MPI 1/O

Be sure to look at Cray document
S-2490-40 “Getting Started with MPI-10”

MPI-I/O .

e Defined by the MPI specification .
e Allows an application to write into both

e distinct files

e or the same file from multiple MPI processes
e Uses MPI datatypes to describe both the file and the

process data

e Supports collective operations

Example

Suppose we have a file containing integers, total size FILESIZE bytes

PO

P1

P2 P3

P4

Each processor wants to read an equal portion of the file

FILESIZE BYTES

What does it need to know?

(1) How many integers (bytes) do | want to read?
(2) How far into the file do | need to start reading those integers?

A simple MPI-IO program in C .o

MPI File fh;
MPI Status status;

MPI Comm rank (MPI_COMM WORLD, &rank);
MPI_Comm_size(MPI_COMM _WORLD, &nprocs);
bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof(int);

MPI File open(MPI_COMM WORLD, ‘FILE’,
MPI_MODE_RDONLY, MPI_INFO NULL, &fh);

MPI File seek(fh, rank * bufsize, MPI_SEEK_SET);

MPI File read(fh, buf, nints, MPI INT, &status);

MPI File close(&fh);

And now in Fortran using explicit offsets .

use mpi ! or include 'mpif.h’

integer status(MPI_STATUS SIZE)

integer (kind=MPI_OFFSET KIND) offset ! Note, might be
! integer*8

call MPI_FILE OPEN(MPI COMM WORLD, ‘FILE’, &
MPI_MODE RDONLY, MPI_INFO NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI_FILE READ AT(fh, offset, buf, nints,

MPI_ INTEGER, status, ierr)

call MPI_GET COUNT(status, MPI INTEGER, count, ierr)

print *, 'process ', rank, 'read ', count, 'integers’

call MPI_FILE CLOSE(fh, ierr)

e The * AT routines are thread safe (seek+l/O operation in
one call)

Write instead of Read .

e Use MPI_File write or MPI_File_write_at .

e Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the
flags to MPI_File _open

e If the file doesn’t exist previously, the flag
MPI_MODE_CREATE must be passed to MPI_File _open

e We can pass multiple flags by using bitwise-or ‘|’ in C, or
addition ‘+’ or IOR in Fortran

e If not writing to a file, using MPI_MODE_RDONLY might
have a performance benefit. Try it.

Collective 1/0 with MPI-IO «

e MPI _File_read_all, MPIl_File read at all,
e _all indicates that all processes in the group specified by
the communicator passed to MPI_File _open will call this
function

e Each process specifies only its own access information —

the argument list is the same as for the non-collective
functions

e MPI-IO library is given a lot of information in this case:
e Collection of processes reading or writing data
e Structured description of the regions

e The library has some options for how to use this data

e Noncontiguous data access optimizations
e Collective I/O optimizations

MPI-IO Case Study

Executive Summary

®
=|=AY i

Benchmark with original Fortran 1/O (192 steps)

\

Mean time Time for

per step first time
(omit first step
step)

960 1459 6.0 26

1920 741 3.3 19

3840 601 1.9 67

4800 628 1.6 104

5760 786 1.5 156

Walltime includes initialization and final 1/0 phase (of similar order to first time step)

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Original code — serial Fortran I/0 — 2GB written =I=AY '
per output step L0

ALLOCATE(globbuf3d(ids:ide,1:nzp,jds:jde)) \
ALLOCATE(globbuf(ids:ide,jds:jde))

I 2D data: one Fortran write per 2D array

CALL patch2global(my2darray,globbuf,mgrid) I' All PEs send their data to PE 0 in an
I mpi_send/mpi_recv loop

F (PEO) WRITE(fid) ((globbuf(i,j),i=ids,ide),j=jds,jdg) <— PEO writes data to file
IRepeat for a dozen or so 2D arrays

I 3D data: extra loop over k dimension - nzp Fortran writes per 3D array
CALL patch2global(my3darray,globbuf3d,local_grid)
IF (PEO) THEN
DO k= 1,nzp
WRITE(fid) ((globbuf3d(i,k,j),i=ids,ide),j=jds,jdg)
ENDDO
ENDIF

I'And repeat for many 3D input arrays
I Lots of individual writes, all from rank 0!

