
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Optimizing large scale I/O

Supercomputing, n. A special branch of
scientific computing that turns a
computation-bound problem into an I/O-
bound problem.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Overview

October 26-27, 2015 SERC Tools Workshop

●  The Cray Linux Environment and parallel libraries provide
full support for common I/O standards.
●  Serial POSIX I/O
●  Parallel MPI I/O

●  Third-party libraries built on top of MPI I/O
●  HDF5, NetCDF4

● Cray versions provide many enhancements over generic
implementations that integrate directly with Cray XC40
and Cray Sonexion hardware.
●  Cray MPI-IO collective buffering, aggregation and data sieving.
●  Automatic buffering and direct I/O for Posix transfers via IOBUF.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Building blocks of HPC file systems

● Modern Supercomputer hardware is typically built on two
fundamental pillars:
1.  The use of widely available commodity (inexpensive) hardware.

●  Intel CPUs, AMD CPUs, DDR3, DDR4, …
2.  Using parallelism to achieve very high performance.

●  The file systems connected to computers are built in the
same way
1.  Gather large numbers of widely available, inexpensive, storage

devices
●  Can be HDDs, SSDs

2.  then connect them together in parallel to create a high bandwidth,
high capacity storage device.

So you will have to do parallel I/O in order to get
performance

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Challenges in I/O

●  From an application point of view :
●  The tasks of the applications has to be able to make use of the

bandwidth the I/O system offers
●  The number of files created is also an issue

●  If your application uses more than 10,000 tasks and creates 3 files per task,
you will have over 30,000 output files to deal with

● But the ‘workflow’ is getting more and more important

●  How is the created data to be used after the run?
●  Where is the data stored?

●  Moving XXX Tbytes of data from a fast /scratch file system to a permanent
place is at best time consuming and at worst impossible

●  How do I deal with 30,000 output files?
●  Which tools are used...?

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CRAY I/O stack

HDF5

Application

NETCDF

MPI-IO

POSIX I/O

Lustre File System

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Common I/O Patterns found in
applications

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O strategies: Spokesperson (sequential I/O)

●  One process performs I/O
●  Data Aggregation or Duplication
●  Limited by single I/O process

●  Easy to program
●  Pattern does not scale

●  Time increases linearly with
amount of data

●  Time increases with number of
processes

●  Care has to be taken when doing
the all-to-one kind of
communication at scale

●  Can be used for a dedicated I/O
Server

Bottlenecks

Lustre clients

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O strategies: Multiple Writers – Multiple Files

● All processes perform
I/O to individual files

● Easy to program
● Pattern may not scale

at large process counts
●  Number of files creates

bottleneck with metadata
operations

●  Number of simultaneous
disk accesses creates
contention for file system
resources

●  Hard to read back from
diff number of processes

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What is Parallel I/O?

● Multiple processes of a parallel program accessing
data (reading or writing) from a common file

FILE

P0 P1 P2 P(n-1)

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O strategies: Multiple Writers – Single File

●  Each process performs I/O
to a single file which is
shared.

●  Performance
●  Data layout within the

shared file is very
important.

●  At large process counts
contention can build for
file system resources.

●  Not all programming
languages support it
●  C/C++ can work with

fseek
●  No real Fortran

standard

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O strategies: Collective I/O to single or
multiple files

●  Aggregation to a processor
in a group which processes
the data.
●  Serializes I/O in group.

●  I/O process may access
independent files.
●  Limits the number of files

accessed.
●  Group of processes

perform parallel I/O to a
shared file.
●  Increases the number of

shares to increase file
system usage.

●  Decreases number of
processes which access a
shared file to decrease file
system contention.

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Special case : Standard output and error

● On most clusters/MPPs all
STDIN, STDOUT, and
STDERR I/O streams
serialize through mpirun/
aprun/srun

● Disable debugging
messages when running in
production mode.
●  “Hello, I’m task 32,000!”
●  “Task 64,000, made it

through loop.”

mpirun
aprun
srun

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O performance: to keep in mind

●  There is no “One Size Fits All” solution to the I/O
problem

● Many I/O patterns work well for some range of
parameters

● Bottlenecks in performance can occur in many
locations (application and/or filesystem)

● Going to extremes with an I/O pattern will typically
lead to problems

●  I/O is a shared resource: Expect timing variation

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Lustre

A parallel filesystem

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

●  A scalable cluster file system for Linux
●  Developed by Cluster File Systems -> Sun -> Oracle.
●  Name derives from “Linux Cluster”
●  Lustre file system consists of software subsystems, storage, and an

associated network
● MDS – metadata server

●  Handles information (metadata) about files and directories
● OSS – Object Storage Server

●  The hardware entity
●  The server node
●  Stores file data on and supports multiple OSTs

● OST – Object Storage Target
●  The ‘software’ entity
●  This is the software interface to the backend volume
●  Each OST manages a single local disk filesystem

● Client
●  Accesses and uses data

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Parallel Filesystem fundamentals

Single logical file
e.g. /work/example

File automatically
divided into stripes

Stripes are written/read
from across multiple drives

To achieve fast bandwidth reading
or writing to disk....

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Basic Lustre Overview

Getting Started on MPI I/O

Figure 1. Overview of Parallel I/O

High speed
network

Application
processes
running on
compute
nodes

I/O
processes
running on

service
nodes

RAID
Devices

Memory

P1

Memory

P2

Memory

P0

Memory

P(n-1)

I/O channels

. . .OSS0 OSSmMDS

MDT

. . .

.

OST OST OST OST

2.2 Physical and Logical Views of a File
Physically, a file consists of data distributed across OSTs. Figure 2 shows an example
of one file that is spread across four OSTs, in five distinct pieces. The next section
will describe how the size and distribution of these pieces is determined and why you
need to know about this.

Figure 2. A Physical View of a File

OST2 OST3OST0 OST1

File

Logically, a file is a linear sequence of bytes. Continuing with the example shown in
Figure 3, shows the five pieces lined up.

