
C O M P U T E | S T O R E | A N A L Y Z E

CAE workloads and machine
architecture

Stephen Behling

sbehling@cray.com

May, 2015

8/20/2015
1

mailto:sbehlng@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Outline

8/20/2015
2

● HPC hardware trends

● Examples of large analyses

● Aspects of writing codes or modifying codes for future
machines
● Profile applications

● Vectors

● Threads

● MPI

● I/O

C O M P U T E | S T O R E | A N A L Y Z E

Processors frequencies are not increasing
http://www.extremetech.com/computing/116561-the-death-of-cpu-scaling-from-one-core-to-many-and-why-were-still-stuck

Faster processor

frequencies no longer

provide the required HPC

performance increase

Increased

parallelism/scaling is

required to meet growing

computing requirements

8/20/2015
3

C O M P U T E | S T O R E | A N A L Y Z E

The future is more parallel

● Moore’s Law is continuing for transistors per chip

● Processor power and energy limits frequency

● Hard to get more instructions per clock

Result:

● More cores per socket

● More sockets per system

● More threads/cores per job

8/20/2015
4

C O M P U T E | S T O R E | A N A L Y Z E

CAE on these?

8/20/2015
5

C O M P U T E | S T O R E | A N A L Y Z E

Human Respiratory System
 Transient incompressible turbulent flow
 360M elements, scaled to 25,000 cores

Kiln Furnace
 Transient incompressible turbulent flow
 Coupled with energy and combustion
 4.22 billion elements, scaled to 100,000 cores

Human Heart
 Non-linear solid mechanics
 Coupled with electrical propagation
 3.4 billion elements, scaled to 100,000 cores

CFD Results from NCSA “Blue Waters” system
ALYA code: 3 Real-World Cases

Ref: “Growth of HPC Industrial Partnership”, Merle Giles NCSA, Oct. 2014

8/20/2015
6

C O M P U T E | S T O R E | A N A L Y Z E

U.S. DoD Helios program

● “We hope to try 1 million cores to do CFD for helicopter
designs” Roger Strawn, DoD
● Coupled codes:

● 3D Cartesian grid for far field

● Unstructured grid for near field

● Overlap region between grids

● Rotating meshes

● Adaptive meshing

● Parallel in space and time (periodic flow)

● Compute graphics output “on the fly” rather than save data and post-
process

● See at: https://youtu.be/1pcsNIRKoEg

8/20/2015
7

https://youtu.be/1pcsNIRKoEg
https://youtu.be/1pcsNIRKoEg

C O M P U T E | S T O R E | A N A L Y Z E

What about third party ISV applications?

● Each ISV is responsible for porting and optimizing their
own code
● ISVs need to support all their customers and maintaining multiple

versions of a code is very expensive
● Some ISVs still only have SSE builds; some have AVX builds
● PowerFLOW from Exa Corporation  2-10% faster with AVX

● Cray will continue to work with key partners to ensure
best performance on Cray systems
● Cray has its own environment and optimized MPI libraries

● Cray performance team influences:
● Cray software design – better libraries, OS, I/O, etc.
● ISV partner optimization

8/20/2015
8

C O M P U T E | S T O R E | A N A L Y Z E

How to make your application efficient and scalable

1. Make sure important work is vectorized
● Need good compiler
● Need good profiling tools

2. Implement on-node threading
● OpenMP 4.0
● 16 cores per socket on current Intel® “Haswell”
● On KNC and future KNL, >60 cores per socket

3. Implement MPI for Internode parallelization
● MPI standard

4. Use accelerator if problem is suited for it

● MUCH EASIER IF CODE IS DESIGNED FOR EFFICIENCY AND
SCALABILITY FROM START THAN MODIFYING EXISTING CODE

8/20/2015
9

C O M P U T E | S T O R E | A N A L Y Z E
8/20/2015

10

Profiling an application

C O M P U T E | S T O R E | A N A L Y Z E

Find important work with a profiling tool
Example: CrayPat (perftools)
512 nodes, 1024 MPI ranks, 16 OpenMP threads per rank

