®9
CRANY
)

Performance Analysis with CrayPat

Part 2

®9
cRAaYyr |
'

° \
\

Outline

e Apprentice2

e Tool used to visualize performance data instrumented with the v
CrayPat tool. There are many options for viewing results

e Loop work estimates with CrayPat
e How to prepare the code for collection of loop statistics.

e Reveal

e Generate the program library.
e Use the GUI.

e Profiling OpenMP

e CrayPAT API

October 26-27, 2015 SERC Tools Workshop @

Cray Apprentice2

October 26-27, 2015

8 00

About

= FRAYy

Apprentice2

Perftools: £.2.3 Revision 13728.

SERC Tools Workshop

Installing Apprentice2 on Laptop

From a Cray login node
e > module load perftools

e (GO to:
e SCRAYPAT ROOT/share/desktop installers/

e Download .dmg or .exe installer to laptop
e Double click on installer and follow directions to install

e Of course, can just run app2 from the login prompt instead

October 26-27, 2015 SERC Tools Workshop @

Cray Apprentice2 S G

% nodul e | oad perftools
% app2 progranil+pat +180t do- 0000. ap2

[sporentice225 =13l

Help |

B3 Apprentice2 3.1

File Help

wsamp32+pat+1632td.ap2 |

@e<

vaewiewI

o

Sort by Calis Sort by Time

i !

printSamples:53.7%

crunch:22.3%

doComp:11.2%

Many options for viewing '"""-?‘:“:E:’;% |
Results. See “man app?2” A I
or Cray documentation

doTest:33.5%

October 26-27, 2015 SERC Tools Workshop 5

Call Tree View — Visualizing Load Imbalance cRAY
.;,,:"';,':a Function kel ’

« About Apprentice2 I ML XC30.k3y.... List Filtered - \ \
O MA ﬁ node or

~ Overview N~ Call Irec :% sub tree

Info =

N mome A drver_[0]

Node width < inclusive time ‘;Mm:'sc: f
Node height < exclusive time e TN Green colored
81 MPI_SEND t node are not
0.4091 mpi_int_(syn
0.2079 inner_[1] inner._ [0 traced.
134 mpl_barrier_ //7\
mpl_alreduo

s [1] sweep_ [0] global_int_susm_ ('3:"{:7%
rov_real_ snd_real_ mpn_al?:;m‘saés’nc) {0l
. 0001 mpi_finalize_ / /
/Load balance overview:

0001 inner_auto_ | |3
0001 mpl_bcast_(=} :
0000 MPI_ALLRED[?
0000 MPI_ALLRED[S
00 _STOF2

Height < Max time
Upper bar & Averagetime
Lower bar < Min time
Yellow represents
kimbalancetime

| Punction ‘sweep ' has the highest

load isbelance times (35.750027 seconds)
and is therefore a candidate for further
exsmination for performance optimization,

Data displayed
when hovering
the mouse over

nodes or “7?”".

10000 MPI_ALLREDli
0,0000 MPl_sARRrF;j
0.0000 mpi_bcast [1
0.0000 mpi_barrier_|
0.0000 mpi_bcast_(s!
00000 MPI_BARRIES |
0.0000 mpi_int

i) I | i)

%I 'INI Imb % |Mh
LoJ |

:I Sem:h:l 2] Qs - i 0]

Hane : sweep {8 of 166) (1)
Time : 124.332683

Calls : 12

Min : 101.27862%

Max : 160.182709
Izbalance: 22.3193%

Teis Time : 35.7500278

DUH Button:
Provides hints
for performance
tuning

Walldock time: 338.26%0765
|sweep3d.mpl.XC30.kay.PES229a.cceB31.mpich701.libsci1300.20141u07.0at620-gmpi-user1 200.x. 112pe-H28.4x26.3x1 1.2...