Figure 3. A Logical View of a File

File

Except for performance reasons, you do not need to know how and where the bytes
are arranged physically as long as your application can reliably access the bytes. For
performance reasons, the distribution of the file across OSTs does matter because
of a process called file striping.

10 S–2490–40

High Speed
Network

I/O processes
running on Object
Storage Servers

(OSS)

I/O channels

RAID Devices
Object

Storage
Targets (OST)

Application
processes
running on

compute nodes

3

1

2
S
O
N
E
X
I
O
N

2
0
0
0

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Lustre
Client

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Open

name
permissions
attributes
location

Metadata
Server
(MDS)

OSTs

Lustre
Client

Read/write

Opening a file
The client sends a request to the MDS to
opening/acquiring information about the file

The MDS then passes back a list of OSTs
•  For an existing file, these contain the

data stripes
•  For a new files, these typically contain a

randomly assigned list of OSTs where
data is to be stored

Once a file has been opened no
further communication is required
between the client and the MDS

All transfer is directly between the
assigned OSTs and the client

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client Lustre

Client
Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client Lustre

Client
Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Metadata
Server
(MDS)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

name
permissions
attributes
location

Object Storage
Server (OSS) +
Object Storage
Target (OST)

High Performance Computing Interconnect

open(unit=12,file=“out.dat)	

One MDS
per

filesystem

Multiple
OSSs and

OSTS

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client Lustre

Client
Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client Lustre

Client
Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Lustre
Client

Metadata
Server
(MDS)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

Object Storage
Server (OSS) +
Object Storage
Target (OST)

name
permissions
attributes
location

Object Storage
Server (OSS) +
Object Storage
Target (OST)

High Performance Computing Interconnect
Multiple

OSSs and
OSTS

One MDS
per

filesystem

write(12,*)	 data	

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

File decomposition – 2 Megabyte stripes

3-0 5-0 7-0 11-0 3-1 5-1 7-1 11-1

11-0

7-0 3-0 5-0

2MB

2MB

2MB

2MB

2MB

2MB

2MB

2MB

3-1

OST 3

Lustre
Client

7-1

OST 5
OST 7

OST
11

5-1

11-1

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Physical View of Striping

Getting Started on MPI I/O

The previous example shows how a file is striped across the OSTs but does not show
I/O proceeding in parallel. Figure 5 shows the physical view of an example of four
processes writing in parallel to a single shared file that is striped across four OSTs.
The stripe size is 1 MiB. In this example, each process writes one contiguous record
to distinct, non-overlapping regions of the file and of different lengths, with no gaps
between records. The writes are done as follows:

• P0 writes a 600,000-byte record, starting at offset 0 to OST0.

• P1 writes a 1,800,000-byte record, starting at offset 600,000 to OSTs 0-2.

• P2 writes a 1,200,000-byte record, starting at offset 2,400,000 to OSTs 2 and 3.

• P3 writes a 1,400,000-byte record, starting at offset 3,600,000 to OSTs 3 and 0.

Figure 5. A Physical View of Striping

OST1

P3P1 P2P0

OST0 OST2 OST3

The records from processes 0-3 are each split into pieces by the Lustre software so
that each piece gets sent to the appropriate destination OST: OST0 is simultaneously
receiving data from processes 0, 1 and 3; OST2 is simultaneously receiving data from
processes 1 and 2; and OST3 is simultaneously receiving data from processes 2 and 3.

When there are four OSTs receiving data in parallel, I/O performance can increase
significantly—up to four times compared to all processes writing to one OST. Actual
performance is limited by the effects of "stripe-aligned records" and "extent lock
contention." Because the record lengths are not exact multiples of the stripe size and
the starting and ending offsets are not exactly on stripe boundaries, the records in
this example are not "stripe-aligned." And because some OSTs are simultaneously
receiving data from more than one process, an extent lock must be put on a region
of the file when more than one process is trying to write to the same disk block
(the smallest writable unit) at a time. The processes are thus contending for the
lock, which serializes access to these blocks and thus reduces overall parallel I/O
performance.

12 S–2490–40

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Key points

●  Lustre achieves high performance through parallelism
●  Best performance from multiple clients writing to multiple OSTs

●  Lustre is designed to achieve high bandwidth to/from a
small number of files
●  Typically use case is a scratch file system for HPC
●  It is a good match for scientific datasets and/or checkpoint data

●  Lustre is not designed to handle large numbers of small
files
●  Potential bottle necks at the MDS when files are opened
●  Data will not be spread over multiple OSTs
●  Not a good choice for compilation

●  Lustre is NOT a bullet-proof file system.
●  If an OST fails, all files using that OST are basically inaccessible
●  BACKUP important data elsewhere!
●  Deleting files is also a greater good – full OSTs start to slow down –

get rid of those huge unwanted output data files!

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Tuning Lustre Settings

Matching Lustre striping to an application

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Controlling Lustre striping

●  lfs is the Lustre utility for setting the stripe properties of new
files, or displaying the striping patterns of existing ones

●  The most used options are
●  setstripe – Set striping properties of a directory or new file
●  getstripe	 –	 Return information on current striping settings
●  osts	 –	 List the number of OSTs associated with this file system
●  df	 –	 Show disk usage of this file system

●  For help execute lfs without any arguments
	 $	 lfs	
	 lfs	 >	 help	
	 Available	 commands	 are:	
	 	 	 	 	 	 	 	 setstripe	
	 	 	 	 	 	 	 	 find	
	 	 	 	 	 	 	 	 getstripe	
	 	 	 	 	 	 	 	 check	

	 	 	 ...	