We need parallel 1/0O!

PO P1 P2 P3
Memory H :H
TH_I From: Single file, single writer
«
Y

PO

P
Memory H

To: Single file, many writers X
Y

File

1 P3

Taken from “Getting Started on MPI-10”
S-2490-40

MPI-IO: basic concepts . o

e Improved output speed in large parallel environments;
many processors can output to single file

e Focus on collective I/O for this case (_all)
e MPI-I0 library optimizes I/O pattern

e Needed commands to open and close files, read and
write data, and move file pointers

e “File views” describe the layout of data across
processors

e MPI-IO makes heavy use of MPI types to describe file views
e Each processor has its own view of the file

MPI-IO: file view .

e Give more control over where a given processor will
write its data

e Use MPI types to describe the section of the global
data that the current processor has, and its location in
the final file on disk. Makes it easier to write
multidimensional arrays into a single file

e A big advantage of MPI I/O over Unix I/O is the ability
to specify noncontiguous accesses in memory and file
within a single function call by using derived
datatypes

MPI_File_Set_View syntax .

CALL MPI_FILE_SET_VIEW (fid, offset, etype, filetype,
datarep, info, ierr)

e Sets the file view on file handle fid — assigns region of file to
each process

e Defines which portion of file is visible to each process

e Specified by a triplet (offset, etype, filetype)
e etype and filetype are mpi_datatypes
e etype is the basic unit being written to the file (e.g. mpi_real8)

o filetype is normall%/ a derived datatype that describes the layout (often
noncontiguous) of the data in the current process in the file

e Offset is the number of bytes from the start of the file at which to
apply the file view o _
e datarep is a string descrlblng{_the data representation,
usually (always for Cray) “native”

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

MPI_file_set view .o

e For individual file pointer each process can
specify its own view

e View can be changed any number of times during
a program

e All file access done in units of etype

o filetype must be equal to or be derived from etype:
e Elementary: mpi_int, mpi_real etc

Contiguous data — sequences of elementary types

Vector — sequences separated by constant stride

Indexed — does not assume constant stride

Struct — general mixed types

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Think about the data that each processor holds =='A‘Y\®' |

and where it is in the full array (3D real*4 array) SO

\

CALL patch2global(my3darray,globbuf3d,local_grid)
IF (PEO ETHEN
O k=1,nzp
WRITE(fid) ((globbuf3d(i,k,j),i=ids,ide),j=jds,jdg)
ENDDO
ENDIF

e Each processor holds a “cube” of data within the 3D array to be
written to file

e iiits->ite (rows)
o j:jts->jte (cols)
e ki1->nzp (levels)

e Remember this is Fortran, so columns written first

e One column holds (jte-jts+1) contiguous (in file) reals
e One stride between start of each column
e Different stride between start of each level

e Processor grid does not exactly divide physical grid, so number
of rows and cols held by each processor ¢an vary

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

A few important quantities...

Global quantities:

stridev = (ide-ids+1) #rows or stride between cols

sizevar = stridev * (jdg-jds+1) #elements in full 2D slice or
stride between each k layer

