®9
CRANY
)

Performance Analysis with CrayPat

Part 1

®9
CRANY |
ol

° \
\

Outline

e Introduction to performance analysis with CrayPat

e Different approaches to profiling: Sampling vs. Tracing
e How to recompile and run your code for CrayPat.

e Combining Sampling and Tracing: Automatic Performance Analysis

e Collecting Hardware Performance counters.

October 26-27, 2015 SERC Tools Workshop

The Optimization Cycle

Optimize

Diagnose

October 26-27, 2015

Loop while
time and
resources
permit

Profile

/

€=

SERC Tools Workshop

RESIES

®9
CRANY
\

° \
\

CrayPAT Overview

e Assist the user with application performance analysis

and optimization

e Provides concrete suggestions instead of just reporting data.
e \Work on user codes at realistic core counts with thousands of
processes/threads

e Integrate into large codes with millions of lines of code

e Is a universal tool
e Basic functionality available to all compilers on the system
e Additional functionality available for the Cray compiler (loop profiling)

e Requires no source code or Makefile modification
e Automatic instrumentation at group (function) level such as mpi, io, ...

e Requires object files and archives for instrumentation and to be
compiled with the wrapper scripts while the perftools module was
loaded.

e Able to generate instrumentation on optimized code.

e Creates a new stand-alone instrumented program while preserving the
original binary.

e Is under continuous development — always improving!

October 26-27, 2015 SERC Tools Workshop

Components of CrayPat

e Available through the perftools module:

e pat_build - Instruments the program to be analyzed (command line)

e pat_report - Generates text reports from the performance data
captured during program execution and exports data for use in other
programs. (command line)

e Cray Apprentice2 - A graphical analysis tool
that can be used to visualize and explore the
performance data captured during program
execution.

e Reveal - A graphical source code analysis tool
that can be used to correlate performance analysis im
data with annotated source code listings, to identify |- 1“‘

key opportunities for optimization. . =

< et e s 7 e

e craypat-lite — Light weight profiling tool.

October 26-27, 2015 SERC Tools Workshop

9
cRAY
B

° \
\

Components of CrayPat (cont.)

e grid_order - Generates MPI rank order information that can be used
with the MPICH_RANK_ REORDER environment variable to override

the default MPI rank placement scheme and specify a custom rank
placement. (For more information, see the intro_mpi(3) man page.)

e pat_help - Help system, which contains extensive usage information
and examples. This help system can be accessed by entering
pat_help at the command line.

e The individual components of CrayPat are documented in the
following man pages (info on hardware counters will follow):
e intro_craypat(l)

pat_build(1)

pat_report(l)

pat_help(1)

grid_order(1)

app2(1)

reveal(1)

October 26-27, 2015 SERC Tools Workshop

9
cRAY
B

° \
\

Sampling and Event Tracing

e CrayPAT provides two fundamental ways of profiling:

1. Sampling
e By taking regular snapshots of the applications call stack we can
create a statistical profile of where the application spends most time.
e Snapshots can be taken at regular intervals in time or when some
other external event occurs, like a hardware counter overflowing
2. Event Tracing

e Alternatively we can record performance information every time a
specific program event occurs, e.g. entering or exiting a function.

e We can get accurate information about specific areas of the code
every time the event occurs

e Event tracing code can be added automatically or included manually
through API calls.

e Automatic Performance Analysis (APA) combines the two
approaches.

e Loop profiling is a special flavor of event tracing.

October 26-27, 2015 SERC Tools Workshop

CQAY\
Sampling Event Tracing DO,
Advantages Advantages
e Only need to instrument e More accurate and more detailed
main routine Information
 Low Overhead — depends « Data collected from every traced
only on sampling frequency function call not statistical averages
e Smaller volumes of data
produced
Disadvantages
Disadvantages e Increased overheads as number of
« Only statistical averages function calls increases
available Huge volumes of data generated

e Limited information from
performance counters

The best approach is guided tracing.
e.g., Only tracing functions that are not small (i.e., very few
lines of code) and contribute a lot to application’s run time.
APA is an automated way to do this.

October 26-27, 2015 SERC Tools Workshop

CrayPat

Full featured application profiling

Exercise 1: Generate a Sampling Profile SRS

\
\

{ > module load perftools

» Makes the default version of CrayPAT available

« Subsequent compiler invocations will automatically insert necessary
hooks for profiling (not always up-to-date with latest third-party compilers)

» Binaries are not automatically instrumented

> make clean; make
> pat_build -S himeno.exe

» Builds code with profiling hooks, then instruments the binary
* Result named himeno.exe+pat

[> aprun -n 24 ./himeno.exe+pat (within PBS script)
> pat_report -o myreport.txt himeno+pat+* (when PBS job returns) ’

* Running the “+pat” binary creates a data file “*.xf" or a directory in run
directory

e pat_report reads that data file and prints lots of human-readable
performance data. Creates an *.ap2 file.

October 26-27, 2015 SERC Tools Workshop

®e
_ _ _ CRAY
Table 2: Profile by Group, Function, and Line s

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | Source
| | | | Line
I I I | PE=HIDE
100.0% | 2063.0 | -- | -- |Total
ey
| 82.3% | 1698.0 | -- | -- |USER
| [5mmmm = e
|l 77.2% | 1592.2 | -- | -- |jacobi
3] | | | | Himeno/test.samp/himeno.c
|| [—————————r
a||| [61.1% | 1260.6 | 32.4 | 2.9% |line.243
4||] 7.2% | 147.8 | 19.2 | 13.2% |line.257
4||| 4.3% | 89.5 | 17.5 | 18.7% |line.258
a||| 4.2%| 86.5| 8.5 | 10.2% |line.260
|| 5.1% | 1e5.8 | -- | -- |initmt
3| | | | | Himeno/test.samp/himeno.c
| |==
| 16.4% | 338.2 | -- | -- |ETC
LI PRETITRRRSY AT
|| 13.8% | 284.8 | 5.2 | 2.1% |__cray_scopy_HSW
|| 2.6% | 53.5| 4.5 | 8.9% |__cray_sset_HSW
|
|

October 26-27, 2015 SERC Tools Workshop

Exercise 2. Generate a Tracing Profile \

{» > module load perftools

« Makes the default version of CrayPAT available.

