Programming Environments on SahasraT
(Cray-XC40 system)

Dr. J. Lakshmi
SERC, Indian Institute of Science

Bangalore-12, India

SahasraT: Massively Parallel Processing Class
Machine

* Built to enable co-ordinated processing among multiple
processing elements.

 Hardware composed of several independent distributed nodes
interconnected with a high speed — high bandwidth network
and storage.

* Each node complemented with system software and libraries
to support parallel processing program executions.

Overview of Programming Envs. on SahasraT

Programming Programming ; Optimized Scientific : .
mpiler Tool : . I/O Libraries
Languages models SHICE 001S Libraries
Distributed Environment setup
= Memory Cray Compiling AR NetCDF
ortran \
(Cray MPT) Environment Modules
.) « MPI (CCE) ScaL APACK
(1| | - | Debuggers
Debuggers
BLAS (libgoto)
c Allinea DDT
L) Shared Memory
C++ 3rd Pz_irty Debugg,#gngSupport
PGAS & Global P
> g View * Intel «Abnormal
e 2 - UPC (CCE) Composer 'Fr)ermina;ion
. rocessin
Python CAF (CCE) ° FFTW
* Chapel
STAT
\ ~/ Cray PETSc
(with CASK)
R Cray Trilinos
*CrayPat (with CASK)

* Cray
Apprentice?

Cray developed \ Scoping Analysis

Licensed ISV SW

3t party packaging

Cray added value to 3" party

SahasraT Programming Environment
http://www.serc.iisc.ac.in/software/programming-
* A cross-compiler environmer@ nvironme nt'Cray/

— Compiler runs on a login node
— Executable runs on the compute nodes

* Cray written compiler driver scripts
— Compute Node Linux (CNL) compiler options
— CNL system libraries and header files
— Compiler specific programming environment libraries
— Latest standards compliant

 Modules utility
— Consists of the module command and module files
— Initialized environment for a specific compiler
— Allows easy swapping of compilers and compiler versions

http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/
http://www.serc.iisc.ac.in/software/programming-environment-cray/

Cray Programming Environment

* The default compiler on XC system * Full integrated and optimized support
— Specifically designed for HPC applications for PGAS languages
— Takes advantage of Cray’s experience with — UPC 1.2 and Fortran 2008 coarray support
automatic vectorization and — No preprocessor involved

shared memory parallelization
* Excellent standards support for multiple,
languages and programming models
— Fortran 2008 standards compliant
— C++11 compliant

— Full debugger support (With Allinea DDT)

OpenMP and automatic multithreading
fully integrated
— Share the same runtime and resource pool

— Aggressive loop restructuring and scalar
— OpenMP 4.5 optimization done in the presence of
— OpenACC 2.0 compliant OpenMP

— Consistent interface for managing OpenMP
and automatic multithreading

Introduction to modules

On SahasraT runtime environment is established using environment modules
Provides for the dynamic modification of a user's environment via modulefiles

Each modulefile contains the information needed to configure the shell for an
application
— Typically alter or set shell environment variables such as PATH, MANPATH, etc.

Modules can be loaded and unloaded dynamically and atomically, in an clean
fashion

All popular shells are supported

— including bash,ksh, zsh, sh, csh, tcsh, as well as some scripting languages such
as perl and python

Useful in managing different applications and versions of applications

Can be bundled into metamodules
— load an entire suite of different applications

Runtime Environment Setup

The Cray XC system uses modules in the user environment to support
multiple software versions and to create integrated software packages

As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

You can use the default version of an application, or you can choose
another version by using Modules system commands

Users can create their own modules or admins can install site specific
modules available to many users

Module commands

4 N

$> module list

——_—-—_ — _—
$> module avail [-S str]

$> module (un)load [mod name/version]

SS—=—_—————————————————
Ty

$> module switch [modl] [mod2]

| SS————————
oYy

$> module whatis/help [mod]

| SSS————————————————————————
oYy

$> module show [mod]

I ————————————————————————
Ty

$> module load user_own_modules

. J

* Prints actual loaded modules

* Prints all module available containing the specified
string

» Adds or remove a module to the actual loaded list
* |f no version specified, loading the default version

* Unload mod1 and load mod2
» E.g. to change versions of loaded modules

* Prints the module (short) description

* Prints the environmental modification

« add SHOME/privatemodules to the list of directories
that the module command will search for modules

SahasraT Modules

Currently Loaded Modulefiles:

1) modules/3.2.10.6 14) lustre-utils/2.3.5-6.0.4.0_10.2 g3d4bf80.ari
2) alps/6.4.3-6.0.4.1 2.1 g92a2fcO.ari 15) Base-opts/2.4.123-6.0.4.0 _10.1 ¢g6460790.ari

3) nodestat/2.3.78-6.0.4.0_7.2_ gbe57af8.ari 16)

4) sdb/3.3.729-6.0.4.0_16.2 gh405b22.ari 7) Craypf-network-aries

5) udreg/2.3.2-6.0.4.0_12.2 g2f9c3ee.ari) craypg/2.5.15

6) ugni/6.0.14-6.0.4.0_14.1 ge7db4a2.ari 19) cray-|ibsci/18.07.1

7) gni-headers/5.0.11-6.0.4.0 7.2 g7136988.ari) pmi/5}0.14

8) dmapp/7.1.1-6.0.4.0 46.2 gb8abda2.ari 21) rca/2}2.11-6.0.4.0_13.2 g84deb67a.ari

9) xpmem/2.2.2-6.0.4.1 18.2 g43b0535.ari 22) atp/2§1.2

10) 1lm/21.3.446-6.0.4.0_20.1 gbe30105iar1 23) perftools-base/7 Q.2

11) nodehealth/5.4.0-6. 0.4, 0 12.4 g3424370.ari JIPrgEnv-cray/6.0.4

12) system-config/3.4.2456-6.0.4.1 13.1| g56652eb.ari) cray-mpigqh/7.7.2

13) sysadm/2.4.119-6.0.4.0 14.2 gcab7135.ari) pbs/defaylt

Compiler driver and

Compiler and .
version

Version

Modifying the default environment

Loading, swapping or unloading modules:
e The default version of any individual module can be loaded

by name
e.g.. module load cce

e A specific version can be specified after the forward slash
e.g.: module load cce/8.7.7

e Modules can be swapped out in place
e.g.. module swap cce cce/8.7.0

e Or removed entirely
e.g.: module unload perftools

Modifying the default environment

e Modules will automatically change values of variables
like PATH, MANPATH, LM_LICENSE_FILE... Etc

e Modules also provide a simple mechanism for updating certain
environment variables, such as PATH, MANPATH, and

LD LIBRARY_ PATH

e In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts

What module does ?

cra&adm@loéin2:~> module show cce

/opt/cray/pe/modulefiles/cce/8.7.3:

conflict cce

setenv GCC_X86_64 /opt/gcc/6.1.0/s5n0s

setenv CRAY_BINUTILS ROOT_X86 64 /opt/cray/pe/cce/8.7.3/binutils/x86_64/x86_64-pc-linux-gnu/../

setenv CRAY_BINUTILS BIN_X86 64 /opt/cray/pe/cce/8.7.3/binutils/x86 64/bin

setenv LINKER_X86 64 /opt/cray/pe/cce/8.7.3/binutils/x86 64/x86 64-pc-linux-gnu/bin/ld

setenv ASSEMBLER _X86 64 /opt/cray/pe/cce/8.7.3/binutils/x86_64/x86_64-pc-linux-gnu/bin/as

setenv FTN_X86_64 /opt/cray/pe/cce/8.7.3/cce/x86_64

setenv CC_X86_64 /opt/cray/pe/cce/8.7.3/cce/x86_64

setenv CRAY_CXX_IPA LIBS X86 64 /opt/cray/pe/cce/8.7.3/cce/x86_64/1lib/libcray-c++-rts.a

setenv CRAYLIBS X86 64 /opt/cray/pe/cce/8.7.3/cce/x86_64/1ib

prepend-path INCLUDE_PATH_X86_64 /opt/cray/pe/cce/8.7.3/cce/x86_64/include/craylibs

setenv GCC_AARCH64 /opt/gcc-cross-aarch64/6.1.0/aarch64

setenv CRAY _BINUTILS ROOT_AARCH64 /opt/cray/pe/cce/8.7.3/binutils/cross/x86 64-aarch64/aarch64-1linux-gnu/../
setenv CRAY_BINUTILS BIN_AARCH64 /opt/cray/pe/cce/8.7.3/binutils/cross/x86_64-aarch64/aarch64-1linux-gnu/bin
setenv LINKER AARCH64 /opt/cray/pe/cce/8.7.3/binutils/cross/x86_64-aarch64/aarch64-linux-gnu/bin/1d
setenv ASSEMBLER _AARCH64 /opt/cray/pe/cce/8.7.3/binutils/cross/x86_64-aarch64/aarch64-linux-gnu/bin/as
setenv CRAY_CXX IPA LIBS AARCH64 /opt/cray/pe/cce/8.7.3/cce/aarch64/1lib/libcray-c++-rts.a