Processor quantities

countv = min(jdg,jte)-jts+1 #cols held by PE

blengthv = (ite-its)+1 #rows held by PE \
n_write = count*blengthv*nzp #elements held by PE

ids

its

ite

/’nzp

jts

ide Vv

nzp

jds

jdg

Final code for 3D arrays (take into S

account Fortran style of output file)
! Number of cols held by each PE ! First write the header. etype and filetype are the same
count=min(jdg,jte)-jts+1 call mpi_file_set_view(nvel,offset,mpi_integer4,mpi_integer4, &
! Stride between start of each column held by PE 'native’,mpi_info_null,ierr)
stride=ide-ids+1
! Number of rows held by each PE if (PEO) call mpi_file_write(nvel,lenrec,1,mpi_integer4,status,ierr)
blength=ite-its+1 ! Update offset
offset = offset + intsize8
! Amount of data this processor is writing (2D block)
n_write=count*blength ! Then write the data (all 3D arrays stored in one array “temp”)
! Size of global block call mpi_file_set_view(nvel,offset,mpi_real4,filetype,'native’, &
sizeglobal = int(stride,8) * int((jdg-jds+1),8) * realsize8 mpi_info_nullierr)
off=0
! Size in bytes of global file (for header) call mpi_file_write_at_all(nvel,off,temp(1,1,k,nvar),n_write, &
1 Each 3D array is of same size mpi_real4,status,ierr)
lenrec = sizeglobal offset=offset + sizeglobal
call byteswap(lenrec)
! Then write the tail
! Create MPI datatype for contiguous column data with call mpi_file_set_view(nvel,offset,mpi_integer4d,mpi_integer4,&
! constant stride 'native’,mpi_info_null,ierr)
call mpi_type_vector(count,blength,stride,mpi_real4,filetype,ierr)
call mpi_type_commit(filetype,ierr) if (PEO) call mpi_file_write(nvel,lenrec,1,mpi_integer4,status,ierr)
offset= offset_save + ((jts-1)*int(stride,8) + (its-1))*realsize8 offset = offset + intsize8
enddo 1 k levels
! Loop over all 3D arrays. enddo 1 3D arrays

do nvar=1,nvars_3d

! Loop over all k levels.
do k=1,nzp

And finally...

Cores

960

1920
3840
4800
5760
6000

EN 1

(orig)

1459
741
601
628
786

Time for
1st time
step

26
19
67
104
156

Wallti
(new)

1233
687
418
379
384
357

me | Time for \
1st time
step

21
14
15
17
19
23

Walltime includes initialization and final I/O phase (of similar order to first time
step), all of which have been optimized.

October 26-27, 2015

COMPUTE

STORE

SERC Tools Workshop

ANALYZE

\
=AY
(Y \

NetCDF, parallel NetCDF, HDFS5...

The Purpose of NetCDF ='='A.Y® '

e The purpose of the Network Common Data Form (NetCDF)
interface is to allow you to create, access, and share array-
oriented scientific data in a form that is self-describing and
portable.

e Self-describing means that a dataset includes information defining
the data it contains (cf. utilities such as ncdump).

e Portable means that the data in a dataset is represented in a form

that can be accessed by computers with different ways of storing
integers, characters, and floating-point numbers.

e The NetCDF software includes C, Fortran 77, Fortran 90, and
C++ interfaces for accessing netCDF data.

e These libraries are available for many common computing
platforms.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Format description .

e The NetCDF libraries support three different binary formats for
NetCDF files:

e The classic format was used in the first NetCDF release, and is still the
default format for file creation.

e The 64-bit offset format was introduced in version 3.6.0, and it supports
larger variable and file sizes.

e The NetCDF-4/HDF5 format was introduced in version 4.0: it is the HDF5
data format, with some restrictions.

e All formats are "self-describing”

e Starting with version 4.0, the netCDF APl allows the use of
the HDF5 data format.

o NetCDF users can create HDF5 files with benefits not available with the
y_etCDF format, such as much larger files and multiple unlimited
imensions.

e Full backward compatibility in accessing old NetCDF files and using
previous versions of the C and Fortran APls is supported.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Parallelism and NetCDF KON

e Prior to version 4, NetCDF APIs did not support parallel I/0O. |
e For parallel programs, write operations must be done by shipping data to
a single process which then writes to the file. Thus, the communication
contention on the writing process can make the 1/O performance
considerably slow.

e Starting from version 4, NetCDF supports parallel I/O either

through PNetCDF or HDFS5.

e Through PNetCDF, NetCDF-4 can access files in CDF formats in
parallel.

e Through HDF5, NetCDF-4 can access files in HDF5 format.

e Modules on XC: cray-netcdf and cray-parallel-netcdf

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

NetCDF HDF5 data format .

