
Short Introduction
to Debugging Tools on the Cray XC40

Overview

Debugging
Get your code up and
running correctly.

Profiling
Locate performance
bottlenecks.

Lightweight
At most relinking. Get a
first picture of a
performance or problems
during execution.

 ATP
 STAT

 CrayPAT-lite
 IOBUF

In-depth
Recompile/Relink. Provides
detailed information at user
routine level.

 lgdb, ccdb
 Fast track
 Allinea DDT

 CrayPAT
 Apprentice2
 Reveal

●  Some of the above are explained in separate presentations. More
information about Cray Tools in man pages and on docs.cray.com 	

October 26-27, 2015 SERC Tools Workshop

The porting optimization Cycle

 Port or update your application to the XC40

 Debug your application (get right results).

●  Stack Trace Analysis Tool (STAT)
●  Abnormal Termination Processing (ATP)
●  Fast Track Debugger (FTD)
●  Allinea DDT
●  lgdb (ccdb)

 Profile your application for performance.

●  Cray performance analysis toolkit CrayPat.
●  CrayPat lite for faster profiling.

October 26-27, 2015 SERC Tools Workshop

Debugging in production and scale

● Even with the most rigorous testing, bugs may occur
during development or production runs.
●  It can be very difficult to recreate a crash without additional information
●  Even worse, for production codes need to be efficient so usually have

debugging disabled

●  The failing application may have been using tens of or
hundreds of thousands of processes
●  If a crash occurs one, many, or all of the processes might issue a

signal.
●  We don’t want the core files from every crashed process, they’re slow

and too big!
●  We don’t want a backtrace from every process, they’re difficult to

comprehend and analyze.

October 26-27, 2015 SERC Tools Workshop

Stack Trace Analysis Tool (STAT)

For when nothing appears to be
happening…

Stack Trace Analysis Tool (STAT)

● Stack Trace Analysis Tool (STAT) is a cross-platform tool
from the University of Wisconsin-Madison.
●  Gathers and merges stack traces from a running application’s parallel

processes.
●  Creates call graph prefix tree

●  Compressed representation
●  Scalable visualization
●  Scalable analysis

●  It is very useful when application seems to
be stuck/hung

●  Full information including use cases is
available at
http://www.paradyn.org/STAT/STAT.html

●  Scales to many thousands of concurrent
process.

●  STAT 2.1.0.1 is the default version.

October 26-27, 2015 SERC Tools Workshop

Stack Trace Merge Example

October 26-27, 2015 SERC Tools Workshop

2D-Trace/Space Analysis

Appl

Appl

Appl

Appl

Appl …

October 26-27, 2015 SERC Tools Workshop

Merged Stack

October 26-27, 2015 SERC Tools Workshop

Using STAT to examine a hung job

October 26-27, 2015 SERC Tools Workshop

• Launch your application via a PBS session.
• Load the stat module

>	
 qsub	
 MYPBS	
 (contains	
 aprun	
 –n	
 ...	
 ./<exe>	

>	
 module	
 load	
 stat	

• Wait until application reaches the suspicious state.	

• Then launch the command line tool STAT	
 with the process id of the aprun as an argument and wait until it returns. It
writes to the directory “stat_results”.

• Terminate the running application with qdel or kill the aprun	

>	
 	
 ps	
 –fu	
 pburgess	
 |	
 grep	
 aprun	

pburgess	
 25861	
 25852	
 	
 0	
 17:57	
 ?00:00:00	
 aprun	
 -­‐n	
 4-­‐d1	
 -­‐j1	
 ./jacobi_mpi	

pburgess	
 25880	
 24422	
 	
 0	
 17:58	
 pts/7	
 	
 	
 	
 00:00:00	
 grep	
 aprun	

>	
 	
 STAT	
 -­‐i	
 25861	

Attaching	
 to	
 application...	

Attached!	

...	

Results	
 written	
 to	
 ./stat_results/jacobi_mpi.0010	

• Now you can start the graphical interface stat-­‐view	
 (launches	
 an	
 x-­‐window).	