October 26-27, 2015 SERC Tools Workshop @

L)
CRANY
)

Loop Work Estimates

()
CRANY
)

® \
\

Loop Work Estimates

e Assess suitability of loop nests for optimization
e Gives information on inclusive time spent in the loop nests and
typical trip count of the loops.
e Only available with CCE. CrayPAT can generate this information via
a special kind of tracing experiment. Just like adding automatic
tracing at the function level, we can add tracing to individual loops

———{: > module load perftools

» Makes the default version of CrayPAT available

> ftn -c -h profile generate himeno.f90
> ftn -0 himeno.exe himeno.o

> pat_build -w[-u] himeno.exe

» Recompile your program for gathering loop statistics.

* It is recommended to turn off OpenMP and OpenACC for the loop work
estimates via -h noomp -h noacc

 Instrument the application for tracing (APA also possible)

October 26-27, 2015 SERC Tools Workshop

Loop Work Estimates S S

(aprun -n 24 ./himeno.exe+pat

« Execute the instrumented program.
e This generates one or more raw data files(s) in .xf format.

{ > pat_report -o report.txt himeno.exe+pat*.xf

* Process the raw data files(s) for use with Reveal.

e This generates a performance data file *.ap2 and text
report report.txt.
* Even without the -u option to pat_build in the previous

step you will see user functions listed in the first table.
These are routines containing loops.

e Consider the -0 profile loops optionto pat report to
show the time spent in loops compared to other routines.

* Reveal can use the *.ap2 to visualize time expensive loops.

October 26-27, 2015 SERC Tools Workshop

Table 2: Loop Stats by function

Loop | Loop Incl |

Incl |
Time% |

| 93.0%
| 77.8%
| 77.8%
| 77.3%
| 14.1%
| 14.0%
| 10.7%
| 4.3%
| 4.3%
| 4.3%
| 2.7%
| 2.7%
| 2.7%

October 26-27, 2015

Time |

19.232051
16.092021
16.090671
15.979844

2.906115
2.904878
2.216267
0.881573
0.881563
0.880918
0.560499
0.560444
0.553842

SERC Tools Workshop

Time |

(Loop |
Adj.) |

0.000849
0.001350
0.110827

15.979844

0.001238
0.688611
2.216267
0.000010
0.000645
0.880918
0.000055
0.006603
0.553842

Loop |

CRANY
!

Loop~|Function=/.LOOP[.]

Hit | Trips | Trips.| Trips | PE=HIDE

53
13515
3446325
53
13515
3446325
1

259
67081

1

257
66049

Loop | ~~Loop |
Avg | Min |
26.5 | 3

255.0 | 255
255.0 | 255
511.0 | 511
255.0 | 255
255.0 | 255
511.0 | 511
259.0 | 259
259.0 | 259
515.0 | 515
257.0 | 257
257.0 | 257
513.0 | 513

Max |

| jacobi.LOOP.1.1i.236
| jacobi.LOOP.2.1i.240
| jacobi.LOOP.3.1i.241
| jacobi.LOOP.4.1i.242
| jacobi.LOOP.5.1i.263
| jacobi.LOOP.6.1i.264
| jacobi.LOOP.7.1i.265
|initmt.LOOP.1.1i.191
|initmt.LOOP.2.1i.192
|initmt.LOOP.3.1i.193
|initmt.LOOP.4.1i.210
|initmt.LOOP.5.1i.211
|initmt.LOOP.6.1i.212

10

Reveal

Compiler Feedback and Variable Scoping

®9
CRANY
)

® \
\

Reveal

e For an OpenMP port a developer has to understand the
scoping of the variables, i.e., whether variables are shared

or private.
e Reveal is Cray’s next-generation integrated performance

analysis and code optimization tool.

e Source code navigation using whole program analysis (data provided
by the Cray compilation environment.)

e Coupling with performance data collected during execution by
CrayPAT. Understand which high level serial loops could benefit from
parallelism.

e Enhanced loop mark listing functionality.

e Dependency information for targeted loops

e Assist users optimize code by providing
variable scoping feedback and suggested
compile directives.