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sample Lustre commands: lfs df

crystal:ior% lfs df -h
UUID bytes Used Available Use% Mounted on
snx11014-MDT0000_UUID 2.1T 47.5G 2.0T 2% /lus/sonexion[MDT:0]
snx11014-OST0000_UUID 20.8T 4.6T 16.0T 22% /lus/sonexion[OST:0]
snx11014-OST0001_UUID 20.8T 4.3T 16.3T 21% /lus/sonexion[OST:1]
snx11014-OST0002_UUID 20.8T 4.3T 16.3T 21% /lus/sonexion[OST:2]
snx11014-OST0003_UUID 20.8T 4.0T 16.6T 20% /lus/sonexion[OST:3]
snx11014-OST0004_UUID 20.8T 4.3T 16.3T 21% /lus/sonexion[OST:4]
snx11014-OST0005_UUID 20.8T 4.6T 16.0T 22% /lus/sonexion[OST:5]
snx11014-OST0006_UUID 20.8T 3.9T 16.7T 19% /lus/sonexion[OST:6]
snx11014-OST0007_UUID 20.8T 4.0T 16.6T 20% /lus/sonexion[OST:7]
snx11014-OST0008_UUID 20.8T 4.4T 16.2T 22% /lus/sonexion[OST:8]
snx11014-OST0009_UUID 20.8T 5.1T 15.5T 25% /lus/sonexion[OST:9]
snx11014-OST000a_UUID 20.8T 4.9T 15.8T 24% /lus/sonexion[OST:10]
snx11014-OST000b_UUID 20.8T 4.5T 16.2T 22% /lus/sonexion[OST:11]
snx11014-OST000c_UUID 20.8T 4.8T 15.8T 23% /lus/sonexion[OST:12]
…
snx11014-OST001d_UUID 20.8T 4.1T 16.5T 20% /lus/sonexion[OST:29]
snx11014-OST001e_UUID 20.8T 3.6T 17.0T 18% /lus/sonexion[OST:30]
snx11014-OST001f_UUID 20.8T 3.6T 17.0T 18% /lus/sonexion[OST:31]

filesystem summary: 666.9T 137.2T 522.9T 21% /lus/sonexion

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

lfs setstripe

● Sets the stripe for a file or a directory

lfs	 setstripe 	 <-‐-‐stripe-‐size	 |-‐s	 size>	 	

	 	 	 	 	 	 	 <-‐-‐stripe-‐count|-‐c	 count>	 <file|dir>	 	

●  size: Number of bytes on each OST (0 filesystem default ~ 1MB?)
●  count: Number of OSTs to stripe over (0 default; -1 all OSTs)

● Comments
●  The striping of a file is given when the file is created. It is not possible to

change it afterwards.
●  Can use lfs to create an empty file with the stripes you want (“touch”

command)
●  Can apply striping settings to a directory, any children will inherit

parent’s stripe settings on creation.
●  Don’t use the ‘index’ option (-i)

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Select best Lustre striping values

● Selecting the striping values can have a large impact on
the I/O performance of your application

● Rules of thumb: Try to use all OSTs
1.  # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way
and gain performance

2.  #files==1 => Set stripe_count=#OSTs
3.  #files < #OSTs => Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time, then
select stripe_count=2

●  Always allow the system to choose OSTs at random!

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sample Lustre commands: striping

crystal:ior% mkdir tigger
crystal:ior% lfs setstripe -s 2m -c 4 tigger
crystal:ior% lfs getstripe tigger
tigger
stripe_count: 4 stripe_size: 2097152 stripe_offset: -1
crystal% cd tigger
crystal:tigger% ~/tools/mkfile_linux/mkfile 2g 2g
crystal:tigger% ls -lh 2g
-rw------T 1 harveyr criemp 2.0G Sep 11 07:50 2g
crystal:tigger% lfs getstripe 2g
2g
lmm_stripe_count: 4
lmm_stripe_size: 2097152
lmm_layout_gen: 0
lmm_stripe_offset: 26
 obdidx objid objid group
 26 33770409 0x2034ba9 0
 10 33709179 0x2025c7b 0
 18 33764129 0x2033321 0
 22 33762112 0x2032b40 0

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case Study 1: Spokesman

●  32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
●  Unable to take advantage of file system parallelism
●  Access to multiple disks adds overhead which hurts performance

0
20
40
60
80

100
120

1 2 4 16 32 64 128 160

W
rit

e
(M

B
/s

)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB
Stripe

Lustre
Client

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case Study 2: Parallel I/O into a single file

● A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
●  Total I/O volume (reads and writes) is 850 GB.
●  Utilizes parallel HDF5

● Default Stripe settings:
count =4, size=1M, index =-1.
●  1800 s run time (~ 30 minutes)

● Stripe settings: count=-1, size=1M, index = –1.
●  625 s run time (~ 10 minutes)

● Results
●  66% decrease in run time.

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Case Study 3: Single File Per Process

●  128 MB per file and a 32 MB Transfer size, each file has a
stripe_count of 1

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
rit

e
(M

B
/s

)

Processes or Files

File Per Process
Write Performance

1 MB
Stripe
32 MB
Stripe

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Conclusions

●  Lustre is a high performance, high bandwidth parallel file
system.
●  It requires many multiple writers to multiple stripes to achieve best

performance

●  There is large amount of I/O bandwidth available to
applications that make use of it. However users need to
match the size and number of Lustre stripes to the way
files are accessed.
●  Large stripes and counts for big files
●  Small stripes and count for smaller files

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Being Nice to Lustre

From bandwidth to filesystem operations

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Being Nice to Lustre

●  There are two characteristics we typically use to talk about
storage or filesystem performance
●  BANDWIDTH
●  OPERATIONS PER SECOND (IOPS)

●  Lustre is a parallel distributed filesystem so we have two
further aspects
●  Performance of data I/O (accessing OSTs)
●  Performance of metadata I/O (filesystem operations via MSS/MDT)

● We have already considered advice on optimizing for data
throughput

● We now concentrate more on performance of filesystem
operations

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Metadata Server is a finite shared resource
– look after it!

