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Distributed Systems

= Distributed Computing
» Clusters of machines
» Connected over network

= Distributed Storage
» Disks attached to clusters of machines
» Network Attached Storage

" How can we make effective use of multiple machines?

= Commodity clusters vs. HPC clusters
» Commodity: Available off the shelf at large volumes
» Lower Cost of Acquisition

» Cost vs. Performance
e Low disk bandwidth, and high network latency
* CPU typically comparable (Xeon vs. i3/5/7)
* Virtualization overhead on Cloud

= How can we use many machines of modest capability?
2018-09-04
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Scalability

= Strong vs. Weak Scaling

= Strong Scaling: How the performance varies with
the # of processors for a fixed total problem size

=" Weak Scaling: How the performance varies with
the # of processors for a fixed problem size per
processor

» Big Data platforms are intended for “Weak Scaling”

Weak Scaling
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" Programming distributed systems is difficult
> Divide a job into multiple tasks
» Understand dependencies between tasks: Control, Data
» Coordinate and synchronize execution of tasks
> Pass information between tasks
» Avoid race conditions, deadlocks

= Parallel and distributed programming
models/languages/abstractions/platforms try to
make these easy
» E.g. Assembly programming vs. C++ programming
» E.g. C++ programming vs. Matlab programming

2018-09-04 /
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Availability, Failure

" Commodity clusters have lower reliability
» Mass-produced
» Cheaper materials
» Smaller lifetime (~3 years)
=" How can applications easily deal with failures?
" How can we ensure availability in the presence of faults?

2018-09-04 8
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MapReduce the classic Big
Data platform

= Eased distributed data-parallel programming
» Simple primitives: Map, Reduce, Combiner, Partitioner
» Avoids race conditions

= Offered reliable storage (HDFS) and execution
= Scaled to large datasets

2018-09-04 9
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= Shuffle between Map and Reduce
> Allows results larger than RAM, enables recovery
» But forces a global key-sort and disk writes

= Multi-stage jobs write output of Reduce/Input to
Map to HDFS

» |/O ops forced at each “stage”
» Scheduling overheads for each MR job

= Can we do better?

2018-09-04 10
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The MR Pipeline

Node 1 Node2
Files loaded from HDFS stores Files loaded from HDFS stores
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= Ease of language definition

» Data typing, dataflow composition, Java/Python/Scala
bindings
» But Pig, Hive, HBase, etc. give you that

= Better performance using “In memory” compute
» Multiple stages part of same job
» Lazy evaluation, caching/persistence

2018-09-04 12
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Big Data Stack Evolution
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In-memory computation

" Operate on data in (distributed) memory
» Allows many operations to be performed locally
» Write to disk only when data sharing required across

workers
HDFS HDFS HDFS HDFS
i i read writei i read writei i i b
Input Input .

resulta
» one-time
reSUlt 5 processing
result 3
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Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD: The Secret Sauce

= RDD: Resilient Distributed Dataset

> Immutable, partitioned collection of tuples

» Operated on by deterministic transformations

* Object-oriented flavor
 RDD.operation() - RDD

= Recovery by re-computation
» Maintains lineage of transformations
» Recompute missing partitions if failure happens
» Not possible/not automatic in Pig

= Allows caching & persistence for reuse

2018-09-04 13
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RDD Operations
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Transformations
(define a new RDD)

Allows
composability
into Dataflows

Actions
(return a result to
driver program)

map flatMap
filter union
sample Join
groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
reduce
count
save
lookupKey

2018-09-04
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= Counts the number of bytes in a line, and sums the
count per line

= Uses lambda expressions for compact function defn.

