for $j=i+1$ to n
$A(j, i)=A(j, i) / A(i, i)$
for $k=i+1$ to n
$A(j, k)=A(j, k)-A(j, i)^{*} A(i, k)$

GE - Runtime

\square Divisions

$$
1+2+3+\ldots(n-1)=n^{2} / 2 \text { (approx.) }
$$

\square Multiplications / subtractions

$$
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\ldots .(n-1)^{2}=n^{3 / 3}-n^{2} / 2
$$

\square Total

$$
2 n^{3} / 3
$$

Parallel GE

$\square 1^{\text {st }}$ step -1 -D block partitioning along blocks of n columns by p processors

1D block partitioning - Steps

1. Divisions

$$
n^{2} / 2
$$

2. Broadcast

$$
\begin{aligned}
& x \log (p)+y \log (p-1)+z \log (p-3)+\ldots \log 1< \\
& n^{2} \log p
\end{aligned}
$$

3. Multiplications and Subtractions

$$
(n-1) n / p+(n-2) n / p+\ldots .1 \times 1=n^{3} / p \text { (approx.) }
$$

Runtime:

$$
<n^{2} / 2+n^{2} \log p+n^{3} / p
$$

2-D block

\square To speedup the divisions

2D block partitioning - Steps

1. Broadcast of (k, k)

 $\log Q$2. Divisions
n²/Q (approx.)
3. Broadcast of multipliers

$$
x \log (P)+y \log (P-1)+z \log (P-2)+\ldots .=n^{2} / Q \log P
$$

4. Multiplications and subtractions
$n^{3} / P Q$ (approx.)

Problem with block partitioning for GE

- Once a block is finished, the corresponding processor remains idle for the rest of the execution
\square Solution? -

Onto cyclic

\square The block partitioning algorithms waste processor cycles. No load balancing throughout the algorithm.
\square Onto cyclic

cyclic
Load balance

1-D block-cyclic
Load balance, block operations, but column factorization bottleneck

0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3
0	1	0	1	0	1	0	1
2	3	2	3	2	3	2	3

2-D block-cyclic
Has everything

Block cyclic

\square Having blocks in a processor can lead to block-based operations (block matrix multiply etc.)
\square Block based operations lead to high performance

GE: Miscellaneous GE with Partial Pivoting

\square 1D block-column partitioning: which is better? Column or row pivoting
-Column pivoting does not involve any extra steps since pivot search and exchange are done locally on each processor. $\mathrm{O}(\mathrm{n}-\mathrm{i}-1)$
-The exchange information is passed to the other processes by piggybacking with the multiplier information

- Row pivoting
- Involves distributed search and exchange $-O(n / P)+O(\log P)$
\square 2D block partitioning: Can restrict the pivot search to limited number of columns

Sparse Iterative Methods

Iterative \& Direct methods - Pros and Cons.

\square Iterative methods do not give accurate results.
\square Convergence cannot be predicted
\square But absolutely no fills.

Parallel Jacobi, Gauss-Seidel, SOR

\square For problems with grid structure (1D, 2-D etc.), Jacobi is easily parallelizable
\square Gauss-Seidel and SOR need recent values. Hence ordering of updates and sequencing among processors
\square But Gauss-Seidel and SOR can be parallelized using red-black ordering or checker board

2D Grid example

Red-Black Ordering

\square Color alternate nodes in each dimension red and black
\square Number red nodes first and then black nodes
\square Red nodes can be updated simultaneously followed by simultaneous black nodes updates

2D Grid example - Red Black Ordering

\square In general, reordering can affect convergence

Graph Coloring

\square In general multi-colored graph coloring Ordering for parallel computing of GaussSeidel and SOR

