Parallel Programming Models

Sathish Vadhiyar

Department of Computational and Data Sciences
Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India

September 13, 2019 SERC Training Workshop



Parallel Programming and Challenges

» Recall the advantages and motivation of
parallelism

* But parallel programs incur overheads
not seen in sequential programs
— Communication delay
— Idling
— Synchronization




Challenges

PO

P1

Idle time Computatiagn

Communication

'

Synchronization



How do we evaluate a parallel program?

« Execution time, T,

« Speedup, S

— S(p,n)= T(1,n)/ T(p, n)

— Usually, S(p, n) < p

— Sometimes S(p, n) > p (superlinear speedup)
Efficiency, E

— E(p, n) = S(p, n)/p

— Usually, E(p, n) <1

— Sometimes, greater than 1

Scalability - Limitations in parallel computing,
relation to nand p.




PARALLEL PROGRAMMING
CLASSIFICATION AND STEPS



0

Parallel Program Models

* Single Program

Multiple Data (SPMD)
il 1-1=]=
Multiple Data (MPMD)

Tip task1  task?  task3 .. taskn

task 1 task2 task 3 .. taskn

Courtesy: http://www.lInl.gov/computing/tutorials/parallel_comp/




7

Programming Paradigms

« Shared memory model - Threads, OpenMP,
CUDA

« Message passing model - MPI




8
Parallelizing a Program

Given a sequential program/algorithm, how
to go about producing a parallel version

Four steps in program parallelization

1. Decomposition

Identifying parallel tasks with large extent of
possible concurrent activity; splitting the
problem into tasks

2. Assignment

Grouping the tasks into processes with best load
balancing

3. Orchestration
Reducing synchronization and communication costs

4. Mapping

Mapping of processes fo processors (if possible) & %,




Steps in Creating a Parallel Program

Partitioning
|
| |
D > A O M
e S r a
c >, - s ﬁ p
o o e i
;. O 8 s ek
0 O O m t g
— 5 > — o —> — I ‘ —
i > n 2
t -, t t -
i D) i P2 Ps
o DO 0
n OO "
Sequential Tasks Processes Parallel Processors

computation program




Decomposition and Assignment

 Specifies how to group tasks together for a process

— Balance workload, reduce communication and
management cost

* In practical cases, both steps combined into
one step, trying to answer the question "What
is the role of each parallel processing entity?”




Data Parallelism and Domain Decomposition

* Given data divided across the processing
entitites

» Each process owns and computes a portion
of the data - owner-computes rule

e Multi-dimensional domain in simulations
divided into subdomains equal to
processing entities

 This is called domain decomposition




Domain decomposition and Process Grids

* The given P processes arranged in multi-
dimensions forming a process grid

* The domain of the problem divided into
process grid




Process grid

2-D domain decomposed

using the process grid

3-D domain decomposed

using the process grid

lllustrations

2x 3




Data Distributions

* For dividing the data in a dimension using
the processes in a dimension, data
distribution schemes are followed

e Common data dist -

—Blocﬁ_<:forregular 511 olt|2lol1|2lol1|2]ol1]2]ol1]2
computations slalslal4|sl3lal5]3]4]5]3]4]5

t , ol1|2lol1|zlol1|2]ol1]2]ol1]2
—BlOC..(-CYCllCZWhED alalslalalslalalslalalslalals
there is load ol1l2lol1]2lol1]2lo]1]2]o]1]2
imbalance across S[4of3]4]5[3]4[5]3]4[5[3]4]5
space ol1|2lol1|zlol1|2]ol1]2]ol1]2
ala|oslal4|sl3lals]3l4]5]3]4]5




IES G EICUHEIN g

* Independent tasks identified

* The task may or may not process different
data




Based on Task Partitioning

* Based on task dependency graph

* In general the problem is NP complete




Orchestration

* Goals
—Structuring communication
—Synchronization

* Challenges
—Organizing data structures - packing
—Small or large messages?

—How to organize communication and
synchronization ?




Orchestration

Maximizing data locality

— Minimizing volume of data exchange
« Not communicating infermediate results - e.g. dot product

— Minimizing frequency of interactions - packing
Minimizing contention and hot spots

— Do not use the same communication pattern with the
other processes in all the processes

Overlapping computations with interactions

— Split computations into phases: those that depend on
%mmumca’red data (type 1) and those that do not (type

— Initiate communication for ‘ry%e 1; During
communication, perform type

Replicating data or computations

— Balancing the extra computation or storage cost with
the gain™due to less communication




Mapping

» Which process runs on which particular
processor?