October

NetCDF-4 files are created with the HDF5 library, and they are HDF5 files

that can be read without the NetCDF-4 interface.

e Note that modi'f\Ying these files with HDF5 will almost certainly make them
unreadable to NetCDF-4

Groups in a NetCDF-4 file correspond with HDF5 groups

Variables in NetCDF correspond with identically named datasets in HDF5.
e And similarly for attributes

Since there is more metadata in a NetCDF file than in an HDF5 file, special
datasets are used to hold NetCDF metadata.

e The netcdf dim_info dataset (in group _netCDF) contains the ids of the shared
dimensions, and their length (0 for unlimited dimensions).

The netcdf var info dataset (in group . netCDF) holds an array of. compound
: types which™onftain the variab(le I% aﬁd‘the associated dimension ids. P

Backward compatibility to the classical format is preserved
Support for parallel I/0O

http://www.unidata.ucar.edu/netcdf/netcdf-4.

COMPUTE | STORE | ANALYZE

26-27, 2015 SERC Tools Workshop

Using Parallel /O in NetCDF4 .o

e Special nc_create par and nc_open_par functions are used to |
create/open a NetCDF file. The files they open are normal
NetCDF-4/HDF5 files, but these functions also take MPI

parameters.

e The parallel access associated with these functions is not a
characteristic of the data file, but the way it was opened. The
data file is the same, but using the parallel open/create function
allows parallel I/O to take place.

e EXTERNAL int nc_create par(const char *path, int cmode,
MPI_Comm comm, MPI_Info info, int *ncidp);

e EXTERNAL int nc_open_par(const char *path, int mode, MPl_Comm
comm, MPI_Info info, int *ncidp);

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Fortran 90 example

This is a very simple example which writes a 2D array of sample
data. To handle this in netCDF we create two shared dimensions, ‘

x" and "y", and a netCDF variable, called "data". It uses

parallel I/O to write the file from all processors at the same
time.

See “simple_xy par_wr.F90 in NetCDF documentation along with loads of
other examples: ...

In next slide, all NetCDF functions are called from within this “check”
subroutine:

subroutine check(status)
integer, intent (in) :: status
if(status /= nf90_noerr) then
print *, trim(nf90_strerror(status))
stop 2
end if
end subroutine check

Fortran 90 example (cont.)

program simple_xy_par_wr

use netcdf
implicit none
include 'mpifh’

! This is the name of the data file we will create.

character (len = *), parameter :: FILE_NAME = "simple_xy_par.nc”

! We are writing 2D data.

integer, parameter :: NDIMS = 2

! When we create netCDF files, variables and dimensions, we get back an ID
Ifor each one.

integer :: ncid, varid, dimids(NDIMS), x_dimid, y_dimid

! These will tell where in the data file this processor should write.
integer :: start(NDIMS), count(NDIMS)

! This is the data array we will write. It will just be filled with the rank of
! this processor.

integer, allocatable :: data_out(:)

! MPI stuff: number of processors, rank of this processor, and error code.
integer :: p, my_rank, ierr

! Loop indexes, and error handling.

integer :: x, stat

! Initialize MP], learn local rank and total number of processors.
call MPIL_Init(ierr)

call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr)

call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)

! Create some pretend data. We just need one row.
allocate(data_out(p), stat = stat)
dox=1,p
data_out(x) = my_rank
end do
! Create the netCDF file. The NF90_NETCDF4 flag causes a HDF5/netCDF-4 file to be
! created. The comm and info parameters cause parallel I/O to be enabled. Use either
I NFO0_MPIIO or NFOO_MPIPOSIX to select between MPI/IO and MPI/POSIX.
call check(nf90_create(FILE_NAME, IOR(NF90_NETCDF4, NF90_MPIIO), ncid, &
comm = MPI_COMM_WORLD, info = MPI_LINFO_NULL))

i
CRAY |

e
L)

