GPU Programming

A guide to using GPUs on the Cray XC40

COMPUTE | STORE | ANALYZE

GPU nodes on SERC system . o

e Each XC GPU node has one Intel Xeon CPU and one |
Nvidia GPU
e CPU: Intel lvybridge 12-core 2.4ghz

e GPU: NVIDIA Tesla K40
e 2880 cores, 12GB device memory

e PBS Submission:

#PBS -l select=2:ncpus=1:accelerator=True:accelerator model="Tesla_K40s"
#PBS -l accelerator _type="Tesla K40s"

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop @

The New Generation of Supercomputers .o

e Hybrid multicore has arrived and is here to stay
e \Wide nodes are getting wider
e Accelerators have leapt into the Top500

e Programming accelerators efficiently is hard
e Three levels of parallelism required
e MPI between nodes or sockets
e Shared memory programming on the node
e \ectorization for low level looping structures
e Need a hybrid programming model to support these new systems

e Need a high level programming environment
e Compilers, tools, & libraries

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop @

o
i
CRAY |

Structural Issues with Accelerated Computing .o
S \
\
32GB \
SDRAM [12 GB J
GDDR

~250 GB/s

PCle-2
8 GB/s

Bandwidth
and Synchronization

e Trick is to keep kernel data structures resident in GPU
memory as much as possible
e Avoid copying between CPU and GPU

e Use asynchronous, non-blocking communication, multi-level
overlapping

Program execution with a GPU

e The main program runs on the host (CPU)
e Some of the code will also execute on the host
e either serially or in parallel with threads (e.g., OpenMP)
e This code could be:

e calculations that you want to be done on the CPU, e.g.,
e it is hard to parallelise for the GPU
e there is not enough work to justify using the GPU

e control statements for the GPU, e.g.,
e memory management
e synchronisation

e communication calls, e.g. MPI
e The main program can also
e launch kernels (tasks) on the device (GPU)
e These are written specially for the GPU, e.g., with
e CUDA
e OpenACC

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Cray Vision for Accelerated Computing .

e NVIDIA CUDA: If you work hard, you can get good parallel
performance

e Most important hurdle for widespread adoption of accelerated
computing in HPC is programming difficulty
e Need a single programming model that is portable across machine types
e Portable expression of heterogeneity and multi-level parallelism

e Programming model and optimization should not be significantly different for “accelerated”
nodes and multi-core x86 processors

e Allow users to maintain a single code base

e Accelerated programming needs an ease of use tightly coupled high
level programming environment with compilers, libraries, and tools
that can hide the complexity of the system

e Ease of use is possible with
o Compiler making it feasible for users to write applications in Fortran, C, and C++
e Tools to help users port and optimize for hybrid systems
e Auto-tuned scientific libraries

Potential programming approaches: AN

e NVIDIA CUDA)

e Offload-based programming model

e Control code on host CPU launches parallel portions (kernels) of ‘
application on the attached GPU

e OpenCL
e Open standard. Not officially supported by Cray but should work.
e Programming model similar to CUDA

e OpenACC

e High level programming model based on use of pragmas/directives
(similar to OpenMP). Works with Fortran, C, C++

o I\G/Iain program executes on host, offload compute-intensive portions to
PU
e Why directives?
e Address programming difficulty
Portability across platforms
Multi-language
Single code base

o
o
o
e Multivendor support

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop @

OpenACC Accelerator Programming Model

e Why a new model? There are already many ways to program:
e CUDA and OpenCL
e All are quite low-level and closely coupled to the GPU
e PGI CUDA Fortran: still CUDA just in a better base language
e User needs to write specialized kernels:
e Hard to write and debug
e Hard to optimize for specific GPU
e Hard to update (porting/functionality)
e OpenACC Directives provide high-level approach
e Simple programming model for hybrid systems
o Easier to maintain/port/extend code
¢ Non-executable statements (comments, pragmas)
e The same source code can be compiled for multicore CPU
e Based on Cray proposal to the OpenMP Accelerator Subcommittee
e PGl accelerator directives, CAPS HMPP
e First steps in the right direction — Needed standardization
e Possible performance sacrifice
e A small performance gap is acceptable (do you still hand-code in assembly?)
e Goal is to provide at least 80% of the performance obtained with hand coded CUDA
e Compiler support: all OpenACC Version 2.0 complete in 2014
e GCC support for OpenACC 2.0 planned for next major release

Motivating Example: Reduction

e Sum elements of an array
e Original Fortran code

e 2.0 GFlops

a=0.0

do i =1,n
a=a + b(i)
end do

The Reduction Code in Simple CUDA 7.