Metadata
Server
(MDS)

name
permissions
attributes
location

OSS
+

OST OSS
+

OST

OSS
+

OST OSS
+

OST

OSS
+

OST OSS
+

OST

High Speed Interconnect

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client
Lustre
Client

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Metadata Operations

●  The Metatada Server (MDS) provides access to each
filesystem’s metadata stored on Metadata Storage Targets
(MDTs)

●  It is involved in many filesystem operations
●  Create, Open, Close, get attributes etc.
●  Managing locks
●  (note Read/Write of file DATA go direct to OSSs/OSTs)

●  It is a shared resource so can be stressed in large
systems by some workloads

● Result may be slow or variable filesystem performance

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Being nice - Overview

●  There are various approaches we can take to minimize the
metadata server load

● Be aware of usage patterns that are not appropriate for
Lustre

● Be aware of usage patterns that are most problematic
● Note that an individual application run may seem fine but

in combination with other similar runs can add up to a
significant problem
●  So watch for ensemble runs – many copies of the same program

running simultaneously

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Use Lustre for what it is designed for

●  Lustre aggregates multiple storage devices providing
scalable I/O for very large systems

● Sweet-spot is writing of large files
●  Lustre is designed to provide a consistent (POSIX) view of

the filesystem and this requires extra work to maintain

So
● Don’t use Lustre for local TMPDIR
●  This can be particularly problematic for large compilations

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Some expensive metadata operations

stat()
●  The stat operations return information on file ownerships,

permissions, size, update times etc.
●  To obtain the file size requires a lookup on the MDS and

an enquiry for file size on each OST owning a stripe

So
● Avoid ls -l (and colour ls)
● Avoid file completion in shells
● Open and fail instead of stat/INQUIRE
● Don’t stripe small files (you may have to check every OST

that might own a part of the file)

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Unnecessary file operations

Only ask Lustre for what you want
● Open a file read-only if that is what you will do

There are tools optimized for (or aware of) Lustre
●  e.g. lfs find, lfs df, lustre_rsync

Some large applications read the same files on every task
●  This generates a lot of metadata and data load
● Better to read on one task and use the High Speed

Interconnect to move data to other tasks
●  e.g. replace “all ranks read namelist data” with “rank 0 reads namelist

data and broadcasts it to all other ranks”

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Shared access to single file

●  There is no problem in opening a file from multiple clients
● Also fine if multiple clients write to parts of file on different

OSTs
● But expensive if multiple clients access parts of the file on

the same OST
●  New write (or read) causes previous client owning lock to flush
●  New client has to get lock
●  OST grants lock for portion of the file

So
● Avoid multiple clients writing to same OST
● Use software (Cray MPI MPI-IO aggregation) that does this

for you

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

File creation and large directories

●  To create a new file in a directory needs a lock on the
directory

●  If the directory has thousands of files then a linear search
is required to check if file exists

●  This search holds the lock for longer for a big directory
● Once open for a client, contents are hashed and

operations are fast
● A new open on another client will force a flush and get

new lock

So
● Avoid large directories
● Perhaps organize directory structure by client

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Asynchronous I/O

A Good Idea!

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Asynchronous I/O

Compute I/O Compute I/O Compute I/O Compute I/O

Time

Standard Sequential I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

Asynchronous I/O

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Asynchronous I/O

● Good when majority of the data is output, which allows
overlap with computation

● Double buffer arrays to allow computation to continue
while data is flushed to disk

1.  Use asynchronous POSIX calls such as aio_read, aio_write etc.
●  Only covers the I/O call itself, any packing/gathering/encoding still has to

be done by the compute processors
●  Not currently supported by Lustre but calls will still function

2.  Use third party libraries
●  e.g., MPI I/O, HDF5, parallel NetCDF, IOBUF
●  Again, packing/gathering/encoding still done by compute processors

3.  Add I/O servers to application
●  Dedicated processes to perform time consuming operations
●  More complicated to implement than other solutions
●  Portable solution (works on any parallel platform)

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

I/O servers

● Successful strategy deployed in several codes such as
WRF, UM

● Has become more successful as number of nodes has
increased
●  Extra nodes only cost few extra percent of resources

● Requires additional development that can pay off for
codes that generate large files

●  Typically still only one or a small number of writers
performing I/O operations
●  may not reach full I/O bandwidth

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Naive I/O Server pseudo-code

Compute Node

do	 i=1,time_steps	
	 	 compute(j)	
	 	 checkpoint(data)	
end	 do	
	
subroutine	 checkpoint(data)	
	 	 MPI_Wait(send_req)	
	 	 buffer	 =	 data	
	 	 MPI_Isend(IO_SERVER,	 buffer)	
end	 subroutine	

I/O Server

do	 i=1,time_steps	
	 	 do	 j=1,compute_nodes	
	 	 	 	 MPI_Recv(j,	 buffer)	 	
	 	 	 	 write(buffer)	
	 	 end	 do	
end	 do	

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

IOBUF

Controlling I/O Buffering in Traditional
Serial I/O

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Problem to be addressed

● Application produces massive serial I/O on Lustre

● A generic solution for serial I/O is buffering.
●  Temp storage of results of I/O operation in user space before writing

(minimize system calls, block-align I/O operations)
●  Default Linux buffering offers no control.to the user

● Other possible solutions:
●  Moving part of the I/O to /tmp, which resides in the memory or is local

●  This generally involves changing the source code or namelist
●  With CCE, options for assign available

●  Changing the I/O pattern
●  Rewriting the algorithm

● Buffering solutions (even if only .o files are available):
●  Using buffering flags to the Intel Compiler
●  IOBUF

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

IOBUF

Ø  IOBUF is an I/O buffering library officially supported by Cray that can reduce
the I/O wait time for programs that read or write large files sequentially. IOBUF
intercepts I/O system calls such as read and open and adds a layer of
buffering, thus improving program performance by enabling asynchronous
prefetching and caching of file data.