• See	
 next	
 slide	
 for	
 example	
 of	
 output	

>	
 stat-­‐view	
 stat_results/<exe>/<exe>.0000.dot	

Looking at STAT output for a hung job

•  Rank 0 is in the 'init_fields' routine (line 172 of jacobi_mpi.f90)
•  Rank 3 in the 'set_bc' routine (line 214 of jacobi_mpi.f90)
•  The other ranks (1 and 2) are in the MPI_Sendrecv function.
•  If this pattern persists, the code hangs in these locations. Can now use

DDT (or print statements!) to find out why code is stuck here

October 26-27, 2015 SERC Tools Workshop

Abnormal Termination Processing
(ATP)

For when things break unexpectedly…
(Collecting back-trace information)

ATP Description

● Abnormal Termination Processing is a lightweight
monitoring framework that detects crashes and provides
more analysis instead of silently terminating.
●  Designed to be so light weight it can be used all the time with almost

no impact on performance.
●  Almost completely transparent to the user

●  Requires atp	
 module	
 loaded during compilation (usually included by
default)

●  Output controlled by the ATP_ENABLED environment variable (set by user).
●  Tested at scale (tens of thousands of processors)

● ATP rationalizes parallel debug information into three
easier to use forms:
1.  A single stack trace of the first failing process to stderr
2.  A visualization of every processes stack trace when it crashed
3.  A selection of representative core files for analysis

October 26-27, 2015 SERC Tools Workshop

ATP Usage

October 26-27, 2015 SERC Tools Workshop

•  Job scripts must include the changes above. Note that ATP respects ulimits
on corefiles.

•  After abnormal termination the application will not simply crash but proceed
with the ATP analysis instead.

•  Backtrace of first crashing process is passed to stderr and the merged
backtrace of all procs is in atpMergedBT.dot

export	
 ATP_ENABLED=1	

ulimit	
 –c	
 unlimited	

Core files are being generated.

Trace back of crashing process

•  The merged backtrace is inspected via STAT.

•  The core files can be inspected with gdb or Allinea	
 DDT.

>	
 module	
 load	
 stat	
 	

>	
 stat-­‐view	
 atpMergedBT.dot	

Viewing the results after the crash

October 26-27, 2015 SERC Tools Workshop

Few Additional ATP Pointers

●  If using Fortran and Intel compiler:
●  setenv FOR_IGNORE_EXCEPTIONS true # for csh/tcsh
●  export FOR_IGNORE_EXCEPTIONS=true # for bash/sh/ksh

●  If using Fortran and GNU compiler:
●  Link with –fno-backtrace option

● man intro_atp
● Can also use to debug hung application

export ATP_ENABLED=1
% apstat # find the apid
…
 Apid ResId User PEs Nodes Age State Command
2885161 140092 wyang 4 1 0h02m run jacobi_mpi
…
% apkill 2885161 # kill the application
% cat runit.o714080
…
aprun: Apid 2885161: Caught signal Terminated, sending to application
…
Process died with signal 15: 'Terminated'
View application merged backtrace tree with: statview atpMergedBT.dot

October 26-27, 2015 SERC Tools Workshop

LGDB

Diving in through the command line…

lgdb - Command line debugging

●  LGDB is a line mode parallel debugger for Cray systems
available through the module cray-­‐lgdb.
●  It has many of the features of the standard GDB debugger, but

includes extensions for handling parallel processes.

●  Binaries should be compiled with debugging enabled, e.g., –g
●  Or for Fast-Track Debugging see later

●  The 2.0 update has introduced new features like comparative
debugging. An extensive tutorial is given in
http://docs.cray.com/books/S-­‐0042-­‐22/	

●  CCDB extends the comparative debugging capabilities of lgdb with a
Graphical User Interface.

●  Meant to complement, not replace, DDT – not as feature-rich as
commercial debuggers!

●  Under active development!	

October 26-27, 2015 SERC Tools Workshop

lgdb - Overview

October 26-27, 2015 SERC Tools Workshop

●  Traditional parallel debugger
●  Compilers: CCE, PGI, GNU, Intel
●  Languages: C, C++, Fortran
●  Programming models: MPI, SHMEM, OpenACC
●  Partial support: UPC, OpenMP, CUDA, threading
●  Also supports comparative debugging

● Built on top of gdb
●  Modified to support Fortran
●  Subset of gdb-like commands

● Support for attach and launch
●  Attach – attach to an existing application
●  Launch – launch a new application via aprun

● OpenACC support

●  pass “-gpu” to attach/launch	
 commands

lgdb - Overview (cont.)