8/20/2015
11

C O M P U T E | S T O R E | A N A L Y Z E

More CrayPat

8/20/2015
12

C O M P U T E | S T O R E | A N A L Y Z E

Profiling tools

● CrayPat
● Multiple compilers, accelerators
● Sampling and tracing

● Intel®
● Vtune

● For use with Intel® compilers; single node

● Intel® Parallel Studio

● TAU
● Open source
● Requires separate build for each compiler version/MPI library

version/optimization choices/sample or trace choice

● Vampir from ParaTools
● Works with TAU

● High resolution timers and print statements

8/20/2015

13

C O M P U T E | S T O R E | A N A L Y Z E

The future is parallel

● Vectors are parallel
● At Instruction level: SSE, AVX, AVX2, etc.
● Computer hardware is very good doing this

● Threads (OpenMP) are parallel
● Typically at loop level
● Nested threading is possible, but complicated

● MPI is parallel
● Typically at high level
● PGAS is alternative to standard MPI

8/20/2015
14

C O M P U T E | S T O R E | A N A L Y Z E

Vectors
Parallel at machine instruction level

8/20/2015
15

C O M P U T E | S T O R E | A N A L Y Z E

Slide from:

Further

Vectorization

Features of the

Intel® Compiler

Martyn Corden

Technical

Consulting

Engineer

Intel® Corporation

8/20/2015
16

C O M P U T E | S T O R E | A N A L Y Z E

Look for vectorization with compiler

 72. + 1 b---------< DO K = 1, NZ

 73. + 1 b b-------< DO J = 1,NY

 74. 1 b b Vb----< DO I = 1, NX

 75. 1 b b Vb SLICE_BACK = GRID(I-1,J-1,K-1,IVAR) + GRID(I-1,J,K-1,IVAR) + GRID(I-1,J+1,K-1,IVAR) + &

 76. 1 b b Vb GRID(I ,J-1,K-1,IVAR) + GRID(I ,J,K-1,IVAR) + GRID(I ,J+1,K-1,IVAR) + &

 77. 1 b b Vb GRID(I+1,J-1,K-1,IVAR) + GRID(I+1,J,K-1,IVAR) + GRID(I+1,J+1,K-1,IVAR)

 78. 1 b b Vb SLICE_MINE = GRID(I-1,J-1,K,IVAR) + GRID(I-1,J,K,IVAR) + GRID(I-1,J+1,K,IVAR) + &

 79. 1 b b Vb GRID(I ,J-1,K,IVAR) + GRID(I ,J,K,IVAR) + GRID(I ,J+1,K,IVAR) + &

 80. 1 b b Vb GRID(I+1,J-1,K,IVAR) + GRID(I+1,J,K,IVAR) + GRID(I+1,J+1,K,IVAR)

 81. 1 b b Vb SLICE_FRONT = GRID(I-1,J-1,K+1,IVAR) + GRID(I-1,J,K+1,IVAR) + GRID(I-1,J+1,K+1,IVAR) + &

 82. 1 b b Vb GRID(I ,J-1,K+1,IVAR) + GRID(I ,J,K+1,IVAR) + GRID(I ,J+1,K+1,IVAR) + &

 83. 1 b b Vb GRID(I+1,J-1,K+1,IVAR) + GRID(I+1,J,K+1,IVAR) + GRID(I+1,J+1,K+1,IVAR)

 84. + 1 b b Vb WORK(I,J,K) = (SLICE_BACK + SLICE_MINE + SLICE_FRONT) / 27.0

 85. 1 b b Vb----> END DO

 86. 1 b b-------> END DO

 87. 1 b---------> END DO

Intel® compiler: ftn -qopt-report-phase=loop,vec -qopt-report=3 –c abc.f90

Cray compiler (shown below): ftn -rm –c abc.f90

8/20/2015
17

C O M P U T E | S T O R E | A N A L Y Z E

Threads
Parallelization within a shared

 memory node (SMP)

8/20/2015
18

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP threads can help with many core
processors

● OpenMP 4.0 spec is now being implemented in many compilers

● Use #pragma statements in C; !$omp directives in Fortran

● Reveal from Cray is a good scoping tool for threading

• Works closely with

Cray compilers.

• Automatically inserts

pragmas/directives

• Resulting source

can be used with

any compiler.

