
High Performance Numerical
Libraries

Sathish Vadhiyar

Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

GE - Runtime

 Divisions

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3

Parallel GE

 1st step – 1-D block partitioning along
blocks of n columns by p processors

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 <
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p

2-D block

 To speedup the divisions

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k

P

Q

2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)

Problem with block partitioning for
GE

 Once a block is finished, the
corresponding processor remains idle
for the rest of the execution

 Solution? -

Onto cyclic

 The block partitioning algorithms waste
processor cycles. No load balancing
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations,
but column factorization
bottleneck

Has everything

Block cyclic

 Having blocks in a processor can lead
to block-based operations (block
matrix multiply etc.)

 Block based operations lead to high
performance

GE: Miscellaneous
GE with Partial Pivoting

 1D block-column partitioning: which is
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)

Sparse Iterative Methods

Iterative & Direct methods – Pros
and Cons.

 Iterative methods do not give
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.

Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily
parallelizable

 Gauss-Seidel and SOR need recent
values. Hence ordering of updates
and sequencing among processors

 But Gauss-Seidel and SOR can be
parallelized using red-black ordering
or checker board

2D Grid example

13

9

5

1

14

10

6

2

15

11

7

3

16

12

8

4

Red-Black Ordering

 Color alternate nodes in each
dimension red and black

 Number red nodes first and then
black nodes

 Red nodes can be updated
simultaneously followed by
simultaneous black nodes updates

2D Grid example – Red Black
Ordering

15

5

11

1

7

13

3

9

16

6

12

2

8

14

4

10

In general, reordering can
affect convergence

Graph Coloring
 In general multi-colored graph coloring

Ordering for parallel computing of Gauss-
Seidel and SOR