—Can depend on network topology,
communication pattern of processes

—On processor speeds in case of
heterogeneous systems




Mapping

» Which process runs on which particular
processor?

—Can depend on network topology,
communication pattern of processes

—On processor speeds in case of
heterogeneous systems




P
Py
Py
P

o
C
O

-
Q.

O

!
!

)
C
Q
&
C

20
(Vp)
(Vg

<




Orchestration

 Different for different programming
models/architectures

— Shared address space
« Naming: global addr. Space
« Synch. through barriers and locks
— Distributed Memory /Message passing
« Non-shared address space
« Send-receive messages + barrier for synch.




23

1.

2.
24

2b
3.
4.
5.

5Q.

6.

6a.

% 1

8a.

0.

SAS Version — Generating Processes

int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/
float **A, diff = o;
. LockDec (lock_diff);
. BarrierDec (barrier1);
main()
begin
read(n) ; /*read input parameter: matrix size*/
Read (nprocs);
A < g_malloc (a 2-d array of (n+2) x (n+2) doubles);
Create (nprocs -1, Solve, A);
initialize(A); /*initialize the matrix A somehow?*/

Solve (A); /*call the routine to solve equation*/
Wait_for End (nprocs-1);
end main




24

SAS Version -- Solve

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*Ais an (n + 2)-by-(n + 2) array*/

12. begin

13. int i, j, pid, done = o;

14. float temp;

14a. mybegin =1+ (n/nprocs)*pid;

14b. myend = mybegin + (n/nprocs);

15. while (Idone) do /*outermost loop over sweeps*/

16. diff = 0; /*initialize difference to o*/

16a. Barriers (barrier1, nprocs);

17. for i « mybeg to myend do/*sweep for all points of grid*/
18. forj«<1tondo

19. temp = Ali,jl; /*save old value of element*/
20. Ali,j] « 0.2 * (A[i,j] + Ali,j-1] + Ali-1,j] +

21. Ali,j+1] + Afi+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);

23. end for

24. end for

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

27. end procedure




SAS Version -- Issues

« SPMD program

« Wait_for_end — all to one communication

 How is diff accessed among processes?
— Mutex to ensure diff is updated correctly.
— Single lock = too much synchronization!
— Need not synchronize for every grid point. Can do only

once.
« What about access to A[i]

rows between processes?

||, especially the boundary

« Can loop termination be ©

etermined without any

synch. among processes?

— Do we need any statement
statement

for the termination condition




26

SAS Version -- Solve

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*Aisan (n + 2)-by-(n + 2) array*/

12. begin

13. int i, j, pid, done = o;

14. float mydiff, temp;

14Q. mybegin =1+ (n/nprocs)*pid;

14b. myend = mybegin + (n/nprocs);

15. while (!done) do /*outermost loop over sweeps*/

16. mydiff = diff = o; /*initialize local difference to o*/

16a. Barriers (barrier1, nprocs);

17. for i « mybeg to myend do/*sweep for all points of grid*/
18. forj <« 1tondo

19. temp = A[i,j]; /*save old value of element*/
20. Ali,j] « 0.2 * (A[i,j] + Ali,j-1] + Ali-1,j] +

21. Ali,j+1] + Ali+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);

23. end for

24. end for

24a lock (diff-lock);

24b. diff += mydiff;

24C unlock (diff-lock)

24d.  barrier (barrier1, nprocs);

25. if (diff/(n*n) < TOL) then done =1;

25a. Barrier (barrier1, nprocs);

26. end while

27. end procedure




SAS Program

* done condition evaluated redundantly by all
* Code that does the update identical to
sequential program
—each process has private mydiff variable
» Most interesting special operations are for
synchronization

—accumulations into shared diff have to be mutually
exclusive

—why the need for all the barriers?

* Good global reduction?
— Utility of this parallel accumulate??




