Optimizing large scale I/O

Supercomputing, n. A special branch of
scientific computing that turns a
computation-bound problem into an 1/O-
bound problem.

Overview SN

e The Cray Linux Environment and parallel libraries provide |
full support for common I/O standards.
e Serial POSIX I/O

e Parallel MPI I/O

e Third-party libraries built on top of MPI 1/O
e HDF5, NetCDF4

e Cray versions provide many enhancements over generic
implementations that integrate directly with Cray XC40
and Cray Sonexion hardware.

e Cray MPI-IO collective buffering, aggregation and data sieving.
e Automatic buffering and direct I/O for Posix transfers via IOBUF.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Building blocks of HPC file systems .

e Modern Supercomputer hardware is typically built on two
fundamental pillars:

1. The use of widely available commodity (inexpensive) hardware.
e Intel CPUs, AMD CPUs, DDR3, DDR4, ...

2. Using parallelism to achieve very high performance.

e The file systems connected to computers are built in the

same way
1. Gather large numbers of widely available, inexpensive, storage
devices

e Can be HDDs, SSDs

2. then connect them together in parallel to create a high bandwidth,
high capacity storage device.

So you will have to do parallel I/O in order to get
performance

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Challenges in 1/O . o

e From an application point of view :

e The tasks of the applications has to be able to make use of the
bandwidth the I/O system offers

e The number of files created is also an issue

e If your application uses more than 10,000 tasks and creates 3 files per task,
you will have over 30,000 output files to deal with

e But the ‘workflow’ is getting more and more important
e How is the created data to be used after the run?

e Where is the data stored?

e Moving XXX Tbytes of data from a fast /scratch file system to a permanent
place is at best time consuming and at worst impossible

e How do | deal with 30,000 output files?
e \Which tools are used...?

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

CRAY 1/O stack S S

Application
HDFS NETCDF

Lustre File System

Common I/O Patterns found in
applications

I/O strategies: Spokesperson (sequential 1/O) .

e One process performs I/O Lustre clients
e Data Aggregation or Duplication x5
o Limited by single 1/O process e
e Easy to program = ‘
e Pattern does not scale
e Time increases linearly with '
amount of data
e Time increases with number of .
processes Bottlenecks
e Care has to be taken when doing
the all-to-one kind of
communication at scale
e Can be used for a dedicated I/O
Server

. . . T —
I/O strategies: Multiple Writers — Multiple Files .o

S \
\

e All processes perform
/0 to individual files

e Easy to program

e Pattern may not scale

at large process counts

e Number of files creates
bottleneck with metadata
operations

e Number of simultaneous
disk accesses creates
contention for file system
resources

e Hard to read back from
diff number of processes

What is Parallel 1/0? .

e Multiple processes of a parallel program accessing
data (reading or writing) from a common file

FILE

_U
o<—><
Ue—><
o
l\)<—><
<>

I/O strategies: Multiple Writers — Single File

e Each process performs I/O
to a single file which is
shared.

e Performance

e Data layout within the
shared file is very
Important.

e At large process counts
contention can build for
file system resources.

e Not all programming
languages support it

e C/C++ can work with
fseek

e No real Fortran
standard

I/O strategies: Collective 1/O to single or
multiple files

e Aggregation to a processor
in a group which processes
the data.

e Serializes I/O in group.

e |/O process may access
independent files.

e Limits the number of files
accessed.

e Group of processes
perform parallel I/O to a
shared file.

e Increases the number of

shares to increase file
system usage.

e Decreases number of
processes which access a

shared file to decrease file
system contention.

Special case : Standard output and error

e On most clusters/MPPs all
STDIN, STDOUT, and

STDERR 1/O streams
serialize through mpirun/
aprun/srun

e Disable debugging
messages when running in
production mode.

e “Hello, I'm task 32,000!"

e “Task 64,000, made it
through loop.”

mpirun
aprun
srun

I/O performance: to keep in mind .

e There is no “One Size Fits All” solution to the 1/0)
problem

e Many I/O patterns work well for some range of
parameters

e Bottlenecks in performance can occur in many
locations (application and/or filesystem)

e Going to extremes with an 1/O pattern will typically
lead to problems

e I/O is a shared resource: Expect timing variation

Lustre

A parallel filesystem

COMPUTE | STORE | ANALYZE

®
e N

e A scalable cluster file system for Linux \

e Developed by Cluster File Systems -> Sun -> Oracle.
e Name derives from “Linux Cluster”

e Lustre file system consists of software subsystems, storage, and an
associated hetwork

e MDS - metadata server
e Handles information (metadata) about files and directories

e OSS - Object Storage Server

e The hardware entity
e The server node

e Stores file data on and supports multiple OSTs

e OST - Object Storage Target

e The ‘software’ entity
e This is the software interface to the backend volume
e Each OST manages a single local disk filesystem

e Client
e Accesses and uses data

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Parallel Filesystem fundamentals o