9

\

__global void reduceO (int *g idata, int *g_ odata)
{

extern shared int sdatal];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = g idatalil;

___syncthreads () ;

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if ((tid % (2*s)) == 0) {

sdata[tid] += sdata[tid + s];

}

___syncthreads () ;

if (tid == 0) g _odatal[blockIdx.x] = sdatal[0];
}

extern "C" void reduce0 cuda_ (int *n, int *a, int *b)
{

int *b _d, red;

const int b _size = *n;

cudaMalloc ((void **) &b d , sizeof (int)*b size);
cudaMemcpy (b_d, b, sizeof (int)*b_ size,
cudaMemcpyHostToDevice) ;

dim3 dimBlock (128, 1, 1);
dim3 dimGrid (2048, 1, 1);
dim3 small dimGrid(le, 1, 1);

int smemSize = 128 * sizeof (int);
int *buffer d, *red d;
int *small buffer d;

cudaMalloc ((void **) &buffer d , sizeof (int)*2048);
cudaMalloc ((void **) &small buffer d ,

sizeof (int) *16) ;

cudaMalloc ((void **) &red d , sizeof (int));

reduce(0<<< dimGrid, dimBlock, smemSize >>>(b d,
buffer d);

reduce(0<<< small dimGrid, dimBlock, smemSize
>>>(buffer d, small buffer d);

reduce(0<<< 1, 16, smemSize >>>(small buffer d,
red d);

cudaMemcpy (&red, red d, sizeof (int),
cudaMemcpyDeviceToHost) ;

*a = red;
cudaFree (buffer d);

cudaFree (small buffer d);
cudaFree (b_d);

| \L 1.74 GFlops]

O,

The Reduction Code in Optimized CUDK™ <"

\

template<class T>
struct SharedMemory
{
__device___inline operator T*()
{
extern __shared__int __smem[];
return (T*)__smem;

}

__device___inline operator const T*() const
{
extern __shared__int __smem[];
return (T*)__smem;
}
H

template <class T, unsigned int blockSize, bool nlsPow2>
__global__ void
reduce6(T *g_idata, T *g_odata, unsigned int n)

{
T *sdata = SharedMemory<T>();

unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockSize*2 + threadldx.x;
unsigned int gridSize = blockSize*2*gridDim.x;

T mySum = 0;

while (i < n)

{
mySum += g_idata[i];
if (nlsPow?2 || i + blockSize < n)

mySum += g_idata[i+blockSize];

i += gridSize;

}

sdata[tid] = mySum;
__syncthreads();

if (blockSize >=512) { if (tid < 256) { sdata[tid] = mySum = mySum
+ sdataltid + 256]; } __syncthreads(); }

if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum
+ sdataltid + 128]; } __syncthreads(); }

if (blockSize >= 128) { if (tid < 64) { sdata[tid] = mySum = mySum
+ sdataftid + 64]; } __ syncthreads(); }

if (tid < 32)
{ volatile T* smem = sdata;
if (blockSize >= 64) { smem|[tid] = mySum = mySum + smeml[tid + 32]; }
if (blockSize >= 32) { smem[tid] = mySum = mySum + smem[tid + 16]; }
if (blockSize >= 16) { smem|[tid] = mySum = mySum + smeml[tid + 8]; }
if (blockSize >= 8) { smem[tid] = mySum = mySum + smem[tid + 4]; }
if (blockSize >= 4) { smem[tid] = mySum = mySum + smem[tid + 2]; }
if (blockSize >= 2) { smem[tid] = mySum = mySum + smem[tid + 1]; }