Ø  IOBUF can also gather runtime statistics and print a summary report of I/O
activity for each file (verbose option)

Ø  In general, no program source changes are needed in order to take advantage
of IOBUF.
Ø  module load iobuf
Ø  Relink the program
Ø  Set the IOBUF_PARAMS environment variable, for example:

export IOBUF_PARAMS =
"*.mtc:size=4M:count=3:verbose,*.bin:size=250K:count=3:verbose”

Ø  Run the program
Ø  For a detailed output use: export IOBUF_PARAMS='*:verbose’\
Ø  See the iobuf man page for full details

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

IOBUF Sample

IOBUF parameters: file=“FILE.dat":size=2:count=0:
 vbuffer_count=-2147483648:prefetch=1:verbose
PE 0: File "OPTINFO.DAT"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Write 19107 0.194701 1.631562 8.379836 85
Open 1 0.000317
Close 1 0.000261
Buffer Write 19107 0.187175 1.631562 8.716794 85

IOBUF parameters: file=“FILE.dat":size=1048576:count=4:
 vbuffer_count=4096:prefetch=1:verbose
PE 0: File "OPTINFO.DAT"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Write 19107 0.004624 1.631562 352.836660 85
Open 1 0.000235
Close 1 0.003174
Buffer Write 2 0.002823 1.631562 577.929822 815781
I/O Wait 2 0.002913 1.631562 560.097154
Buffers used 2 (2 MB)
Preflushes 1

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

IOBUF sample output 2

October 26-27, 2015 SERC Tools Workshop

● Each file accessed on each PE will print a summary when
closed.

● Users set a “buffer size” (default 1MB), transactions that
are smaller are cached into one of the buffers

●  Larger transactions are performed directly, bypassing the
buffers.

IOBUF	 parameters:	 file="defstriped/
serial.dat":size=1048576:count=4:vbuffer_count=4096:prefetch=1:verbose	
PE	 0:	 File	 "defstriped/serial.dat"	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Calls	 	 	 	 	 	 	 	 	 Seconds	 	 	 	 	 	 	 Megabytes	 	 	 Megabytes/sec	 	 	 Avg	 Size	
Write	 	 	 	 	 	 	 	 	 	 	 	 2048	 	 	 	 	 	 	 	 0.580566	 	 	 	 	 	 402.653184	 	 	 	 	 	 693.552615	 	 	 	 	 196608	
Open	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 0.001288	
Close	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 0.006056	
Buffer	 Write	 	 	 	 	 	 384	 	 	 	 	 	 	 	 0.533518	 	 	 	 	 	 402.653184	 	 	 	 	 	 754.713968	 	 	 	 1048576	
I/O	 Wait	 	 	 	 	 	 	 	 	 	 384	 	 	 	 	 	 	 	 0.530056	 	 	 	 	 	 402.653184	 	 	 	 	 	 759.643408	
Buffers	 used	 	 	 	 	 	 	 	 	 	 	 	 4	 (4	 MB)	
Preflushes	 	 	 	 	 	 	 	 	 	 	 	 384	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

IOBUF configuration

October 26-27, 2015 SERC Tools Workshop

● Users can increase the size of buffers (size=#[KMG])
●  They can also add more buffers (count=#) this allows for

more access points
● Data is automatically pre-fetched. More buffers can be pre-

fetched (count=#) or disabled completely (count=0)
● Data can also be written “direct”, i.e., bypassing the OS’s

internal buffering process.
● Settings controlled on a file by file basis or via pattern

matching, e.g:

export	 IOBUF_PARAMS=“input.dat:count=8:size=64M:direct2,\	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 out*.dat:size=1M:count=4:prefetch=0”	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Alternative: Buffering of the Intel Compiler

●  Compiler Flag: -assume <options>
●  [no]buffered_io

●  Equivalent to OPEN statement BUFFERED='YES'
●  or environment variable FORT_BUFFERED=TRUE

●  [no]buffered_stdout

●  More control with the OPEN statements
●  BLOCKSIZE

●  size of the disk block I/O buffer
●  default=8192 (or 1024 if –fscomp general or all is set)

●  BUFFERCOUNT:
●  number of buffers used
●  default=1

●  Actual Memory used for buffer = BLOCKSIZE × BUFFERCOUNT

●  BUFFERED=yes has precedence over –assume buffered_io, which
has precedence over FORT_BUFFERED=TRUE

●  Source code has to be changed for fine tuning.

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray PAT can give I/O stats too

 Write Time | Write | Write Rate | Writes | Bytes/ |File Name[max15]
 | MBytes | MBytes/sec | | Call | PE

 185.711637 | 1506.987655 | 8.114665 | 2012.0 | 785383.24 |Total
|---
| 185.711149 | 1506.964413 | 8.114561 | 1000.0 | 1580166.72 |testit
||--
|| 7.396177 | 45.639641 | 6.170707 | 30.0 | 1595221.07 |pe.20
|| 7.306253 | 46.559864 | 6.372605 | 30.0 | 1627385.20 |pe.21
|| 7.089236 | 45.474480 | 6.414581 | 30.0 | 1589448.27 |pe.30
|| 7.014675 | 48.505741 | 6.914895 | 32.0 | 1589436.12 |pe.16
|| 6.950223 | 46.723812 | 6.722635 | 30.0 | 1633115.60 |pe.17
|| 6.808180 | 48.438625 | 7.114769 | 32.0 | 1587236.88 |pe.22
|| 6.754414 | 47.045898 | 6.965208 | 32.0 | 1541600.00 |pe.5
|| 6.703325 | 48.626842 | 7.254138 | 32.0 | 1593404.38 |pe.10
|| 6.647510 | 48.204975 | 7.251584 | 32.0 | 1579580.62 |pe.26
|| 6.544040 | 49.069084 | 7.498286 | 32.0 | 1607895.75 |pe.29
|| 6.492357 | 49.122524 | 7.566208 | 32.0 | 1609646.88 |pe.14
|| 6.314911 | 48.830154 | 7.732517 | 32.0 | 1600066.50 |pe.24
|| 6.193225 | 49.240063 | 7.950634 | 32.0 | 1613498.38 |pe.15
|| 6.137744 | 45.870838 | 7.473566 | 32.0 | 1503095.62 |pe.19
|| 6.057450 | 47.024872 | 7.763147 | 32.0 | 1540911.00 |pe.11
|| 6.027708 | 49.454807 | 8.204579 | 33.0 | 1571428.00 |pe.6
|| 6.021351 | 49.716827 | 8.256757 | 33.0 | 1579753.70 |pe.27
|| 6.013654 | 46.878239 | 7.795301 | 32.0 | 1536106.12 |pe.31
|| 5.989393 | 49.970413 | 8.343151 | 33.0 | 1587811.39 |pe.3
|| 5.893607 | 49.569782 | 8.410772 | 33.0 | 1575081.33 |pe.9
……
……