October 26-27, 2015 SERC Tools Workshop

● Utilizes process sets
●  Define subsets of ranks
●  Restrict focus to operate only on subset
●  Aggregates results based on process sets
●  Correlates to actual PE/rank number (post reordering)

● Scalable
●  Utilizes MRNet for its communication network
●  Tested to ~300,000 ranks
●  Good performance at scale, sub-second in many cases

lgdb - Getting Started

October 26-27, 2015 SERC Tools Workshop

●  module	
 load	
 cray-­‐lgdb	

●  man	
 lgdb	

●  lgdb	

[andrewg@kaibab] ~ $ module load cray-lgdb
[andrewg@kaibab] ~ $ lgdb
lgdb 2.2 - Cray Line Mode Parallel Debugger
With Cray Comparative Debugging Technology.
Copyright 2007-2013 Cray Inc. All Rights Reserved.
Copyright 1996-2013 Monash University. All Rights Reserved.

Type "help" for a list of commands.
dbg all>

	

●  help is your friend

lgdb - Getting Started (cont.)

October 26-27, 2015 SERC Tools Workshop

● Key how-to concepts of lgdb
●  Launching application
●  Attaching to application
●  Basic commands
●  Kill/release applications
●  Quitting debugger

lgdb - Launching

October 26-27, 2015 SERC Tools Workshop

● Step 1: Modify existing PBS job script

●  Step 2: Determine process set handle
●  Choose a name (ex. $a)
●  Add in number of PEs (ex. $a{32}) for launch	

●  This is passed directly to aprun via –n

●  Step 3: Determine additional arguments
●  See help	
 launch for more information

lgdb – Launching (cont.)

October 26-27, 2015 SERC Tools Workshop

Simple example: Modify job script

#!/bin/sh

#PBS -V
#PBS -j oe
#PBS -l walltime=1:00:00
#PBS –l select=2

cd $PBS_O_WORKDIR

#cray_debug_start ← Add this
aprun –n32 a.out
#cray_debug_end ← Add this

lgdb – Launching (cont.)

October 26-27, 2015 SERC Tools Workshop

Simple example: PBS launch

dbg all> launch $a{32} --qsub=sample.pbs a.out
Submitting job to the batch system.
Waiting for application to start, please wait...
Starting alps application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications network...
Timeout in 60 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [32]; Timeout Counter: [0]
Finalizing setup...
Launch complete.
a{0..31}: Initial breakpoint, main at /lus/nid00030/andrewg/
test_fixtures/c_type_test.c:131

lgdb – Launching (cont.)

October 26-27, 2015 SERC Tools Workshop

Simple example: PBS launch with session	

dbg all> session --qsub=sample.pbs
Submitting job to the batch system.
Session ready.
dbg all> launch $a{32} a.out
Waiting for application to start, please wait...
…
Launch complete.
a{0..31}: Initial breakpoint, main at /lus/nid00030/andrewg/
test_fixtures/c_type_test.c:131
dbg all> launch $b{32} a.out
Waiting for application to start, please wait...
…
Launch complete.
b{0..31}: Initial breakpoint, main at /lus/nid00030/andrewg/
test_fixtures/c_type_test.c:131

lgdb – Launching (cont.)

October 26-27, 2015 SERC Tools Workshop

session versus -­‐-­‐qsub in launch	

●  Use session when:

●  Single PBS job reservation, multiple launch	

●  Multiple kill/launch commands

●  Use -­‐-­‐qsub in launch when:
●  Very specific/complex job script
●  Don’t mind having reservation go away

lgdb - Attaching

October 26-27, 2015 SERC Tools Workshop

● Step 1: Determine Apid
●  Use apstat utility
●  This is not the pid of the aprun process

● Step 2: Determine process set handle
●  Choose a name (ex. $a)
●  Do not add in number of PEs for attach	

●  Automatically determined from ALPS info

● Step 3: Determine additional arguments
●  See help	
 attach for more information
●  Only argument currently available is -­‐-­‐gpu	

lgdb – Attaching (cont.)

October 26-27, 2015 SERC Tools Workshop

● Simple example: Determine Apid from apstat	

[andrewg@kaibab] test_fixtures $ apstat
Compute node summary
 arch config up resv use avail down
 XT 84 84 8 8 76 0

No pending applications are present

Total placed applications: 6
 Apid ResId User PEs Nodes Age State Command
12572058 161 n13942 1 1 17h02m run hybrid
12572167 162 n13942 1 1 16h53m run hybrid
12573589 711 n13942 1 1 12h43m run hybrid
12573723 779 n13942 1 1 12h29m run hybrid
12582705 1181 jdykstra 2 2 0h32m run ccmlaunch
12582710 1185 andrewg 32 2 0h00m run a.out ← Copy this Apid

lgdb – Attaching (cont.)

