
Indian Institute of Science
Bangalore, India

भारतीय विज्ञान संस्थान
बंगलौर, भारत

Department of Computational and Data Sciences

©Department of Computational and Data Science, IISc, 2016
This work is licensed under a Creative Commons Attribution 4.0 International License
Copyright for external content used with attribution is retained by their original authors

CDS
Department of Computational and Data Sciences

Apache Spark
Yogesh Simmhan

Slide Credits:
• https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
• https://www.slideshare.net/deanchen11/scala-bay-spark-talk
• https://databricks-training.s3.amazonaws.com/slides/advanced-spark-training.pdf
• Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing, M. Zaharia, et al., NSDI 2012
• http://spark.apache.org/docs/latest/programming-guide.html

http://creativecommons.org/licenses/by/4.0/deed.en_US

CDS.IISc.ac.in | Department of Computational and Data Sciences

Distributed Systems
▪ Distributed Computing

‣ Clusters of machines
‣ Connected over network

▪ Distributed Storage
‣ Disks attached to clusters of machines
‣ Network Attached Storage

▪ How can we make effective use of multiple machines?

▪ Commodity clusters vs. HPC clusters
‣ Commodity: Available off the shelf at large volumes
‣ Lower Cost of Acquisition
‣ Cost vs. Performance

• Low disk bandwidth, and high network latency
• CPU typically comparable (Xeon vs. i3/5/7)
• Virtualization overhead on Cloud

▪ How can we use many machines of modest capability?
52018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Scalability
▪ Strong vs. Weak Scaling

▪ Strong Scaling: How the performance varies with
the # of processors for a fixed total problem size

▪ Weak Scaling: How the performance varies with
the # of processors for a fixed problem size per
processor
‣ Big Data platforms are intended for “Weak Scaling”

6Data Size

N
o

. o
f

M
ac

h
in

es Tim
e

 Taken

Weak Scaling

2018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Ease of Programming

▪ Programming distributed systems is difficult
‣ Divide a job into multiple tasks

‣ Understand dependencies between tasks: Control, Data

‣ Coordinate and synchronize execution of tasks

‣ Pass information between tasks

‣ Avoid race conditions, deadlocks

▪ Parallel and distributed programming
models/languages/abstractions/platforms try to
make these easy
‣ E.g. Assembly programming vs. C++ programming

‣ E.g. C++ programming vs. Matlab programming

72018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Availability, Failure

▪ Commodity clusters have lower reliability
‣ Mass-produced

‣ Cheaper materials

‣ Smaller lifetime (~3 years)

▪ How can applications easily deal with failures?

▪ How can we ensure availability in the presence of faults?

82018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

MapReduce, the classic Big
Data platform
▪ Eased distributed data-parallel programming

‣ Simple primitives: Map, Reduce, Combiner, Partitioner

‣ Avoids race conditions

▪ Offered reliable storage (HDFS) and execution

▪ Scaled to large datasets

2018-09-04 9

CDS.IISc.ac.in | Department of Computational and Data Sciences

Challenges with
MapReduce
▪ Shuffle between Map and Reduce

‣ Allows results larger than RAM, enables recovery

‣ But forces a global key-sort and disk writes

▪ Multi-stage jobs write output of Reduce/Input to
Map to HDFS
‣ I/O ops forced at each “stage”

‣ Scheduling overheads for each MR job

▪ Can we do better?

2018-09-04 10

CDS.IISc.ac.in | Department of Computational and Data Sciences

The MR Pipeline

2018-09-04 11
Introduction to Spark on Hadoop, Carol McDonald, MapR, https://www.slideshare.net/caroljmcdonald/introduction-to-spark-on-hadoop

CDS.IISc.ac.in | Department of Computational and Data Sciences

Why Spark?

▪ Ease of language definition
‣ Data typing, dataflow composition, Java/Python/Scala

bindings

‣ But Pig, Hive, HBase, etc. give you that

▪ Better performance using “In memory” compute
‣ Multiple stages part of same job

‣ Lazy evaluation, caching/persistence

2018-09-04 12

CDS.IISc.ac.in | Department of Computational and Data Sciences

Big Data Stack Evolution

2018-09-04 13https://hortonworks.com/blog/using-hdp-hadoop-platform-service/
https://hortonworks.com/products/data-platforms/hdp/

2014
2018

CDS.IISc.ac.in | Department of Computational and Data Sciences

In-memory computation
▪ Operate on data in (distributed) memory

‣ Allows many operations to be performed locally
‣ Write to disk only when data sharing required across

workers

2018-09-04 14
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD: The Secret Sauce

▪ RDD: Resilient Distributed Dataset
‣ Immutable, partitioned collection of tuples

