
High Performance Numerical 
Libraries

Sathish Vadhiyar



Gaussian Elimination - Review

Version 1
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
add a multiple of row i to row j
for k = i to n
A(j, k) = A(j, k) – A(j, i)/A(i, i) * A(i, k)
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Gaussian Elimination - Review

Version 2 – Remove A(j, i)/A(i, i) from inner loop
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) – m* A(i, k)
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Gaussian Elimination - Review

Version 3 – Don’t compute what we already know
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – m* A(i, k)

0

0

0

0

0

0

0

0

0

0

0

i

i
i,i

X

X

x

j

k



Gaussian Elimination - Review

Version 4 – Store multipliers m below diagonals
for each column i
zero it out below the diagonal by adding multiples of row i to 

later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
A(j, i) = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) – A(j, i)* A(i, k)
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GE - Runtime

 Divisions  

 Multiplications / subtractions

 Total

1+ 2 + 3 + … (n-1) = n2/2 (approx.)

12 + 22 + 32 + 42 +52 + …. (n-1)2 = n3/3 – n2/2

2n3/3



Parallel GE

 1st step – 1-D block partitioning along 
blocks of n columns by p processors
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1D block partitioning - Steps

1. Divisions

2. Broadcast

3. Multiplications and Subtractions

Runtime:

n2/2

xlog(p) + ylog(p-1) + zlog(p-3) + … log1 < 
n2logp

(n-1)n/p + (n-2)n/p + …. 1x1 = n3/p (approx.)

< n2/2 +n2logp + n3/p 



2-D block

 To speedup the divisions
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2D block partitioning - Steps

1. Broadcast of (k,k)

2. Divisions

3. Broadcast of multipliers

logQ

n2/Q (approx.)

xlog(P) + ylog(P-1) + zlog(P-2) + …. = n2/Q logP

4. Multiplications and subtractions

n3/PQ (approx.)



Problem with block partitioning for 
GE

 Once a block is finished, the 
corresponding processor remains idle 
for the rest of the execution

 Solution? -



Onto cyclic

 The block partitioning algorithms waste 
processor cycles. No load balancing 
throughout the algorithm.

 Onto cyclic

0 1 2 3 0 2 3 0 2 31 1 0

cyclic 1-D block-cyclic 2-D block-cyclic

Load balance
Load balance, block operations, 
but column factorization 
bottleneck

Has everything



Block cyclic

 Having blocks in a processor can lead 
to block-based operations (block 
matrix multiply etc.)

 Block based operations lead to high 
performance



GE: Miscellaneous
GE with Partial Pivoting

 1D block-column  partitioning: which is 
better? Column or row pivoting

 2D block partitioning: Can restrict the pivot 
search to limited number of columns

•Column pivoting does not involve any extra steps since pivot search 
and exchange are done locally on each processor. O(n-i-1)

•The exchange information is passed to the other processes by 
piggybacking with the multiplier information

• Row pivoting

• Involves distributed search and exchange – O(n/P)+O(logP)



Sparse Iterative Methods



Iterative & Direct methods – Pros 
and Cons.

 Iterative methods do not give 
accurate results.

 Convergence cannot be predicted

 But absolutely no fills.



Parallel Jacobi, Gauss-Seidel, SOR

 For problems with grid structure (1-
D, 2-D etc.), Jacobi is easily 
parallelizable

 Gauss-Seidel and SOR need recent 
values. Hence ordering of updates 
and sequencing among processors

 But Gauss-Seidel and SOR can be 
parallelized using red-black ordering 
or checker board



2D Grid example
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Red-Black Ordering

 Color alternate nodes in each 
dimension red and black

 Number red nodes first and then 
black nodes

 Red nodes can be updated 
simultaneously followed by 
simultaneous black nodes updates



2D Grid example – Red Black 
Ordering

15

5

11

1

7

13

3

9

16

6

12

2

8

14

4

10

In general, reordering can 
affect convergence



Graph Coloring
 In general multi-colored graph coloring 

Ordering for parallel computing of Gauss-
Seidel and SOR