28

Message Passing Version

« Cannot declare A to be global shared array
— compose it from per-process private arrays

— usually allocated in accordance with the assignment of
work -- owner-compute rule

 process assigned a set of rows allocates them
locally

« Structurally similar to SPMD SAS
* Orchestration different

— data structures and data access/naming
— communication
— synchronization

 Ghost rows




.” 0O 0O0lgi iCi®® @@ igi® @ @[O0 @i{0 0 O
wfd O O Ofg cle® ele e|® @ @O @j0 0 O
a O O Olg cle® eie /@ ® @O @{C 0 O
(1 O 0O0lg iCj@®® @@ igie ® @0 eio 0 O
e 0 00lgi iCj@® @@ igie @ @i0 @i0 0 O
S O O Olg Cle ® eie@ eo/® ® @O @j0 0O O
e 0O 00lgi iCi®® @@ igie® @ @0 ei0 0 O
O 0Olg iO®® @@ igi®@ ® @0 eio 0 O
h 0 00lgi iCj@® @@ igie @ @0 ei0 0 O
@) 0 00lg iCe®ele igle eelo ejo 00
C IAVAVA
s S
e 9 ®
o
4 £
- S 3
O = -
O 0 00le oo|le @ef0c0O0 o .m o
| -
O 0O0leoo|le @efc0O0 o c o
y =3 o
0 0O0le ©oo|le @efc0O0 o O —
a a a2 » 4, ©
O 0Ole oo|le ®ef0c0O0 5 T o 2 =
] ocooleeo|le eelooo 2 © 2 0o o
© c £ = >
O 0O0le ®oo|le @efc0O0 O oD = T
°© 8 © 2 o
a OO0Oleeoolee@elc0oO = o € e o
e o ooleeoe|le @eelcoo c = o o £
)
a 0 00leee|le eelo0oO0 S < o £ 2
2 = 0 c
0O 0Ole oeo|le @000 s 0 D = o
a = ig s
o € o > 2
o 5 T =
& i & o 8 5 & o E
S () O O
0O < un x O




Message Passing Version — Generating Processes

1. intn, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **myA;

3. main()

4. begin

5 read(n) ; /*read input parameter: matrix size*/

5a. read (nprocs);

/* 6. A < g_malloc (a 2-d array of (n+2) x (n+2) doubles); */
6a. Create (nprocs -1, Solve, A);

/* 7. initialize(A); */ [*initialize the matrix A somehow?*/
8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main




31 . . .
Message Passing Version — Array allocation and

Ghost-row Copying

10. procedure Solve (A) /*solve the equation system*/

11. float **A; /*Ais an (n + 2)-by-(n + 2) array*/
12. begin

13. int i, j, pid, done = o;

14. float mydiff, temp;

14a. myend = (n/nprocs) ;

6. myA = malloc (array of (n/nprocs) x n floats );

7. initialize (myA); /* initialize myA LOCALLY */

15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = o; /*initialize local difference to o*/

16a. if (pid != 0) then

SEND (&myA[1,0] , n*sizeof(float), (pid-1), row);
16b.  if (pid != nprocs-1) then

SEND (&myA[myend,o], n*sizeof(float), (pid+1), row);
16c.  if (pid != 0) then

RECEIVE (&myA[o,0], n*sizeof(float), (pid -1), row);
16d. if (pid != nprocs-1) then

RECEIVE (&myA[myend+1,o}, n*sizeof(float), (pid -1),

row);




32

Message Passing Version — Solver

12. begm

15. “while (!done) do /*outermost loop over sweeps*/

17. for i< 1to myend do/*sweep for all points of grid*/

18. forj <« 1tondo

19. temp = myA[l,]] ; /*save old value of element*/
20. myAl[i,j] < 0.2 * (myA[i,j] + myA[ij-1] +myA[1 Lj] +
21. myA[i,j+1] + myA[i+1,j]); /*compute average*/
22. mydiff += abs(myA[l,]] temp);

23. end for

24. end for

24a if (pid != 0) then

24b. SEND (mydiff, sizeof (float), o, DIFF);

24cC. RECEIVE (done, sizeof(int), o, DONE);

24d. else

24e. for k € 1 to nprocs-1do

24f. RECEIVE (tempdiff, sizeof(float), k , DIFF);
24.5. mydiff += tempdiff;

24h. endfor

24i. If(mydlff/ (n*n) < TOL) then done =1;

24j. k € 1to nprocs-1do

24k. SEND (done, sizeof(float), k , DONE);

24l. endfor

25. end while

26. end procedure