October 26-27, 2015 SERC Tools Workshop

●  Simple example: Attaching

dbg all> attach $a 12582710
Attaching to application, please wait...
Creating MRNet communication network...
Waiting for debug servers to attach to MRNet communications network...
Timeout in 60 seconds. Please wait for the attach to complete.
Number of dbgsrvs connected: [1]; Timeout Counter: [0]
Number of dbgsrvs connected: [1]; Timeout Counter: [1]
Number of dbgsrvs connected: [32]; Timeout Counter: [0]
Finalizing setup...
Attach complete.
Current rank location:
a{0,24}: #0 0x000000000055d7d1 in nanosleep at /usr/src/packages/BUILD/
glibc-2.11.3/nptl/../sysdeps/unix/syscall-template.S:82
a{0,24}: #1 0x000000000058ccec in __sleep at /usr/src/packages/BUILD/
glibc-2.11.3/posix/../nptl/sysdeps/unix/sysv/linux/sleep.c:138
a{0,24}: #2 0x0000000000401913 in main at /lus/nid00030/andrewg/
test_fixtures/c_type_test.c:226
a{1..23,25..31}: #0 0x000000000055d7b0 in __nanosleep_nocancel at /usr/src/
packages/BUILD/glibc-2.11.3/nptl/../sysdeps/unix/syscall-template.S:82
a{1..23,25..31}: #1 0x000000000058ccec in __sleep at /usr/src/packages/
BUILD/glibc-2.11.3/posix/../nptl/sysdeps/unix/sysv/linux/sleep.c:138
a{1..23,25..31}: #2 0x0000000000401913 in main at /lus/nid00030/andrewg/
test_fixtures/c_type_test.c:226

lgdb – Attaching (cont.)

October 26-27, 2015 SERC Tools Workshop

● Simple example: Attaching (cont.)

dbg all> viewset
Name Procs
all a{0..31}
a a{0..31}

lgdb – Example commands

October 26-27, 2015 SERC Tools Workshop

●  break
●  Set a breakpoint in every rank

dbg all> break c_type_test.c:226
a{0..31}: Breakpoint 1: file /lus/nid00030/andrewg/test_fixtures/c_type_test.c, line
226.

●  continue
●  Continue execution of application
●  Runs until breakpoint encountered or exit()

dbg all> continue
<$a>: Hello World! from process 0 ← Interleaved stdout from application $a
...
<$a>: Hello World! from process 23

a{0..31}: Breakpoint 1, main at /lus/nid00030/andrewg/test_fixtures/c_type_test.c:226
<$a>: Hello World! from process 24
...
<$a>: Hello World! from process 31

dbg all>

lgdb – Example commands (cont.)

October 26-27, 2015 SERC Tools Workshop

●  info locals
●  Display all local symbols in scope

dbg all> info locals
a{0..31}: Name:argc Type:int
a{0..31}: Name:argv Type:signed char **
a{0..31}: Name:myRank Type:int
a{0..31}: Name:numProcs Type:int
…

●  print
●  Print the value of a local variable
●  Aggregates results if possible
●  Optionally can specify procset to reduce information

dbg all> print numProcs
a{0..31}: 32
dbg all> print $a::myRank
a{0}: 0
a{1}: 1
a{2}: 2
a{3}: 3
...
a{31}: 31

lgdb – Example commands (cont.)

October 26-27, 2015 SERC Tools Workshop

●  print (cont.)
dbg all> defset $test $a{0},$a{2},$a{8..10}
dbg all> print $test::myRank
test{0}: 0
test{2}: 2

test{8}: 8
test{9}: 9
test{10}: 10

●  list
●  Display source code lines at current breakpoint

dbg all> list
a{0..31}: 226 sleep(1000);
a{0..31}: 227
a{0..31}: 228 MPI_Finalize();

a{0..31}: 229
a{0..31}: 230 return 0;
a{0..31}: 231 }
a{0..31}: 232

LGDB – Process Groups

October 26-27, 2015 SERC Tools Workshop

•  Output from commands is grouped into common sets, e.g., backtraces (bt)
will be prepended with groups.

dbg	
 all>	
 bt	

all[0,2..31]:	
 #0	
 	
 0x0000000000400979	
 in	
 main	
 at	
 	
 	
 	
 	

/tdsnfs1/y02/y02/ted/xthi.c:47	

all[1]:	
 #0	
 	
 0x0000000000400984	
 in	
 main	
 at	
 	

/tdsnfs1/y02/y02/ted/xthi.c:48	

•  Debugging commands are issued in parallel to all processes in the “focus”
group. By default this is $<pset>,	
 i.e. all the processors in the application.	