=)

Single logical file File automatically
e.g. /work/example divided into stripes

Stripes are written/read

COMPUTE | STORE . from across multiple drives

October 26-27, 2015 SERC Tools Workshop

Basic Lustre Overview

Application

processes

running on s
compute nodes

Memory

¢

Memory

'

Memory

'

High Speed

_
Network s

I/O processes
running on Object MDS

Storage Servers

(0SS)

/O channels

RAID Devices v
Object ———
Storage MDT

Targets (OST)

'

OSSO0

OST OST

'

OSSm

> Y
OST OST

Z0—-—XmMmZ0w

OCOON

o
i
CRAY |

Opening a file .o
) s

The client sends a request to the MDS to

opening/acquiring information about the file

Open Metadata
Lustre P Server \
Client The MDS then passes back a list of OSTs
OSTs | name I« Foran existing file, these contain the
I .
I permissions | data stripes
: attrributes |« For a new files, these typically contain a
location 4 randomly assigned list of OSTs where
data is to be stored
Object Storage Object Storage
Server (OSS) + Server (OSS) +
. Object Storage Object Storage .
Read/write Target (OST) Target (OST) Once a file has been opened no

Lustre B
Client

further communication is required
between the client and the MDS

All transfer is directly between the
assigned OSTs and the client

—_______._v'

- - - ™~ \
NC 7, ¢ D |
> { 0 N CnoA‘Y\
open(unit=12,file=“out.dat)) \
LLUOSLIC \

Client

- | Multiple
< High Performance Computing Interconnect OSSs and
—_—

OSTS
-

Metadata

I permissions
I attributes

| | ;
ocation
N e e - —

One MDS
per
filesystem

~C N ~N—— C:AY: |
| write(12,*) data “ o
L ~
Multiple
High Herformance CGomputing Interconnect OSSs and
OSTS

Metadata Object Storage Object Storage Object Storage Object Storage Object Storage
Server (OSS) + Server (OSS) + Server (OSS) + Server (OSS) + Server (OSS) +
Object Storage Object Storage Object Storage Object Storage Object Storage

Target (OST) Target (OST) Target (OST) Target (OST) Target (OST)

I permissions
I attributes
| location

ke

One MDS
per
filesystem

—-— o - —-— o -

— 2 Megabyte stripes

File decomposition

2MB 2MB 2MB 2MB 2MB 2MB

2MB

2MB

St
™
<
-
=

5-0

3-0

‘ = =
/
| SANAYZE

Physical View of Striping

PO P1 P2 P3
mmm| e
T
—1T 1 C1T—1 —1T—1
s P
OSTO OST1 OST2 OST3

Key points

e Lustre achieves high performance through parallelism
e Best performance from multiple clients writing to multiple OSTs

e Lustre is designed to achieve high bandwidth to/from a
small number of files

e Typically use case is a scratch file system for HPC
e |tis a good match for scientific datasets and/or checkpoint data

e Lustre is not designed to handle large numbers of smali
files
e Potential bottle necks at the MDS when files are opened
e Data will not be spread over multiple OSTs
e Not a good choice for compilation

e Lustre is NOT a bullet-proof file system.
e If an OST fails, all files using that OST are basically inaccessible

e BACKUP important data elsewhere!

e Deleting files is also a greater good — full OSTs start to slow down —
get rid of those huge unwanted output data files!

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Tuning Lustre Settings

Matching Lustre striping to an application

COMPUTE | STORE | ANALYZE

Controlling Lustre striping

e 1fs is the Lustre utility for setting the stripe properties of new
files, or displaying the striping patterns of existing ones

e The most used options are

setstripe — Set striping properties of a directory or new file
getstripe - Return information on current striping settings
osts - List the number of OSTs associated with this file system