(> pat_build -u -g mpi himeno.exe

« If your application is already built with perftools loaded you
do not have to rebuild when switching the experiment.

 Traces MPI functions calls and functions defined in the
program source files

> aprun -n 24 ./himeno.exe+pat (from within PBS script)
> pat_report -o myrep.txt himeno+pat+*

* Running the “+pat” binary creates a data file or directory

e pat_report reads that data file and prints lots of human-
readable performance data. Creates an *.ap2 file.

October 26-27, 2015 SERC Tools Workshop

® e
CRANY

Table 1: Profile by Function Group and Function s

Time% | Time |
I I
I I

100.0% | 20.643909 |

| 91.1% | 18.797060
| 7.7% | 1.597866
| ©.0% | ©.000402

0.7% 0.148981
0.4% 0.085824
0.0% 0.000298
0.0% 0.000033

I

I

I

I

I

I

I

I

| I
| I
|| e.e% | e.004125
| I
| I
I

I

I

I

I

I

I

| ©0.0% | ©.006696
| o0.0% | ©.e01802
| ©0.0% | ©.000061
| 0.0% | ©.000056

October 26-27, 2015

Imb. |

Imb. |

Time | Time% |

.115535 |
.006647 |
.000167 |

.094595 |
.023669 |
.004316 |
.000013 |
.000013 |

.006627 |
.001399 |
.000052 |
.000051 |

Calls |Group

| Function
| PE=HIDE

-- | 1149.0 |Total

0.7% |
0.5% |
33.5% |

jacobi
initmt
sendp3

wrRL N
(IR)

159.0 |MPI_Waitall
318.0 |MPI_Isend
318.0 |MPI_Irecv
55.0 |MPI_Allreduce
1.0 |MPI_Cart_create

MPI_Barrier(sync):
MPI_Allreduce(sync)
MPI_Init(sync)
MPI_Finalize(sync)

OO0 0

SERC Tools Workshop

Options for Tracing R

e More information is given in the pat_build man page

e -uU Create new trace intercept routines for those functions that are defined in the
respective source file owned by the user.

e -Ww Make tracing the default experiment and create new trace intercept routines
for those functions for which no trace intercept routine already exists. If -t, -T, or the
trace build directive are not specified, only those functions necessary to support
the CrayPat runtime library are traced.

e -T tracefunc Instrument program to trace the function references to tracefunc. This
option applies to all user-defined entry points as well as to those that appear in the
predefined function groups listed under the -g option. Use the nm or readelf
command to determine function names to specify for tracing. If tracefunc begins
with an exclamation point (!) character, references to tracefunc are not traced.

e -t tracefile Instrument program to trace all function references listed in tracefile.

e Only true function calls can be traced, Functions that are inlined b%
e

%paecce;cc)lmpller or that have local scope in a compilation unit cannot

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Options for Tracing

e More information is given in the pat_build man page

e -g tracegroup Instrument the program to trace all function references
belonging to the trace function group tracegroup. Only those functions
actually executed by the program at runtime are traced. A selection of
tracegroup values is:

omp OpenMP API
sysio /O system calls
syscall system calls

e blas Basic Linear Algebra subprograms
e netcdf Network Common Data Form

e hdf5 HDF5 I/O library

e heap dynamic heap

e i0 includes stdio and sysio groups

e lapack Linear Algebra Package

e Mpi MPI

[]

[]

[]

e More information on the various tracegroup values is given in
$CRCAI\YIPAT_ROOT/shar'e/tr'aces after loading the perftools
module.

October 26-27, 2015 SERC Tools Workshop

Files generated during regular Profiling

e a.out+pat+PID-node[s|t].xf: raw data files _ N
e Depending on the nature of the program and the environmental conditions

In effect at the time of program execCution, when executed, the

instrumented executable generates one or more data files with the

suffix .xf, where:
a.out is the name of the original program.
PID is the process ID assigned to the instrumented program at runtime.
node is the physical node ID upon which the rank zero process executed.
s|t is a one-letter code indicating the type of experiment performed,

either s for sampling or t for traCing.

e Use the]pat report command to view or dump the .xf file_or export it to
another tile format for use with other applications, i.e. *.ap2 files.

e *.ap2 files: self contained compressed performance files.
o Normally about 5 times smaller than the corresponding set of *.xf files.
e Only one *.ap2 per experiment compared to potentially multiple *.xf files.

e Contains the information needed from the application pinary and can be
regs_eltd, even if the application binary is no longer available’or if it was
rebuilt.

e Is independent on the version used to generate the ap2 file while the xf
files are very version dependent.

e lItis the only input format accepted by Cray Apprentice2 and Reveal.
e => Can delete the .xf files after you have the ap2 file.

October 26-27, 2015 SERC Tools Workshop

®9
CRANY |
ol

° \

\
e Always need to run pat_report at least once to perform
data conversion
e Combines information from xf output (optimized for writing to disk)

and binary with raw performance data to produce ap2 file (optimized
for visualization analysis and smaller than raw data)

e Instrumented binary must still exist when data is converted!

e Resulting ap2 file is the input for subsequent pat_report calls and
Reveal or Apprentice?

e xf files and instrumented binary files can be removed once ap2 file
IS generated.

Using pat_report

e Generates atext report of performance results
e Data laid out in tables

e Many options for sorting, slicing or dicing data in the tables.
> pat_report -0 <table option> *.ap2
> pat_report -0 help (list of available profiles)
e Volume and type of information depends upon sampling vs tracing.

October 26-27, 2015 SERC Tools Workshop

Some useful predefined report types: S S

e pat report —O ca+src
e Show the callers (bottom-up view) leading to the routines that have a
high use in the report and include source code line numbers for the
calls and time-consuming statements.

e pat report —O load balance

e Show load-balance statistics for the high-use routines in the program.
Parallel processes with minimum, maximum and median times for
routines will be displayed. Only available with tracing experiments.

e pat_report —O mpi_callers
e Show MPI message statistics. Only available with tracing experiments.

