
Parallel Algorithms

Sathish Vadhiyar

HPC Training Workshop

PARALLEL SORTING

HPC Training Workshop

Introduction

 The input sequence of size N is
distributed across P processors

 The output is such that elements in Pi

is greater than elements in Pi-1 and
lesser than elements in Pi+1

HPC Training Workshop

Parallel Sorting by Regular
Sampling (PSRS)

1. Each processor sorts its local data

2. Each processor selects a sample vector
of size p-1; kth element is (n/p *
(k+1)/p)

3. Samples are sent and merge-sorted on
processor 0

4. Processor 0 defines a vector of p-1
splitters starting from p/2 element; i.e.,
kth element is p(k+1/2); broadcasts to
the other processorsHPC Training Workshop

Example

HPC Training Workshop

PSRS

5. Each processor sends local data to
correct destination processors based on
splitters; all-to-all exchange

6. Each processor merges the data chunk it
receives

HPC Training Workshop

Step 5

 Each processor finds where each of the
p-1 pivots divides its list, using a binary
search

 i.e., finds the index of the largest
element number larger than the jth pivot

 At this point, each processor has p
sorted sublists with the property that
each element in sublist i is greater than
each element in sublist i-1 in any
processor HPC Training Workshop

Step 6

 Each processor i performs a p-way
merge-sort to merge the ith sublists of
p processors

HPC Training Workshop

Example Continued

HPC Training Workshop

Analysis

 The first phase of local sorting takes
O((n/p)log(n/p))

 2nd phase:
 Sorting p(p-1) elements in processor 0 – O(p2logp2)

 Each processor performs p-1 binary searches of n/p
elements – plog(n/p)

 3rd phase: Each processor merges (p-1) sublists
 Size of data merged by any processor is no more than

2n/p (proof)

 Complexity of this merge sort 2(n/p)logp

 Summing up: O((n/p)logn)

HPC Training Workshop

Analysis

 1st phase – no communication

 2nd phase – p(p-1) data collected; p-1
data broadcast

 3rd phase: Each processor sends (p-1)
sublists to other p-1 processors;
processors work on the sublists
independently

HPC Training Workshop

 Graph Algorithms

HPC Training Workshop

Graph Traversal

 Graph search plays an important role in
analyzing large data sets

 Relationship between data objects
represented in the form of graphs

 Breadth first search used in finding
shortest path or sets of paths

HPC Training Workshop

Parallel BFS
Level-synchronized algorithm

 Proceeds level-by-level starting with the source
vertex

 Level of a vertex – its graph distance from the
source

 Also, called frontier-based algorithm

 The parallel processes process a level, synchronize
at the end of the level, before moving to the next
level – Bulk Synchronous Parallelism (BSP) model

 How to decompose the graph (vertices, edges and
adjacency matrix) among processors?

HPC Training Workshop

Distributed BFS with 1D
Partitioning

 Each vertex and edges emanating from it
are owned by one processor

 1-D partitioning of the adjacency matrix

 Edges emanating from vertex v is its
edge list = list of vertex indices in row v
of adjacency matrix A

HPC Training Workshop

1-D Partitioning

 At each level, each processor owns a set F –
set of frontier vertices owned by the
processor

 Edge lists of vertices in F are merged to
form a set of neighboring vertices, N

 Some vertices of N owned by the same
processor, while others owned by other
processors

 Messages are sent to those processors to
add these vertices to their frontier set for
the next level

HPC Training Workshop

Lvs(v) – level of v, i.e,
graph distance from
source vs

HPC Training Workshop

BFS on GPUs

BFS on GPUs

 One GPU thread for a vertex

 For each level, a GPU kernel is launched
with the number of threads equal to the
number of vertices in the graph

 Only those vertices whose assigned
vertices are frontiers will become active

 Do we need atomics?

 Severe load imbalance among the treads

 Scope for improvement