•  New groups can be created with defset.	

defset	
 $<newgrp>	
 $<pset>{rank1},$<pset>{rank37}	

•  The focus can be changed with the focus command. 	

focus	
 $<newgrp>	

lgdb – Kill/Release

October 26-27, 2015 SERC Tools Workshop

● Killing application
●  Must have been launched/attached
●  Will send an apkill	
 -­‐9 to the application

dbg all> kill $a
Shutting down debugger and killing application for 'a'.
dbg all>

● Releasing application
●  Must have been launched/attached
●  Will detach the debugger from application
●  Continues execution

dbg all> release $a
Shutting down debugger and resuming application for 'a'.
dbg all>

lgdb - Exiting

October 26-27, 2015 SERC Tools Workshop

●  To exit, use quit command
●  Any launched applications will be killed
●  Any attached applications will be released

dbg all> quit
Shutting down debugger and killing application for 'a'.

Fast Track Debugging

For getting to the problem more quickly…

The Problem ... And a Solution

● Compiling with debug support eliminates optimizations
●  Today's machines require high levels of optimization for efficient

execution.
●  Debugging notably slows down the execution.
●  Problem might disappear with lower optimization.

●  Idea behind fast track debugging
●  Compile such that both debug and non-debug (optimized) versions of

each routine are created. Use –Gfast	
 instead of –g with the Cray
compiler for that purpose. Check the man pages of Cray compilers.

●  Linkage such that optimized versions are used by default – so can run

at optimized-code speed but with full DWARF information

●  Debugger overrides default linkage when setting breakpoints and
stepping into functions

●  Supported by Allinea DDT and lgdb.

 October 26-27, 2015 SERC Tools Workshop

A Closer Look at How FTD Works

subroutine difuze(…)

call difuze(…)

call interf(…)

subroutine interf(…)

source	
 code	

difuze()

call difuze(…)

call interf(…)

interf()

op+mized	
 binary	
 code	

dbg$difuze()

dbg$interf()

call difuze(…)

call interf(…)

debug	
 code	

Jmp inserted as part of breakpoint planting
Breakpoint requested in interf(),
placed in interf_debug()

October 26-27, 2015 SERC Tools Workshop

Comparative Debugging

What on earth just went wrong?
It was running yesterday....

It ran with the Intel Compiler, why not CCE?
It ran before I made that innocent little change...

Surely that library change can’t have hurt things?

ccdb – VERY Brief Overview

October 26-27, 2015 SERC Tools Workshop

● Comparative debugging tool
●  NOT a traditional debugger!
●  GUI written in perl
●  Assists with comparative debugging

●  Leverages lgdb
●  lgdb is sitting underneath
●  Problem: comparative debugging with lgdb is hard

●  Command line based
●  Formal language
●  Potentially hundreds of lines of commands

●  Hides the complexity behind GUI elements

ccdb – Overview

October 26-27, 2015 SERC Tools Workshop

● What is comparative debugging?
●  Data centric approach
●  Two applications, same data
●  Key idea: The data should match
●  Doesn’t actually locate bugs
●  Quickly isolate deviating variables

● How does this help me?
●  Algorithm re-writes
●  Language ports
●  Different libraries/compilers
●  New architectures

Summary

●  The Cray XC40 provides a series of light weight
debugging tools which can be efficiently used for large
simulations and different scenarios.
●  Stack Trace Analysis Tool (STAT)
●  Abnormal Termination Processing (ATP)
●  Fast Track Debugger (FTD)

●  These tools provide only a rough view of the problem.
●  This might be sufficient for a developer who is very familiar with the

code.
●  If a code is very large and a user does not have sufficient experience,

a more sophisticated tool like Allinea DDT can help.
●  Core files out of ATP and binaries compiled with FTD can be inspected

and debugged with these more advanced tools.

October 26-27, 2015 SERC Tools Workshop