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
)

° \
\

Using pat_report

e The performance numbers reported are in general an
average over all tasks (also explains non-integer values)

e Not always meaningful | rinex | time | b. | b, | calls |Group
| | Time | Time% | | Function
e Master-slave schemes | | | | | PE=HIDE
e MPMD 100.0% | 20.643909 | -- | -- | 1149.0 |Total
| = o mm oo o e
| 98.8% | 20.395989 | | -- | 219.0 |USER
Ll R B E L
|| 91.1% | 18.797060 | ©.115535 | ©.7% | 2.0 |jacobi
|| 7.7% | 1.597866 | 0.006647 | ©.5% | 1.0 |initmt
|| e.0% | ©.000402 | 0.000167 | 33.5% | 53.0 |sendp3

e To solve this you can filter the *.ap2 file

> pat_report -sfilter input=°‘condition’
e The ‘condition’ should be an expression involving 'pe' such as 'pe<1024' or 'pe%2==0".

e This option is also useful when the size of the full data file makes a report incorporating
data from all PEs take too long or exceed the available memory

October 26-27,2015 SERC Tools Workshop

Combining Sampling and Tracing: APA

LR
cRAaYyr |
'

° \
\

e Motivation for Automatic Profiling Analysis:

For programs that run for only a few seconds, there is no problem with
using pat_build with the -u and -g mpi options to trace all user
functions.

However with a large, long-running program such a trace will inject
considerable overhead. It is better to limit tracing to those functions
that consume the most time.

One can use a preliminary sampling experiment to determine and
Instrument those functions, referred to as automatic profiling analysis.

APA provides a simple procedure to instrument and collect
performance data as a first step for novice and expert users.

Identifies top time consuming routines through sampling and provides
Instructions to trace only those routines.

Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

October 26-27, 2015 SERC Tools Workshop

Automatic Profiling Analysis (1/2) SR

{ > module load perftools

 Makes the default version of CrayPAT available.

> make clean; make
> pat_build himeno.exe

 The APA is the default experiment. No option needed.

* The pat_build generates a binary instrumented for
sampling (different from the pure sampling shown before.)

> aprun -n 24 ./himeno.exe+pat” (from PBS job)
> pat_report -o myrep.txt himeno+pat+*

* Running the “+pat” binary creates a data file or directory.

« Applying pat_report to the *.xf generates an *.apa file in
addition to the *.ap2 file.

October 26-27, 2015 SERC Tools Workshop

Automatic Profiling Analysis (2/2) SR

\
\

[> vi *.apa

e The *.apa file contains instructions for the next step, I.e.
tracing. Modify it according to your needs.

[> pat_build -0 *.apa

e Generates an instrumented binary himeno.exe+apa for
tracing according to the instructions in the *.apa file.

> aprun -n 24 ./himeno.exe+apa
> pat_report -o myrep.txt himeno+apa+*

e Running the “+apa” binary creates a new data file or
directory.

« Applying pat_report to the *.xf generates a new*.ap?2 file.

October 26-27, 2015 SERC Tools Workshop

E"”te"‘“"AT—RT—PERFCTR=defa“1t Suggestion to collect Performance counters

Libraries to trace.

]/_ Augment this list if needed, i.e. -g mpi,io

Eg mpi
S

User-defined functions to trace, sorted by % of samples.

-w # Enable tracing of user-defined functions.
Note: -u should NOT be specified as an additional option.

Add or remove
functions as needed.

-T jacobi

77.44% 3751 bytes W

5.04% 2467 bytes —
S# -T initmt 4)

(-o himeno.exe+apa # New instrumented program.} Create the blnary for traC|ng

October 26-27, 2015 SERC Tools Workshop

A Sequence of Commands

e
CRANY

rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>

rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>
rns/ cr ayPat Exanpl e>

nodul e | oad perftools

ftn -0 sanp264 sanp264. f
pat _build sanp264

Vi sanp264. pbs

gsub sanp264. pbs

cat sanp264. pbs. 01879623 # Made sure the job ran ©

pat _report sanp264+pat +15346-43sdt. xf > sanp264+pat +15346. r eport
Vi ew sanp264+pat +15346. r eport

pat _build - O sanp264+pat +15346- 43sdt . apa

rns/ crayPat Exanpl e> |s -Itr

-rwr--r-- 1 rns hwpt 5411 Sep
-rwr--r-- 1 rns hwpt 306 Sep
-rwxr-xr-x 1 rns hwpt 2001625 Sep
-rwxr-xr-x 1 rns hwpt 3592502 Sep
SrW------ 1 rns hwpt 459 Sep
SrWr----- 1 rns hwpt 7240 Sep
-rwr--r-- 1 rns hwpt 5248 Sep
-rwr--r-- 1 rns hwpt 1613 Sep
-rwr--r-- 1 rns hwpt 36864 Sep
-rwxr-xr-x 1 rns hwpt 3599971 Sep

Vi sanp264. pbs

25
25
25
25
25
25
25
25
25
25

gsub sanp264. pbs

pat _report sanp264+apa+8557-142tdt.xf > sanp264+apa+8557.report
Vi ew sanp264+apa+8557. report

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

34
34
35
35
36
36
37
37
37
53

ciober 24 77[2015

SERC Tools Workshop
P

Loaded the CrayPat nodul e

conpi |l ed the code — sinple application
Created the experinent executabl e sanp64+pat
nodi fy the job script to run sanp64+pat

run the job

#
#
#
#

sanp264. f

sanp264. pbs

sanp264

sanp264+pat
sanp264. pbs. 01879623
sanp264+pat +15346- 43sdt . xf
sanp264+pat +15346. r epor t
sanp264+pat +15346- 43sdt . apa
sanp264+pat +15346- 43sdt . ap2
sanp264+apa

nodify the job script to run sanp64+apa
run the job

®9
CRANY
\

° \
\

General Remarks

e Always check that the instrumenting binary has not
affected the run time notably compared to the original

e Collecting event traces on large numbers of frequently
called functions, or setting the sampling interval very low
can introduce a lot of overhead (check trace-text-size
option to pat_build)

e MUST run on Lustre !

e The runtime analysis can be modified through the use of
environment variables of the form PAT_RT_*
e Number of files used to store raw data:
e 1 file created for program with 1 — 256 processes

e n files created for program with 257 — n processes
e Ability to customize with PAT _RT_EXPFILE_MAX

e Check the PAT LD _OBJECT_TMPDIR variable if you cannot preserve
the original build tree.

