
Programming Environments on SahasraT
(Cray-XC40 system)

Dr. J. Lakshmi

SERC, Indian Institute of Science

Bangalore-12, India

SahasraT: Massively Parallel Processing Class
Machine

• Built to enable co-ordinated processing among multiple
processing elements.

• Hardware composed of several independent distributed nodes
interconnected with a high speed – high bandwidth network
and storage.

• Each node complemented with system software and libraries
to support parallel processing program executions.

Overview of Programming Envs. on SahasraT
Programming

Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 4.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea DDT

lgdb

•Abnormal
Termination
Processing

STAT

Debugging Support

Tools

Performance Analysis

Scoping Analysis

Reveal

R

SahasraT Programming Environment
http://www.serc.iisc.ac.in/software/programming-

environment-cray/
• A cross-compiler environment

– Compiler runs on a login node
– Executable runs on the compute nodes

• Cray written compiler driver scripts
– Compute Node Linux (CNL) compiler options
– CNL system libraries and header files
– Compiler specific programming environment libraries
– Latest standards compliant

• Modules utility

– Consists of the module command and module files
– Initialized environment for a specific compiler
– Allows easy swapping of compilers and compiler versions

http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/

Cray Programming Environment

• The default compiler on XC system
– Specifically designed for HPC applications
– Takes advantage of Cray’s experience with

automatic vectorization and
shared memory parallelization

• Excellent standards support for multiple
languages and programming models
– Fortran 2008 standards compliant
– C++11 compliant
– OpenMP 4.5
– OpenACC 2.0 compliant

• Full integrated and optimized support
for PGAS languages
– UPC 1.2 and Fortran 2008 coarray support
– No preprocessor involved
– Full debugger support (With Allinea DDT)

• OpenMP and automatic multithreading
fully integrated
– Share the same runtime and resource pool
– Aggressive loop restructuring and scalar

optimization done in the presence of
OpenMP

– Consistent interface for managing OpenMP
and automatic multithreading

Introduction to modules

• On SahasraT runtime environment is established using environment modules

• Provides for the dynamic modification of a user's environment via modulefiles

• Each modulefile contains the information needed to configure the shell for an
application

– Typically alter or set shell environment variables such as PATH, MANPATH, etc.

• Modules can be loaded and unloaded dynamically and atomically, in an clean
fashion

• All popular shells are supported

– including bash,ksh, zsh, sh, csh, tcsh, as well as some scripting languages such
as perl and python

• Useful in managing different applications and versions of applications

• Can be bundled into metamodules

– load an entire suite of different applications

Runtime Environment Setup

• The Cray XC system uses modules in the user environment to support
multiple software versions and to create integrated software packages

• As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

• You can use the default version of an application, or you can choose
another version by using Modules system commands

• Users can create their own modules or admins can install site specific

 modules available to many users

Module commands

SahasraT Modules

Compiler and
Version

Compiler driver and
version

Modifying the default environment
Loading, swapping or unloading modules:

● The default version of any individual module can be loaded

by name
 e.g.: module load cce

● A specific version can be specified after the forward slash
 e.g.: module load cce/8.7.7

● Modules can be swapped out in place
 e.g.: module swap cce cce/8.7.0

● Or removed entirely
 e.g.: module unload perftools

Modifying the default environment

● Modules will automatically change values of variables

like PATH, MANPATH, LM_LICENSE_FILE... Etc

● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and

LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than

embedding specific directory paths into your startup files, makefiles,
and scripts

What module does ?

“Meta”-Module PrgEnv-X

• PrgEnv-X is a “meta”-module

– loading several modules,

• including the compiler,

• the corresponding mathematical libs,

• MPI,

• system environment needed for the
compiler wrappers

crayadm@login2:~> module show PrgEnv-cray

/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:

conflict PrgEnv
conflict PrgEnv-x1
conflict PrgEnv-x2
conflict PrgEnv-gnu
conflict PrgEnv-intel
conflict PrgEnv-pgi
conflict PrgEnv-pathscale
conflict PrgEnv-cray
setenv PE_ENV CRAY
prepend-path PE_PRODUCT_LIST CRAY
setenv cce_already_loaded 1
module load cce/8.7.3
setenv craype_already_loaded 1
module swap craype/2.5.15
module swap cray-mpich cray-mpich/7.7.2
module load cray-libsci
module load pmi
module load rca
module load atp
module load perftools-base
setenv CRAY_PRGENVCRAY loaded

Cray modules

● cray-mpich : Loads optimized MPICH3 module

● cray-shmem : Loads optimized SHMEM module

● cray-libsci : Loads BLAS, LAPACK, BLACS, FFT,

 ScaLAPACK etc pacages

● Debuggers : cray lgdb

● Perf tools : craypat, Apprentice2, Reveal etc.

● Other libs : cray-petsc, cray-trillinos etc.