df - Show disk usage of this file system

[
{
(
{

e For help execute Ifs without any arguments
$ 1fs

1fs > help

Available commands are:
setstripe
find
getstripe
check

\
C)RAY |
Sample Lustre commands: Ifs df .
=)
crystal:ior% 1lfs df -h
UuUID bytes Used Available Use% Mounted on
snx11014-MDT0000_ UUID 2.1T 47.5G 2.0T 2% /lus/sonexion[MDT:0]
snx11014-0ST0000_UUID 20.8T 4.6T 16.0T 22% /lus/sonexion[OST:0]
snx11014-0ST0001 UUID 20.8T 4. 3T 16.3T 21% /lus/sonexion[OST:1]
snx11014-0ST0002 UUID 20.8T 4.3T 16.3T 21% /lus/sonexion[OST:2]
snx11014—OST0003:bUID 20.8T 4.0T 16.6T 20% /lus/sonexion[OST: 3]
snx11014-0ST0004 UUID 20.8T 4. 3T 16.3T 21% /lus/sonexion[OST:4]
snx11014-0ST0005 UUID 20.8T 4.6T 16.0T 22% /lus/sonexion[OST:5]
snx11014—OST0006:UUID 20.8T 3.9T 16.7T 19% /lus/sonexion[OST:6]
snx11014-0ST0007_UUID 20.8T 4.0T 16.6T 20% /lus/sonexion[OST:7]
snx11014-0ST0008 UUID 20.8T 4.4T 16.2T 22% /lus/sonexion[OST:8]
snx11014—OST0009:UUID 20.8T 5.1T 15.5T 25% /lus/sonexion[OST:9]
snx11014-0ST000a UUID 20.8T 4.9T 15.8T 24% /lus/sonexion[OST:10]
snx11014—OST000b:bUID 20.8T 4.5T 16.2T 22% /lus/sonexion[OST:11]
snx11014-0ST000c_UUID 20.8T 4.8T 15.8T 23% /lus/sonexion[OST:12]
snx11014-0ST001d UUID 20.8T 4.1T 16.5T 20% /lus/sonexion[OST:29]
snx11014-0ST00le UUID 20.8T 3.6T 17.0T 18% /lus/sonexion[OST:30]
snx11014—OST001f:bUID 20.8T 3.6T 17.0T 18% /lus/sonexion[OST:31]
filesystem summary: 666.9T 137.2T 522.9T 21% /lus/sonexion

Ifs setstripe .

e Sets the stripe for a file or a directory

1fs setstripe <--stripe-size |-s size>

<--stripe-count|-c count> <file|dir>

o Size: Number of bytes on each OST (0 filesystem default ~ 1MB?)
e count: Number of OSTs to stripe over (0 default; -1 all OSTs)

e Comments

The striping of a file is given when the file is created. It is not possible to
change it afterwards.

Can use Ifs to create an empty file with the stripes you want (“touch”
command)

Can apply striping settings to a directory, any children will inherit
parent’s stripe settings on creation.

Don’t use the ‘index’ option (-i)

Select best Lustre striping values . o

e Selecting the striping values can have a large impact on)
the 1/O performance of your application

e Rules of thumb: Try to use all OSTs

1. #files > # OSTs => Set stripe_count=1
You will reduce the lustre contention and OST file locking this way
and gain performance

2. #files==1 => Set stripe_count=#0OSTs

3. #files < #OSTs => Select stripe_count so that you use all OSTs
Example : You have 8 OSTs and write 4 files at the same time, then
select stripe _count=2

e Always allow the system to choose OSTs at random!

Sample Lustre commands: striping

crystal:ior% mkdir tigger

crystal:ior% lfs setstripe -s 2m -c 4 tigger

crystal:ior% 1lfs getstripe tigger

tigger

stripe count: 4 stripe size: 2097152 stripe offset: -1
crystal% cd tigger

crystal:tigger$ ~/tools/mkfile linux/mkfile 2g 2g
crystal:tigger% 1ls -1lh 2g

-rw--—--—---- T 1 harveyr criemp 2.0G Sep 11 07:50 2g

crystal:tigger%$ 1lfs getstripe 2g

2g

lmm stripe count: 4

lmm stripe size: 2097152

lmm layout gen: 0

lmm stripe offset: 26

obdidx objid objid group

26 33770409 0x2034ba9d 0
10 33709179 0x2025c7b 0
18 33764129 0x2033321 0
22 33762112 0x2032b40 0

Case Study 1: Spokesman .

e 32 MB per OST (32 MB - 5 GB) and 32 MB Transfer Size

e Unable to take advantage of file system parallelism
e Access to multiple disks adds overhead which hurts performance

Single Writer
Write Performance

__100 ® 1 MB Stripe Lustre
A Client

)

= %32 MB
) Stripe
=

1 2 4 16 32 64 128160
Stripe Count

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Case Study 2: Parallel I/O into a single file .

e A particular code both reads and writes a 377 GB file. |
Runs on 6000 cores. ‘
e Total I/0 volume (reads and writes) is 850 GB.
e Utilizes parallel HDF5
e Default Stripe settings:
count =4, size=1M, index =-1.
e 1800 s run time (~ 30 minutes)
e Stripe settings: count=-1, size=1M, index = —1.
e 625 s run time (~ 10 minutes)
e Results
e 66% decrease in run time.