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Hardware Performance Counters

e CrayPat supports the use of hardware counters to collect
hardware events
e Most counters accessed through the PAPI interface.

e Predefined sets of hardware counters are specified that can be
Instrumented for performance analysis experiment.

e Number of simultaneous counters limited by hardware.

e CrayPat provides information at the function call level on
hardware features like caches, vectorization and memory
bandwidth. Very useful feature for understanding
application performance bottlenecks.

e HWPC collection can slow down the execution notably.

e Should be used within a tracing experiment only for a small set of
functions or ideally through an automatic performance analysis.

October 26-27,2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Hardware Counters Selection

e HW counter collection enabled with PAT_RT_PERFCTR
environment variable (not set by default)

export PAT _RT PERFCTR=<event list> | <group>

e Counter events are specified in a comma-separated list. Event names
and groups from any and all components may be mixed as needed. To
list the names of the individual events on your system, use the
papi_avail and papi_native_avail commands which are
explained in the papi_counters man page.

e Alternatively, counter group numbers can be used in addition to or in
place of individual event names, to specify one or more predefined
performance counter groups. The groups are given in the hwpc man
page (contents in $CRAYPAT ROOT/share/counters/)

e An overview of events is given in pat_help->counters->haswell

e Aries network performance counters is found in the nwpc(5) man
page.

e Intel Running Average Power Limit and Crag Power Management in
rapl(5), and info on Performance API (PAPI) in intro_papi(5).

October 26-27,2015 SERC Tools Workshop

Haswell HW counter groups (hwpc man page)

Table 5. Intel Haswell Event Sets

Group Description

(%) D1 with instruction counts

1 Summary with cache and TLB metrics (default)
2 D1, D2, and L3 metrics)

3-5 Not used

6 Micro-op queue stalls

7 Back-end stalls

8 Instructions and branches

9 Instruction cache

10 Cache hierarchy

19 Prefetches

23 Summary with cache and TLB metrics (same as 1)

Intel Haswell Processor: Hardware performance counters do not support floating-
point operations.

October 26-27,2015 SERC Tools Workshop

Time% 91.0%

Time 18.783816 secs
Imb. Time 0.131366 secs
Imb. Time% 0.8%

Calls 0.106 /sec 2.0 calls
CPU_CLK_THREAD_UNHALTED:REF_XCLK 1874027894
CPU_CLK_THREAD_UNHALTED:THREAD_P 52330735798
DTLB_LOAD MISSES:MISS_CAUSES_A_WALK 15309079
DTLB_STORE_MISSES:MISS_CAUSES A WALK 9590363
L1D:REPLACEMENT 2490612461
L2_RQSTS:ALL_DEMAND DATA_RD 1255673984
L2_RQSTS:DEMAND_DATA_RD_HIT 495319777
MEM_UOPS_RETIRED:ALL_LOADS 7905309689

User time (approx) 18.783 secs 46977527366 cycles
CPU_CLK 2.792GHz

TLB utilization 317.49 refs/miss 0.620 avg uses
D1 cache hit,miss ratios 68.5% hits 31.5% misses
D1 cache utilization (misses) 3.17 refs/miss 0.397 avg hits
D2 cache hit,miss ratio 69.5% hits 30.5% misses
D1+D2 cache hit,miss ratio 99.4% hits 9.6% misses
D1+D2 cache utilization 10.40 refs/miss 1.300 avg hits
D2 to D1 bandwidth 4080.191MiB/sec 80363134952 bytes
Average Time per Call 9.391908 secs
CrayPat Overhead : Time 0.0%

October 26-27, 2015 SERC Tools Workshop

100.0% Time

e
CRANY
)

® \
\

Example: Observations and suggestions

D1 + D2 cache utilization:
7.7% of total execution time was spent in 1 functions with combined
D1 and D2 cache hit ratios below the desirable minimum of 80.0%.
Cache utilization might be improved by modifying the alignment or
stride of references to data arrays in these functions.
D1+D2 cache hit ratio Time% Function

58.9% 7.7% initmt

TLB utilization:
7.7% of total execution time was spent in 1 functions with fewer
than the desirable minimum of 200 data references per TLB miss. TLB
utilization might be improved by modifying the alignment or stride
of references to data arrays in these functions.
LS per TLB DM Time% Function

5.21 7.7% initmt

October 26-27,2015 SERC Tools Workshop

LR
CRANY
)

° \
\

Compiler Feedback (CCE)

e With CCE use -rm for Fortran or -hlist=a for C/C++
e For each source file a corresponding *.1st file is created.

%% Loopmark Legend %% 191. C-mmmmmm - - < for(i=@ ; i<MIMAX ; ++i)
192. C C-mmmmmmmm- < for(j=0 ; j<MIMAX ; ++j)
Primary Loop Type Modifiers 193. C C VCr2------ < for(k=0 ; k<MKMAX ; +
________________________ +k){
A - Pattern matched a - atomic memory operation 194. C CvCr2 a[e][i][j]l[k]=e.0;
b - blocked 195. C C VCr2 a[1][i]l[j]l[k]=e.0;
C - Collapsed c - conditional and/or 196. C C vCr2 a[2][i][jl[k]=e.0;
computed 197. C C vCr2 a[3][i][jl[k]=0.0;
D - Deleted 202. C C vCr2 c[1][i]l[j]l[k]=0.0;
E - Cloned 203. C C vCr2 c[2][il[jl[k]=0.0;
F - Flat - No calls f - fused 204. C C VCr2 A---<> pl[i]l[j]l[k]=0.0;
G - Accelerated g - partitioned
I - Inlined i - interchanged CC-6005 CC: SCALAR File = himeno.c, Line = 193
M - Multithreaded m - partitioned A loop was unrolled 2 times.
n - non-blocking remote
transf. CC-6204 CC: VECTOR File = himeno.c, Line = 193
p - partial A loop was vectorized.
r - unrolled
s - shortloop CC-6231 CC: VECTOR File = himeno.c, Line = 204
V - Vectorized W - unwound A statement was replaced by a library call.

October 26-27, 2015 SERC Tools Workshop

Questions About the Data? R,

\
\

e Check the Notes before each table in the text report
e Check pat_help
e Check man pages

Notes for table 5:

The Total value for Process HiMem (MBytes), Process Time is the avg
for the PE values.

The value shown for Process HiMem is calculated from information in
the /proc/self/numa_maps files captured near the end of the program.
It is the total size of all pages, including huge pages, that were
actually mapped into physical memory from both private and shared
memory segments.