‣ Operated on by deterministic transformations
• Object-oriented flavor

• RDD.operation() → RDD

▪ Recovery by re-computation
‣ Maintains lineage of transformations

‣ Recompute missing partitions if failure happens

‣ Not possible/not automatic in Pig

▪ Allows caching & persistence for reuse

2018-09-04 15
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, M. Zaharia, et al., NSDI 2012

CDS.IISc.ac.in | Department of Computational and Data Sciences

2018-09-04 16

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Operations

2018-09-04 17

Allows
composability
into Dataflows

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Sample Spark Program

2018-09-04 18

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths =

lines.map(s -> s.length());
int totalLength = lineLengths.reduce((a, b) -> a + b);

// Cache RDD in-memory for future use in this app
lineLengths.persist(StorageLevel.MEMORY_ONLY());

▪ Counts the number of bytes in a line, and sums the
count per line

▪ Uses lambda expressions for compact function defn.

CDS.IISc.ac.in | Department of Computational and Data Sciences

A Sample Spark Program

▪ Can pass complex functions as well

2018-09-04 19

class GetLength implements Function<String, Integer> {
public Integer call(String s) { return s.length(); }

}
class Sum implements Function2<Integer, Integer, Integer> {
public Integer call(Integer a, Integer b) { return a + b; }

}

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new GetLength());
int totalLength = lineLengths.reduce(new Sum());

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Partitions
▪ RDD is internally a collection of partitions

‣ Each partition holds a list of items

▪ Partitions may be present on a different machine
‣ Partition is the unit of execution
‣ Partition is the unit of parallelism

▪ They are immutable
‣ Each transformation on an RDD generates a new RDD with

different partitions
‣ Allows recovery of individual partitions

2018-09-04 20

CDS.IISc.ac.in | Department of Computational and Data Sciences

Distributed Execution

2018-09-04 21

CDS.IISc.ac.in | Department of Computational and Data Sciences

Distributed Execution

2018-09-04 22

CDS.IISc.ac.in | Department of Computational and Data Sciences

Creating RDD

▪ Load external data from distributed storage

▪ Create logical RDD on which you can operate

▪ Support for different input formats
‣ HDFS files, Cassandra, Java serialized, directory, gzipped

▪ Can control the number of partitions in loaded RDD
‣ Default depends on external DFS, e.g. 128MB on HDFS

232018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Operations
▪ Transformations

‣ From one RDD to one or more RDDs

‣ Lazy evaluation…use with care

‣ Executed in a distributed manner

▪ Actions
‣ Perform aggregations on RDD items

‣ Return single (or distributed) results to “driver” code

▪ RDD.collect() brings RDD partitions to single driver
machine

242018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Caution: Local Variables

▪ Caution: Cannot pass “local” driver variables to
lambda expressions/anonymous classes….only final
‣ Will fail when distributed

252018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD and PairRDD

▪ RDD is logically a collection of items with a generic
type

▪ PairRDD is like a “Map”, where each item in
collection is a <key,value> pair, each a generic type

▪ Transformation functions use RDD or PairRDD as
input/output

▪ E.g. Map-Reduce

262018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<R> map(Function<T,R> f) : 1:1 mapping
from input to output. Can be different types.

▪ JavaRDD<T> filter(Function<T,Boolean> f) : 1:0/1
from input to output, same type.

▪ JavaRDD<U> flatMap(FlatMapFunction<T,U> f) :
1:N mapping from input to output, different types.

272018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ Earlier Map and Filter operate on one item at a
time. No state across calls!

▪ JavaRDD<U>
mapPartitions(FlatMapFunc<Iterator<T>,U> f)

▪ mapPartitions has access to iterator of values in
entire partition, jot just a single item at a time.

282018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<T> sample(boolean withReplacement,
double fraction): fraction between [0,1] without
replacement, >0 with replacement

▪ JavaRDD<T> union(JavaRDD<T> other): Items in
other RDD added to this RDD. Same type. Can have
duplicate items (i.e. not a ‘set’ union).

292018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaRDD<T> intersection(JavaRDD<T> other): Does
a set intersection of the RDDs. Output will not have
duplicates, even if inputs did.

▪ JavaRDD<T> distinct(): Returns a new RDD with
unique elements, eliminating duplicates.

302018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations: PairRDD

▪ JavaPairRDD<K,Iterable<V>> groupByKey(): Groups values
for each key into a single iterable.

▪ JavaPairRDD<K,V> reduceByKey(Function2<V,V,V> func) :
Merge the values for each key into a single value using an
associative and commutative reduce function. Output value
is of same type as input.

▪ For aggregate that returns a different type?

▪ numPartitions can be used to generate output RDD with
different number of partitions than input RDD.

