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Motivations of Parallel Computing

• Faster execution times
– From days or months to hours or seconds

– E.g., climate modelling, bioinformatics

• Large amount of data dictate parallelism

• Parallelism more natural for certain kinds 
of problems, e.g., climate modelling

• Due to computer architecture trends
– CPU speeds have saturated

– Slow memory bandwidths
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Classification of Architectures – Flynn’s 
classification

In terms of parallelism in 
instruction and data stream

• Single Instruction Single 
Data (SISD): Serial 
Computers

• Single Instruction Multiple 
Data (SIMD)

- Vector processors and 
processor arrays

- Examples: CM-2, Cray-90, 
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/
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Classification of Architectures – Flynn’s 
classification

• Multiple Instruction Single 
Data (MISD): Not popular

• Multiple Instruction 
Multiple Data (MIMD)
- Most popular
- IBM SP and most other 
supercomputers, 

clusters, computational 
Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/



6 Classification 2:
Shared Memory vs Message Passing

• Shared memory machine: The n 
processors share physical address space
– Communication can be done through this 

shared memory

• The alternative is sometimes referred 
to as a message passing machine or a 
distributed memory machine
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Shared Memory Machines

The shared memory could itself be 
distributed among the processor nodes
– Each processor might have some portion of 

the shared physical address space that is 
physically close to it and therefore 
accessible in less time

– Terms: NUMA vs UMA architecture
• Non-Uniform Memory Access

• Uniform Memory Access
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Classification of Architectures – Based on 
Memory

• Distributed memory

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

 Multi-cores and Many-cores



INTERCONNECTION NETWORKS
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Interconnects

• Used in both shared memory and 
distributed memory architectures

• In shared memory: Used to connect 
processors to memory

• In distributed memory: Used to connect 
different processors

• Components
– Interface (PCI or PCI-e): for connecting 

processor to network link
– Network link connected to a communication 

network (network of connections)



Communication network

• Consists of switching elements to which 
processors are connected through ports

• Switch: network of switching elements

• Switching elements connected with each 
other using a pattern of connections

• Pattern defines the network topology

• In shared memory systems, memory units 
are also connected to communication 
network
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Network Topologies

• Bus, ring – used in small-
scale shared memory 
systems

• Crossbar switch – used in 
some small-scale shared 
memory machines, small or 
medium-scale distributed 
memory machines
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Multistage network – Omega network

• To reduce switching complexity

• Omega network – consisting of logP stages, 
each consisting of P/2 switching elements

• Contention
– In crossbar – nonblocking

– In Omega – can occur during multiple 
communications to disjoint pairs
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Mesh, Torus, Hypercubes, Fat-tree

• Commonly used network topologies in 
distributed memory architectures

• Hypercubes are networks with dimensions
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Mesh, Torus, Hypercubes
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Fat Tree Networks

• Binary tree

• Processors arranged in leaves

• Other nodes correspond to switches

• Fundamental property:                                              
No. of links from a node to                               
a children = no. of links                                           
from the node to its parent

• Edges become fatter as we traverse up the 
tree
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Evaluating Interconnection topologies

• Diameter – maximum distance between any two processing nodes
– Full-connected –
– Star –
– Ring –
– Hypercube -

• Connectivity – multiplicity of paths between 2 nodes. Miniimum 
number of arcs to be removed from network to break it into two 
disconnected networks
– Linear-array –
– Ring –
– 2-d mesh –
– 2-d mesh with wraparound –
– D-dimension hypercubes –
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Evaluating Interconnection topologies

• bisection width – minimum number of 
links to be removed from network to 
partition it into 2 equal halves
– Ring –

– P-node 2-D mesh -

– Tree –

– Star –

– Completely connected –

– Hypercubes -
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Evaluating Interconnection topologies

• channel width – number of bits that can be 
simultaneously communicated over a link, i.e. 
number of physical wires between 2 nodes

• channel rate – performance of a single physical 
wire

• channel bandwidth – channel rate times channel 
width

• bisection bandwidth – maximum volume of 
communication between two halves of network, 
i.e. bisection width times channel bandwidth



SHARED MEMORY AND CACHES
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X: 0

Shared Memory Architecture: Caches
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Cache Coherence Problem

• If each processor in a shared memory 

multiple processor machine has a data cache

– Potential data consistency problem: the cache 

coherence problem

– Shared variable modification, private cache

• Objective: processes shouldn’t read `stale’ 

data

• Solutions

– Hardware: cache coherence mechanisms
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Cache Coherence Protocols

• Write update – propagate cache line to other 
processors on every write to a processor

• Write invalidate – each processor gets the 
updated cache line whenever it reads stale 
data
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Invalidation Based Cache Coherence
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Cache Coherence using invalidate protocols

• 3 states associated with data items
– Shared – a variable shared by 2 

caches
– Invalid – another processor (say P0) 

has updated the data item
– Dirty – state of the data item in P0
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