October 26-27, 2015 SERC Tools Workshop @

Input to Reveal

—[> module load perftools

» Makes the default version of CrayPAT available

> ftn -03 -hpl=my program.pl -c my program filel.f90
> ftn -03 -hpl=my program.pl -c my program file2.f90

* Recompile only sources to generate program library my program.pl
* The program library is most useful when generated from fully optimized code.
» Use absolute paths to specify the program library if necessary.

> reveal my program.pl my_ program.ap2 &

» After the collection of performance data in a separate experiment and generation of
a program libary you can launch Reveal.

e The *.ap2is from a loop work estimate of my_program
e You can omit the *.ap2 and inspect only compiler feedback.

e Note that the profile generate option disables most automatic
compiler optimizations, which is why Cray recommends generating
this data separately from generating the program_library file.

October 26-27, 2015 SERC Tools Workshop @

Reveal with Loop Work Estimates

October 26-27, 2015

Eile Edit View Help
w vhone.pi
~Navigation ~Source. —
<« Top Loops s . }) ‘ s .*
v parabolafo0 | | = "7 - —
v PARABOLA
06046 Loop@75
- riemann.f30
- RIEMANN
28951 Loop@63
v
- waze:;f 3 New to Reveal?
65767 Loop@48 Try_"Getting Started”
65766 Loop@49 in the n“!!’- Menu
- sweepy.fa0
- SWEEPY
6.7272 Loop@32
6.7271 Loop@33
- sweepx2 190
- SWEEPX2
3.2847 Loop@28
32846 Loop@29 o
- sweepx1 .90
- SWEEPX1
3.2690 Loop@28
\vhone.pl loaded. vhone_loops.ap2 loaded. “ 7

SERC Tools Workshop

: . , . . CRANY
Visualize CCE’s Loopmark with Performance Profile o,
° O \
Eile Help Performance Loopmark and optimization Q |
w vhone.aid € feedback annotations _ v

-Navigation & ‘ f gpl ‘ ’ Qown’ ’ b Save
<4 i -
FunList Source - homeluserseisf .ol Miparabola.f90
- 39.71% parabolaf00 [E| I (4]
v 3352% PARABOLA - . . :
Loop@24 1687500 Vr4 0 n = nmin-2, nmax+l
Loop@30 diffa(n) = a(n+l) - a(n) I
Loop@36 26 enddo
Loop@44 27
Loop@5S3 28 ! Equation 1.7
Loop@67 29 ! da(j) = D1 * (a(j+l) - a(j)) + D2 * (a(j) - a(j-1))
Loop@75 1687500 Vr4 30 do n = nmin-1, nmax+l
Loop@84 31 da(n) = para(n,4) * diffa(n) + para(n,5) * diffa(n-1)
0,
b G.19% PARASET 32 da(n) = sign(min(abs(da(n)), 2.0*abs(diffa(n-1)), 2.0*abs(diffa(r
b 11.92% riemann.f30
33 enddo
P 11.21% remap.f80 34
p 6.71% forces.f90 . . .
|
b 639% voluma 190 35 ! ; zero t.)ut da(n) if a(n) is a local max/min
- 534% evolve 190 16875000 Vr4 36 o n = nmin-1, nmax+l
> 534% EVOLVE I 37 if(diffa(n-1)*diffa(n) < 0.0) da(n) = 0.0]
Loop@25) '
Loop@58 [CJ A loop starting at line 24 was unrolled 4 times.
Loop@70 [J A loop starting at line 24 was vectorized.
p 4.93% ppmir.f90 ™ :
L. m et mn M| Compiler feedback

vhone.aid loaded. vhone.ap2 loaded.