This table shows only the maximum, median, minimum PE entries,
sorted by Process Time.

October 26-27, 2015 SERC Tools Workshop

Questions About the Data? (2) SR

> pat_help environment . . .

pat_help environment (.=quit ,=back ~=up /=top ~=search)
=> PAT_RT_SAMPLING_DATA

Specifies additional data to collect during a sampling
experiment. The valid values are shown below.

The value may be followed by '@ratio’ which indicates the
frequency at which the data is sampled. By default the data is
sampled once for every 100 sampled program counter addresses. For
example, if 'ratio' is 'l1l', the additional data requested would
be collected each time the program counter is sampled.

If the 'ratio' is '1000', the additional data requested would

be collected once every 1000 program counter samples.

Collecting additional data during sampling is only supported in
full-trace mode (see PAT_RT_SUMMARY).

Additional topics that may follow "PAT_RT_SAMPLING_DATA":

cray_pm perfctr
cray_rapl rusage
heap sheap
memory

October 26-27, 2015 SERC Tools Workshop

Questions About the Data? (3) SR

\
\

> pat_help environment PAT_RT_SAMPLING_DATA memory

pat_help environment PAT_RT_SAMPLING_DATA
(.=quit ,=back ~=up /=top ~=search) => memory

memory collect data about the current state of memory
himem - memory high water mark
rss - resident set size
peak - maximum virtual memory used
priv - private resident memory
shared - shared resident memory

proportional - proportional resident memory

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

pat_info Utility

e Can be used to generate a quick summary statement
regarding the contents of a CrayPat .ap2 file or set of files
without running pat_report or Apprentice2

e Useful if you have multiple .ap2 files in a directory or if you
want to review what experiments you have already
performed

e Works on a single .ap2 file or a directory of .ap2 files

e When invoked with no arguments, the command looks in
the current directory for .ap2 files

e When invoked with a directory argument, information
about all .ap2 files in that directory are displayed

October 26-27, 2015 SERC Tools Workshop

Example pat_info Utility Output S S

When given a single .ap2 file argument, it defaults to the long form
(counter lists are added with the -c option):

kay-esl$ pat_info -c sweep3d.mpi+17552-12s.ap2

ap2: sweep3d.mpi+17552-12s.ap2
ap2_size: 289792

RTS: yes

Experiment: samp_cs_time

PE: CRAY

NumPEs : 96

NumThreads: ©
NumLeafNodes:928

OpenMP: yes
Original prog: /lus/scratch/clark/sweep3d/sweep3d.mpi+orig
prog_size: (not available)
NumHWPC: 16
CYCLES_RTC

L1D:REPLACEMENT
L2_RQSTS:ALL_DEMAND_DATA_RD
FP_COMP_OPS_EXE : SSE_SCALAR_DOUBLE
FP_COMP_OPS_EXE :SSE_FP_SCALAR_SINGLE
FP_COMP_OPS_EXE : X87
FP_COMP_OPS_EXE : SSE_PACKED_SINGLE
SIMD_FP_256:PACKED_SINGLE
FP_COMP_OPS_EXE :SSE_FP_PACKED_DOUBLE
SIMD_FP_256:PACKED_DOUBLE
L2_RQSTS :DEMAND_DATA_RD_HIT
CPU_CLK_UNHALTED: THREAD_P
CPU_CLK_UNHALTED:REF_P
MEM_UOPS_RETIRED:ALL_LOADS
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK
DTLB_STORE_MISSES:MISS_CAUSES_A_ WALK
NumCPMC: 2
PM_ENERGY : NODE
PM_ENERGY :ACC

October 26-27, 2015 SERC Tools Workshop

CrayPat-lite

Light-weight application profiling

Good place to start!

®9
CRANY
\

° \
\

CrayPat-lite Overview

e Provide automatic application performance statistics at \
the end of ajob. Focus is to offer a simplified interface to
basic application performance information for users not
familiar with the Cray performance tools and perhaps new
to application performance analysis.

e The tool is enabled by loading a module and rebuild

> module load perftools-lite
> make clean && make

e Program is automatically relinked to add instrumentation
In a.out (pat_build step done for the user)
e .0 files are automatically preserved

e No modifications are needed to a batch script to run instrumented
binary, since original binary is replaced with instrumented version

e pat_report is automatically run before job exits.
e Performance statistics are issued to stdout

e User can use “classic” CrayPat for more in-depth performance
investigation

October 26-27, 2015 SERC Tools Workshop

()
CRANY
)

® \
\

Steps to Using CrayPat-lite

Access light version of performance tools software

> module load perftools-lite

Build program
> make _ a.out (instrumented program)

Run program (no modification to batch script)

aprun a.out — Condensed report to stdout)

a.out*.rpt (same as stdout)
a.out*.ap2

MPICH_RANK_XXX files

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Predefined Set of Performance Experiments

e Set of predefined experiments, enabled with the
CRAYPAT_LITE environment variable (before compilation)
e sample profile
e event profile

e The sample profileis equivalent to
> pat _build -0 apa a.out

e Includes collection of summary CPU performance counters around
MAIN

e Includes Imbalance information.

e The event_profile is equivalent to

> pat_build -u -gmpi a.out
Provides profile based on summarization of events.
Includes OpenMP if these models are used within program.
Collection of summary CPU performance counters

Filter to only trace functions above 1200 bytes
e In most cases, omits tiny repetitive functions that can perturb results.

October 26-27, 2015 SERC Tools Workshop

Performance Statistics Available

Job information

Profile of top time consuming routines with load balance

Number of MPI ranks, ...