U2 U

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Case Study 3: Single File Per Process .o

e 128 MB per file and a 32 MB Transfer size, each file has a |
stripe_count of 1 File Per Process

12000

10000 / \\
» 8000 Stripe
0 - / \ =32 MB
Y 6000 Stripe
< 4000

2000 l

O [T [T [T [T [T |
0 2000 4000 6000 8000 10000

Processes or Files

Conclusions O

e Lustre is a high performance, high bandwidth parallel file |
system.

e It requires many multiple writers to multiple stripes to achieve best
performance

e There is large amount of /0O bandwidth available to
applications that make use of it. However users need to
match the size and number of Lustre stripes to the way
files are accessed.

e Large stripes and counts for big files
e Small stripes and count for smaller files

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Being Nice to Lustre

From bandwidth to filesystem operations

COMPUTE | STORE | ANALYZE

Being Nice to Lustre .o

e There are two characteristics we typically use to talk about |
storage or filesystem performance
o BANDWIDTH
o OPERATIONS PER SECOND (IOPS)

e Lustre is a parallel distributed filesystem so we have two
further aspects
e Performance of data I/O (accessing OSTs)
e Performance of metadata 1/O (filesystem operations via MSS/MDT)

e We have already considered advice on optimizing for data
throughput

e We now concentrate more on performance of filesystem
operations

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

The Metadata Server is a finite shared resource
— look after it!

1< 1< 1A
Yo I- 1 € 1 € 1 €
Sryve ICCBAN 1O RO 1CC N
| L N | N | A&
D \ $ \ $ \ 4
name N/ N/ \N)
permissions
attributes
location J
A Y -
COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Metadata Operations .o

e The Metatada Server (MDS) provides access to each .
filesystem’s metadata stored on Metadata Storage Targets
(MDTs)

e It is involved in many filesystem operations
e Create, Open, Close, get attributes etc.
e Managing locks
e (note Read/Write of file DATA go direct to OSSs/OSTs)
e It is a shared resource so can be stressed in large
systems by some workloads

e Result may be slow or variable filesystem performance

Being nice - Overview IO

e There are various approaches we can take to minimize the |
metadata server load

e Be aware of usage patterns that are not appropriate for
Lustre

e Be aware of usage patterns that are most problematic
e Note that an individual application run may seem fine but
in combination with other similar runs can add up to a

significant problem

e So watch for ensemble runs — many copies of the same program
running simultaneously

Use Lustre for what it is designed for .

e Lustre aggregates multiple storage devices providing |
scalable I/O for very large systems

e Sweet-spot is writing of large files

e Lustre is designed to provide a consistent (POSIX) view of
the filesystem and this requires extra work to maintain

So
e Don’t use Lustre for local TMPDIR
e This can be particularly problematic for large compilations

Some expensive metadata operations .

stat()

e The stat operations return information on file ownerships,
permissions, size, update times etc.

e To obtain the file size requires a lookup on the MDS and
an enquiry for file size on each OST owning a stripe

So

e Avoid Is -l (and colour Is)

e Avoid file completion in shells

e Open and fail instead of stat/INQUIRE

e Don’t stripe small files (you may have to check every OST
that might own a part of the file)

Unnecessary file operations .

Only ask Lustre for what you want |
e Open a file read-only if that is what you will do

There are tools optimized for (or aware of) Lustre
e e.g. Ifs find, Ifs df, lustre_rsync

Some large applications read the same files on every task
e This generates a lot of metadata and data load

e Better to read on one task and use the High Speed
Interconnect to move data to other tasks

e e.g. replace “all ranks read namelist data” with “rank O reads namelist
data and broadcasts it to all other ranks”

Shared access to single file .

e There is no problem in opening a file from multiple clients |
e Also fine if multiple clients write to parts of file on different
OSTs

e But expensive if multiple clients access parts of the file on
the same OST

e New write (or read) causes previous client owning lock to flush
e New client has to get lock
e OST grants lock for portion of the file

So
e Avoid multiple clients writing to same OST

e Use software (Cray MPI MPI-IO aggregation) that does this
for you

File creation and large directories .

e To create a new file in a directory needs a lock on the |
directory

e If the directory has thousands of files then a linear search
is required to check if file exists

e This search holds the lock for longer for a big directory

e Once open for a client, contents are hashed and
operations are fast

e A new open on another client will force a flush and get
new lock

So
e Avoid large directories
e Perhaps organize directory structure by client

Asynchronous I/O

A Good Idea!