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray PAT
|| 4.854732 | 47.821522 | 9.850496 | 33.0 | 1519530.30 |pe.25
|| 4.209574 | 49.621185 | 11.787696 | 33.0 | 1576714.67 |pe.28
|| 3.608060 | 51.816326 | 14.361272 | 34.0 | 1598039.88 |pe.7
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.0
||
==
| 0.000355 | 0.022888 | 64.504298 | 1000.0 | 24.00 |testit_index
||---
-
|| 0.000355 | 0.022888 | 64.504298 | 1000.0 | 24.00 |pe.0
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.31
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.30
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.29
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.28
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.27
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.26
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.25
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.24
|| 0.000000 | 0.000000 | -- | 0.0 | -- |pe.23

pat_build –w –g io –g mpi io_tester
pat_report –s pe=ALL *.xf

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray MPI-IO Layer

Data Aggregation and Data Sieving

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI I/O

October 26-27, 2015 SERC Tools Workshop

●  The MPI-2.0 standard provides a standardised interface for
reading and writing data to disk in parallel. Commonly
referred to as MPI I/O

●  Full integration with other parts of the MPI standard allows
users to use derived types to complete complex tasks
with relative ease.

● Can automatically handle portability issues such as byte-
ordering and native and standardised data formats.

● Available as part of the cray-mpich library on XC40,
commonly referred to as Cray MPI-IO.
●  Fully optimised and integrated with underlying Lustre file-system.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collective Buffering & Data Sieving

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Two Techniques: Sieving and Aggregation

● Data sieving is used to combine lots of small accesses
into a single larger one
●  Reducing # of operations important (latency)
●  A system buffer/cache is one example

● Aggregation/Collective Buffering refers to the concept of
moving data through intermediate nodes
●  Different numbers of nodes performing I/O (transparent to the user)

● Both techniques are used by MPI-IO and triggered with
HINTS

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Data Sieving

October 26-27, 2015 SERC Tools Workshop

●  “Read/Write Gaps” occur when the data is not accessed
contiguously from the file.

●  This limits the total bandwidth rate as each access
requires separate calls and may cause additional seek
time on HDD storage.

● Overall performance can be improved by minimising the
number of read/write gaps.

●  The Cray MPI-IO library will attempt to use data sieving to
automatically combine multiple smaller operations into
fewer larger operations.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Strided file access

October 26-27, 2015 SERC Tools Workshop

Rank 2
Data

Focusing on a rank we
can see that it will
potentially end up
writing strided data to
each OST.

This is likely to incur
penalties due to extent
locking on each of the
OSTs.

It also prevents optimal
performance of HDD
block devices that
comes from writing
contiguous blocks of
data

Rank 3
Data

Rank 0
Data

Rank 1
Data

0

1

2

0

1

2

0

OST
0

OST
1

OST
2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Data Sieving

user’s request for non-contiguous data () from a file

read a contiguous chunk into memory

copy requested portion in user buffer

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

R
ank *0

R
ank *2

R
ank *1

Writing structured data to disk

October 26-27, 2015 SERC Tools Workshop

Rank 2
Data

Rank 3
Data

Rank 0
Data

Rank 1
Data

0

1

2

0

1

2

0

OST
0

OST
1

OST
2

0

0

0

1

1

2

2

Data held in
local 2D

Decomposition

MPI-IO
translates

to 1D

MPI-IO transposes
data to optimal
Lustre layout Storing

to OSTs

MPI-IO aggregates data
onto aggregator ranks
(same # as OST count)
before writing

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

R
ank *0

R
ank *2

R
ank *1

Data Sieving

October 26-27, 2015 SERC Tools Workshop

Rank 2
Data

Rank 3
Data

Rank 0
Data

Rank 1
Data

0

1

2

0

1

2

0

OST
0

OST
1

OST
2

0

0

0

1

1

2

2

Data held in
local 2D

Decomposition

MPI-IO
translates

to 1D

Data Sieving combines
smaller operations into
larger contiguous ones Storing

to OSTs

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Managing Collective Buffering

October 26-27, 2015 SERC Tools Workshop

●  The Cray MPI-IO library will automatically perform collective
buffering of collective MPI-IO calls. There are two algorithms
controlled by the value of MPICH_MPIIO_CB_ALIGN=[0|2]	
●  0 : distribute data equally across all aggregators regardless of Lustre

stripe settings (inefficient if data in a single stripe or small number of
stripes)

●  2 (default): Divides data into Lustre stripe-sized pieces and assigns them
to collective buffering nodes such that each node always and exclusively
accesses the same set of stripes.

●  The default behaviour (MPICH_MPIIO_CB_ALIGN=2) will:
●  Automatically set the number of aggregators to the number of stripes
●  Attempt to place each aggregator on its own node
●  Our experience is that the default aligned algorithm achieves best

performance in most circumstances.

●  So in most cases it is only necessary to change the Lustre
stripe settings to optimise performance

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collective buffering: aggregating data

Parallel I/O With MPI [4]

4.3 Collective Buffering
With collective MPI I/O, by default you use a technique called collective buffering.
As shown in Figure 12, collective buffering consolidates I/O requests for all
processes. In this example, the MPI I/O library chooses P0 and P2 as aggregators.
All processes transfer data to the appropriate aggregator, based on the record lengths
and offsets.

Figure 12. Aggregating Data

P3P1P0
Aggregator 0

P2
Aggregator 1

After the consolidation, only the aggregators perform I/O, as shown in Figure 13. P0)
writes data to stripes 0, 2, 4, and 6. In parallel, P2 writes data to stripes 1, 3, and 5.

Figure 13. Aggregators Writing Data

P0
Aggregator 0

P2
Aggregator 1

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB 5 MiB 6 MiB 7 MiB

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 Stripe 6

You do not have to do anything to designate a process as an aggregator; the MPI
I/O interface does that for you. The interface sets the number of aggregators to the
stripe count. This allows the aggregators to use Lustre in an efficient manner, because
writes to a shared file are stripe aligned and therefore do not compete for the same
physical I/O block or OST.

