
Parallel Programming Models

Sathish Vadhiyar
Department of Computational and Data Sciences

Supercomputer Education and Research Centre

Indian Institute of Science, Bangalore, India

September 13, 2019 SERC Training Workshop

2

Parallel Programming and Challenges

• Recall the advantages and motivation of
parallelism

• But parallel programs incur overheads
not seen in sequential programs
– Communication delay

– Idling

– Synchronization

3

Challenges

P0

P1

Idle time
Computation

Communication

Synchronization

4

How do we evaluate a parallel program?

• Execution time, Tp

• Speedup, S
– S(p, n) = T(1, n) / T(p, n)
– Usually, S(p, n) < p
– Sometimes S(p, n) > p (superlinear speedup)

• Efficiency, E
– E(p, n) = S(p, n)/p
– Usually, E(p, n) < 1
– Sometimes, greater than 1

• Scalability – Limitations in parallel computing,
relation to n and p.

PARALLEL PROGRAMMING
CLASSIFICATION AND STEPS

5

6

Parallel Program Models
• Single Program

Multiple Data (SPMD)

• Multiple Program
Multiple Data (MPMD)

Courtesy: http://www.llnl.gov/computing/tutorials/parallel_comp/

7

Programming Paradigms
• Shared memory model – Threads, OpenMP,

CUDA

• Message passing model – MPI

8

Parallelizing a Program
Given a sequential program/algorithm, how

to go about producing a parallel version
Four steps in program parallelization

1. Decomposition
Identifying parallel tasks with large extent of

possible concurrent activity; splitting the
problem into tasks

2. Assignment
Grouping the tasks into processes with best load

balancing

3. Orchestration
Reducing synchronization and communication costs

4. Mapping
Mapping of processes to processors (if possible)

9

Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

10

Decomposition and Assignment

• Specifies how to group tasks together for a process
– Balance workload, reduce communication and

management cost

• In practical cases, both steps combined into
one step, trying to answer the question “What
is the role of each parallel processing entity?”

Data Parallelism and Domain Decomposition

• Given data divided across the processing
entitites

• Each process owns and computes a portion
of the data – owner-computes rule

• Multi-dimensional domain in simulations
divided into subdomains equal to
processing entities

• This is called domain decomposition

11

Domain decomposition and Process Grids

• The given P processes arranged in multi-
dimensions forming a process grid

• The domain of the problem divided into
process grid

12

Illustrations
13

Data Distributions

• For dividing the data in a dimension using
the processes in a dimension, data
distribution schemes are followed

• Common data distributions:
– Block: for regular

computations

– Block-cyclic: when
there is load
imbalance across
space

14

Task parallelism

• Independent tasks identified

• The task may or may not process different
data

15

16

Based on Task Partitioning

• Based on task dependency graph

• In general the problem is NP complete

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7

17

Orchestration

• Goals

–Structuring communication

–Synchronization

• Challenges

–Organizing data structures – packing

–Small or large messages?

–How to organize communication and
synchronization ?

18

Orchestration

• Maximizing data locality
– Minimizing volume of data exchange

• Not communicating intermediate results – e.g. dot product
– Minimizing frequency of interactions - packing

• Minimizing contention and hot spots
– Do not use the same communication pattern with the

other processes in all the processes
• Overlapping computations with interactions

– Split computations into phases: those that depend on
communicated data (type 1) and those that do not (type
2)

– Initiate communication for type 1; During
communication, perform type 2

• Replicating data or computations
– Balancing the extra computation or storage cost with

the gain due to less communication

19

Mapping

• Which process runs on which particular
processor?

–Can depend on network topology,
communication pattern of processes

–On processor speeds in case of
heterogeneous systems

20

Mapping

• Which process runs on which particular
processor?

–Can depend on network topology,
communication pattern of processes

–On processor speeds in case of
heterogeneous systems

21

Assignment -- Option 3

P0

P1

P2

P4

22

Orchestration

• Different for different programming

models/architectures

– Shared address space

• Naming: global addr. Space

• Synch. through barriers and locks

– Distributed Memory /Message passing

• Non-shared address space

• Send-receive messages + barrier for synch.

23

SAS Version – Generating Processes

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **A, diff = 0;

2a. LockDec (lock_diff);

2b. BarrierDec (barrier1);

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. Read (nprocs);

6. A  g_malloc (a 2-d array of (n+2) x (n+2) doubles);

6a. Create (nprocs -1, Solve, A);

7. initialize(A); /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

24

SAS Version -- Solve

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize difference to 0*/
16a. Barriers (barrier1, nprocs);
17. for i  mybeg to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

25

SAS Version -- Issues

• SPMD program

• Wait_for_end – all to one communication

• How is diff accessed among processes?
– Mutex to ensure diff is updated correctly.