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> linelLengths =

lines.map(s -> s.length());
int totalLength = linelLengths.reduce((a, b) -> a + b);

// Cache RDD in-memory for future use in this app
linelLengths.persist(StorageLevel .MEMORY _ONLY());

2018-09-04 18
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= Can pass complex functions as well

class GetlLength implements Function<String, Integer> {
public Integer call(String s) { return s.length(); }

}

class Sum implements Function2<Integer, Integer, Integer> {
public Integer call(Integer a, Integer b) { return a + b; }

}

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> linelLengths = lines.map(new GetLength());
int totallLength = linelengths.reduce(new Sum());

2018-09-04 19
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RDD Partitions

= RDD is internally a collection of partitions
» Each partition holds a list of items

= Partitions may be present on a different machine
» Partition is the unit of execution
> Partition is the unit of parallelism

" They are immutable

» Each transformation on an RDD generates a new RDD with
different partitions

» Allows recovery of individual partitions

(ot | [owme |

2018'09'04 Data in HDFS
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Distributed Execution

Scheduler
RDD Obj
Objects (DAGScheduler)
) f-
DAG -
— R
rddl.join(rdgzg split graph into
.groupBy (..
Tteres stages of tasks
~count) submit each
build operator DAG stage as ready
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Distributed Execution
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" Load external data from distributed storage
= Create logical RDD on which you can operate

= Support for different input formats
» HDFS files, Cassandra, Java serialized, directory, gzipped

= Can control the number of partitions in loaded RDD
» Default depends on external DFS, e.g. 128MB on HDFS

JavaRDD<String> distFile = sc.textFile("data.txt");

2018-09-04 2]
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" Transformations
» From one RDD to one or more RDDs
» Lazy evaluation...use with care
» Executed in a distributed manner

= Actions
» Perform aggregations on RDD items
» Return single (or distributed) results to “driver” code

= RDD.collect() brings RDD partitions to single driver
machine

2018-09-04 24
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Caution: Local Variables

= Caution: Cannot pass “local” driver variables to
lambda expressions/anonymous classes....only final

» Will fail when distributed

int counter = 0;
JavarDD<Integer> rdd = sc.parallelize(data);

S/ wrong: pDon't do this!!

rdd. foreach(x -> counter += X);

printin("Counter value: " + counter);

2018-09-04 23
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=" RDD is logically a collection of items with a generic
type

= PairRDD is like a “Map”, where each item in
collection is a <key,value> pair, each a generic type

=" Transformation functions use RDD or PairRDD as
input/output

= E.g. Map-Reduce

JavaRDD<String> lines = sc.textFile("data.txt");
JavaPairRDD=5tring, Integer>= pairs = lines.mapToPair(s -> new Tuple2(s, 1));
JavaPairRDD<5tring, Integer:> counts = pairs.reduceBykey((a, b) - a + b);

2018-09-04 26
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Transformation Meaning

map(func) Return a new distributed dataset formed by passing each element of the source through a
function func.

filter(func) Feturn a new dataset formed by selecting those elements of the source on which func returns
true.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func should

return a Seq rather than a single item).

= JavaRDD<R> map(Function<T,R> f) : 1:1 mapping
from input to output. Can be different types.

= JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1
from input to output, same type.

= JavaRDD<U> flatMap(FlatMapFunction<T,U> f) :
1:N mapping from input to output, different types.

2018-09-04 27
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mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be of
type lterator<T= == lterator<U= when running on an ROD of type T.

= Earlier Map and Filter operate on one item at a
time. No state across calls!

= JavaRDD<U>
mapPartitions(FlatMapFunc<Iiterator<T>,U> f)

" mapPartitions has access to iterator of values in
entire partition, jot just a single item at a time.

2018-09-04 28
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sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without replacement, using a given random
number generator seed.

union(otherDataset) Return a new dataset that contains the union of the elements in the source dataset and the
argument.

= JavaRDD<T> sample(boolean withReplacement,
double fraction): fraction between [0,1] without
replacement, >0 with replacement

= JavaRDD<T> union(JavaRDD<T> other): Items in
other RDD added to this RDD. Same type. Can have
duplicate items (i.e. not a ‘set’ union).

2018-09-04 29
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intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset and the
argument.
distinct([num Tasks])) Return a new dataset that contains the distinct elements of the source dataset.

