
Parallel Architecture

Sathish Vadhiyar
Department of Computational and Data Sciences

Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India

September 13, 2019 SERC Training Workshop

Motivations of Parallel Computing

• Faster execution times
– From days or months to hours or seconds

– E.g., climate modelling, bioinformatics

• Large amount of data dictate parallelism

• Parallelism more natural for certain kinds
of problems, e.g., climate modelling

• Due to computer architecture trends
– CPU speeds have saturated

– Slow memory bandwidths

2

PARALLEL ARCHITECTURES

September 13, 2019 SERC Training Workshop

4

Classification of Architectures – Flynn’s
classification

In terms of parallelism in
instruction and data stream

• Single Instruction Single
Data (SISD): Serial
Computers

• Single Instruction Multiple
Data (SIMD)

- Vector processors and
processor arrays

- Examples: CM-2, Cray-90,
Cray YMP, Hitachi 3600

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

5

Classification of Architectures – Flynn’s
classification

• Multiple Instruction Single
Data (MISD): Not popular

• Multiple Instruction
Multiple Data (MIMD)
- Most popular
- IBM SP and most other
supercomputers,

clusters, computational
Grids etc.

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

6 Classification 2:
Shared Memory vs Message Passing

• Shared memory machine: The n
processors share physical address space
– Communication can be done through this

shared memory

• The alternative is sometimes referred
to as a message passing machine or a
distributed memory machine

PP P P PP P

Interconnect

Main Memory

PP P P PP P

Interconnect

M MMMMMM

7

Shared Memory Machines

The shared memory could itself be
distributed among the processor nodes
– Each processor might have some portion of

the shared physical address space that is
physically close to it and therefore
accessible in less time

– Terms: NUMA vs UMA architecture
• Non-Uniform Memory Access

• Uniform Memory Access

8

Classification of Architectures – Based on
Memory

• Distributed memory

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

 Multi-cores and Many-cores

INTERCONNECTION NETWORKS

9

10

Interconnects

• Used in both shared memory and
distributed memory architectures

• In shared memory: Used to connect
processors to memory

• In distributed memory: Used to connect
different processors

• Components
– Interface (PCI or PCI-e): for connecting

processor to network link
– Network link connected to a communication

network (network of connections)

Communication network

• Consists of switching elements to which
processors are connected through ports

• Switch: network of switching elements

• Switching elements connected with each
other using a pattern of connections

• Pattern defines the network topology

• In shared memory systems, memory units
are also connected to communication
network

11

Network Topologies

• Bus, ring – used in small-
scale shared memory
systems

• Crossbar switch – used in
some small-scale shared
memory machines, small or
medium-scale distributed
memory machines

12

Multistage network – Omega network

• To reduce switching complexity

• Omega network – consisting of logP stages,
each consisting of P/2 switching elements

• Contention
– In crossbar – nonblocking

– In Omega – can occur during multiple
communications to disjoint pairs

13

Mesh, Torus, Hypercubes, Fat-tree

• Commonly used network topologies in
distributed memory architectures

• Hypercubes are networks with dimensions

14

15

Mesh, Torus, Hypercubes

Mesh
2D

Torus

Hypercube(binary n-cube)

n=2 n=3

Fat Tree Networks

• Binary tree

• Processors arranged in leaves

• Other nodes correspond to switches

• Fundamental property:
No. of links from a node to
a children = no. of links
from the node to its parent

• Edges become fatter as we traverse up the
tree

16

17

Evaluating Interconnection topologies

• Diameter – maximum distance between any two processing nodes
– Full-connected –
– Star –
– Ring –
– Hypercube -

• Connectivity – multiplicity of paths between 2 nodes. Miniimum
number of arcs to be removed from network to break it into two
disconnected networks
– Linear-array –
– Ring –
– 2-d mesh –
– 2-d mesh with wraparound –
– D-dimension hypercubes –

1
2

p/2

logP

1
2

2

4

d

18

Evaluating Interconnection topologies

• bisection width – minimum number of
links to be removed from network to
partition it into 2 equal halves
– Ring –

– P-node 2-D mesh -

– Tree –

– Star –

– Completely connected –

– Hypercubes -

2

Root(P)

1

1

P2/4

P/2

19

Evaluating Interconnection topologies

• channel width – number of bits that can be
simultaneously communicated over a link, i.e.
number of physical wires between 2 nodes

• channel rate – performance of a single physical
wire

• channel bandwidth – channel rate times channel
width

• bisection bandwidth – maximum volume of
communication between two halves of network,
i.e. bisection width times channel bandwidth

SHARED MEMORY AND CACHES

20

21

X: 0

Shared Memory Architecture: Caches

X: 0

Read X Read X

X: 0

Read X

Cache hit:

Wrong data!!

P1 P2

Write X=1

X: 1

X: 1

22

Cache Coherence Problem

• If each processor in a shared memory

multiple processor machine has a data cache

– Potential data consistency problem: the cache

coherence problem

– Shared variable modification, private cache

• Objective: processes shouldn’t read `stale’

data

• Solutions

– Hardware: cache coherence mechanisms

23

Cache Coherence Protocols

• Write update – propagate cache line to other
processors on every write to a processor

• Write invalidate – each processor gets the
updated cache line whenever it reads stale
data

24

X: 0

Invalidation Based Cache Coherence

X: 0

Read X Read X

X: 0

Read X

Invalidate

P1 P2

Write X=1

X: 1
X: 1

X: 1

25

Cache Coherence using invalidate protocols

• 3 states associated with data items
– Shared – a variable shared by 2

caches
– Invalid – another processor (say P0)

has updated the data item
– Dirty – state of the data item in P0

September 13, 2019 SERC Training Workshop