October 26-27, 2015 SERC Tools Workshop @

Visualize CCE’s Loopmark with Performance

L N)
cRAY |
B

Profile (2)

w AboutReveal € ~ vhone.aid 0]

« | Full List S | %
PRIILIYY
prin.f30
remap.f90
riemann.fo0
states.f90
sweepx1.130
v SWEEPX1
Loop@28
Loop@29
Loop@S3
P sweepx2.f90
P sweepy.fo0

-Info - Line 32
O Aloop starting atline 32 w
O A loop starting atline 32 w

q v v v v =

&

) x| Explain

OPT_INFO: Aloop starting at line %s was unrolled.

The compiler unrolled the loop. Unrolling creates a number of copies of the
loop body. When unrolling an outer loop. the compiler attempts to fuse
replicated inner loops - a transformation known as unroll-and-jam. The
compiler will always employ the unroll-and-jam mode when unrolling an outer
loop: literal outer loop unrolling may occur when unrolling to satisify a

user directive (pragma).

This message indicates that unroll-and-jam was performed with respect to the

identifed loop. A different message is issued when literal outer loo:
sweepx1.M9(P g P

doi=1.imax
33 n=i+6

34 r (n) = zro(i,j.k)

35 p (n)=zpr(i.j.k)
36 u (n) = zuxdi.j.k)
37 v (n)=zuy(i.j.k
38 w (n) = zuz(i,j.k)
39 f(n)=j.K)

41 xa0(n) = zxali)
42 dx0O(n) = zdx(i)
43 xa (n) = zxali)
44 dx (n) = zdx(i)

Integrated
message
‘explain support’

update using PPM

ca I Pt imadmdmdd imliimm imdn mmmal by

31 | Putstate variables into 1D array:

unrolling is performed., as this transfomation is far less likely to be
beneficial.

For sake of illustration, the following contrasts unroll-and-jam with literal
outer loop unrolling.

434 "Iptmp/pdgces/pdges.tbs 81/bld.dir/build 64 .ndb/pdgces/pdges_ftn.msg.c”

DOJ=1.10
DO I=1.100
A(lLJ)=B(l.J) +420
ENDDO
ENDDO
DO J=1.10.2
DO I=1.100

A(lLJ)=B(l. J)+420 !unroll-and-jam
A(LJ+1)=B(L.J+1) + 420

ENDDO
ENDDO
DO J=1.10.2
DOI=1.100
A(LJ)=B(LJ) +420 !literal outer unroll
ENDDO
DO I=1.100
A(lLJ+1) =B(LJ+1) + 420
ENDDO
ENDDO

The literal outer unroll code performs the same sequence of memory operations
as the original nest, while the unroll-and-jam transformation interleaves
operations from outer loop iterations. The compiler employs literal

outerloop unrolling only when the data dependencies in the loop. or a control
flow impediment, prevent fusion of the replicated inner loops. Literal outer

lloop unrolling is generally not desirable. Itis provided to ensure expected
behavior and for those rare instances where the user has determined that it

is beneficial.

Explain other message... l [

€ Close

W far muimammis Avannine alhasd sam s s

vhone.aid loaded

October 26-27, 2015

SERC Tools Workshop

View Pseudo Code for Inlined Functions

L0

Eile
v AboutReveai @~ vhone.aid © |

m »

<4 | Full List < ’

> I

vhimods.o
zonemod.o
boundary.f90
dtcon.f90
dump.fo0
evolve.f90
flatten.f30
forces.f90
images.fo0
init.f90

P GRID

NY vV vV VvV VvV

N P a Ta
-Info - Line 88
[A divide was turned into a multiply by a recipro
[CJ A loop starting at line 88 was unrolled 4 times.
O] A loop starting at line 88 was vectorized.