Processor modules

● Cray XC system :

 module load craype-haswell (Sahasrat – For CPU)

 module load craype-ivybridge (Sahasrat – For GPU Host)

 Note : x86_64 instruction will be loaded by default

● Accelerators

 module load craype-mic-knl (Sahasrat – For KNL)

 module load craype-accel-nvidia35 (Sahasrat - Kepler GPU)

Summary

• Various applications in various versions
available
$> module avail # lists all
$> module avail cce # cce*

• Dynamic modification of a user’s environment
$> module (un)load PRODUCT/MODULE

– E.g. PrgEnv-xxx changes compilers, linked
libraries, and environment variables

• Version management

$> module switch prod_v1 prod_v2
$> module switch PrgEnv-cray PrgEnv-gnu
$> module switch cce cce/8.7.0

• Metamodules feature bundles

multiple modules

• Can create your own (meta)modules

• Module tool takes care
– Environment variables

• PATH, MANPATH, LD_LIBRARY_PATH,
LM_LICENSE_FILE,....

– Compiler and linker arguments of
loaded products

• Include paths, linker paths, …

Compiling Applications

on SahasraT

• All applications that will run in parallel on the Cray XC should be compiled
with the standard language wrappers.

• Compiler drivers for each language are:

– cc – wrapper around the C compiler

– CC – wrapper around the C++ compiler

– ftn – wrapper around the Fortran compiler

• Scripts will choose the required compiler version, target architecture options,
scientific libraries and their include files automatically from the current used
module environment

• Use them exactly like you would use the original compiler

 E.g. To compile prog1.f90:

 $> ftn –o myprog myprog.f90

Compiler Driver Wrappers

• The scripts choose which compiler to use from the PrgEnv module loaded

• Use module swap to change PrgEnv, e.g.
 $> module swap PrgEnv-cray PrgEnv-intel

• PrgEnv-cray is loaded by default at login. This may differ on other Cray systems.
– use module list to check what is currently loaded

• The Cray MPI module is loaded by default (cray-mpich).
– To support SHMEM load the cray-shmem module.

Compiler Driver Wrappers (2)

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

Which compiler do I use?

● All compilers provide Fortran, C, C++ and OpenMP

support

● Experiment with the various compilers
 ● Mixing binaries created by different compilers may cause issues

• There are usually multiple versions of each compiler available to users.

– The most recent version is usually the default and will be loaded when swapping
the PrgEnv.

– To change the version of the compiler in use, swap the Compiler Module. e.g.
module swap cce cce/8.7.0

Compiler Versions

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

PrgEnv-pgi pgi

EXCEPTION: Cross Compiling Environment

• The wrapper scripts, ftn, cc, and CC, will create a highly optimized

executable tuned for the Cray XC’s compute nodes (cross compilation).

• This executable may not run on the login nodes (nor pre/post nodes)
– Login nodes do not support running distributed memory applications

– Some Cray architectures may have different processors in the login and compute

nodes. Typical error is ‘… illegal Instruction …’

• You must not build for execution of codes on login nodes

About the –I, –L and –l flags

• For libraries and include files being triggered by module files, you
should NOT add anything to your Makefile
– No additional MPI flags are needed (included by wrappers)
– You do not need to add any -I, -l or –L flags for the Cray provided

libraries

• If your Makefile or Cmake needs an input for –L to work correctly,

try using ‘.’

• If you really, really need a specific path, try checking ‘module
show <X>’ for some environment variables

• Currently, static linking is default.

• To decide how to link,

– Either set CRAYPE_LINK_TYPE to static or dynamic
– Or pass the –static or -dynamic option to the wrappers cc, CC or ftn.
 The –shared option is used to create shared libraries *.so

• Features of dynamic linking :
– smaller executable, automatic use of new libs
– Might need longer startup time to load and find the libs
– Environment (loaded modules) should be the same between your compiler setup and your batch script (eg. when switching to PrgEnv-

intel)

• Features of static linking :
– Larger executable (usually not a problem)
– Faster startup
– Application will run the same code every time it runs (independent of environment)

• If you want to hardcode the rpath into the executable use

– Set CRAY_ADD_RPATH=yes during compilation
– This will always load the same version of the lib when running, independent of the version loaded by modules

Dynamic vs. Static linking

The three styles of dynamic linking

Shared libraries mean applications may use a different versions of a library at runtime than was
linked at compile time. On the Cray XC40 there are three ways to control which version is used

1. Default – Follow the default Linux policy and at runtime use the system default version of
the shared libraries (so may change as and when system is upgraded)

2. pseudo-static – Hardcodes the path of each library into the binary at compile time.
Runtime will attempt to use this version when the application start (as long as lib is still
installed). Set CRAY_ADD_RPATH=yes at compile

3. Dynamic modules – Allow the currently loaded PE modules to select library version at
runtime. App must not be linked with CRAY_ADD_RPATH=yes and must add “export
LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH” to run script

• OpenMP is support by all of the PrgEnvs.

– CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by default. If you have OpenMP directives in
your application but do not wish to use them, disable OpenMP recognition with –hnoomp.

• Intel OpenMP spawns an extra helper thread which may cause oversubscription. Hints on that will follow.