Wallclock

Memory high water mark

Number of PEs (MPI ranks): 64

® | Numbers of PEs per Node: 32 PEs on each of 2 Nodes
Numbers of Threads per PE: 1

Number of Cores per Socket: 16

Execution start time: Fri Feb 15 14:42:24 2013

Wall Clock Time: 122.608994 secs
High Memory: 45.70 MBytes

Performance counters (CPU only)

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function

| | | | PE=HIDE
100.0% | 142725 | —| ~—[Total
)

I

| 46.0% | 65614 | —| ~—|USER
1L

59% | 8476 | 1554 | 15.7% |collocate_core_1_
49% | 7003 | 1257 | 155% lintegrate_core_2_
38% | 544.0 | 1240 | 18.9% fcollocate_core_2_
37% | 5231 | 739 | 126% [integrate_core_1_

\

CRANY
\

\

"
| 297% | 42396 | —| -|MPI
11

9.3% | 13283 | 1987 | 13.2% |mpi_alitoallv
42% | 5985 | 71.5| 10.8% |mpi_waitall

29%| 4138 |107.2 | 20.9% [MPLWAITANY
29% | 4091 | 669 | 14.3% [MP|_Comm_create

Time% | Time| Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE
100.0%| 101.961423| =-| =|5315211.9|Total
)
I
| 92.5%| 94.267451| =~| =|5272245.9|USER
Il

1)

| 75.8% | 77.248585| 2.356249| 3.0%| 1001.0|LAMMPS_NS::PairLJCut::compute

| 65%]| 6.644545|0.105246| 1.6%| 51.0|LAMMPS_NS::Neighbor::half_bin_newton
| 41%]| 4131842|0.634032| 135%| 1.0 [LAMMPS_NS::Verlet::run

| 3.8%| 3.841349|1.241434| 24.8% | 5262868.9 LAMMPS_NS::Pair::ev_tally

| 1.3%]| 1.288463]0.181268| 125%| 1000.0 LAMMPS_NS::FixNVE::final_integrate

| 7.0%| 7.110931] =-| =-| 42637.0MPI
1.

)
| 4.8%| 4.851300]3.371003| 41.6%| 12267.0|MPI_Send
| 15%]| 1.536106|2.592504| 63.8% | 12267.0 [MPI_Wait

Observations and Instructions on how to get more info.

October 26-27, 2015

SERC Tools Workshop

L)
CRANY
)

Profiling for the GPU

®9
CRANY
\

° \
\

Profiling OpenACC codes

e CrayPAT tracing offers a powerful profiling for OpenACC
codes. (Sampling does not collect GPU performance data)

e Load the GPU module and the performance tools
> module load craype-accel-nvidia35
> module load perftools

e Recompile your program
> ftn -c my_program.f
> ftn -0 my_program my_program.o

e Instrument the application for tracing and execute
> pat_build -w my_program
> aprun -n pes my_program

e Generate a report out of the raw data file(s)
> pat_report -o report.txt my program*.xf

October 26-27, 2015 SERC Tools Workshop

Contents of report.txt (Table 1)

Table 1:

Time% |

0.0% |

— — — — — — — — — —

Profile by Function Group and Function

Time | Imb.
| Time

100.0% | 16.409900 |

8.403343
5.622111
1.936478
0.440894
0.005727
0.001178

0.000170 |

Imb.

| Time% |

| calls |Group

| Function

-- | 1252.0 |Total

1.0 |mg_
170.0 |resid_.ACC_COPY@li.615
170.0 |resid_.ACC_COPY@li.639
170.0 |resid_.ACC_SYNC_WAIT@li.639
170.0 |resid_.ACC_KERNEL@li.615
170.0 |resid_.ACC_REGION@li.615

e Two ACC_COPY lines report data movements at either end of the
OpenACC parallel region.

e ACC_KERNEL is essentially zero as it is launched asynchronously.
e GPU time is measured in the ACC_SYNC_WAIT
e ACC_REGION measures internal ops (set up pointers for transfer.)

October 26-27, 2015

SERC Tools Workshop

Contents of report.txt (Table 2)

Table 2: Time and Bytes Transferred for Accelerator Regions

Host | Host | Acc | Acc Copy | Acc Copy | Events |Calltree
Time% | Time | Time | In | Out | |
| | | (MBytes) | (MBytes) | |

100.0% | 8.007 | 7.962 | 12341 | 6171 | 850 |Total

| ___
| 100.0% | 8.007 | 7.962 | 12341 | 6171 | 850 |mg_

B T T e L LT L P U T T PO L LR TR L P L L LR LRL PO R CELALE
|| 50.0% | 4.005 | 3.969 | 6314 | 3157 | 735 |mg3p_

3 I I I I I | resid_
4| | | | | | | resid_.ACC_REGION@li.615
O T e T T L LT L P L LR TR L P L LR R CRLEEEFCELALE
5|||| 36.2% | 2.898 | 2.877 | 6314 | - 147 |resid_.ACC_COPY@li.615

5/]]| 10.8% | ©.867 | 0.860 | - 3157 | 147 |resid_.ACC_COPY@li.639

51]1] 2.9% | ©.235 | - - - 147 |resid_.ACC_SYNC_WAIT@li.639
5/]]|] ©.1% | e.004 | 0.232 | - -- 147 |resid_.ACC_KERNEL@li.615

5|||]|] ©.0% | e.e01 | - -- | - 147 |resid_.ACC_REGION@li.615(exclusive)

e Theresid routine is called from several points — table shows one
e Table shows details on data transfers and timings for CPU and GPU.
L

ACC_SYNC_ WAIT time on CPU includes kernel time on GPU.
e For MPI programs the statistics are averaged over the PE.

October 26-27, 2015 SERC Tools Workshop

Contents of report.txt (pat_build -u ...)

T
C=RANY
\

Table 1:

Time% | Time

100.0% | 16.452925 |

I

I

|| 34.2% | 5.621172
|| 19.4% | 3.199216
|| 11.8% | 1.940111
|| 10.7% | 1.764268
|| 7.4% | 1.217534
|| 6.3% | 1.033920
|| 4.3% | ©.709337
[l 2.7% | eo.441237
|| 1.5% | e.240856
|| 1.0% | o.170554

| | Time

| Imb. |
| Time% |

Profile by Function Group and Function

| calls |Group

| Function

-- | 265303.0 |Total

- | 170.0 |resid_.ACC_COPY@li.615

-- | 168.0 |psinv_

- 170.0 |resid_.ACC_COPY@li.639

-- | 131072.0 |vranlc_

-- 147.0 |rprj3_

- 147.0 |interp_

-- 151.0 |zero3_

o | 170.0 |resid_.ACC_SYNC_WAIT@li.639
-- 2.0 |zran3_

- 487.0 |comm3

e resid kernel no longer dominant in the whole picture but associated
data transfers still very expensive.