Asynchronous /O

Standard Sequential I/O

Compute /O Compute /O Compute /O /O

| Time >

Asynchronous I/O

Compute Compute Compute Compute

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Asynchronous I/O .o

e Good when majority of the data is output, which allows
overlap with computation

e Double buffer arrays to allow computation to continue

while data is flushed to disk

1. Use asynchronous POSIX calls such as aio_read, aio_write etc.

e Only covers the I/O call itself, any packing/gathering/encoding still has to
be done by the compute processors

e Not currently supported by Lustre but calls will still function

2. Use third party libraries

e e.9., MPI /O, HDF5, parallel NetCDF, IOBUF

e Again, packing/gathering/encoding still done by compute processors
3. Add I/O servers to application

e Dedicated processes to perform time consuming operations

e More complicated to implement than other solutions

e Portable solution (works on any parallel platform)

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

1/O servers O

e Successful strategy deployed in several codes such as |
WRF, UM

e Has become more successful as number of nodes has
increased
e EXxtra nodes only cost few extra percent of resources

e Requires additional development that can pay off for
codes that generate large files

e Typically still only one or a small number of writers
performing I/O operations
e may not reach full I/O bandwidth

Naive I/O Server pseudo-code

Compute Node I/O Server
do i1=1,time _steps do i=1,time _steps
compute(J) do j=1,compute nodes
checkpoint(data) MPI Recv(j, buffer)
end do write(buffer)
end do
subroutine checkpoint(data) end do

MPI Wait(send req)

buffer = data

MPI Isend(IO SERVER, buffer)
end subroutine

Controlling

IOBUF

I/O Buffering in Traditional
Serial I/O

Problem to be addressed 08

e Application produces massive serial I/O on Lustre ~

e A generic solution for serial I/O is buffering.

e Temp storage of results of I/O operation in user space before writing
(minimize system calls, block-align 1/0O operations)

e Default Linux buffering offers no control.to the user

e Other possible solutions:

e Moving part of the 1/O to /tmp, which resides in the memory or is local
e This generally involves changing the source code or namelist
e With CCE, options for assign available

e Changing the 1/O pattern

e Rewriting the algorithm

e Buffering solutions (even if only .o files are available):

e Using buffering flags to the Intel Compiler
e |IOBUF

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

IOBUF R

» IOBUF is an I/O buffering library officially supported by Cray that can reduce
the 1/0 wait time for programs that read or write large files sequentially. IOBUF
intercepts I/O system calls such as read and open and adds a layer of
buffering, thus improving program performance by enabling asynchronous
prefetching and caching of file data.

» IOBUF can also gather runtime statistics and print a summary report of I/O
activity for each file (verbose option)

» In general, no program source changes are needed in order to take advantage
of IOBUF.

» module load iobuf
» Relink the program
» Set the IOBUF_PARAMS environment variable, for example:

export IOBUF _PARAMS =

"* mtc:size=4M:count=3:verbose,*.bin:size=250K:count=3:verbose”’
» Run the program
» For a detailed output use: export IOBUF PARAMS='*:verbose’\
» See the iobuf man page for full details

\

IOBUF Sample

PE 0: File "OPTINFO.DAT"

Calls
Write
Open 1
Close 1
Buffer Write

IOBUF parameters: file=“FILE.dat":size=2:count=0:

vbuffer count=-2147483648:prefetch=1:verbose

Seconds
0.194701
0.000317
0.000261
0.187175

Megabytes
1.631562

1.631562

Megabytes/sec Avg Size

8.379836

8.716794

85

85

4

PE 0: File "OPTINFO.DAT"

Calls
Write
Open 1
Close 1
Buffer Write @
I/0 Wait 2
Buffers used
Preflushes

IOBUF parameters: file="“FILE.dat":size=1048576:count=4:

vbuffer count=4096:prefetch=1:verbose

Seconds
0.004624
0.000235
0.003174
0.002823
0.002913

2 (2 MB)

1

Megabytes
1.631562

1.631562
1.631562

Megabytes/sec Avg Size

352.836660

577.929822
560.097154

85

815781

4

IOBUF sample output 2

IOBUF parameters: file="defstriped/

serial.dat":size=1048576:count=4:vbuffer_count=4096:prefetch=1:verbose

PE 0: File "defstriped/serial.dat"

Calls
Write 2048
Open 1
Close 1
Buffer Write 384
I/0 Wait 384
Buffers used
Preflushes

Seconds
0.580566
0.001288
0.006056
0.533518
0.530056

4 (4 MB)
384

Megabytes
402.653184

402.653184
402.653184

0
=AY ||
e \
) \
\
\
Megabytes/sec Avg Size
693.552615 196608
754.713968 1048576
759.643408

e Each file accessed on each PE will print a summary when

closed.

e Users set a “buffer size” (default 1MB), transactions that
are smaller are cached into one of the buffers

e Larger transactions are performed directly, bypassing the

buffers.