! Define the dimensions. NetCDF will hand back an ID for each. Metadata
loperations must take place on all processors.
call check(nf90_def dim(ncid, "x", p, x_dimid))
call check(nf90_def dim(ncid, "y", p, y_dimid))

! The dimids array is used to pass the IDs of the dimensions of the variables. Note
! that in fortran arrays are stored in column-major format.
dimids = (/ y_dimid, x_dimid /)

! Define the variable. The type of the variable in this case is NFOO_INT (4-byte
linteger).
call check(nf90_def var(ncid, "data", NF90_INT, dimids, varid))

! End define mode. This tells netCDF we are done defining metadata. This operation

! Is collective and all processors will write their metadata to disk.
call check(nf90_enddef(ncid))

| Write the pretend data to the file. Each processor writes one row.
start = (/ 1, my_rank + 1/)

count=(/p,1/)
call check(nf90_put_var(ncid, varid, data_out, start = start, count = count))

! Close the file. This frees up any internal netCDF resources associated with the file,
land flushes any buffers.

call check(nf90_close(ncid))

! Free my local memory.

deallocate(data_out)

I MPI library must be shut down.

call MPI_Finalize(ierr)

if (my_rank .eq. 0) print *, "*** SUCCESS writing example file ", FILE_NAME, "l "

end program simple_xy_par_wr

\

Similar c example of parallel I/O

[* Create a parallel netcdf-4 file. */

if ((res = nc_create_par(FILE, NC_NETCDF4|NC_MPIIO, MPI_COMM_WORLD, info, &ncid))) ERR;

[* Create two dimensions. */
if ((res = nc_def_dim(ncid, "d1", DIMSIZE, dimids))) ERR;
if ((res = nc_def_dim(ncid, "d2", DIMSIZE, &dimids[1]))) ERR;

[* Create one var. */
if ((res = nc_def_var(ncid, "v1", NC_INT, NDIMS, dimids, &v1id))) ERR;

if ((res = nc_enddef(ncid))) ERR;

[* Set up slab for this process. */

start[0] = mpi_rank * DIMSIZE/mpi_size; start[1] = 0;
count[0] = DIMSIZE/mpi_size; count[1] = DIMSIZE;

/* Create phoney data.

for (i=mpi_rank*QTR_DATA; i < (mpi_rank+1)*QTR_DATA, i++) data[i] = mpi_rank;

if ((res = nc_var_par_access(ncid, v1id, NC_INDEPENDENT))) ERR;
if ((
if ((res = nc_var_par_access(ncid, v1id, NC_COLLECTIVE))) ERR;
if ((
(

if ((res = nc_close(ncid))) ERR;

res = nc_put_vara_int(ncid, v1id, start count, &data[mpi_ rank*QTR _DATA)))) ERR;

res = nc_put_vara_int(ncid, v1id, start, count, &data[mpi_rank*QTR_DATA]))) ERR;

Parallel NetCDF .

e Parallel NetCDF (PNetCDF)

e Collaborative work of Northwestern University and Argonne National
Laboratory, extension of Unidata’s netCDF

e Parallel I/O library for accessing NetCDF files in CDF and CDF-2 (and
CDF-5) formats.

e NetCDF supports parallel /O starting from version 4, but
the file format is restricted to HDFS5.

e PNetCDF is currently the only choice to perform parallel /0O on files in
classic formats (CDF-1 and 2).

e Goal of PNetCDF:provide high-performance parallel I/O to
the applications by enabling all client processes to access
a shared file in parallel.