October 26-27, 2015

SERC Tools Workshop

Accelerator Table Column definitions

e Host Time%
e percentage of wallclock time for events

e Host Time
e Wwallclock time, in seconds, for the event

e Acc Time

e amount of time the event executed on the accelerator
e Acc Copy In

e amount of data copied to the accelerator

e Acc Copy Out
e amount of data copied from the accelerator

e Calls
e the number of time the event occurred

e All of the above are summed for regions and functions

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Accelerator Table Column definitions

e Notes section at the beginning of the tables contains
helpful information describing how the table was
generated and suggestions on how to produce additional
related tables.

e Data presented in default text report is organized as a
calltree with functions/accelerated regions sorted in
decreasing order by Host Time

e Called functions, regions and events are indented to the
right
e Left-most column represents indentation in table

e By default, cells in accelerator tables that have no data are
marked with ‘-’

October 26-27, 2015 SERC Tools Workshop

Profiling with GPU Hardware Counters SRS

e CrayPAT supports a wide range of accelerator
performance counter

e A predefined set of groups has been created for ease of
use (combines events that can be counted together.)
> module load perftools

> man accpc
> more $CRAYPAT ROOT/share/CounterGroups.nvidia k20x

e Enable collection similarly to CPU counter collection
e PAT _RT PERFCTR=group or events

e Set the PAT_RT_ACCPC variable appropriately and run the
instrumented (tracing) program.

October 26-27, 2015 SERC Tools Workshop

GPU Counter Statistics

CRANY
)

Used PAT _RT _ACCPC=ipc_inst_rep_ovr to generate
the following table after pat_report.

Table 3: ACC Performance Counter Data
Acc | inst_executed | inst_issuedl | inst_issued2 | thread_inst_executed | ipc | Acc [Calltree
Time% | | | | | | util |
100.0% | 273341540 | 245524426 | 54206381 | 8261569560 | ©.003 | 45.5% |Total
g
| 100.0% | 273341540 | 245524426 | 54206381 | 8261569560 | ©.003 | 45.5% |mg
=== eenenoeeeeeeeeoeceeeeeeeeeooeeees
|| s50.2% | 129718820 | 117634433 | 25615019 | 3940872320 | 0.003 | 22.9% |resid_
3| | | | | | | | resid_.ACC_REGION@li.615
|| oeoneneeeeeeee s
al|] 34.1% | o | o | o | o | @ | 15.5% |resid_.ACC_COPY@li.615
a||] 13.5% | o | o | o | o | @ | 6.1% |resid_.ACC_COPY@li.639
all] 2.6% | 129718820 | 117634433 | 25615019 | 3940872320 | 0.061 | 1.2% |resid_.ACC_KERNEL@1i.615
|| 49.8% | 143622720 | 127889993 | 28591362 | 4320697240 | 0.004 | 22.7% |mg3p_
3 | | | | | | | resid_
a | | | | | | | resid_.ACC_REGION@li.615
[[[=====mmmmmm = e et nnneneeeeeeeneeeeseeeemoneeeeeeenoeeeeeees
s[|]| 36.1% | o | o | o | o | 0 | 16.4% |resid_.ACC_COPY@li.615
s[|]| 10.8% | o | o | o | o | 0 | 4.9% |resid_.ACC_COPY@li.639
s[|I| 2.9% | 143622720 | 127889993 | 28591362 | 4320697240 | 0.060 | 1.3% |resid_.ACC_KERNEL@1i.615
e e e e e e e e e e e e e e e e T e e
October 26-27, 2015 SERC Tools Workshop

®9
CRANY
\

° \
\

Loop mark and runtime commentary

e Cray compiler commentary is available as annotated loop
mark listing of the source file giving further information ‘
e Loop transformation and optimization.
e OpenACC transformations

e |s requested by the compiler flag -h list=a

e Information is written to files whose name has the same stem as the
source files and the extension .Ist

e Use -h list=ad for even lower level information, e.g., pattern
matched routines or understand OpenACC synchronisation points.
e Runtime commentary is obtained by setting the variable
CRAY_ACC DEBUG={1,2,3} before execution.
e Provides evidence that kernels have been executed on the GPU.
e Information on data transfers between CPU and GPU.
e Does not need to be set at compile time.

October 26-27, 2015 SERC Tools Workshop

Example loop mark listing

12. int i,j,k;

13.

14. #pragma acc kernels deviceptr(a, b) copyout(c[@:size*size])
15. 4 Go--------- {

16. G TTee——

17. G // Initialize matrices.

18. G #tpragma acc loop independent

19. G gG------- for (i = 0; i < size; ++1i) {

20. G gG #pragma acc loop independent

21. G gG g----- for (j = 0; j < size; ++j) {

22. G gGg a[i*size+j] = (float)i + j;
23. GgGg b[i*size+j] = (float)i - j;
24. GgGg c[i*size+j] = @.0f;

25. G gG g----- }

26. G gG------- }

27. G

Region accelerated

\

CC-6413 CC: ACCEL File = matrix-acc-alloc.c, Line = 15

A data region was created at line 15 and ending at line 39.

CC-6419 CC: ACCEL File = matrix-acc-alloc.c, Line = 15

Allocate memory for user shaped variable "c" on accelerator, copy back at line 39 (acc_copyout).

CC-6401 CC: ACCEL File = matrix-acc-alloc.c, Line = 19
A loop was placed on the accelerator.

CC-6430 CC: ACCEL File = matrix-acc-alloc.c, Line = 19
A loop was partitioned across the thread blocks.

CC-6430 CC: ACCEL File = matrix-acc-alloc.c, Line = 21

A loop was partitioned across the 128 threads within a threadblock.

Compiler information

October 26-27, 2015

SERC Tools Workshop

Example runtime commentary

ACC:
ACC:
ACC:
ACC:
ACC:
ACC:

ACC:
ACC:
ACC:
ACC:
ACC:
ACC:

ACC: Start transfer 6 items from mg ve3.f:615

allocate, copy to acc 'a' (32 bytes)
allocate 'r' (137388096 bytes)
allocate, copy to acc 'u' (88096 bytes)
allocate, copy to acc 'v' (137388096 bytes)
allocate <internal> (530432 bytes)
allocate <internal> (530432 bytes)

ACC: End transfer (to acc 274776224 bytes, to host @ bytes)

ACC: Execute kernel resid_$ck_L615_1 blocks:256 threads:128 async(auto) from
mg_ve3.f:615 = R

ACC: Wait async(auto) from mg_ve3.f:639 “1‘Kernelexecuﬂon.]