– Single lock  too much synchronization!

– Need not synchronize for every grid point. Can do only
once.

• What about access to A[i][j], especially the boundary
rows between processes?

• Can loop termination be determined without any
synch. among processes?
– Do we need any statement for the termination condition

statement

26

SAS Version -- Solve
10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. mybegin = 1 + (n/nprocs)*pid;
14b. myend = mybegin + (n/nprocs);
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = diff = 0; /*initialize local difference to 0*/
16a. Barriers (barrier1, nprocs);
17. for i  mybeg to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for
24. end for
24a lock (diff-lock);
24b. diff += mydiff;
24c unlock (diff-lock)
24d. barrier (barrier1, nprocs);
25. if (diff/(n*n) < TOL) then done = 1;
25a. Barrier (barrier1, nprocs);
26. end while
27. end procedure

27

SAS Program

• done condition evaluated redundantly by all
• Code that does the update identical to

sequential program
–each process has private mydiff variable

• Most interesting special operations are for
synchronization
–accumulations into shared diff have to be mutually

exclusive
–why the need for all the barriers?

• Good global reduction?
–Utility of this parallel accumulate??

28

Message Passing Version

• Cannot declare A to be global shared array
– compose it from per-process private arrays

– usually allocated in accordance with the assignment of
work -- owner-compute rule

• process assigned a set of rows allocates them
locally

• Structurally similar to SPMD SAS

• Orchestration different
– data structures and data access/naming

– communication

– synchronization

• Ghost rows

29

Data Layout and Orchestration

P0

P1

P2

P4

P0

P2

P4

P1

Data partition allocated per processor

Add ghost rows to hold boundary data

Send edges to neighbors

Receive into ghost rows

Compute as in sequential program

30

Message Passing Version – Generating Processes

1. int n, nprocs; /* matrix: (n + 2-by-n + 2) elts.*/

2. float **myA;

3. main()

4. begin

5. read(n) ; /*read input parameter: matrix size*/

5a. read (nprocs);

/* 6. A  g_malloc (a 2-d array of (n+2) x (n+2) doubles); */

6a. Create (nprocs -1, Solve, A);

/* 7. initialize(A); */ /*initialize the matrix A somehow*/

8. Solve (A); /*call the routine to solve equation*/

8a. Wait_for_End (nprocs-1);

9. end main

31

Message Passing Version – Array allocation and
Ghost-row Copying

10. procedure Solve (A) /*solve the equation system*/
11. float **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, pid, done = 0;
14. float mydiff, temp;
14a. myend = (n/nprocs) ;
6. myA = malloc (array of (n/nprocs) x n floats);
7. initialize (myA); /* initialize myA LOCALLY */
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize local difference to 0*/
16a. if (pid != 0) then

SEND (&myA[1,0] , n*sizeof(float), (pid-1), row);
16b. if (pid != nprocs-1) then

SEND (&myA[myend,0], n*sizeof(float), (pid+1), row);
16c. if (pid != 0) then

RECEIVE (&myA[0,0], n*sizeof(float), (pid -1), row);
16d. if (pid != nprocs-1) then

RECEIVE (&myA[myend+1,0], n*sizeof(float), (pid -1),
row);

32

Message Passing Version – Solver
12. begin

… … …
15. while (!done) do /*outermost loop over sweeps*/

… … …
17. for i  1 to myend do/*sweep for all points of grid*/
18. for j  1 to n do
19. temp = myA[i,j]; /*save old value of element*/
20. myA[i,j]  0.2 * (myA[i,j] + myA[i,j-1] +myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]); /*compute average*/
22. mydiff += abs(myA[i,j] - temp);
23. end for
24. end for
24a if (pid != 0) then
24b. SEND (mydiff, sizeof (float), 0, DIFF);
24c. RECEIVE (done, sizeof(int), 0, DONE);
24d. else
24e. for k  1 to nprocs-1 do
24f. RECEIVE (tempdiff, sizeof(float), k , DIFF);
24g. mydiff += tempdiff;
24h. endfor
24i. If(mydiff/(n*n) < TOL) then done = 1;
24j. for k  1 to nprocs-1 do
24k. SEND (done, sizeof(float), k , DONE);
24l. endfor
25. end while
26. end procedure