312018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaPairRDD<K,U> aggregateByKey(U zeroValue,
Function2<U,V,U> seqFunc, Function2<U,U,U> combFunc) :
Aggregate the values of each key, using given combine functions
and a neutral “zero value”.
‣ SeqOp for merging a V into a U within a partition
‣ CombOp for merging two U's, within/across partitions

▪ JavaPairRDD<K,V> sortByKey(Comparator<K> comp): Global sort
of the RDD by key
‣ Each partition contains a sorted range, i.e., output RDD is range-

partitioned.
‣ Calling collect will return an ordered list of records

322018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Transformations

▪ JavaPairRDD<K, Tuple2<V,W>>
join(JavaPairRDD<K,W> other, int numParts):
Matches keys in this and other. Each output pair is
(k, (v1, v2)). Performs a hash join across the cluster.

▪ JavaPairRDD<T,U> cartesian(JavaRDDLike<U,?>
other): Cross product of values in each RDD as a
pair

332018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Actions

342018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

RDD Persistence & Caching

▪ RDDs can be reused in a dataflow
‣ Branch, iteration

▪ But it will be re-evaluated each time it is reused!

▪ Explicitly persist RDD to reuse output of a dataflow
path multiple times

▪ Multiple storage levels for persistence
‣ Disk or memory

‣ Serialized or object form in memory

‣ Partial spill-to-disk possible

‣ Cache indicates “persist” to memory

352018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

RePartitioning

362018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

From DAG to RDD lineage

37
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-transformations.html

2018-09-04

CDS.IISc.ac.in | Department of Computational and Data Sciences

Samples: Word Count

rdd = sc.textFile(“hdfs://...");

words = rdd.flatMap(x -> x.split(" "));

result = words.map(x->(x,1)).

reduceByKey((x, y): x + y);

6/7/2019 38
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

Samples: Per-key average

sumCount =

rdd.mapValues(x -> (x,1)).

reduceByKey((x, y) ->

(x[0]+y[0], x[1]+y[1]))

6/7/2019 39
https://www.safaribooksonline.com/library/view/learning-spark/9781449359034/ch04.html

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank

▪ Centrality measure of web page quality based on
the web structure
‣ How important is this vertex in the graph?

▪ Random walk
‣ Web surfer visits a page, randomly clicks a link on that

page, and does this repeatedly.
‣ How frequently would each page appear in this surfing?

▪ Intuition
‣ Expect high-quality pages to contain “endorsements”

from many other pages thru hyperlinks
‣ Expect if a high-quality page links to another page, then

the second page is likely to be high quality too

2016-03-16 40Lin, Ch 5.3 PAGERANK

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank, recursively

▪ P(n) is PageRank for webpage/URL ‘n’
‣ Probability that you’re in vertex ‘n’

▪ |G| is number of URLs (vertices) in graph

▪ α is probability of random jump

▪ L(n) is set of vertices that link to ‘n’

▪ C(m) is out-degree of ‘m’

2016-03-16 41

CDS.IISc.ac.in | Department of Computational and Data Sciences

PageRank Iterations

2016-03-16 42

α=0
Initialize P(n)=1/|G|

Lin, Fig 5.7

CDS.IISc.ac.in | Department of Computational and Data Sciences

Samples: PageRank
// URL neighbor URL
JavaRDD<String> lines =
spark.read().textFile(args[0]).javaRDD();
// Loads all URLs from input file and initialize their
neighbors.
JavaPairRDD<String, Iterable<String>> links =
lines.mapToPair(s -> {

String[] parts = SPACES.split(s);
return new Tuple2<>(parts[0], parts[1]);

}).distinct().groupByKey().cache();

// Loads all URLs with other URL(s) link to from input
file and initialize ranks of them to one.
JavaPairRDD<String, Double> ranks = links.mapValues(rs
-> 1.0);

2018-09-04 43

CDS.IISc.ac.in | Department of Computational and Data Sciences

// Calculates and updates URL ranks continuously using PageRank algorithm.

for (int current = 0; current < Integer.parseInt(args[1]); current++) {

// Calculates URL contributions to the rank of other URLs.

JavaPairRDD<String, Double> contribs = links.join(ranks).values()

.flatMapToPair(s -> { // _1 = adj list, _2 = ranks

int urlCount = Iterables.size(s._1());

List<Tuple2<String, Double>> results = new ArrayList<>();

for (String n : s._1) { // Send rank value to neighbor

results.add(new Tuple2<>(n, s._2() / urlCount));

}

return results.iterator();

});

// Re-calculates URL ranks based on neighbor contributions.

ranks = contribs.reduceByKey(new Sum()).mapValues(sum -> 0.15 + sum * 0.85);

}

// Collects all URL ranks and dump them to console.

List<Tuple2<String, Double>> output = ranks.collect();

for (Tuple2<?,?> tuple : output) {

System.out.println(tuple._1() + " has rank: " + tuple._2() + ".");

}

2018-09-04 44

CDS.IISc.ac.in | Department of Computational and Data Sciences

More on Spark

2018-09-04 45

RDD →
Data

Frames

© www.safaribooksonline.com