}

if (tid == 0)
g_odata[blockldx.x] = sdata[0];

extern "C" void reduce6_cuda_(int *n, int *a, int *b)

int *b_d;
const int b_size = *n;

cudaMalloc((void **) &b_d , sizeof(int)*b_size);
cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice);

dim3 dimBlock(128, 1, 1);

dim3 dimGrid(128, 1, 1);

dim3 small_dimGrid(1, 1, 1);

int smemSize = 128 * sizeof(int);
int *buffer_d;

int small_buffer[4],*small_buffer_d;

cudaMalloc((void **) &buffer_d , sizeof(int)*128);
cudaMalloc((void **) &small_buffer_d , sizeof(int));

reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, b_size);

reduce6<int,128,false><<< small_dimGrid, dimBlock, smemSize
>>>(buffer_d, small_buffer_d,128);

cudaMemcpy(small_buffer, small_buffer_d, sizeof(int),
cudaMemcpyDevice ToHost);

*a = *small_buffer;

cudaFree(buffer_d);
cudaFree(small _buffer_d);

T 110.5 GFlops |

®

The Reduction Code in OpenACC

e Compiler does the work:

e 8.32 GFlops

|dentifies parallel loops within the
region

Determines the kernels needed
Splits the code into accelerator
and host portions

Workshares loops running on
accelerator

Data movement

e Allocates/frees GPU memory at
start/end of region

e Moves data to/from GPU

!Sacc data present(a,b)
a=20.0
1Sacc update device (a)
!Sacc parallel
1Sacc loop reduction(+:a)
do i=1,n

a=a+ b(i)

end do

!Sacc end parallel
1Sacc end data

October 26-27, 2015

COMPUTE | STORE

| ANALYZE

SERC Tools Workshop

Reduction Code Summary

Summary of code complexity and performance

Programming
Language /

Model

Fortran

Simple CUDA

Optimized
CUDA

OpenACC

Unit of
computation

Lines of code

Single x86 core 4

GPU

GPU

GPU

30

69

Performance in
Gflops (higher
is better)

2.0 Gflops

1.74 Gflops

10.5 Gflops

8.32 Gflops

Performance
normalized to
X86 core

1.0

0.87

5.25

4.16

GPU Programming Environments .

e Not all compiler modules will work for all the different
programming approaches. Generally, swap to the most up to
date version in each case (should be defaulit)

e €.9., "'module avail cce” then "module swap cce cce/<whatever>"

e For any GPU programming (CUDA, OpenCL, OpenACC...)

e make sure module craype-ivybridge is loaded since CPU is Ivybridge
e make sure you always: "module load craype-accel-nvidia35"
e itis notloaded by default

e The craype-accel-nvidia35 module loads the following
additional modules:
e cray-libsci_acc
e cudatoolkit

e Load craype-accel-nvidia* only if you are developing code that
will be executed on GPU nodes.

e Loading the accelerator module enables dynamic linking by default and
loads the libsci_acc module, which causes increased overhead if the
resulting code is executed on non-GPU nodes.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Compiling CUDA SO0N

e CUDA-C: programming model developed by NVIDIA \

Consists of both library calls and language extensions
Only NVIDIA’'s compiler nvcc understands the language extensions
Lots of tutorials and examples online
Requires explicitly rewriting important parts of code to
e Manage gpu memory, copy data between host and gpu, execute on gpu
e Compilation:
e module load craype-accel-nvidia35 craype-ivybridge
e Main CPU code compiled with PrgEnv "cc" wrapper
e either Prgenv-gnu for gcc; or PrgEnv-cray for craycc
e GPU CUDA-C kernels must be compiled with nvcc
e nvcc -0O3 -arch=sm_35
e PrgEnv "cc" wrapper used for linking

e Only GPU flag needed: -1cudart
e i.e. no CUDA -L flags needed (added in cc wrapper)

e nvcc does not know about MPI headers
e Simplest solution: isolate CUDA C and MPI codes into separate files
e More complicated solution: explicitly include the MPI include directory in
the nvcc compile
e Building a .cu file enables C++ name mangling
e C codes will need to be built with the CC compiler or...
e Add extern “C” to continue using cc compiler