IOBUF configuration IO

e Users can increase the size of buffers (size=#[KMG]) .

e They can also add more buffers (count=#) this allows for
more access points

e Data is automatically pre-fetched. More buffers can be pre-
fetched (count=#) or disabled completely (count=0)

e Data can also be written “direct”, i.e., bypassing the OS’s
internal buffering process.

e Settings controlled on a file by file basis or via pattern
matching, e.g:

export IOBUF_PARAMS=‘“input.dat:count=8:size=64M:direct2,\
out*.dat:size=1M:count=4:prefetch=0"

Alternative: Buffering of the Intel Compiler .o

e Compiler Flag: -assume <options> \
e [no]buffered io
e Equivalent to OPEN statement BUFFERED="YES'
e or environment variable FORT BUFFERED=TRUE

e [no]buffered stdout

e More control with the OPEN statements

e BLOCKSIZE

e size of the disk block 1/O buffer

o default=8192 (or 1024 if —-fscomp general or all is set)
e BUFFERCOUNT:

o gu][nbﬁr %)f buffers used
e (Qderault=
e Actual Memory used for buffer = BLOCKSIZE x BUFFERCOUNT

e BUFFERED=yes has precedence over —assume buffered io, which
has precedence over FORT BUFFERED=TRUE

e Source code has to be changed for fine tuning.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

-
i
CRAY |

e \
S \

Bytes{ |F11e Name [max15]
cal PE

Cray PAT can give /O stats too

write Rate
MBytes/sec

185.711637 | 1506.987655 | 8.114665 | 2012.0 | 785383.24 |[Total \

write

write Time |
MBytes

| writes |

VIUTOY OO OYOYTOYOYOY OYOYOYOYOYOYNININ N

-396177
-306253
.089236
.014675
-950223
-808180
.754414
.703325
.647510
-544040
-492357
-314911
-193225
-137744
.057450
.027708
.021351
.013654
-989393
-893607

.639641
. 559864
.474480
.505741
.723812
-438625
.045898
.626842
.204975
.069084
.122524
.830154
.240063
.870838
.024872
-454807
.716827
.878239
.970413
. 569782

COOONOOOONNNNNNNNOONOOOO OO

.170707
- 372605
-414581
- 914895
. 722635
-114769
-965208
.254138
.251584
-498286
.566208
. 732517
-950634
-473566
.763147
.204579
.256757
.795301
-343151
-410772

OCOO0OO0O0COO0O0OCOO0O0O0O0O0O0CO0O0O0O

1595221.
1627385.
1589448.
1589436.
1633115.
1587236.
1541600.
1593404.
1579580.
1607895.
1609646.
1600066 .
1613498.
1503095.
1540911.
1571428.
1579753.
1536106.
1587811.
1575081.

pe.20
pe.21
pe.30
pe.16
pe.1l7
pe.22
pe.5

pe.10
pe.26
pe.29
pe.14
pe.24
pe.15
pe.19
pe.11
pe.6

pe.27
pe.31
pe.3

pe.9

Cray PAT cRas

)
S \

|| 4.854732 | 47.821522 | 9.850496 | 33.0 | 1519530.30 |pe.25 \
|| 4.209574 | 49.621185 | 11.787696 | 33.0 | 1576714.67 |pe.28

|| 3.608060 | 51.816326 | 14.361272 | 34.0 | 1598039.88 |pe.7 \
II 0.000000 | 0.000000 | -1 0.0 | -~ |pe.0 ‘
| 0.000355 | 0.022888 | 64.504298 | 1000.0 | 24.00 |testit_index
L

|| 0.000355 | 0.022888 | 64.504298 | 1000.0 | 24.00 |pe.0

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.31

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.30

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.29

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.28

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.27

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.26

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.25

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.24

|| 0.000000 | 0.000000 | -1 0.0 | -~ |pe.23

pat_build -w —g io —g mpi io_tester
pat_report —s pe=ALL *.xf

Cray MPI-IO Layer

Data Aggregation and Data Sieving

COMPUTE | STORE | ANALYZE

MPI 1/O .

e The MPI-2.0 standard provides a standardised interface for
reading and writing data to disk in parallel. Commonly
referred to as MPI 1/O

e Full integration with other parts of the MPI standard allows
users to use derived types to complete complex tasks
with relative ease.

e Can automatically handle portability issues such as byte-
ordering and native and standardised data formats.

e Available as part of the cray-mpich library on XC40,
commonly referred to as Cray MPI-IO.
e Fully optimised and integrated with underlying Lustre file-system.

\
=AY
(Y \

Collective Buffering & Data Sieving

Two Techniques: Sieving and Aggregation o

e Data sieving is used to combine lots of small accesses .
into a single larger one
e Reducing # of operations important (latency)
e A system buffer/cache is one example

e Aggregation/Collective Buffering refers to the concept of
moving data through intermediate nodes
e Different numbers of nodes performing I/O (transparent to the user)

e Both techniques are used by MPI-IO and triggered with
HINTS

Data Sieving .

e “Read/Write Gaps” occur when the data is not accessed \
contiguously from the file.

e This limits the total bandwidth rate as each access
requires separate calls and may cause additional seek
time on HDD storage.

e Overall performance can be improved by minimising the
number of read/write gaps.

e The Cray MPI-IO library will attempt to use data sieving to
automatically combine multiple smaller operations into
fewer larger operations.