[The call to grid was textually inlined.

b INIT Inlined call
b parabola.fo0 sites marked

1Y)
8l
82
83
84
85
86
87

cRAY |
'
° \
\
Help
init PO
ncycie = v
ncycp =0
ncycd =0
ncycm =0
nfile = 1000 Expand to
see pseudo
! Set up grid coordinates code

ldir$

call grid(imax,xmin,xmax,zxa,zxc,zdx)

1$26 = 100

1$27 = 100

$I_L88 100 = 0

ivdep

do
zxa(l + $I_L88 100) = 9.9999998e-3 * $I_L88 |
zdx (1 + $I_L88 100) = 9.9999998e-3
zxc(l + $I_L88 100) = 4,9999999%-3 + (9.999
$I_188 100 = 1 + $I_L88_100
if ($I_L88 100 >= 100) exit

enddo

89 call grid(jmax,ymin,ymax,zya,zyc,zdy)
90 call grid(kmax,zmin,zmax,zza,zzc,zdz)

vhone.aid loaded

October 26-27, 2015

SERC Tools Workshop

Scoping Assistance — Review Scoping Results

File Help
w vhone.aid Ql

®e
cRAY |
\

° \

Parallelization inhibitor
messages are provided to i
assist user with analysis Y

~Navigation &
« ‘ Full List < | *

~Source - homejusers/heidi/demoLM/sweepy.fo0

Scope

v awon.wu

- SWEEPY
Loop@32

Loop@63

Loop@77

- sweepx2.f90
- SWEEPX2
Loop@28
Loop@29
Loop@32
Loop@33
Loop@44

needs user
assistance

Loop@33

Loop@37 Loops with
Loop@38 scoping
Loop@49 information are

highlighted — red

subroutine sweepy

! GLOBALS
use global
11 use zone
12 use sweeps
13 use mpi

15 IMPLICIT NONE

! This subroutine
I After call to| s
! If only two d
! After hydro uj

Array

flat Array
q Array
isy Scalar Shared
js Scalar Shared

epx2.190: lines 28 -> 69

Info

FAILAL ast defining iteration not known for variable that is live on exit.:W
FAILAL ast defining iteration not known for variable that is live on exit.:W
FAILAL ast defining iteration not known for variable that is live on exit.:W

Scalar Shared
ngeomx Scalar Shared
nleftx Scalar Shared
npey Scalar Shared User adqres_ses
nrightx Scalar Shared pal’allellzatlon
rec2 Array Shared issues for
2dx Array Shared
Zl Array Shared UnreSO|Ved
nr Array Shared Variables
o Array Shared
2ux Array Shared
uy Array Shared
uz Array Shared
B

~First/Last Private
O Enable First Private
O Enable Last Private

~Reduction

‘ None ¢ ’

Loop@58

sweepx1.f90
volume.f30
states.f90
riemann.f30 EJ

v v v v

Search: [

[Insert Directive l l Show Directive] ’

loading /home/users/heidi/demoLM/vhone. aid/vhone_22.T...

