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Distributed Systems
▪ Distributed Computing

‣ Clusters of machines
‣ Connected over network

▪ Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

▪ How can we make effective use of multiple machines?

▪ Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency 
• CPU typically comparable (Xeon vs. i3/5/7)
• Virtualization overhead on Cloud

▪ How can we use many machines of modest capability?
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Scalability
▪ Strong vs. Weak Scaling

▪ Strong Scaling: How the performance varies with 
the # of processors for a fixed total problem size

▪ Weak Scaling: How the performance varies with 
the # of processors for a fixed problem size per 
processor
‣ Big Data platforms are intended for “Weak Scaling”
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Ease of Programming

▪ Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

▪ Parallel and distributed programming 
models/languages/abstractions/platforms try to 
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming
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Availability, Failure

▪ Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

▪ How can applications easily deal with failures?

▪ How can we ensure availability in the presence of faults?
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MapReduce, the classic Big 
Data platform
▪ Eased distributed data-parallel programming

‣ Simple primitives: Map, Reduce, Combiner, Partitioner

‣ Avoids race conditions

▪ Offered reliable storage (HDFS) and execution

▪ Scaled to large datasets

2018-09-04 9
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Challenges with 
MapReduce
▪ Shuffle between Map and Reduce 

‣ Allows results larger than RAM, enables recovery

‣ But forces a global key-sort and disk writes

▪ Multi-stage jobs write output of Reduce/Input to 
Map to HDFS
‣ I/O ops forced at each “stage”

‣ Scheduling overheads for each MR job

▪ Can we do better?

2018-09-04 10
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The MR Pipeline

2018-09-04 11
Introduction to Spark on Hadoop, Carol McDonald, MapR, https://www.slideshare.net/caroljmcdonald/introduction-to-spark-on-hadoop
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Why Spark?

▪ Ease of language definition
‣ Data typing, dataflow composition, Java/Python/Scala 

bindings

‣ But Pig, Hive, HBase, etc. give you that

▪ Better performance using “In memory” compute
‣ Multiple stages part of same job

‣ Lazy evaluation, caching/persistence

2018-09-04 12
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Big Data Stack Evolution

2018-09-04 13https://hortonworks.com/blog/using-hdp-hadoop-platform-service/
https://hortonworks.com/products/data-platforms/hdp/
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In-memory computation
▪ Operate on data in (distributed) memory

‣ Allows many operations to be performed locally 
‣ Write to disk only when data sharing required across 

workers

2018-09-04 14
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD: The Secret Sauce

▪ RDD: Resilient Distributed Dataset
‣ Immutable, partitioned collection of tuples

‣ Operated on by deterministic transformations
• Object-oriented flavor

• RDD.operation() → RDD

▪ Recovery by re-computation
‣ Maintains lineage of transformations

‣ Recompute missing partitions if failure happens

‣ Not possible/not automatic in Pig

▪ Allows caching & persistence for reuse

2018-09-04 15
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012
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RDD Operations

2018-09-04 17

Allows 
composability 
into Dataflows
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A Sample Spark Program

2018-09-04 18

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = 

lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);

// Cache RDD in-memory for future use in this app
lineLengths.persist(StorageLevel.MEMORY_ONLY());

▪ Counts the number of bytes in a line, and sums the 
count per line

▪ Uses lambda expressions for compact function defn.
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A Sample Spark Program

▪ Can pass complex functions as well

2018-09-04 19

class GetLength implements Function<String, Integer> {
public Integer call(String s) { return s.length(); }

}
class Sum implements Function2<Integer, Integer, Integer> {
public Integer call(Integer a, Integer b) { return a + b; }

}

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new GetLength());
int totalLength = lineLengths.reduce(new Sum());
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RDD Partitions
▪ RDD is internally a collection of partitions

‣ Each partition holds a list of items

▪ Partitions may be present on a different machine
‣ Partition is the unit of execution
‣ Partition is the unit of parallelism

▪ They are immutable
‣ Each transformation on an RDD generates a new RDD with 

different partitions
‣ Allows recovery of individual partitions

2018-09-04 20
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Distributed Execution

2018-09-04 21
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Distributed Execution

2018-09-04 22
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Creating RDD

▪ Load external data from distributed storage

▪ Create logical RDD on which you can operate

▪ Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

▪ Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

232018-09-04
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RDD Operations
▪ Transformations

‣ From one RDD to one or more RDDs

‣ Lazy evaluation…use with care

‣ Executed in a distributed manner

▪ Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

▪ RDD.collect() brings RDD partitions to single driver 
machine

242018-09-04
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Caution: Local Variables

▪ Caution: Cannot pass “local” driver variables to 
lambda expressions/anonymous classes….only final
‣ Will fail when distributed

252018-09-04
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RDD and PairRDD

▪ RDD is logically a collection of items with a generic 
type

▪ PairRDD is like a “Map”, where each item in 
collection is a <key,value> pair, each a generic type

▪ Transformation functions use RDD or PairRDD as 
input/output

▪ E.g. Map-Reduce

262018-09-04
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Transformations

▪ JavaRDD<R> map(Function<T,R> f) : 1:1 mapping 
from input to output. Can be different types.

▪ JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1 
from input to output, same type.

▪ JavaRDD<U> flatMap(FlatMapFunction<T,U> f) : 
1:N mapping from input to output, different types.