= JavaRDD<T> intersection(JavaRDD<T> other): Does
a set intersection of the RDDs. Output will not have
duplicates, even if inputs did.

= JavaRDD<T> distinct(): Returns a new RDD with
uniqgue elements, eliminating duplicates.

2018-09-04 30
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groupByKey([num Tasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, lterable=V=) pairs.
Note: If you are grouping in order to perform an aggregation (such as a sum or average) over
each key, using reduceByKey or aggregatesykey will yield much better performance.
Note: By default, the level of parallelism in the output depends on the number of partitions of
the parent RDD. You can pass an optional numtasks argument to set a different number of
tasks.

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values
for each key are aggregated using the given reduce function func, which must be of type
(VW) == V. Like in groupgykey, the number of reduce tasks is configurable through an

optional second argument.

= JavaPairRDD<K,Iterable<V>> %roupByKey(): Groups values
for each key into a single iterable.

= JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) :
Merge the values for each key into a single value using an
associative and commutative reduce function. Output value
Is of same type as input.

" For aggregate that returns a different type?

=" humPartitions can be used to generate output RDD with
different number of partitions than input RDD.

2018-09-04 jl
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aggregateByKey(zeroValue)(seqOp, combOp, When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values

[num Tasks]) for each key are aggregated using the given combine functions and a neutral "zero" value.
Allows an aggregated value type that is different than the input value type, while avaoiding
unnecessary allocations. Like in groupsykey, the number of reduce tasks is configurable
through an optional second argument.

sortByKey([ascending], [numTasks]) When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of

(K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean
ascending argument.

= JavaPairRDD<K,U> aggregateByKey(U zeroValue,
Functlon2<U Vv, u> seqFunc, Function2<U,U,U> comeunc)

gregate the values of each key, using given combine functions
a neutral “zero value”.

> SeqOp for merging a V into a U within a partition
» CombOp for merging two U's, within/across partitions
= JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort
of the RDD by key

» Each partition contains a sorted range, i.e., output RDD is range-
partitioned.

» Calling collect will return an ordered list of records

2018-09-04 kY4
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join{otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with
all pairs of elements for each key. Outer joins are supported through TeftouterJoin,
rightouterJoin, and fullouterloin.

cartesian(otherDataset) When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of
elements).

= JavaPairRDD<K, Tuple2<V,W>>
join(JavaPairRDD<K,W> other, int numParts):
Matches keys in this and other. Each output pair is
(k, (v1, v2)). Performs a hash join across the cluster.

= JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?>
other): Cross product of values in each RDD as a
pair

2018-09-04 33
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Actions

reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns one).
The function should be commutative and associative so that it can be computed correctly in parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or
other operation that returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.
first() Return the first element of the dataset (similar to take(1)).
take(n) Return an array with the first n elements of the dataset.

2018-09-04 34
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= RDDs can be reused in a dataflow
» Branch, iteration

= But it will be re-evaluated each time it is reused!

= Fxplicitly persist RDD to reuse output of a dataflow
path multiple times

= Multiple storage levels for persistence
» Disk or memory
» Serialized or object form in memory
» Partial spill-to-disk possible
» Cache indicates “persist” to memory

2018-09-04 33
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RePartitioning

repartition

public JavaRDD<T> repartition(int numPartitions)
Return a new RDD that has exactly numPartitions partitions.

Can increase or decrease the level of parallelism in this ROD. Internally, this uses a shuffle to redistnbute data.

If you are decreasing the number of partitions in this RDD, consider using coale=ce, which can avoid performing a shuffle

coalesce

public JavaRDD<T> coalesce (int numPartitions,
boolean shuffle)

Return a new RDD that is reduced into numParcicions partitions.