October 26-27, 2015

SERC Tools Workshop

: i CRAY
Scoping Assistance — User Resolves Issues i,

B N O X/ Rev

OpenMP Tips

* Reduction in an inlined function

P Scoping conflict with inlined variable)
sweepx2.90: lines 28 -> 69
v Scoping conflict with locally visible array fiame " Type Scope Info
An array requires conflicting scopes at different locations. weepﬂ_fso— t Array FAIL=Last defining iteration not known for variable thatis live on exit -\
It may be possible to declare and use a different a"ay for the private flat Array FAILALast defining iteration not known for variable that is live on exit. -
arrav uses L h q Array FAIL-Last defining iteration not known for variable that is live on exit.: W
Y . 00p over each row.. isy Scalar Shared
s Scalar Shared
ks Scalar Shared
x S_:JOS? = 1']s ngeomx Scalar Shared
nleftx Scalar Shared
npey Scalar Shared
Loop@37 31 ! Put state variables i e o oo
LOOp@3 32 do m= 1 npey 2dx Array Shared
L 00 p) ! X zl Array Shared
Lo 31250 - r8 33 doil=1, 1sy . Awray Shared
. . o Array Shared =
125000 34 n=1+ lsy* (M‘l) + 2ux Array Shared O allab O
o uy Array Shared O 3
N Rave 35 r(n) = -(l‘k‘l‘ 2uz Armay Shared
0 - 36 p(n) = FEEV2(2.k.1, occurrences in loop
PE = ~First/Last Private:
. - 0 . 37 u(n) = -(3'k'1' O E\:m;u;:m,m - 5 “
38 v(n) = -(4’k‘i’ [0 Enable Last Private
39 V(n) = -(5; k; i; Search: []
Lo°p@33 40 f (n) = -(6' k' i' l Insert Directive l [Show Directive] l K close l
Loop@44 41 enddo
Loop@58 .
b sweepx1.190 IR
) B A loop starting at line 28 was notvectorized because it contains a call to subroutine "ppmlr' on line SS.
p volume.f30
b tates 190 Loop has been flattened.
states.
b) 190 Loop has been flattened.
remann.
|) - P

loading /home/users/heidi/demoLM/vhone. aid/vhone_22.T...

October 26-27, 2015 SERC Tools Workshop

Scoping Assistance — Generate Directive

)
OO X Rev
FEile Hel
p. Reveal generates
v vhone.aid € | example OpenMP
-Navigation directive 7
yaVve
« [Full List <] *
: Y ~Source - home/users :
JeYe '\| OpenMP Dire g ¢ YT tvvR vree s mﬂk
I$OMP parallel do default(none) & 28 do k =1, ks ector
I$OMP& shared (gamm,send1,zdx,zfl,zpr.zro,zux,zuy,zuz,zxa) & sweepx1.190: lines 29 -> 63
ISOMP& lastprivate (dx.dx0,e.fp.r.u,vw,xa,xa0)
| Type Info (~]
Array Priva RN-LastPrivate of array may be very expensive.
31 ! Put stat 4o Anay Private INILastPrivate of array may be very expensive.
32 doil1=1,1 e Array Private LastPrivate of array may be very expensive.
33 n=1i4+ f Array Private astPrivate of array may be very expensive.
1] Array Private Private of array may be very expensive.
34 l (n) j r Array Private WARN- . ivate of array may be very expensive
[Copy Directive l [€ close l B35 p (n) = u Array Private WARN-La e of array may be very expensive.
Z 36 u (n) = v Array Private WARN-LastP of array may be very expensive.
v sweep2.190 37 v (n) = w Array Private WARN-LastPriva array may be very expensive. <
v ‘ .- L i e e PAIAPRT A ke e R T T app—— N
SWEEFRS 38 v (n) 40 D)
Loop@28 39 f (n) = FirstLast Private -RWtion
Loop@29 20 [[] Enable First Private ‘ = : ’
Loop@32 2 xa0(n) = Enable Last Private
= 42 dx0(n) -
Loop@44 X0tn) = searc | A\]
A2 va (n) — —
Loop@58 [- H oo H ‘
) Insert Directive | | Show Directive € close
- sweepx1 .90 -Info - Line 29
- SWEEPX1 B A loop starting at line 29 was notvectorized
Loop@28 Loop has been flattened.
DN oo has been fatened
| non@3? ™))
‘Ioading /home/users/heidi/demoLM/Avhone.aid/vhone_22.T...

October 26-27, 2015 SERC Tools Workshop

Reveal Use Cases (NERSC) 2

VH1 Astrophysics Code
e Written with high level loops and complex decision processes

e Ported to hybrid MPI + OpenMP using Reveal

e Reveal was able to identify

e storage conflicts

e private variables in modules
e reductions down the call chain that require critical regions

e Scoping was performed in seconds where it would have taken weeks
to get correct without Reveal

S3D - Structured Cartesian Mesh Flow Solver
e Pure MPI program, converted to a hybrid multi- core application suited
for a multi-core node with or without an accelerator.
e When the work was started, Reveal did not exist.
e Once Reveal was available, it was instrumental in identifying bugs in
the scoping of extremely large loops (3000 lines of Fortran).