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop @

Compiling OpenCL

e OpenCL - set of libraries and C language extensions
maintained by Kronos group and supported by multiple
vendors

e Functionally similar to low-level CUDA driver API
e Requires explicitly rewriting important parts of code as with CUDA
e Compilation:
e module load craype-accel-nvidia35
e Main CPU code compiled with PrgEnv "cc" wrapper
e either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc
e GPU OpenCL kernels compiled with nvcec

e PrgEnv "cc" wrapper used for linking
e Only GPU flag needed: -10penCL

e Alternatively:

e Use PrgEnv-gnu for all compilation
e still need -10penCL at linktime

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Compiling OpenACC .

e OpenACC: a collection of compiler directives

e Specify loops and regions of code in standard C, C++ and Fortran to
be offloaded from a host CPU to an attached accelerator,

e provides portability across operating systems, host CPUs and
accelerators.

e Supported compilers: Cray and PGl
e Compilation (Cray):
e module load craype-accel-nvidia35
module load craype-ivybridge
module load PrgEnv-cray
Compile with cc or ftn
Helpful flags: -hacc —rm (Fortran) or —h pragma=acc —hmsgs (C)
e See manpage for —hacc_model options
e Compilation (PGI):
e module unload cray-libsci_acc (not supported for PGl compiler)
e Use -acc -ta=nvidia flags
o Compiler feedback is very useful: -Minfo=accel
e Runtime feedback is also useful: export ACC_NOTIFY=1

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

module load cray-libsci_acc

e Provides GPU-accelerated scientific libraries
e e.g. BLAS

e Libraries can be used:

e For GPU-resident data (without data copies)

e For CPU-resident data

e pure accelerated: all data copied to/from GPU

e hybrid (some data processed on CPU, some on GPU [with copying])
e Optional smart interface will select best method at runtime

e For more information: man intro libsci_acc

e Also: man intro_openacc, man openacc.examples

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Usage Tips .

e Sharing the GPU in an XC node
e Nvidia GPUs default to dedicated mode where each GPU is mapped
to one and only one process or one MPI rank per compute node.
o Override default by setting CRAY_CUDA_ MPS=1 (aka “proxy mode”)
o |f use this, make sure APRUN_XFER _LIMITS is disabled (unset)
e NVIDIA driver will multiplex CUDA kernels from different processes
e Might allow for more efficient loading and utilization of GPU
e Keep in mind memory limitations of hardware
e In proxy mode, more likely to see errors like
CUDA ERROR _OUT_ OF MEMORY
For debugging set CRAY_CUDA_MPS=0
Performance-related environment variables:

« MPICH_RDMA_ENABLED CUDA
« MPICH_G2G_PIPELINE

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

OpenACC Debugging .

e The intro_openacc man page contains a huge amount of
detailed information in its discussion section — do read!

e CRAY_ACC_DEBUG

e \When the runtime environment variable CRAY _ACC DEBUG is set to
1, 2,0or 3, CCE writes runtime commentary of accelerator activity to
STDERR for debugging purposes

e Every accelerator action on every PE generates output prefixed with

"ACC:". This may produce a large volume of output and it may be

difficult to associate messages with certain routines and/or certain
PEs.

e There is also a set of API calls that programmer can use to enable or
disable output at certain points of the code

e Can also use Cray Performance Tools (CrayPat)
e More information in later session

COMPUTE | STORE | ANALYZE
October 26-27, 2015 SERC Tools Workshop

Example of CRAY_ACC_ DEBUG output

ACC: Initialize CUDA

ACC: Get Device 0

ACC: Create Context

ACC: Set Thread Context

ACC: Start transfer 2 items from saxpy.c:17

ACC: allocate, copy to acc 'x' (4194304 bytes)

ACC: allocate, copy to acc'y' (4194304 bytes)