e PNetCDF is built on top of MPI-IO.
e For both performance and portability

e PNetCDF APIs mimic the syntax of the NetCDF APIs with
only minor changes to add parallel I/O concept.
e Ease of code migration

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Parallel NetCDF .

e Unfortunately, the PnetCDF package implements a
different APl from the netCDF API, making portability with
other NetCDF code a problem.

e But! Starting from version 4.2.1.1, netCDF-4 programs can
perform parallel /O on the classic CDF-1 and CDF-2 files
through PNetCDF. This is done by passing file create flag
NC_PNETCDF to nc_create par(), for instance:

e nc_create par(filename, NC_PNETCDF, MPI_COMM_WORLD, info,
&ncid);

e Great guide with lots of links:
http://cucis.ece.northwestern.edu/projects/PnetCDF/

e Also see http://[trac.mcs.anl.qov/projects/parallel-netcdf

Features .

e PnetCDF contains a set of new APIs for accessing netCDF
files in parallel

e The new APIs incorporate the parallel semantics following the
Message Passing Interfaces (MPI) and provide backward
compatibility with the netCDF file formats

e Minimize the changes to the netCDF API syntax
(see next slide)

\
\

Features 2 .

e PNetCDF APIs mimic the syntax of the netCDF APlIs with only a few
changes to add parallel I/O°concept.
e All parallel APIs are named after originals with prefix of
e "ncmpi_" for C/C++,
e "nfmpi_" for Fortran 77
e "Nf90mpi_" for Fortran 90

e An MPI communicator and an MPI_Info object are added to the
argument list of the open/create APIs. The communicatar defines the
set of processes accessing the NetCIQF file. TheI info object allows

an -

users to specify /O hints for PnetCD d MPI-IO to further improve
performance

e PNetCDF allows two I/O modes, collective and independent, which
correspond to MPI collective and independent I/O operations. Similar

to I\I/II'I'DI naming convention, all collective APIs carry an extra suffix
all”.

e PnetCDF changes the integer data t {)es for all the APl arguments
that are defined as size tin NetCDF to MPI_Offset.

HDF5 — a brief mention

See
http://www.hdfgroup.org/HDF5/

http://www.hdfgroup.org/HDF5/Tutor/
introductory.html

What is HDFS5 o

e A versatile data model that can represent very complex data |
objects and a wide variety of metadata.

e A completely portable file format with no limit on the number or
size of data objects in the collection.

e A software library that runs on a range of computational
platforms, from laptops to massively parallel systems, and
!rr%pL?ments a high-level API with C, C++, Fortran 90, and Java
interfaces.

e Arich set of integrated performance features that allow for
access time and storage space optimizations.

e Tools and applications for managing, manipulating, viewing,
and analyzing the data in the collection.

An HDF5 file is a container...

...into
which you
can put
your data
objects.

HDF5 Structures for Organizing Objects .o

“” (root) >

3-D array /

Raster image

Raster image

HDF5 Data Model O

e The HDF5 data is organized by only 2 primary objects |

e Groups
a grouping structure containing instances of zero or more groups or
datasets, together with supporting metadata.

e Datasets
a multidimensional array of data elements, together with supporting
metadata

e You can also use additional way to organize and annotate data
e Attributes
e Storage and access properties

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

HDF5 API .

e The HDF5 library provides several interfaces, or APIs. These
APIs provide routines for creating, accessing, and manipulating
HDF5 files and objects.

e The library itself is implemented in C. To facilitate the work of
FORTRAN 90, C++ and Java programmers, HDF5 function
wrappers have been developed in each of these languages.

e All C routines in the HDF5 library begin with a prefix of the
form H5*, where * is one or two uppercase letters indicating the
type of object on which the function operates. (see next slide)

e The FORTRAN wrappers come in the form of subroutines that
begin with h5 and end with _T.