S–2490–40 37

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collective Buffering: writing data CB=0

Parallel I/O With MPI [4]

4.3 Collective Buffering
With collective MPI I/O, by default you use a technique called collective buffering.
As shown in Figure 12, collective buffering consolidates I/O requests for all
processes. In this example, the MPI I/O library chooses P0 and P2 as aggregators.
All processes transfer data to the appropriate aggregator, based on the record lengths
and offsets.

Figure 12. Aggregating Data

P3P1P0
Aggregator 0

P2
Aggregator 1

After the consolidation, only the aggregators perform I/O, as shown in Figure 13. P0)
writes data to stripes 0, 2, 4, and 6. In parallel, P2 writes data to stripes 1, 3, and 5.

Figure 13. Aggregators Writing Data

P0
Aggregator 0

P2
Aggregator 1

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB 5 MiB 6 MiB 7 MiB

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 Stripe 6

You do not have to do anything to designate a process as an aggregator; the MPI
I/O interface does that for you. The interface sets the number of aggregators to the
stripe count. This allows the aggregators to use Lustre in an efficient manner, because
writes to a shared file are stripe aligned and therefore do not compete for the same
physical I/O block or OST.

S–2490–40 37

P1 P3

October 26-27, 2015 SERC Tools Workshop

CB=0 : distribute data equally across all aggregators regardless of Lustre stripe settings

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collective Buffering writing data CB=2

Parallel I/O With MPI [4]

4.3 Collective Buffering
With collective MPI I/O, by default you use a technique called collective buffering.
As shown in Figure 12, collective buffering consolidates I/O requests for all
processes. In this example, the MPI I/O library chooses P0 and P2 as aggregators.
All processes transfer data to the appropriate aggregator, based on the record lengths
and offsets.

Figure 12. Aggregating Data

P3P1P0
Aggregator 0

P2
Aggregator 1

After the consolidation, only the aggregators perform I/O, as shown in Figure 13. P0)
writes data to stripes 0, 2, 4, and 6. In parallel, P2 writes data to stripes 1, 3, and 5.

Figure 13. Aggregators Writing Data

P0
Aggregator 0

P2
Aggregator 1

Offset 0 MiB 1 MiB 2 MiB 3 MiB 4 MiB 5 MiB 6 MiB 7 MiB

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 Stripe 6

You do not have to do anything to designate a process as an aggregator; the MPI
I/O interface does that for you. The interface sets the number of aggregators to the
stripe count. This allows the aggregators to use Lustre in an efficient manner, because
writes to a shared file are stripe aligned and therefore do not compete for the same
physical I/O block or OST.

S–2490–40 37

P1 P3

October 26-27, 2015 SERC Tools Workshop

CB=2 : Divides data into Lustre stripe-sized pieces & assigns them to collective
buffering nodes so each node always and exclusively accesses the same set of OSTs

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collective vs independent calls

October 26-27, 2015 SERC Tools Workshop

● Opening a file via MPI I/O is a collective operation that
must be performed by all members of a supplied
communicator.

● However, many individual file operations have two
versions:
●  A collective version which must be performed by all members of the

supplied communicator
●  An independent version which can be performed ad-hoc by any

processor at any time. This is akin to standard POSIX I/O, however
includes MPI data handling syntactic sugar.

●  It is only during collective calls that the MPI-IO library can
perform required optimisations. Independent I/O is usually
no more (or less) efficient than POSIX equivalents.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI I/O interaction with Lustre

●  Included in the Cray MPT library (man intro_mpi)
● Environmental variables used to help MPI-IO optimize

I/O performance:
●  MPICH_MPIIO_CB_ALIGN (default 2) sets collective buffering

behavior
●  MPICH_MPIIO_HINTS can set striping_factor and striping_unit

for files created with MPI I/O
●  If writes and/or reads utilize collective calls, collective buffering

can be utilized (romio_cb_read/write) to approximately stripe align
I/O within Lustre

● HDF5 and NetCDF are both implemented on top of MPI
I/O and thus are also affected by these environment
variables

October 26-27, 2015 SERC Tools Workshop

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI-IO Hints

October 26-27, 2015 SERC Tools Workshop

The MPI I/O interface provides a mechanism for providing
additional information about how to the MPI-IO layer should
access files.
These are controlled via MPI-IO HINTS, either via calls in the
MPI API or passed via an environment variable. All hints can
be set on a file-by-file basis.

On the Cray XC40 the first most useful are:
●  striping_factor – Number of lustre stripes
●  striping_unit – Size of lustre stripes in bytes
These set the file’s Lustre properties when it is created by
an MPI-IO API call.

* Note these require MPICH_MPIIO_CB_ALIGN to be set to its default value of 2.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Setting hints via environment variables

October 26-27, 2015 SERC Tools Workshop

Hints can be applied to all files, specific files, or pattern files,
e.g.

#	 Set	 all	 MPI-‐IO	 files	 to	 4	 x	 4m	 stripes	
MPICH_MPIIO_HINTS=“*:striping_factor=4:striping_unit=4194304”	
	
#	 Set	 all	 .dat	 files	 to	 8	 x	 1m	 stripes	
MPICH_MPIIO_HINTS=“*.dat:striping_factor=8:striping_unit=1048576”	
	
#	 Set	 default	 to	 4	 x	 4m	 and	 all	 *.dat	 files	 to	 8	 x	 1	
MPICH_MPIIO_HINTS=“*:striping_factor=4:striping_unit=4194304,	 \	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =*.dat:striping_factor=8:striping_unit=1048576”	
	
	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Displaying hints

October 26-27, 2015 SERC Tools Workshop

The MPI-IO library can print out the “hint” values that are
being using by each file when it is opened during a run. This
is controlled by setting the runtime environment variable:

export	 MPICH_MPIIO_HINT_DISPLAY=1	

The reported is generated by the PE with rank 0 in the
relevant communicator and is printed to stderr.