ACC: End transfer (to acc 8388608 bytes, to host 0 bytes)

ACC: Execute kernel saxpy$ck L17 1 blocks:8192 threads:128
async(auto) from saxpy.c:17

ACC: Wait async(auto) from saxpy.c:18

ACC: Start transfer 2 items from saxpy.c:18

ACC: free 'x' (4194304 bytes)

ACC: copy to host, free 'y' (4194304 bytes)

ACC: End transfer (to acc 0 bytes, to host 4194304 bytes)

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

NVIDIA Debugging Tools .

e Command-line profiler via environment variables (also
works for OpenACC)
e MPI or serial

Set COMPUTE_PROFILE=1 before running to enable

Writes log file showing kernel activity etc.

export COMPUTE_PROFILE_LOG="myfilename” to change log name

For multiple processes, add'%p' in the COMPUTE_PROFILE_LOG

name. This will ?enerate separate profiler output files for each process

- with '%p' substituted by the process id.

e e.g. export COMPUTE _ PROFILE LOG="cuda_log_%p"

e COMPUTE_PROFILE_CSV: set to 1 to enable a comma separated
version of the log output.

e COMPUTE_PROFILE_CONFIG: used to specify a config file for

selecting profiling options and performance counters.

e nvprof
e Serial code tuning
e export COMPUTE_PROFILE=0

e aprun -n 1 nvprof laplace2d _accpgi [l have not tested this!!]
COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Example of COMPUTE_PROFILE=1 output

export COMPUTE_PROFILE=1
> aprun -n 1 /laplace2d_acc
main()
Jacobi relaxation Calculation: 4096 x 4096 mesh
0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 3.945941 s
Application 140290 resources: utime ~4s, stime ~1s

>ls -l
-FW------- 1 arnoldg bw_staff 236416 Mar 12 13:39 cuda_profile_0.log

> more cuda_profile_0.log
CUDA_PROFILE_LOG_VERSION 2.0
CUDA_DEVICE 0 Tesla K20X
CUDA_CONTEXT 1
TIMESTAMPFACTOR fffff69047ada518
method,gputime,cputime,occupancy
method=[memcpyHtoD] gputime=[53270.656] cputime=[53558.000]
method=[memcpyHtoD] gputime=[1.600] cputime=[37.000]
method=[laplace$ck L64 3] gputime=[1899.712] cputime=[26.0] occupancy=[0.75]
method=[memcpyDtoH] gputime=[3.104] cputime=[49.000]
method=[laplace$ck L75 5] gputime=[1757.760] cputime=[10.0] occupancy=[1.00]
method=[laplace$ck L64 3] gputime=[1905.536] cputime=[8.0] occupancy=[0.75]

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Example of nvprof output

export COMPUTE_PROFILE=0 # or unset

> export LD_LIBRARY_PATH=$CRAY_CUDATOOLKIT_DIR/lib64:$LD_LIBRARY_PATH
> cd $PBS_O_WORKDIR

> aprun -n 1 nvprof

laplace2d_accpgi

======== NVPROF is profiling laplace2d_accpgqi...
======== Command: laplace2d_accpgi

main()

Jacobi relaxation Calculation: 4096 x 4096 mesh

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269

total: 6.712810 s

======== Warning: Application returned non-zero code 19
======== Profiling result:

Time(%) Time
65.24 3.48s
31.11 1.66s
2.41 128.73ms
0.72 38.63ms
0.51 27.25ms

Calls Avg Min
1000 3.48ms 3.47ms
1000 1.66ms 1.66ms

Max Name

3.49ms laplace_66_gpu
1.66ms laplace_77_gpu
1000 128.73us 127.68us 130.33us laplace 70 _gpu_red
1001 38.59us 2.53us 36.03ms [CUDA memcpy DtoH]
1128 24.16us 3.74us 182.66us [CUDA memcpy HtoD]
Application 83077 resources: utime ~5s, stime ~3s

October 26-27, 2015

COMPUTE

STORE

SERC Tools Workshop

ANALYZE