\
\

What is an HDF5 file? .

e An HDF5 file is a binary file containing scientific data and |
supporting metadata.

e To create an HDF5 file, an application must specify not only a
file name, but a file access mode, a file creation property list,
and a file access property list.

e The file can be analyzed and used with provided tools like
hodump

Example 1 : Creating a HDFS5 file in C .

#include "hdf5.h" |
#define FILE "file.h5"

int main() {

hid t file_id; /* file identifier */

herr_t status;

[* Create a new file using default properties. */
file_id = H5Fcreate(FILE, H5F _ACC_ TRUNC, H5P_DEFAULT,
H5P DEFAULT);

[* Terminate access to the file. */
status = H5Fclose(file_id);

}

H5dump of the output from example 1

You can use hddump to see the structure of a HDF5 file
>h5dump file.h5

HDF5 "file.h5" {

GROUP "/"{

}
}

The file from last example only contains the group */

Parallel HDF5

Parallel HDFS design goals .o

e There were several requirements that the HDF5 group had for |
Parallel HDF5 (PHDF5).
e Parallel HDF5 files had to be compatible with serial HDF5 files and
sharable between different serial and parallel platforms.

e Parallel HDF5 had to be designed to have a single file image to all
processes, rather than having one file per process. Having one file per
process can cause expensive post processing, and the files are not
usable by different processes.

e A standard parallel I/O interface had to be portable to different
platforms.

e With these requirements of HDF5 the initial target was to

support MP| programming, but not shared memory
programming.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

How to use .

e An HDF5 file can be opened in parallel from an MPI application |
by specifying a parallel 'file driver' with an MPl communicator

and info structure.

e This information is communicated to HDF5 through a 'property
list,' a special HDF5 structure that is used to modify the default
behavior of the library. In the following code, a file access
property list is created and set to use the MPI-IO file driver:

[* create the file in parallel */
fapl_id = H5Pcreate(H5P_FILE ACCESS);

H5Pset fapl _mpio(fapl_id, mpi_comm, mpi_info);

file_id = H5Fcreate("myparfile.hd", H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id);

Writing and Reading Hyperslabs S St

e The programming model for writing and reading hyperslabs is: |
e Each process defines the memory and file hyperslabs.

e Each process executes a partial write/read call which is either
collective or independent.

e The memory and file hyperslabs in the first step are defined
with H5Sselect _hyperslab.

e The start (or offset), count, stride, and block parameters define
the portion of the dataset to write to. By changing the values of
these parameters you can write hyperslabs with Parallel HDF5

by contiguous hyperslab, by regularly spaced data in a column/
row, by patterns, and by chunks

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Writing in parallel : code extract .o

/I Init MPI
MPIL_Init(&argc, &argv); MPI_Comm_size(comm, &mpi_size); MPl_Comm_rank(comm, &mpi_rank); \

Il Set up file access property list with parallel I/O access
plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(plist_id, comm, info);

Il Create a new file collectively and release property list identifier.
file_id = H5Fcreate(HSFILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
H5Pclose(plist_id);

Il Create the dataspace for the dataset.
filespace = H5Screate_simple(RANK, dimsf, NULL);

I/ Create the dataset with default properties and close filespace.
dset id = H5DH(:5r8at§|(:1‘i|I:%[inLTI?_ATASETNAME, H5T_NATIVE_INT, filespace, H5P_DEFAULT, H5P_DEFAULT,

Il Create property list for collective dataset write.
plist_id = H5Pcreate(H5P_DATASET XFER);

Il To write dataset collective use

H5Pset_dxpl_mpio(plist_id, HSFD_MPIO_COLLECTIVE);

/Il To write dataset independently use

/I H5Pset_dxpl_mpio(plist_id, HSFD_MPIO_INDEPENDENT);

/[Write the data
status = H5Dwrite(dset_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, plist_id, data);

There is a lot more to HDF5

Starting points
e http://lwww.hdfgroup.org/
e http://www.hdfgroup.org/HDF5/Tutor/

e http://www.hdfgroup.org/HDF5/Tutor/parallel.html