October 26-27, 2015 SERC Tools Workshop

Reveal Summary

e Reveal can be used to simplify the task of adding OpenMP
to MPI programs

e Can be used as a stepping stone for codes targeted for
nodes with higher core counts (including Phi) and as the
first step in adding OpenACC to applications to for

execution on GPUs

e Requires the full CCE compiler to be available to function,
so no standalone local version currently available

October 26-27, 2015 SERC Tools Workshop @

®9
CRANY
)

CrayPat and OpenMP

L N)
cRAY |
B

° \
\

OpenMP data collection and reporting

e For programs that use OpenMP

e CrayPat can measure the gverhead incurred by entering and leaving
parallel regions and work-sharing constructs within parallel regions

e Show per-thread timings and other data.
e Calculate the load balance across threads for such constructs.

e For programs that use both MPIl and OpenMP
e Profiles by default show the load balance over PEs of the average time in
the threads for each PE

e But you can also see load balances for each programming model
separately.

e Options for pat_report

e profile pe_ th (default view)
e Imbalance based on the set of all threads in the program

e profile pe.th
e Highlights imbalance across MPI ranks
e Uses max for thread aggregation to avoid showing under-performers
e Aggregated thread data merged into MPI rank data

e profile th pe
e For each thread, show imbalance over MPI ranks

e Example: Load imbalance shown where thread 4 in each MPI rank didn’t get
much work

October 26-27, 2015 SERC Tools Workshop

OpenMP data collection and reporting SRS

\
OpenMP support enabled by default with CCE
OpenMP tracing calls inserted by default when
perftools is loaded.
Table 1: Profile by Function Group and Function
Time% | Time | Imb. | Imb. | cCalls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE
100.0% | 2.452453 | - -- | 1426.8 |Total
s
| 96.9% | 2.377154 | - -- | 309.8 |USER
[] 2mmmmmmmm o o e S
|| 82.1% | 2.013394 | 0.027282 | 1.8% | 100.0 |work.LOOP@li.533
|| 10.6% | ©.259470 | 0.000282 | 0.1% | 1.0 |exit Table 2: Load Imbalance by Thread
|| 2.4% | ©.057711 | 0.000562 | 1.3% | 1.0 |initializeMatrix
|| 1.0% | ©.024130 | 0.000313 | 1.7% | 1.0 |setPEsParams.SINGLE@li.355 Max. | Imb. | Imb. |Thread
II== Time | Time | Time% I PE:HIDE
| 1.6% | 0.039963 | - -- | 909.0 |MPI
R e et 2.452470 | ©.316486 | 17.2% |Total
|| 1.6% | ©.039247 | ©.079519 | 89.3% | 301.5 |MPI_Wait = | | | |eememmemm e
I I== | 2,453287 | 6,660817 | 0.0% Ithr‘ead.e
| 1.2% | 0.029108 | - -- | 1e1.e |oMP | 2.078727 | 0.036293 | 2.3% |thread.2
| | mmmmm e e e e e ——————— | 2.074969 | ©.048712 | 3.1% |thread.1
|| 1.2% | ©.029058 | ©0.012000 | 39.0% | 100.0 |work.REGION@li.492(ovhd) | 2.066243 | 0.043468 | 2.8% |thread.3
I=== |=====================================

25
October 26-27, 2015 SERC Tools Workshop

®9
CRANY
)

CrayPat API

API for adding User Instrumentation S SN

° \

\
e The CrayPat API calls enable you to insert functions into your
source code that write special tracing records into the
experiment data file at runtime

e API calls are supported in both Fortran and C. After the perftools module
IS loaded, the include files that define the CrayPat API can be found in the
$CRAYPAT ROOT/include directory and consist of the C header file,

pat_api.h, and the Fortran and Fortran 77 header files, pat_apif.h and
pat_apif77.h, respectively.

e int PAT region_begin (int id, char *label)
e idis a unique identifier for the region,
e Label is the description that will appear in profiling output.
e int PAT region _end (int id)
e id must match begin call.

e Fortran equivalents, like MPI, are subroutines with extra final
Integer argument for return value

e More information is given in the pat_build man page. For

further examples of using CrayPat API calls in source code, see
the topic "API" in the pat_help system.