PE	 0:	 MPICH/MPIIO	 environment	 settings:	
PE	 0:	 	 	 MPICH_MPIIO_HINTS_DISPLAY	 	 =	 1	
PE	 0:	 	 	 MPICH_MPIIO_HINTS	 	 	 	 	 	 	 	 	 	 =	 NULL	
PE	 0:	 	 	 MPICH_MPIIO_ABORT_ON_RW_ERROR	 =	 disable	
PE	 0:	 	 	 MPICH_MPIIO_CB_ALIGN	 	 	 	 	 	 	 =	 2	
PE	 0:	 	 	 MPIIO	 hints	 for	 file1:	
…	
	 	 	 	 	 	 	 	 	 	 direct_io	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 =	 false	
	 	 	 	 	 	 	 	 	 	 aggregator_placement_stride	 =	 -‐1	
…	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

More diagnostics

October 26-27, 2015 SERC Tools Workshop

export	 MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1	

	 Aggregator	 Placement	 for	 /lus/scratch/myfile	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RankReorderMethod=3	 	 AggPlacementStride=-‐1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 AGG	 	 	 	 Rank	 	 	 	 	 	 	 nid	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐-‐-‐-‐	 	 -‐-‐-‐-‐-‐-‐	 	 -‐-‐-‐-‐-‐-‐-‐-‐	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 0	 	 nid00578	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 4	 	 nid00579	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 1	 	 nid00606	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 3	 	 	 	 	 	 	 5	 	 nid00607	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 4	 	 	 	 	 	 	 2	 	 nid00578	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 5	 	 	 	 	 	 	 6	 	 nid00579	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 6	 	 	 	 	 	 	 3	 	 nid00606	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 7	 	 	 	 	 	 	 7	 	 nid00607	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Understanding MPI-IO Stats

October 26-27, 2015 SERC Tools Workshop

+-‐+	
|	 MPIIO	 write	 access	 patterns	 for	 file1	
|	 	 	 independent	 writes	 	 	 	 	 	 =	 0	
|	 	 	 collective	 writes	 	 	 	 	 	 	 =	 24	
|	 	 	 system	 writes	 	 	 	 	 	 	 	 	 	 	 =	 4916	
|	 	 	 stripe	 sized	 writes	 	 	 	 	 =	 4915	
|	 	 	 total	 bytes	 for	 writes	 	 =	 25769803776	 =	 24576	 MiB	 =	 24	 GiB	
|	 	 	 ave	 system	 write	 size	 	 	 =	 5242026	
|	 	 	 number	 of	 write	 gaps	 	 	 	 =	 0	
|	 	 	 ave	 write	 gap	 size	 	 	 	 	 	 =	 NA	
+-‐+	

The MPI library can provide stats on how many reads and writes were
performed in system sized gaps. Adding:

export	 MPICH_MPIIO_STATS=1	
to runtime environment variables will generate summary output on each
PE.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

In more detail

October 26-27, 2015 SERC Tools Workshop

●  Independent writes – the number of writes performed by
independent call to the MPI-IO library

● Collective writes – the number of writes performed in
collective MPI-IO calls.

● System writes – the number of POSIX write operations the
MPI-IO translated the calls into

●  Total bytes for writes – The amount of data written to the
file

● Avg system write size – The average size of each POSIX
write operation

● Number of write gaps – the number of gaps/seeks
between POSIX write operations

● Avg write gap size – the average size of jumps/seek
operations.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Recognising Poor Performance

October 26-27, 2015 SERC Tools Workshop

This is a simple example for 3D decomposed array.
Independent MPI-IO writes are used in place of collectives.

0.005 GiB/s

+-‐+	
|	 MPIIO	 write	 access	 patterns	 for	 unstriped/mpiionative.dat	
|	 	 	 independent	 writes	 	 	 	 	 	 =	 64	
|	 	 	 collective	 writes	 	 	 	 	 	 	 =	 0	
|	 	 	 system	 writes	 	 	 	 	 	 	 	 	 	 	 =	 1048576	
|	 	 	 stripe	 sized	 writes	 	 	 	 	 =	 0	
|	 	 	 total	 bytes	 for	 writes	 	 =	 1073741824	 =	 1024	 MiB	 =	 1	 GiB	
|	 	 	 ave	 system	 write	 size	 	 	 =	 1024	
|	 	 	 number	 of	 write	 gaps	 	 	 	 =	 1048512	
|	 	 	 ave	 write	 gap	 size	 	 	 	 	 	 =	 15264	
+-‐+	

No Collective writes
Large numbers of system writes

Ave system write size is small

Large number of write gaps

No stripe sized writes

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Recognising Good Performance

October 26-27, 2015 SERC Tools Workshop

This same simple example for 3D decomposed array. Now
using collective MPI-IO writes:

1.41 GiB/s

+-‐+	
|	 MPIIO	 write	 access	 patterns	 for	 striped/mpiionative.dat	
|	 	 	 independent	 writes	 	 	 	 	 	 =	 0	
|	 	 	 collective	 writes	 	 	 	 	 	 	 =	 64	
|	 	 	 system	 writes	 	 	 	 	 	 	 	 	 	 	 =	 1024	
|	 	 	 stripe	 sized	 writes	 	 	 	 	 =	 1024	
|	 	 	 total	 bytes	 for	 writes	 	 =	 1073741824	 =	 1024	 MiB	 =	 1	 GiB	
|	 	 	 ave	 system	 write	 size	 	 	 =	 1048576	
|	 	 	 number	 of	 write	 gaps	 	 	 	 =	 0	
|	 	 	 ave	 write	 gap	 size	 	 	 	 	 	 =	 NA	
+-‐+	

No Independent writes

Ave system ~= stripe size

No write gaps

High % of stripe sized writes

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Next steps with MPI/IO

October 26-27, 2015 SERC Tools Workshop

● Cray document: “Getting Started with MPI-IO” S–2490–40

● Google search gives great tutorials/guides on using MPI-IO

● Parallel NetCDF and HDF5 are both built on top of MPI-IO

● More detailed information coming up....if we have time!

