High Performance Numerical Libraries

Sathish Vadhiyar

Version 1
for each column i
 zero it out below the diagonal by adding multiples of row i to
 later rows
for i= 1 to n-1
 for each row j below row i
 for j = i+1 to n
 add a multiple of row i to row j
 for k = i to n
 A(j, k) = A(j, k) - A(j, i)/A(i, i) * A(i, k)

Version 2 – Remove A(j, i)/A(i, i) from inner loop

for each column i
zero it out below the diagonal by adding multiples of row i to
later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i to n
A(j, k) = A(j, k) - m* A(i, k)

Version 3 – Don't compute what we already know

```
for each column i
zero it out below the diagonal by adding multiples of row i to
later rows
for i= 1 to n-1
for each row j below row i
for j = i+1 to n
m = A(j, i) / A(i, i)
for k = i+1 to n
A(j, k) = A(j, k) - m* A(i, k)
```


Version 4 – Store multipliers m below diagonals

```
for each column i

zero it out below the diagonal by adding multiples of row i to

later rows

for i= 1 to n-1

for each row j below row i

for j = i+1 to n

A(j, i) = A(j, i) / A(i, i)

for k = i+1 to n

A(j, k) = A(j, k) - A(j, i)* A(i, k)
```


GE - Runtime

Divisions

 1+2+3+...(n-1) = n²/2 (approx.)

 Multiplications / subtractions

 1²+2²+3²+4²+5²+....(n-1)² = n^{3/3} - n²/2

 Total

2n³/3

Parallel GE

1st step – 1-D block partitioning along blocks of n columns by p processors

1D block partitioning - Steps

- 1. Divisions
- 2. Broadcast

 $x\log(p) + y\log(p-1) + z\log(p-3) + ... \log 1 < n^{2}\log p$ 3. Multiplications and Subtractions $(n-1)n/p + (n-2)n/p + 1x1 = n^{3}/p (approx.)$

Runtime:

 $< n^{2}/2 + n^{2}logp + n^{3}/p$

2-D block

To speedup the divisions

Ρ

2D block partitioning - Steps

- 1. Broadcast of (k,k)
- 2. Divisions

n²/Q (approx.)

3. Broadcast of multipliers

 $x\log(P) + y\log(P-1) + z\log(P-2) + ... = n^2/Q \log P$

4. Multiplications and subtractions

Problem with block partitioning for GE

Once a block is finished, the corresponding processor remains idle for the rest of the execution
 Solution? -

Onto cyclic

The block partitioning algorithms waste processor cycles. No load balancing throughout the algorithm.

Onto cyclic

Block cyclic

- Having blocks in a processor can lead to block-based operations (block matrix multiply etc.)
- Block based operations lead to high performance

GE: Miscellaneous GE with Partial Pivoting

- ID block-column partitioning: which is better? Column or row pivoting
 Column pivoting does not involve any extra steps since pivot search and exchange are done locally on each processor. O(n-i-1)
- •The exchange information is passed to the other processes by piggybacking with the multiplier information
- Row pivoting
- Involves distributed search and exchange O(n/P)+O(logP)

2D block partitioning: Can restrict the pivot search to limited number of columns

Sparse Iterative Methods

Iterative & Direct methods – Pros and Cons.

Iterative methods do not give accurate results.
 Convergence cannot be predicted
 But absolutely no fills.

Parallel Jacobi, Gauss-Seidel, SOR

- For problems with grid structure (1-D, 2-D etc.), Jacobi is easily parallelizable
- Gauss-Seidel and SOR need recent values. Hence ordering of updates and sequencing among processors
- But Gauss-Seidel and SOR can be parallelized using red-black ordering or checker board

2D Grid example

Red-Black Ordering

Color alternate nodes in each dimension red and black
 Number red nodes first and then black nodes
 Red nodes can be updated simultaneously followed by simultaneous black nodes updates

2D Grid example – Red Black Ordering

□In general, reordering can affect convergence

Graph Coloring

In general multi-colored graph coloring Ordering for parallel computing of Gauss-Seidel and SOR