October 26-27, 2015

SERC Tools Workshop @

PAT Regions example

L R
CRANY
!

include "pat_apif.h*

call PAT _region_begin(1, "step 1", istat)
I the execution of this code segment will appear in

I CrayPAT output as “step 1”

call PAT _region_end(1, istat)

call PAT _region_begin(2, "step 2", istat)
I the execution of this code segment will appear in

I CrayPAT output as “step 2”

call PAT region_end(2, istat)

The -DCRAYPAT is defined by CCE compilers when perftools is loaded.

October 26-27, 2015

SERC Tools Workshop

PAT region example
100.0% | 58225.2 | -- -- |Total
Sy
91.2% | 53072.9 | -- -- |USER

43.9% | 25571.3

| | 8 1.5% |calc_force_
| 29.7% | 17292.9 | 289.

| | 5

| | 74

I

| 1.6% |calc p_
14.3% | 8305.5 |
1.4% | 844.2 |

0.9% |pair_table_
8.2% |predict_

| 3.8% | 2229.9 | 905.1 | 28.9% |MPI_SENDRECV
| 2.1% | 1208.5 | 1050.5 | 46.6% |MPI_BARRIER
| 1.4% | 829.7 | 487.3 | 37.1% |
PI_ALLREDUCE

e But calc_force is 494 lines and calc_p is 334 lines long!
* Introduce 4 PAT regions to the code, to focus on 2 sig regions in each
1.force_stepl, 2.force_step2, 3.p_stepl, 4.p_step2

October 26-27, 2015 SERC Tools Workshop

CRANY
!

29

PAT region example

100.0% | 58359.5 | -- | -- |Total

| __

| 90.9% | 53023.8 | -- -- |USER

= mm e

|| 43.1% | 25131.3 | 510.7 | 2.0% |#3.force stepl
|| 28.9% | 16879.8 | 345.2 | 2.0% |#1.p_stepl

|| 14.3% | 8317.4 | 66.6 | 0.8% |pair_table_
|| 1.4% | 834.7 | 79.3 | 8.7% |predict_

| | e

| 7.8% | 4551.9 | -- | -- |mPI

[= m oo o oo

|| 3.9% | 2249.3 | 941.7 | 29.6% |MPI_SENDRECV
|| 2.3% | 1330.7 | 1269.3 | 48.9% |MPI_BARRIER
|| 1.5% | 878.0 | 496.0 | 36.2% |MPI_ALLREDUCE
| | e e e e e e e e e e e e e e e e M e e e e e e — — —— ——

| 1.3% | 783.5 | -- -- |ETC

October 26-27, 2015 SERC Tools Workshop

® e
CRANY
!

30

®9
CRANY
\

° \
\

Summary and general remarks

e Use CrayPAT to understand where your application is
spending time.
e Automatic performance analysis based on tracing and sampling for
large applications. Only tracing more efficient for smaller programs.

e Loop work estimate to identify interesting loops to port to the GPU.
Can also be done in the framework of the APA.

e Use Reveal to better understand loop mark listings and do
variable scoping for the interesting loops. Use the loop
work estimates from the CrayPAT runs.

e A working OpenMP port of your application is always a
good starting point for an OpenACC port (use Reveal).

e Comparative debugging, e.g., comparing messages from
different compiler (Cray, PGI, Nvidia, ...) can be very
helpful.

October 26-27, 2015 SERC Tools Workshop @