272018-09-04
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Transformations

▪ Earlier Map and Filter operate on one item at a 
time. No state across calls!

▪ JavaRDD<U> 
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

▪ mapPartitions has access to iterator of values in 
entire partition, jot just a single item at a time.

282018-09-04
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Transformations

▪ JavaRDD<T> sample(boolean withReplacement, 
double fraction): fraction between [0,1] without 
replacement, >0 with replacement

▪ JavaRDD<T> union(JavaRDD<T> other): Items in 
other RDD added to this RDD. Same type. Can have 
duplicate items (i.e. not a ‘set’ union).

292018-09-04
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Transformations

▪ JavaRDD<T> intersection(JavaRDD<T> other): Does 
a set intersection of the RDDs. Output will not have 
duplicates, even if inputs did. 

▪ JavaRDD<T> distinct(): Returns a new RDD with 
unique elements, eliminating duplicates.

302018-09-04
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Transformations: PairRDD

▪ JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values 
for each key into a single iterable.

▪ JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) : 
Merge the values for each key into a single value using an 
associative and commutative reduce function. Output value 
is of same type as input.

▪ For aggregate that returns a different type?

▪ numPartitions can be used to generate output RDD with 
different number of partitions than input RDD.

312018-09-04
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Transformations

▪ JavaPairRDD<K,U> aggregateByKey(U zeroValue, 
Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc) : 
Aggregate the values of each key, using given combine functions 
and a neutral “zero value”.
‣ SeqOp for merging a V into a U within a partition
‣ CombOp for merging two U's, within/across partitions

▪ JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort 
of the RDD by key
‣ Each partition contains a sorted range, i.e., output RDD is range-

partitioned.
‣ Calling collect will return an ordered list of records

322018-09-04
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Transformations

▪ JavaPairRDD<K, Tuple2<V,W>> 
join(JavaPairRDD<K,W> other, int numParts): 
Matches keys in this and other. Each output pair is 
(k, (v1, v2)). Performs a hash join across the cluster.

▪ JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?> 
other): Cross product of values in each RDD as a 
pair

332018-09-04
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Actions

342018-09-04
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RDD Persistence & Caching

▪ RDDs can be reused in a dataflow
‣ Branch, iteration

▪ But it will be re-evaluated each time it is reused!

▪ Explicitly persist RDD to reuse output of a dataflow 
path multiple times

▪ Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

352018-09-04
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RePartitioning

362018-09-04
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From DAG to RDD lineage

37
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-transformations.html
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Samples: Word Count

rdd = sc.textFile(“hdfs://...");

words = rdd.flatMap(x -> x.split(" "));

result = words.map(x->(x,1)).

reduceByKey((x, y): x + y);

6/7/2019 38
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html
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Samples: Per-key average

sumCount = 

rdd.mapValues(x -> (x,1)). 

reduceByKey((x, y) -> 

(x[0]+y[0], x[1]+y[1]))

6/7/2019 39
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html
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PageRank

▪ Centrality measure of web page quality based on 
the web structure
‣ How important is this vertex in the graph?

▪ Random walk
‣ Web surfer visits a page, randomly clicks a link on that 

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

▪ Intuition
‣ Expect high-quality pages to contain “endorsements” 

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then 

the second page is likely to be high quality too

2016-03-16 40Lin, Ch 5.3 PAGERANK
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PageRank, recursively

▪ P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

▪ |G| is number of URLs (vertices) in graph

▪ α is probability of random jump 

▪ L(n) is set of vertices that link to ‘n’

▪ C(m) is out-degree of ‘m’

2016-03-16 41
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PageRank Iterations

2016-03-16 42

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7
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Samples: PageRank
// URL neighbor URL
JavaRDD<String> lines = 
spark.read().textFile(args[0]).javaRDD();
// Loads all URLs from input file and initialize their 
neighbors.
JavaPairRDD<String, Iterable<String>> links = 
lines.mapToPair(s -> {

String[] parts = SPACES.split(s);
return new Tuple2<>(parts[0], parts[1]);

}).distinct().groupByKey().cache();

// Loads all URLs with other URL(s) link to from input 
file and initialize ranks of them to one.
JavaPairRDD<String, Double> ranks = links.mapValues(rs
-> 1.0);

2018-09-04 43
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// Calculates and updates URL ranks continuously using PageRank algorithm.

for (int current = 0; current < Integer.parseInt(args[1]); current++) {

// Calculates URL contributions to the rank of other URLs.

JavaPairRDD<String, Double> contribs = links.join(ranks).values()

.flatMapToPair(s -> { // _1 = adj list, _2 = ranks

int urlCount = Iterables.size(s._1());

List<Tuple2<String, Double>> results = new ArrayList<>();

for (String n : s._1) { // Send rank value to neighbor

results.add(new Tuple2<>(n, s._2() / urlCount));

}

return results.iterator();

});

// Re-calculates URL ranks based on neighbor contributions.

ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85);

}

// Collects all URL ranks and dump them to console.

List<Tuple2<String, Double>> output = ranks.collect();

for (Tuple2<?,?> tuple : output) {

System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");

}

2018-09-04 44
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More on Spark

2018-09-04 45

RDD →
Data 

Frames
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