8/20/2015
19

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP example

 75. + 1 !$omp parallel do private(slice_back,slice_mine,slice_front)

 76. 1 !dir$ blockable(k,j,i)

 77. 1 !dir$ blockingsize(4)

 78. + 1 mb-------< DO K = 1, NZ

 79. 1 mb !dir$ blockingsize(4)

 80. + 1 mb b-----< DO J = 1,NY

 81. 1 mb b !dir$ blockingsize(128)

 82. 1 mb b Vb--< DO I = 1, NX

 83. 1 mb b Vb SLICE_BACK = GRID(I-1,J-1,K-1,IVAR) + GRID(I-1,J,K-1,IVAR) + GRID(I-1,J+1,K-1,IVAR) + &

 84. 1 mb b Vb GRID(I ,J-1,K-1,IVAR) + GRID(I ,J,K-1,IVAR) + GRID(I ,J+1,K-1,IVAR) + &

 85. 1 mb b Vb GRID(I+1,J-1,K-1,IVAR) + GRID(I+1,J,K-1,IVAR) + GRID(I+1,J+1,K-1,IVAR)

 86. 1 mb b Vb SLICE_MINE = GRID(I-1,J-1,K,IVAR) + GRID(I-1,J,K,IVAR) + GRID(I-1,J+1,K,IVAR) + &

 87. 1 mb b Vb GRID(I ,J-1,K,IVAR) + GRID(I ,J,K,IVAR) + GRID(I ,J+1,K,IVAR) + &

 88. 1 mb b Vb GRID(I+1,J-1,K,IVAR) + GRID(I+1,J,K,IVAR) + GRID(I+1,J+1,K,IVAR)

 89. 1 mb b Vb SLICE_FRONT = GRID(I-1,J-1,K+1,IVAR) + GRID(I-1,J,K+1,IVAR) + GRID(I-1,J+1,K+1,IVAR) + &

 90. 1 mb b Vb GRID(I ,J-1,K+1,IVAR) + GRID(I ,J,K+1,IVAR) + GRID(I ,J+1,K+1,IVAR) + &

 91. 1 mb b Vb GRID(I+1,J-1,K+1,IVAR) + GRID(I+1,J,K+1,IVAR) + GRID(I+1,J+1,K+1,IVAR)

 92. + 1 mb b Vb WORK(I,J,K) = (SLICE_BACK + SLICE_MINE + SLICE_FRONT) / 27.0

 93. 1 mb b Vb--> END DO

 94. 1 mb b-----> END DO

 95. 1 mb-------> END DO

 96. 1 !$omp end parallel do

8/20/2015
20

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP example

 75. + 1 !$omp parallel do private(slice_back,slice_mine,slice_front)

 76. 1 !dir$ blockable(k,j,i)

 77. 1 !dir$ blockingsize(4)

 78. + 1 mb-------< DO K = 1, NZ

 79. 1 mb !dir$ blockingsize(4)

 80. + 1 mb b-----< DO J = 1,NY

 81. 1 mb b !dir$ blockingsize(128)

 82. 1 mb b Vb--< DO I = 1, NX

 83. 1 mb b Vb SLICE_BACK = GRID(I-1,J-1,K-1,IVAR) + GRID(I-1,J,K-1,IVAR) + GRID(I-1,J+1,K-
1,IVAR) + &

 …

 …

 90. 1 mb b Vb GRID(I ,J-1,K+1,IVAR) + GRID(I ,J,K+1,IVAR) + GRID(I ,J+1,K+1,
IVAR) + &

 91. 1 mb b Vb GRID(I+1,J-1,K+1,IVAR) + GRID(I+1,J,K+1,IVAR) + GRID(I+1,J+1,K+1,
IVAR)

 92. + 1 mb b Vb WORK(I,J,K) = (SLICE_BACK + SLICE_MINE + SLICE_FRONT) / 27.0

 93. 1 mb b Vb--> END DO

 94. 1 mb b-----> END DO

 95. 1 mb-------> END DO

 96. 1 !$omp end parallel do

8/20/2015
21

C O M P U T E | S T O R E | A N A L Y Z E

MPI
Parallelization between nodes

Distributed memory parallel (DMP)

8/20/2015
22

C O M P U T E | S T O R E | A N A L Y Z E

MPI (Message passing interface)

● Many MPI flavors
● Cray MPT: Only runs on Cray hardware

● Based on Argonne MPICH for MPI 3.0 standard
● Highly optimized for Cray networks

● Intel® MPI
● Version 5.0 has common ABI with Cray MPT 7

● IBM Platform MPI
● Formerly Platform Computing MPI

● Formerly HP-MPI

● MPICH
● From Argonne National Laboratory

● MVAPICH2
● Open source; from Ohio State University

● OpenMPI
● Open source; hosted by Indiana University

8/20/2015
23

C O M P U T E | S T O R E | A N A L Y Z E

MPI (Message passing interface)