Strided file access .

Focusing on a rank we
can see that it will
potentially end up
writing strided data to
each OST.

This is likely to incur

enalties due to extent
ocking on each of the
OSTs.

Rank 2 Rank 3
Data Data

It also prevents oBtimaI
erformance of HDD
lock devices that

comes from writing

contiguous blocks of
data ===

-=
|
|

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Data Sieving

P N

L,!dAAAAf:

copy requested:portion in user buffer

- - - - - - Py Py
. . L » L] L] . .

A

. read a contiguous chunk into memory

user’s request for non-contiguous data (

) from a file

Writing structured data to disk

MPI-10 MPI-10 transposes
data to optimal :
Storing

translates

Lustre layout

0

Data held in 5
local 2D 0=
Decomposition S

Rank O ' Rank 1

Data Data

Rank 3
Data

to OSTs

@

MPI-10 aggregates data
onto aggregator ranks
(same # as OST count)
before writing

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Data Sieving

MPI-10
translates

& to 1D
|

Data held in
local 2D
Decomposition

Rank 0 " Rank 1
Data Data

Rank 3
Data

—pr—py— |

Data Sieving combines
smaller operations into

: Storing
Iargelr contiguous olnes 0 OSTs
|

1 0—> 1 |

: 'z c—

I I I

I 0—> 1 I

I I .
E— o

: 0— 1

== =1=-= =1

[I

| I
lojuey ||

COMPUTE

October 26-27, 2015

STORE |

SERC Tools Workshop

ANALYZE

Managing Collective Buffering . o

e The Cray MPI-IO library will automatically perform collective .
buffering of collective MPI-IO calls. There are two algorithms
controlled by the value of MPICH_MPIIO CB ALIGN=[0]|2]

o 0 :distribute data equally across all aggregators regardless of Lustre
s{ripe s;ettings (inefficient if data in a single stripe or small number of
stripes

e 2 (default): Divides data into Lustre stripe-sized pieces and assigns them
to collective buffering nodes such that each node always and exclusively
accesses the same set of stripes.

e The default behaviour (MPICH MPIIO CB_ALIGN=2) will:
e Automatically set the number of aggregators to the number of stripes
e Attempt to place each aggregator on its own node

e Our experience is that the default aligned algorithm achieves best
performance in most circumstances.

e So in most cases it is only necessary to change the Lustre
stripe settings to optimise performance

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

Collective buffering: aggregating data

PO

Aggregator O

P1

P2

Aggregator 1

P3

i

H

T

!

Collective Buffering: writing data CB=0

PO

Aggregator O

P1

Stripe 0

P2

Aggregator 1

P3

Stripe 1 | Stripe 2 ‘StripeS ‘ Stripe 4 ‘ Stripe 5 ‘Stripe6 ‘

Offset 0MiB 1 MiB 2 MiB

3 MiB

4 MiB

5 MiB

6 MiB

7 MiB

CB=0 : distribute data equally across all aggregators regardless of Lustre stripe settings

Collective Buffering writing data CB=2 .o
PO P1 P2 P3 |
Aggregator O Aggregator 1

|

Stripe 0 | Stripe 1 | Stripe 2 ‘StripeB ‘ Stripe 4 ‘ Stripe 5 ‘StripeG ‘

Offset 0MiB 1 MiB 2 MiB 3 MiB 4MB 5MiB 6 MiB 7 MiB

CB=2 : Divides data into Lustre stripe-sized pieces & assigns them to collective
buffering nodes so each node always and exclusively accesses the same set of OSTs

Collective vs independent calls .

e Opening a file via MPI /O is a collective operation that
must be performed by all members of a supplied
communicator.

e However, many individual file operations have two
versions:

e A collective version which must be performed by all members of the
supplied communicator

e An independent version which can be performed ad-hoc by any

processor at any time. This is akin to standard POSIX I/O, however
includes MPI data handling syntactic sugar.

e It is only during collective calls that the MPI-IO library can
perform required optimisations. Independent I/O is usually
no more (or less) efficient than POSIX equivalents.

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

MPI 1/O interaction with Lustre

¢ Included in the Cray MPT library (man intro_mpi)

e Environmental variables used to help MPI-IO optimize

I/O performance:

e MPICH_MPIIO_CB_ALIGN (default 2) sets collective buffering
behavior

e MPICH_MPIIO _HINTS can set striping_factor and striping_unit
for files created with MPI 1/O

e If writes and/or reads utilize collective calls, collective buffering
can be utilized (romio_cb_read/write) to approximately stripe align
|/O within Lustre

e HDF5 and NetCDF are both implemented on top of MPI

I/O and thus are also affected by these environment
variables

COMPUTE | STORE | ANALYZE

October 26-27, 2015 SERC Tools Workshop

MPI-1O Hints .