OpenMP

PrgEnv Enable OpenMP Disable OpenMP

PrgEnv-cray -homp -hnoomp

PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

PrgEnv-pgi -mp

• For more information on individual compilers

• To verify that you are using the correct version of a compiler, use:
– -V option on a cc, CC, or ftn command with PGI, Intel and Cray
– --version option on a cc, CC, or ftn command with GNU

Compiler man Pages

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

PrgEnv-pgi man pgcc man pgCC man pgf90

Wrappers man cc man CC man ftn

• Do not call compilers directly. Use cray compiler drivers
 cc : For c programming language
 CC : For C++ programming language
 ftn : For fortran programming language

• Check list of modules needed for your program/ application
Eg :- module switch PrgEnv-cray/6.0.4 PrgEnv-gnu

• Load related CPU architecture module. If not loaded, application will be

compiled for x86_64 architecture
Eg:- module load craype-haswell

• Check Makefile for compilers and related flags
Eg:- Use standard language wrappers and related compiler flags

Steps to compile application for CPU architecture

For details on the programming environment on SahasraT access
Link:

http://www.serc.iisc.ac.in/software/programming-environment-cray/

Application Execution on SahasraT
http://www.serc.iisc.ac.in/pbspro-batch-

scheduler-cray/

http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/

Modes of program execution

• Interactive program execution:
– Most of us know of executing our program by typing out the executable name on the

cursor prompt in a terminal window and hitting the return key!
– The current state of the execution is observed by the contents displayed in the terminal

window where program execution was initiated.
– Most probably the output, if any, generated by the program is also displayed in this

window.
– Return to displaying the cursor prompt is an indication that the program execution is

completed.

• Whatif there are other programs already running on the system?
• Whatif your program initiates execution on multiple machines/nodes of a

system?
• Many HPC systems do not support interactive program execution!

Batch execution

• Batch mode of execution refers to program execution in background.

• Most HPC jobs can use resources of multiple nodes.

• Time sharing a resource across multiple jobs is possible, it may not
however yield deterministic performance for all jobs.

• Given the HPC systems cost to acquire and maintain, it makes economic
sense to reduce idle time on the system.

• Most resource policies on the HPC systems tend to be exclusive.

• User jobs are accepted and typically wait in queues before adequate
resources are available to the job and then it is scheduled for execution.

Jobs on SahasraT

• SahasraT accepts only jobs in batch mode through PBS job scripts.
• A job script contains all that is necessary for a job to execute, like

– Environment setup
– Execution resources and how the job wants to use the resources
– Description of input, output and error files associated with the job.

• Procedure to execute:
– Prepare a job script
– Submit to PBSPro workload manager
– PBSPro puts your job in job queues waiting for necessary resources to become available
– Once resources are available job is released for execution based on the system policy of

usage
– After a job is completed it is deleted from the PBSPro batch system.

PBS resources on SahasraT

• There are different types of resources that can be used by a job on
SahasraT.

– Login nodes: mostly used to prepare and submit jobs: DO NOT EXECUTE on
login nodes

– Service nodes: invisible to users but necessary for jobs to successfully get
submitted and execute applications

– Compute nodes: nodes which provide the resources for submitted jobs

• CPU nodes: Pure Intel Haswell cores used mainly by OpenMP/MPI jobs

• GPU nodes: Nvidia K40 nodes meant to execute CUDA codes

• KNL nodes: Intel KNL nodes meant to execute OpenMP/MPI codes

PBS Job Scripts

• User job scripts typically contain two types of statements
1. PBS directives that provide information to the workload manager

on the type, number and nature of resources your job requires.
Other information associated with aspects of job requirements
also get to be specified by these directives.

2. Serial commands that are executed by the login node, e.g.
• Job environment setup and I/O staging commands

• e.g. (rm, cd, mkdir etc.)

3. Parallel executables that run on compute nodes
• Launched using a special command (aprun)

Sample PBS job script
#!/bin/sh
#PBS -N jobname
#PBS -l select=10:ncpus=24 //select 10 compute nodes with 24 cores each
#PBS -l walltime=4:00:00 //maximum walltime for a job to run 4 hours
#PBS -l place=scatter // node topology description asked for job
#PBS -l accelerator_type="None“ // type of compute node specification
//add the above line only for idqueue,small,small72,medium queue

. /opt/modules/default/init/sh //can include module load command for env
cd {/path of executable} // restrict this to use /mnt/lustre on this machine
#Launch the parallel job
 aprun -j 1 -n 240 -N 24 ./name_of_executable
//Using 240 MPI processes and 24 MPI processes per node

• SahasraT uses the PBS workload manager and the Application Level Placement Scheduler (ALPS)

• Most useful commands for your daily work:

qsub – Submit a batch script to PBS.

aprun – Run parallel jobs within the script.

qdel – Signal jobs under the control of PBS

qstat – information about running jobs

• Detailed information can be found in the corresponding man pages on the system

• The entire information about your simulation execution is contained in a batch script which is submitted via
qsub.

• The batch script contains one or more parallel job runs executed via aprun.

PBS and ALPS on the SahasraT (Introduction)

Any questions?
mailto: helpdesk.serc@auto.iisc.ac.in

Thankyou and Happy computing!