● Many MPI flavors
● Cray MPT: Only runs on Cray hardware

● Based on Argonne MPICH

● Intel® MPI
● Version 5.0 has common ABI with Cray MPT 7

● IBM Platform MPI
● Formerly Platform Computing MPI

● Formerly HP-MPI

● MPICH
● From Argonne National Laboratory

● MVAPICH2
● Open source; from Ohio State University

● OpenMPI
● Open source; hosted by Indiana University

Use Cray CCM with

these MPI libraries:
module load ccm

ccmrun mpirun …

8/20/2015
24

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Limitation: Amdahl’s Law

s
p

f
N

f
S




1

up speed parallel Maximum S

processors ofNumber N

parallel is that program offraction pf

serial is that program offraction 1  ps ff

If parallel fraction = 0.9, speed up for infinite number of processors = 10

If parallel fraction = 0.95, speed up for infinite number of processors = 20

If parallel fraction = 0.99, speed up for infinite number of processors = 100

25

C O M P U T E | S T O R E | A N A L Y Z E

MPI performance

● Key to MPI performance is minimal serial work
● Key to MPI performance is a good network

● High bandwidth
● Many GB/s

● Low latency
● 1-2 microseconds for short messages

● Key to MPI performance is a network that scales
● For thousands of nodes need to maintain high bandwidth and low

latency across the system
● Needs to be balanced
● Minimal interference from other jobs

● Key to MPI performance is good MPI software
● More important for larger systems

8/20/2015
26

C O M P U T E | S T O R E | A N A L Y Z E

1-D MPI implementation for Cartesian mesh is
simple

NX

NY

NZ

Proc 0

Proc 2
Proc 1

Experienced MPI

programmer

could implement

in 3-4 weeks.

However, scaling

is quite limited

even for large

data sets

8/20/2015
27

C O M P U T E | S T O R E | A N A L Y Z E

2-D or 3-D MPI implementation is more complicated

NX

NY

NZ

Proc 0
Proc 2

Proc 1

Proc 3

Proc 4
Proc 6

Proc 7

• Handling the cells

on the corners is

difficult.

• Unstructured

grids are more

complicated.

• Scaling can be

very good to very

large processor

counts.

• Key: Only move

the data you

need.

8/20/2015
28

C O M P U T E | S T O R E | A N A L Y Z E
8/20/2015

29

I/O can be parallel, too

C O M P U T E | S T O R E | A N A L Y Z E

I/O parallelization

8/20/2015
30

● Lustre file system is inherently parallel
● Many connections between compute nodes and file system

● Caches hide disk latency

● Lustre file striping for additional parallel performance
● lfs setstripe –c 4 my_directory my_file

● lfs getstripe my_file

● MPI-IO
● Single file written by many separate MPI ranks

● Cray has MPI-IO enhancements

● HDF5
● Supports MPI-IO (if enabled)

C O M P U T E | S T O R E | A N A L Y Z E

Putting it all together

● Well vectorized code approaches maximum performance per
thread
● Elapsed time to solution is more important than excellent scaling

● MPI and Threads on 24 core nodes (two 12-core processors):
● Can have 24 MPI ranks per node with no additional threading

● How far can MPI scale for problem being solved?
● Can have 1 MPI rank per node with 24 OpenMP threads per rank

● Can OpenMP sections scale to 24 threads?
● Can have 6 MPI ranks per node with 4 OpenMP threads per rank

● Watch out for thread affinity; export MPICH_CPUMASK_DISPLAY=1
● Also 12:2, 8:3, 4:6, 3:8, 2:12

● On KNL processor with 60+ cores

● Fast memory and/or DDR memory usage is another choice
● Similar decisions for MPI ranks or threads per socket

8/20/2015
31

C O M P U T E | S T O R E | A N A L Y Z E

What processor should I use?

● Intel® Xeon® CPU E5-2698 v3 (“Haswell”)
● Well-established HPC processor

● Compilers know how to produce fast code

● Intel® MIC Architecture
● Potential for unprecedented performance

● Compatible with known Xeon® architecture

● Threading more important

● GPU
● If movement of data between CPU memory and GPU memory can be

minimized and data is reused many times on the GPU, potential speed
is very good

8/20/2015
32

C O M P U T E | S T O R E | A N A L Y Z E

Questions

33
8/20/2015