The MPI /O interface provides a mechanism for providing
additional information about how to the MPI-IO layer should
access files.

These are controlled via MPI-IO HINTS, either via calls in the
MPI API or passed via an environment variable. All hints can
be set on a file-by-file basis.

On the Cray XC40 the first most useful are:
e striping factor — Number of lustre stripes
e striping unit — Size of lustre stripes in bytes

These set the file’s Lustre properties when it is created by
an MPI-IO API call.

* Note these require MPICH_MPIIO CB _ALIGN to be set to its default value of 2.

Setting hints via environment variables .o

Hints can be applied to all files, specific files, or pattern files,
e.g.

Set all MPI-IO files to 4 x 4m stripes
MPICH_MPIIO HINTS=“*:striping factor=4:striping_unit=4194304”

Set all .dat files to 8 x 1m stripes
MPICH MPIIO HINTS=“*.dat:striping factor=8:striping unit=1048576"

Set default to 4 x 4m and all *.dat files to 8 x 1
MPICH _MPIIO HINTS=“*:striping factor=4:striping unit=4194304, \
=¥ ,dat:striping factor=8:striping unit=1048576"

Displaying hints o

The MPI-IO library can print out the “hint” values that are)
being using by each file when it is opened during a run. This
iIs controlled by setting the runtime environment variable:

export MPICH_MPIIO_HINT_DISPLAY=1

The reported is generated by the PE with rank 0 in the
relevant communicator and is printed to stderr.

PE ©: MPICH/MPIIO environment settings:

PE O: MPICH_MPIIO HINTS DISPLAY =1
PE O: MPICH_MPIIO_HINTS = NULL
PE ©: MPICH_MPIIO_ABORT ON_RW ERROR = disable
PE ©: MPICH _MPIIO CB ALIGN =2
9: MPIIO hints for filel:

PE
" direct_io = false
aggregator_placement_stride = -1

More diagnostics

export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

Aggregator Placement for /lus/scratch/myfile
RankReorderMethod=3 AggPlacementStride=-1

AGG

NoOoOoubh wWDNEO

Rank

NwoaNnNuERr PO

nid
nideo578
nideo579
nido90606
nidoo607
nideo578
nideo579
nidoo606
nidooeo7

o
i
CRAY |

Understanding MPI-IO Stats .o

S \
The MPI library can provide stats on how many reads and writes were
performed in system sized gaps. Adding:
export MPICH_MPIIO_STATS=1 v

to runtime environment variables will generate summary output on each
PE.

e T T +
MPIIO write access patterns for filel
independent writes =0
collective writes = 24
system writes = 4916
stripe sized writes = 4915
total bytes for writes = 25769803776 = 24576 MiB = 24 GiB
ave system write size = 5242026
number of write gaps =0
ave write gap size = NA

In more detail .

e Independent writes — the number of writes performed by
independent call to the MPI-IO library

e Collective writes — the number of writes performed in
collective MPI-IO calls.

e System writes — the number of POSIX write operations the
MPI-IO translated the calls into

e Total bytes for writes — The amount of data written to the
file

e Avg system write size — The average size of each POSIX
write operation

e Number of write gaps — the number of gaps/seeks
between POSIX write operations

e Avg write gap size — the average size of jumps/seek
operations.

Recognising Poor Performance .o
= \
\
e e T +
MPIIO write access patterns for unstriped/mpiionative.dat ‘

independent writes = 64
collective writes =
system writes

stripe sized writes
total bytes for writes
ave system write size 2 -
number of write gaps Ave system write size is small

ave write gap size = 15264 ™ Large number of write gaps

No Collective writes

e48576> Large numbers of system writes

C) No stripe sized writes
1073741824 = 1024 MiB = 1 GiB

[/ 4

This is a simple example for 3D decomposed array.
Independent MPI-IO writes are used in place of collectives.

0.005 GiB/s

Recognising Good Performance .

MPIIO write access patterns for striped/mpiionative.dat
independent writes @ No Independent writes

collective writes 64
system writes High % of stripe sized writes

stripe sized writes
1073741824 = 1024 MiB = 1 GiB

total bytes for writes
1048576

ave system write size _ _
@\ Ave system ~= stripe size
NA No write gaps

number of write gaps
ave write gap size

This same simple example for 3D decomposed array. Now

using collective MPI-IO writes:

1.41 GIBI/s

Next steps with MPI/IO .

e Cray document: “Getting Started with MPI-I0” S—-2490-40 .
e Google search gives great tutorials/guides on using MPI-10O
e Parallel NetCDF and HDF5 are both built on top of MPI-IO

e More detailed information coming up....if we have time!

