
Parallel Algorithms

Sathish Vadhiyar

HPC Training Workshop

PARALLEL SORTING

HPC Training Workshop

Introduction

 The input sequence of size N is
distributed across P processors

 The output is such that elements in Pi

is greater than elements in Pi-1 and
lesser than elements in Pi+1

HPC Training Workshop

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector
of size p-1; kth element is (n/p *
(k+1)/p)

3. Samples are sent and merge-sorted on
processor 0

4. Processor 0 defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to
the other processorsHPC Training Workshop

Example

HPC Training Workshop

PSRS

5. Each processor sends local data to
correct destination processors based on
splitters; all-to-all exchange

6. Each processor merges the data chunk it
receives

HPC Training Workshop

Step 5

 Each processor finds where each of the
p-1 pivots divides its list, using a binary
search

 i.e., finds the index of the largest
element number larger than the jth pivot

 At this point, each processor has p
sorted sublists with the property that
each element in sublist i is greater than
each element in sublist i-1 in any
processor HPC Training Workshop

Step 6

 Each processor i performs a p-way
merge-sort to merge the ith sublists of
p processors

HPC Training Workshop

Example Continued

HPC Training Workshop

Analysis

 The first phase of local sorting takes
O((n/p)log(n/p))

 2nd phase:
 Sorting p(p-1) elements in processor 0 – O(p2logp2)

 Each processor performs p-1 binary searches of n/p
elements – plog(n/p)

 3rd phase: Each processor merges (p-1) sublists
 Size of data merged by any processor is no more than

2n/p (proof)

 Complexity of this merge sort 2(n/p)logp

 Summing up: O((n/p)logn)

HPC Training Workshop

Analysis

 1st phase – no communication

 2nd phase – p(p-1) data collected; p-1
data broadcast

 3rd phase: Each processor sends (p-1)
sublists to other p-1 processors;
processors work on the sublists
independently

HPC Training Workshop

 Graph Algorithms

HPC Training Workshop

Graph Traversal

 Graph search plays an important role in
analyzing large data sets

 Relationship between data objects
represented in the form of graphs

 Breadth first search used in finding
shortest path or sets of paths

HPC Training Workshop

Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source
vertex

 Level of a vertex – its graph distance from the
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

HPC Training Workshop

Distributed BFS with 1D
Partitioning

 Each vertex and edges emanating from it
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

HPC Training Workshop

1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the
processor

 Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

 Some vertices of N owned by the same
processor, while others owned by other
processors

 Messages are sent to those processors to
add these vertices to their frontier set for
the next level

HPC Training Workshop

Lvs(v) – level of v, i.e,
graph distance from
source vs

HPC Training Workshop

BFS on GPUs

BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

 Only those vertices whose assigned
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement

