Load Imbalance Analysis
With CrayPat

SERC Tools Workshop

Load Imbalance Analysis

e Imbalance time is a metric based on execution time and is
dependent on the type of activity:

e User functions

Imbalance time = Maximum time — Average time
e Synchronization (Collective communication and barriers)
Imbalance time = Average time — Minimum time

/

e l|dentifies computational code regions and synchronization
calls that could benefit most from load balance optimizatio
e Estimates how much overall program time could be save

if corresponding section
of code had a perfect
balance.

on “potential savings” |

e Assumes other processes| ||
are waiting, not doing I

|

|

|

|

useful work while slowest
member finishes.

Time% | Time |

100.0% 20.643909 -- - .
e Represents upper bound |" __

98.8% | 20.395989 |

91.1

% | 18.797060 |
7.7% |

1.597866 |

1.2% | ©.239306 |

0.7% |
0.4% |

0.148981 |
0.085824 |

Imb. | Imb. |
Time | Time% |

| Function

| PE=HIDE
49.0 |Total
| 219.0 |USER

-- | 871.e |MPI

| 44.4% | 159.0 |MPI_Waitall
| 24.7% | 318.0 |MPI_Isend

SERC Tools Workshop

Load Imbalance Analysis

e Imbalance time percentage represents the percentage of
resources available for parallelism that is “wasted”.

Imbalance time N
Imbalance% =100 X _ X —
Max Time N -1
e Corresponds to percentage of time
that reSt Of team IS nOt Time% | Time | Imb. | Imb. | Calls |Group
engaged in useful work | | Time || Tinex e
on the given function. 100.0% | 20.643909 | -- -- | 1149.0 |Total
o Perfectly balanced code | |----m-mmmmmmmmmmm o
98.8% | 20.395989 | - -- | 219.0 |USER

segment has imbalance

| 91.1% | 18.797060 | ©.115535 | 0.7% | 2.0 |jacobi
Of Zero percentage. | 7.7% | 1.597866 | ©.006647 | ©.5% | 1.0 |initmt
1.2% | ©.239306 | | -- | 871.e |MPI

imbalance of 100 percent.

| ©.7% | ©.148981 | ©.094595 | 44.4% | 159.0 |MPI_Waitall
| ©.4% | ©.085824 | 0.023669 | 24.7% | 318.0 |MPI_Isend

I
I
|
. Serial Code Segment haS II===========================TT::==============================
|
I

SERC Tools Workshop

Load Imbalance Analysis

e MPI Sync time measures load imbalance in programs
instrumented to trace MPI functions to determine if MPI
ranks arrive at collectives together

e Separates potential load imbalance from data transfer
e Sync times reported by default if MPI functions traced
e If desired, PAT _RT _MPI _SYNC=0 deactivates this feature
e Only reported for tracing experiments.
Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
I I I I | PE=HIDE
100.0% | 20.643909 | -- -- | 1149.0 |Total
| ...
| 0.0% | ©0.008614 | | | 59.0 |[MPI_SYNC

.006696 | 0.006627 | 99.0% |

2 MPI_Barrier(sync)
.001802 | ©.001399 | 77.6% | 55.

1

1

MPI_Allreduce(sync)
MPI_Init(sync)
MPI_Finalize(sync)

.000061 | ©.000052 | 86.3% |
.000056 | ©.000051 | 91.7% |

SO O ®
ORE®
NN IS
SO O ®
o 0O ®

SERC Tools Workshop

Causes and hints

What is causing the load imbalance?
e Need profiler reports like CrayPAT gives for the ‘where’
e Need application expertise for the ‘why’

Computation
e |Is decomposition appropriate?
e Would reordering ranks help?

Communication

|s decomposition appropriate?
Would reordering ranks help?
Are receives pre-posted?

Any All-to-1 communication?

I/0

e Synchronous single-writer 1/0O will cause significant load imbalance even with
just a few MPI tasks (more on 1/O later).

SERC Tools Workshop

Rank placement :

e The default ordering can be changed using the following |
environment variable:
export MPICH_RANK_REORDER_METHOD=N

e These are the different values (N) that you can set it to:

e N=0: Round-robin placement — Sequential ranks are placed on the
next node in the list.
[0, 4] [1, 5] [2, 6] [3, 7] (8 tasks on 4 nodes, 2 tasks per node)

o N=1: (DEFAULT) SMP-style- (block-) placement
[0, 1]1[2, 3] [4, 5] [6, 7] (8 tasks on 4 nodes, 2 tasks per node)

e N=2: Folded rank placement
[0, 7] [1, 6] [2, 5] [3, 4] (8 tasks on 4 nodes, 2 tasks per node)

e N=3:. Custom ordering. The ordering is specified in a file named
MPICH_RANK ORDER.

SERC Tools Workshop

Rank placement with CrayPat

e When is rank placement a priori useful?

e Point-to-point communication consumes a significant fraction of
program time and a load imbalance detected

e Also shown to help for collectives (alltoall) on sub-communicators
e Spread out I/O servers across nodes

e CrayPat can provide the following feedback

MPI Grid Detecti

There appears to be point-to-point MPI communication in a 4 X 2 X 8 grid
pattern. The execution time spent in MPI functions might be reduced
with a rank order that maximizes communication between ranks on the
same node. The effect of several rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Hilbert rank order

Observations and suggestions

on:

from the following table.

Rank
Order

Hilbert
Fold

SMP
RoundRobin

On-Node
Bytes/PE

5.533e+10
4.907e+10
4.883e+10
3.740e+10

On-Node
Bytes/PE%
of Total
Bytes/PE

90.66%
80.42%
80.02%
61.28%

MPICH_RANK_REORDER_METHOD

OoOFr N W

\
)
\
The 'Custom' rank order in this file targets nodes with
multi-core
processors, based on Sent Msg Total Bytes collected for:
#
Program: /1lus/nideee30e/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4
#
To use this file, make a copy named MPICH_RANK_ORDER, and

set the

environment variable MPICH_RANK_REORDER_METHOD to 3 prior
to

executing the program.

#

The following table lists rank order alternatives and the
grid_order

command-line options that can be used to generate a new
order.

09,532,64,564,32,572,96,540,8,596,72,524,40,604, 24,588
104,556,16,628,80,636,56,620,48,516,112,580, 88,548,120, 612
1,403,65,435,33,411,97,443,9,467,25,499,105,507,41,475
73,395,81,427,57,459,17,419,113,491,49,387,89,451,121,483

SERC Tools Workshop

Rank placement : grid_order ~

e The grid_order utility is used to generate a rank order list for .
use by an MPI application that uses communication between
nearest neighbors in a grid

e \When executed with the desired arguments, grid_order
generates rank order information in the appropriate format and
writes it to stdout

e This output can then be copied or written into a file named
MPICH_RANK ORDER and used with
MPICH_RANK REORDER_METHOD=3
environment variable to override the default MPI rank
placement scheme and specify a custom rank placement

SERC Tools Workshop

Example of use of rank reordering

e WRF — weather forecasting application

e Use of rank reordering can improve performance by
5%
e Use grid_order utility
e module load perftools
o SCRAYPAT _ROOQT/bin/grid_order
e grid_order-C -c 2,12 —g 48,128 > MPICH_RANK_ORDER

e For this WRF case | used ‘grid order—-C —c 2,12 —g 48,128 >
MPICH _RANK ORDER’

e -C 2,12 is core topology on an XC node
e -g 48,128 is WRF domain decomposition

o setenv MPICH RANK REORDER METHOD 3
e Uses file called MPICH_RANK_ ORDER written to working directory

e Method improves halo exchange communications by
putting more neighbors on same node

e Was more important in days when there were fewer cores
per node

e Less chance of nearest neighbours ending up on same node
e In days of 12 cores per node, rank reordering boosted perf by over 20%

SERC Tools Workshop

WRF Rank Ordering

e Partial WRF grid for 6144 core case with a 48 by 128 decomposition on \
XC with 24 cores per node.

C=RANY
\
S \

SERC Tools Workshop

WRF grid 48x128 6144 cores ;
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Halo exchange neighbors
96/ 97| 98 99 100/ 101/ 102 103 104 105 106 107 108 109 110 111 112
144, 145 146 147 148 149 150 151 152 153 154 155 156/ 157 158 159 160
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
Default sequential rank ordering
¢===m 24 MPI ranks per node
N | 0 1 2 3 4 5 6 7 8 9 10 11
N2 | 24 25 26 27 28 29 30 31 32 33 34 35
N3 | 48 49 50 51 52 53 54 55 56 57 58 59 .
Na | 72 73 74 75 76 77 78 79 80 81 82 83 MPI ranks placed sequentially on cores
NA | 96 97 98 99 100 101 102 103 104 105 106 107
120 121/ 122 123 124 125 126 127 128 129 130 131
Optimal rank ordering
N1 0 1 48 49 96 97 144 145 192 193 240 241
N2 2 3 50 51 98 99 146 147 194 195 242 243 MPI ranks placed optimally on cores
N3 4 5 52 53 100 101 148 149 196/ 197 244 245
N4 6 7 54 55 102 103 150 151 198 199 246 247

Hybrid MPI + OpenMP?

e OpenMP may help
e Able to spread workload with less overhead

e Large amount of work to go from all-MPI to (better performing) hybrid -
must accept challenge to hybridize large amount of code

e When does it pay to add OpenMP to my MPI code?
e Add OpenMP when code is network bound

e Look at collective time, excluding sync time: this goes up as network
becomes a problem

e Look at point-to-point wait times: if these go up, network may be a
problem

e If an all-to-all communication pattern becomes a bottleneck,
hybridization often overcomes this

e Hybridization can be used to avoid replicated data

SERC Tools Workshop

Cray Apprentice? .

e Cray Apprentice2 is a post-processing performance data .
visualization tool. Takes *.ap2 files as input.

e Main features are e Cray Apprentice? helps
e Call graph profile identify:
e Communication statistics e Load imbalance
e Time-line view for Communication Excessive communication

and |/0O. Network contention

[]
[]
Ac’gwty view o o e EXcessive serialization
Pair-wise communication statistics e /O Problems

Text reports
Source code mapping

> module load perftools
> app2 my_program.ap2 &

SERC Tools Workshop

. CRANY

Cray Apprentice? :
)

Apprentice2 (on eslogin006) \

File Help

v About Apprentice2 €) ¥ Espresso+pat+47254-3184t.ap2 °|

5

bHH

REO MR

woverview € |

Profile

CPU

Function/Region Profile
Memory Utilization

Process HiMem (MBytes) 34.779

40.7% = MPI Waitall
18.9% = calc_ ... orce_parts
6.1% = MPI _Recv

Programming_Model 10011| ___ (10011
54.93% 10101 10101

Load Imbalance
Data Movement

2.65s = calc_... orce parts MPI Msg MBytes 944.003

1.46s = :WPI_Recv

Wallclock time: 60,000000s
|Espresso+pat+47254~3184t.ap2 (54,192 events in 0,255s) Y/]

SERC Tools Workshop

Call Tree View

\
File () Help
@y 50 uE £ | Width < inclusive time
wOverview ¥ ¥ Call Graph XI <
) =]
Height < exclusive time
J
(cm0.0433)
ot (I Filtered
/ (c=01399% $0.2033) A= nodes or
- sub tree
/IJOad balance overview. \ 0.0231 ©=0.4705) (c=0/385% ©20.5031)
Height <> Max time
Middle bar <& Average time DUH B '
Lower bar <& Min time) uttgn.
Yell Provides hints
e OW represents ! /P '“"(ie"-‘5!§2é'nm for performance
\JUmbalance time LSl) tuning
R3S 3
Function Zoom
List
E y/a b
i;' Search:l il Q | Q
0.00 0.56 1.12 1.68 2.2‘4
I

SERC Tools Workshop

Call Tree View — Function List

File

N AR

bt

<O B M E

(Right mouse click:
Node menu

rInfo

wOverview ¥ ¥ Call Graph xl
=

Imb Time | Name

0.3702 mpi_waitall_[7]
0.3103 mpi_waitall_[4]
0.1586 mpi_waitall_[10]
0.1226 mpi_waitall_[6]
0.1108 mpi_waitall_[1]
0.1017 mpi_waitall_[3]
0.0917 calcl_

0.0673 calc3_

0.0649 calc2_

0.0249 mpi_waitall_[9]
0.0161 mpi_isend_[13]
0.0129 mpi_irecv_[10]
0.0117 mpi_isend_[10]
0.0090 mpi_waitall_[0]
0.0084 mpi_isend_[7]
0.0072 mpi_irecv_[13]
0.0070 mpi_isend_[4]
0.0065 mpi_irecv_[4]
0.0048 mpi_irecv_[7]
0.0031 mpi_waitall_[2]
0.0029 mpi_reduce_(sync)
0.0025 mpi_waitall_[5]
0.0001 mpi_reduce_
0.0000 mpi_waitall_[8]
0.0000 mpi_irecv_[18]
0.0000 mpi_isend_[16]
0.0000 mpi_finalize_
0.0000 mpi_comm_rank_
0.0000 mpi_init_
0.0000 mpi_comm_size,

\

View menu:
e.g., Filter

Right mouse click:

Sort options
% Time,
Time,
Imbalance %

/\Imbalance time

calc3_ calc2
(€=0.0221 €=0.4705) (c=0.3803 =0.5031)

e.g., hide/unhide
children

calcl
(c=0/3901 e=0.2933)

Help

Se,

g L Function
2 1o o fl[meTime L — | gt off

SERC Tools Workshop

Apprentice? Call Tree View of Sampled Data

Apprentice2’5 0 on guppyil)

File Help

w sweep3d.mpi+samp.rts.ap2 X I
w Overview & “Callgraph X |
|
=
[« [»]
>>| Search:| GoIQI | O
|sweep3d.mpi+samp.rts.ap2 (4,551 events in 0.126s) i]

SERC Tools Workshop

Load Balance View (from Call Tree)

File

W sweep3d+tr-u+mpidtp ap2 | W swim+tr16p.ap2 I

@Y DB MERE

(Min, Avg, and Max
L Values

Help

W
R

EE

PE #37
PE #43
PE #41
PE #61
PE #57
PE #39
PE #63
PE #51
PE #45)
PE #67
PE #91
PE #47
PE #59
PE #35
PE #51
PE #34
PE #85
PE #33
PE #39
PE #33
PE #42
PE #49
PE #57
PE #69
PE #38
PE #73
PE #75
PE #53
PE #77
PE #71
PE #62

PE 33 |

| Overview | w Call Graph ¥ Loa Balance |

Calls

Load Batance: MPI_Beast

e (in secs) N\

1.2e-05

[»]

-1,+1
Std Dev
marks

0.78

SERC Tools Workshop

Time Line View

()
CRANY
\

Full trace (sequence of events) enabled by setting

PAT_RT_SUMMARY=0

Helpful to see communication bottlenecks.

Use it only for small experiments !

File

Help

W swim+iompi+1566td.ap2 ¥ T+hw1+swp+io+mpi+48p.ap2 |

@eRYVVCEE MEENN

 Overview | W Function | w Environment ¥ Traffic Report | w Text Report | ¥ Mosaic | w Activity |

0.000 0.462 0,924 1,386 1,348 2,310
PE #0]
PE #1
PE #2

I

I

I | | |
I | | |
| | | |

4,158 4,620

&

Murite MRead M Barrier M EBcast M Send MReceive Housekeeping © Reduce " Al1ToAll Comm File

scale = 137.7%

Other M@ Barrier MParallel Region

Q Zoom Qut

Housekeeping

@3 Best Fit |

| |

0.00 1.15 230

461

SERC Tools Workshop

Traffic Report RSO

e Shows internal PE-to-PE traffic over time.

e Broken out by communication type (Send, Recv, Sync, AllIToAll, Bcast,
Housekeeping and User/other). ‘
e While this report is displayed, you can:
e Hover over an item to display quantitative information.
e Zoom in and out
e Right-click an area of interest to open a popup menu, which enables

%/ou to hide the origin or destination of the call or go to the call site in
he source code, if the source file is available.

e Access alternate zoom in and out controls, or filter the

communications shown on the report by the duration of the messages.

FiIthinP messages by duration is useful if you are only interested in a
particular group of messages.

e Often quite dense, typically requires zooming in to reveal
meaningful data.

e Look for large blocks of barriers that are being held up by
a single PE.

e May indicate that the single PE is waiting for a transfer, or it can also
indicate that the rest of the PEs are waiting for that PE to finish a
computational piece before continuing.

SERC Tools Workshop

Time Line View (Zoom) — Traffic Report

File

()
CRANY
\

g
User Functions, MPI | °

w swinsiompi+ 1566td ap2 % T+hw 1 +swprosmpi+48p.ap2 |

@\ Reyy:

THH]

<P B M E

& =

\& SHMEM Line

3.564
PE #0
PE #1 i

3,508 3,652

L B

~ Overview | ¥ Function ¥ Traffic Report | w Text Report | w Mosaic | w activity | w Counters Fiot | w
3,595

PE

#2

=1
mi
'
*
<t}
2)
=
 d
 :

o
m
*
-
)
-
-

PLEI #27|

M urite MRead MBarrier M Bcast M Send MReceive

3.739 3.783

Housekeeping Reduce AllToAll Comm

scale = 1454.7%

HW Counters Overvi

-
an
“

£

826 3.870

(L
1

I

Other I Barrier IMParallel Region

Q Zoom |h

File

Housekeeping

Q Zoom Out

A
2

@ Best it |

A

3.45

461

SERC Tools Workshop

Time Line View (Fine Grain Zoom)

File

W swim+iompi+1566td.ap2 ¥ Trhw1+swh+io+mpi+48p.ap2 I

CRYVEOHE ME EHN KX

w Overview | ¥ Function ¥ Traffic Report | w Text Report | w Mosaic | w Astivity | w Counters Piot | w Hw Counters Overview | w10 Rates |

3.986 3.38‘7 3.g87 3.988 3.988 3.488 3.889
1 1

o
m
a*
N
o
-

PE #46
PE_#47 A

3,689

3,890 3.890

=l

Murite " Read M Barrier M Bcast M Send MReceive Housekeeping " Reduce [/ Al1ToAll Comm File

scale = 152198.2%

Other I Barrier MParallel Region

Q Zoom |n

Housekeeping

Q Zoom Qut | Q Best Fit |

A

2.30

461

SERC Tools Workshop

<

(N
Ay |
\

) \
\

Other Reports Available

e Mosaic Report
e Matrix of communications between source and destination PEs, using
cF:)oEIored blocks to represent the relative point-to-point send times between "
S

e Based on average communication times by default

e Color-coded: Light green blocks indicates good values, while dark red blocks
may indicate problem areas. Hover the cursor over any block to show the actual
values associated with that block.

e Scroll through the report and look for red "hot spots." These are ?e_nerally an
indication of bad data locality and may represent an onortunlty O Improve
performance by better memory or cache management.

e Activity Report

e Shows communication activity over time, bucketed by logical function
such as synchronization. Compute time is not shown.

e Look for high levels of usage from one of the function groups, either over
the entire duration of the program or during a short span of time that
affects other parts of the code. You can use the calipers to filter out the
startup and closeout time, or to narrow the data being studied down to a
single iteration.

e I/O Rates
e Table IistinfgI ca)uantitative information about the program's 1/0O usage (only
avaialble if'1/0 data was collected during programexecution). Can be

sorted by any column, in either ascending or descending order
e Look for I/O activities that have low average rates and high data volumes.

SERC Tools Workshop