ACC: Start transfer 6 items from mg_ve@3.f:639

free 'a' (32 bytes)
copy to host, 'r' (137388096 bytes)
free 'u' (137388096 by
free 'v' (137388096 bytes)
free <internal> (0@ bytes)
free <internal> (0@ bytes)

Copy data back to
Host.

October 26-27, 2015

SERC Tools Workshop

-
Allocation and copy
to the GPU.

Nvidia Performance Analysis Tools

Visualizing the GPU activity

®9
CRANY
\

° \

\
e The CCE interprets OpenACC directives to create GPU
kernels written PTX.

e PTX s alow level, assembler like machine language used by Nvidia
GPUs.

e Allows us to use tools like Nvidia command line profiler to get
Information about the code (data transfer times and size, kernel
execution times,..)

Overview

e A description of Nvidia tools for profiling and debugging
can be found at docs.nvidia.com/cuda/#tools-manuals
e CUDA-GDB & CUDA-MEMCHECK
o Visual profiler nvpp
o Command line profiler
e nvprof

October 26-27, 2015 SERC Tools Workshop

LR
Using the command line and visual profiler AN
(untested!) AN

\

e Enable the profiler and run your application in PBS

> module load craype-accel-nvidia35

> export COMPUTE_PROFILE=1

> export COMPUTE_PROFILE_CSV=1

> aprun <your_application> <arguments>

e You should get a cuda_profile*.log file. (low information)

e To get more information create a <configfile> In the run
directory and set

> export COMPUTE_PROFILE CONFIG=<configfile>
. . ustartti t
e Rerun your application and launch the \ gridsizesd

. . . threadblocksize
visual profiler once PBS session over: Sy L
stasmemperoloc

> aprun <your_application> <arguments> .mgmmﬁew
memtransfersize
> nvvp & memtransferdir

streamid

countermodeaggregate
active_warps

active cycles 7

October 26-27, 2015 SERC Tools Workshop

®9
CRANY
)

° \
\

Using the command line and visual profiler

e Choose File -> Import CSV Profile ... and select the *.log

File®S%ew Help
J e # Import Profile - Select one or more CSV profile files (on nid03538)
@l ‘ | OpenACC_workshop| Cray_OpenACC _training | Parallel_code | NPE2# -MPI-ACCIbin _j 2 [l Detail Graphs| = B
Places [| name v [size | Modified [
|Value
@8 Search || configfile 178 bytes 15:00
(ST E AVl B cuda profile 0.log 787.4 KB 15:02
hpcaespo |#] job_script_acc.pbs 353 bytes Yesterday at 18:42
(] File System & mg.B.1 498.1KB 14:57
|| output_acc.574087.sdb 1.3KB Yesterday at 18:44
I Analysis 2 [Details | & . = O
~Scope
(») Analyze Entire Application -
(O Analyze Kemel (select in tim Add Eemovel —
-Stages
Cancel | OK |
% Reset All I aly, Analy
=] } Z

October 26-27, 2015 SERC Tools Workshop

Using the command line and visual profiler

O W A~ DIA

File View Run Help

[EE oS3 o @

ls 255 50s 755 100s 1255
1 1

[=] [0] Tesla K20X
[=| Context 1 (CUDA)
W MemCpy (HtoD)
W MemCpy (DtoH)
[=] Compute

T 13.6% [170] resid_$...
S 6.9% [168] psinv_$5...

T 2.7% [147]interp_$...
W 2.6% [147] rpri3_S%c...

S 0.9% [487] comm1p...
W 0.9% [487] commp...
W 0.9% [487] comm1p...
W 0.8% [487] commp...

T 67.5% [41norm2u3... |||

T 1.2% [1461] comm1... |||

W 0.4% [441] comm1p...
1

! I
11111 111
111111 T
(11111 1 1111 0t 1
(Y (Y O

{8 1L A O DY DTN L e PO T e P o T L
B O 0 A AR

O 11T

]

]

(= Properties 5 [Detail Graphs I

Name

| Value

T Analysis 52 [Details‘| =] Console‘| Tl Settings"

-Scope
(® Analyze Entire Application

O Analyze Kemel (select in timeline)

‘Results

. Low Compute Utilization [3.272 s/ 140.375 s = 2.3%]
The multiprocessors of one or more GPUs are mostly idle.

More...

-Stages

& Low Memcpy/Compute Overlap [0 ns / 29.472 pys = 0%]

More...

[« Reset All | i Analyze Al | E The percentage of time when memcpy is being performed in parallel with compute is low.

| Inefficient Memcpy Size

Also useful to investigate (un)expected behaviour.

October 26-27, 2015

SERC Tools Workshop

L)
CRANY
)

Profiling for the Intel Phi

CrayPat and Intel Xeon Phi

e CrayPat supported for native (autonomous) mode only

e Supported functionality:
e Sampling of MPI and OpenMP jobs in autonomous mode.
e Tracing of MPI and OpenMP jobs in autonomous mode.

e Note that OpenMP timing information is associated with the calling function. The pat_region API
can be used around OpenMP regions for localized timing information.

e Cray Apprentice2 includes performance information for jobs that ran on the Xeon Phi.

e A subset of the predefined trace groups is supported. The pat_build utility will issue a
message if an unsupported groups is requested.

e Unsupported functionality:
e Reveal
e CrayPat-lite
e static linking
e PAPI: no performance counter support is available.
e tracing statistics associated with an OpenMP region

e Offload mode not supported in general. BUT, tracing and use of pat_region API calls
around loops containing offload directives may return useful information. Sampling not
currently supported in offload mode.

October 26-27, 2015 SERC Tools Workshop

Using CrayPat for the Phi

e Load environment as usual for native mode

e module swap PrgEnv-cray PrgEnv-intel
e module unload cray-libsci atp craype-sandybridge craype-ivybridge
e module load craype-intel-knc

e Load instrumentation module
e module load perftools

e Build executable with dynamic linking

e cC -lopenmp hello.c\
-WI,-rpath=$INTEL_PATH/compiler/lib/mic \
-WI,-rpath=/opt/cray/klom/lib64

e Use pat_build as normal to instrument program and
pat_report or Apprentice2 to report resulting data

October 26-27, 2015 SERC Tools Workshop

