Parallel Algorithms

Sathish Vadhiyar

HPC Training Workshop

PARALLEL SORTING

HPC Training Workshop

Introduction

[he input sequence of size N is
distributed across P processors

[he output is such that elements in P,
is greater than elements in P,_; and
lesser than elements in P,

HPC Training Workshop

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector
of size p-1; kth element is (n/p *
(k+1)/p)

3. Samples are sent and merge-sorted on
processor O

4. Processor O defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to

the other processorsg

Example

Phase 1

FProcessor | Frocessor 2 FProcessar 3
| 16| 2| 17{ 24|33 28|30 1| 0|27 o] 25| [34] 23] 10] 18] 11| 7] 21| 15| s|3s|12[20] | 6| 3| 4| 14] 22| 15| 32| 10] 26{ 31 20] 5|
o - : - - v i b = - b ’ b ’ b
el biocks || 0| 1| 2| o] 16] 17| 24| 25[27] 28| 30| 33| [7] 8| 11] 12] 13] 18] 19] 21] 23] 20] 34 35| | 3| 4| 5| 6] 10] 1] 15] 20| 22| 26| 31] 3]
Local

Regular Samples

Phase 2

Processor |

Cathered Regular Sampld | {fl‘ 16| 27 71 13| 23] 3 | 10| 22
Sarted Regular Sample | Q ‘ 3 | 7 ‘ l(}| 13 | 1fr| 22 | 23‘ 27 |

HPC Training Workshop

PSRS

5. Each processor sends local data to
correct destination processors based on
splitters; all-to-all exchange

6. Each processor merges the data chunk it
receives

HPC Training Workshop

Step 5

Each processor finds where each of the
p-1 pivots divides its list, using a binary
search

i.e., finds the index of the largest
element number larger than the jth pivot

At this point, each processor has p
sorted sublists with the property that
each element in sublist i is greater than
each element in sublist i-1 in any

processor‘ HPC Training Workshop

Step 6

Each processor i performs a p-way
merge-sort to merge the ith sublists of
p processors

HPC Training Workshop

Example Continued

FPivots 10(22 ‘

Phase 3
Processor {

Formed partitions

| o] 1 17| | 24| 25| 27] 28] 30 | 7| 8] [11]12] 13 18] 10 21 29| 34 35| 4 6 10] | 14[15[20[22] |26

Processor 2 Processor 3

-

2| o] |1s

27 33 23 3 5 31 32‘

Phase 4

Re-assigned partitions

[o] 1] 2[9] From Proc. 1 | 16] 17] From Proc. 1 | 24] 25] 27| 28] 30 33]
FromProc. 2 | 7] 8] Eromsetr | 11] 12] 13] 18] 19] 21] From Proc. 2
FromProc.3 | 3| 4] 5| 6] 10| From Proc. 5 | 14] 15] 20] 22] Emmself | 26
Final merged partitions 11 heys 1Zkeys 13 keys
| of 1] 2] 3] 4] s[6] 7] 8] o[10 | 11] 12] 13] 14] 15] 16] 17] 18] 19 20| 21 24| 25| 26] 27] 28] 29 30[31 34

[10l [l

From Self

-
!

22 23 25 20 32133 35

HPC Training Workshop

Analysis

[l

[l

The first phase of local sorting takes
O((n/p)log(n/p))

2nd phase:

B Sorting p(p-1) elements in processor O - O(p?logp?)

B Each processor performs p-1 binary searches of n/p
elements - plog(n/p)

3rd phase: Each processor merges (p-1) sublists

B Size of data merged by any processor is ho more than
2n/p (proof)

B Complexity of this merge sort 2(n/p)logp
Summing up: O((n/p)logn)

HPC Training Workshop

Analysis

1s* phase - no communication

2"d phase - p(p-1) data collected; p-1
data broadcast

3rd phase: Each processor sends (p-1)
sublists to other p-1 processors;
processors work on the sublists
independently

HPC Training Workshop

Graph Algorithms

HPC Training Workshop

Graph Traversal

Graph search plays an important role in
analyzing large data sets

Relationship between data objects
represented in the form of graphs

Breadth first search used in finding
shortest path or sets of paths

HPC Training Workshop

Parallel BFS
Level-synchronized algorithm

[l

Proceeds level-by-level starting with the source
vertex

Level of a vertex - its graph distance from the
source

Also, called frontier-based algorithm

The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level - Bulk Synchronous Parallelism (BSP) model

How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

HPC Training Workshop

Distributed BFS with 1D
Partitioning

Each vertex and edges emanating from it
are owned by one processor

1-D partitioning of the adjacency matrix

A
A,

Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

HPC Training Workshop

1-D Partitioning

At each level, each processor owns a set F -
set of frontier vertices owned by the
processor

Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

Some vertices of N owned by the same
processor, while others owned by other
processors

Messages are sent to those processors to

~add these vertices to their frontier set for
HPC Training Worksho
the next level ; ;

Algorithm 1 Distributed Breadth-First Expansion with 1D Partitioning

1: Initialize L, _(v) = {
2: for [=0 to oo do

o]

ke
o=

14:
15:
16:

QRS ew

p—
e

0, v = v, where v, 18 a source
~o, otherwise

F «— {v| L, (v) =1}, the set of local vertices with level [
if ' = () for all processors then

Terminate main loop
end if
N «— {neighbors of vertices in I’ (not necessarily local) }
for all processors g do

N, « {vertices in N owned by processor ¢}

Send N, to processor g

Receive ﬁq from processor g L,..(v) - level of v, i.e,
end for graph distance from
N U, N, (The N, may overlap) SOUIceVs
for v € N and L,_(v) = oo do

Ly, (v) —1+1
end for

17: end for

HPC Training Wnrl(qhnp

BFS on GPUSs

1 bfs_kernel(int curLevel){

2 v=blockldx.x*blockDim.x +threadldx x;
3 if dist|v] == curLevel then

4 forall the n € neighbors(v) do

5 if visited|n] == 0 then

6 dist[n] = dist[v] + 1;

7 visited[n] = 1;

8 end

9 end

10 end

1}

BFS on GPUSs

One GPU thread for a vertex

For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

Only those vertices whose assigned
vertices are frontiers will become active

Do we need atomics?
Severe load imbalance among the treads

S rran " 4
\)bUIJ il