2018-09-04 jb
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From DAG to RDD lineage

” SparkContext ﬂ

val file = sc.textFile("README.md") |

val allwords = file flatMapi_.split("\\s+") |

val words = allWords.filter(!_.isEmpty) |

val pairs = words.mapi(_,1)) ‘

val reducedByKey = pairs.reduceByKey(_ + _)

val topl0words = reducedByKey.takeOrdered(10){Ordering|[Int].reverse.on(_._2)) H

2018-09-04 37
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Samples: Word Count

rdd = sc.textFile(“hdfs://...");

words = rdd.flatMap(x -> x.split(" "));

result = words.map(x->(x,1)).
reduceByKey((x, y): X + Vy);

6/7/2010 i

https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html|
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Samples: Per-key average

key value key value
panda | 0 panda | (0,1)
pink |3 mapValues | pink | (3,1)
pirate | 3 | pirate | (3,1)
panda | 1 panda | (1,1)
pink |4 pink | (4,1)
reducebyKey
key | vale sumCount =
panda | (1,2)
=Rl rdd.mapValues(x -> (x,1)).
pirate BA
reduceByKey((x, y) ->
(x[e]+y[e], x[1]+y[1]))
6/7/2019 39
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= Centrality measure of web page quality based on
the web structure

» How important is this vertex in the graph?

= Random walk

» Web surfer visits a page, randomly clicks a link on that
page, and does this repeatedly.

» How frequently would each page appear in this surfing?

" |[ntuition

» Expect high-quality pages to contain “endorsements”
from many other pages thru hyperlinks

» Expect if a high-quality page links to another page, then
the second page is likely to be high quality too

2016-03-16 40
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PageRank, recursively

P =a () +0-a) 3 50

mELin)
» P(n) is PageRank for webpage/URL ‘n’

» Probability that you’re in vertex ‘n’
" |G| is number of URLs (vertices) in graph
" o is probability of random jump
= L(n) is set of vertices that link to ‘n’
=" C(m) is out-degree of ‘m’

2016-03-16

41
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PageRank Iterations

a=0
Initialize P(n)=1/|G|
Iteration 1 n, (0.2) n, (0.166)

ny (0.2)0.1

n, (0.166)

Ilteration 2

n, (0.066)%222

2016-03-16 Lin, Fig 5.7 40
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Samples: PageRank

// URL neighbor URL
JavaRDD<String> lines =
spark.read().textFile(args[©]).javaRDD();
// Loads all URLs from input file and initialize their
neighbors.
JavaPairRDD<String, Iterable<String>> links =
lines.mapToPair(s -> {

String[] parts = SPACES.split(s);

return new Tuple2<>(parts[@], parts[1l]);

}).distinct().groupByKey().cache();

// Loads all URLs with other URL(s) link to from input
file and initialize ranks of them to one.

JavaPairRDD<String, Double> ranks = links.mapValues(rs
-> 1.09);

2018-09-04 43
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// Calculates and updates URL ranks continuously using PageRank algorithm.
for (int current = @; current < Integer.parselnt(args[1l]); current++) {
// Calculates URL contributions to the rank of other URLs.
JavaPairRDD<String, Double> contribs = links.join(ranks).values()
.flatMapToPair(s -> { // 1 = adj list, 2 = ranks
int urlCount = Iterables.size(s. 1());
List<Tuple2<String, Double>> results = new ArraylList<>();
for (String n : s. 1) { // Send rank value to neighbor
results.add(new Tuple2<>(n, s. 2() / urlCount));
}

return results.iterator();

1)

// Re-calculates URL ranks based on neighbor contributions.
ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> ©0.15 + sum * 0.85);
}
// Collects all URL ranks and dump them to console.
List<Tuple2<String, Double>> output = ranks.collect();
for (Tuple2<?,?> tuple : output) {
System.out.println(tuple. 1() + " has rank: " + tuple. 2() + ".");

}

2018-09-04 44
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More on Spark

Spark SQL Spark Streaming mgﬂcﬂibne (:]’?a%hhx
structured data real-time e orocessing

RDD -

Data
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| Standalone Scheduler l | YARN l | Mesos |
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