setenv CRAYLIBS AARCH64 /opt/cray/pe/cce/8.7.3/cce/aarch64/1lib

prepend-path INCLUDE_PATH_AARCH64 /opt/cray/pe/cce/8.7.3/cce/aarch64/include/craylibs

setenv CRAYLMD_LICENSE_FILE /opt/cray/pe/cce/cce.lic

setenv CRAY_BINUTILS_ROOT /opt/cray/pe/cce/8.7.3/binutils/x86_64/x86_64-pc-linux-gnu/../

setenv CRAY_BINUTILS_VERSION /opt/cray/pe/cce/8.7.3

setenv CRAY_BINUTILS BIN /opt/cray/pe/cce/8.7.3/binutils/x86 64/bin

setenv CRAY_CCE_SHARE /opt/cray/pe/cce/8.7.3/cce/x86_64/share

setenv CRAY_CXX_IPA LIBS /opt/cray/pe/cce/8.7.3/cce/x86_64/1lib/libcray-c++-rts.a

setenv CRAY_FTN_VERSION 8.7.3

setenv CRAY_CC_VERSION 8.7.3

“Meta”-Module PrgEnv-X

. ") crayadm@login2:~> module show PrgEnv-cray
* Prgknv-Xis a “meta”-module |-ooooeeceeeie
/opt/cray/pe/modulefiles/PrgEnv-cray/6.0.4:
— loading several modules, conflict PrgEny
. . . conflict PrgEnv-x1
* including the compiler, conflict PrgEnv-x2
. . . conflict PrgEnv-gnu
* the corresponding mathematical libs, conflict p,.gEm,_fntel
conflict PrgEnv-pgi
* MPI, conflict PrgEnv-pathscale
] conflict PrgEnv-cray
* system environment needed for the setenv PE_ENV CRAY
. prepend-path PE_PRODUCT_LIST CRAY
Compller Wrappers setenv cce_already_loaded 1
module load cce/8.7.3
setenv craype_already_loaded 1
module swap craype/2.5.15
module swap cray-mpich cray-mpich/7.7.2
module load cray-libsci
module load pmi
module load rca
module load atp
module load perftools-base
setenv CRAY_PRGENVCRAY loaded

e cray-mpich

e cray-shmem

e cray-libsci

e Debuggers
e Perf tools

e Other libs

Cray modules

. Loads optimized MPICH3 module

. Loads optimized SHMEM module
. Loads BLAS, LAPACK, BLACS, FFT,
ScaLAPACK etc pacages

. cray lgdb
. craypat, Apprentice2, Reveal etc.

. cray-petsc, cray-trillinos etc.

Processor modules

e Cray XC system :

= module load craype-haswell (Sahasrat— For CPU)
= module load craype-ivybridge (Sahasrat — For GPU Host)

Note : x86 64 instruction will be loaded by default

e Accelerators

= module load craype-mic-knl (Sahasrat — For KNL)
= module load craype-accel-nvidia35 (Sahasrat - Kepler GPU)

Summary

Various applications in various versions
available

$> module avail # lists all
$> module avail cce # cce*

Dynamic modification of a user’s environment
$> module (un)load PRODUCT/MODULE

— E.g. PrgEnv-xxx changes compilers, linked
libraries, and environment variables

Version management
$> module switch prod vl prod v2
$> module switch PrgEnv-cray PrgEnv-gnu
$> module switch cce cce/8.7.0

Metamodules feature bundles
multiple modules

e Can create your own (meta)modules

Module tool takes care

— Environment variables

* PATH, MANPATH, LD_LIBRARY_ PATH,
LM_LICENSE_FILE,....

— Compiler and linker arguments of
loaded products

* Include paths, linker paths, ...

Compiling Applications
on SahasraT

Compiler Driver Wrappers

All applications that will run in parallel on the Cray XC should be compiled
with the standard language wrappers.
Compiler drivers for each language are:

— cc—wrapper around the C compiler

— CC—wrapper around the C++ compiler

— ftn —wrapper around the Fortran compiler

Scripts will choose the required compiler version, target architecture options,
scientific libraries and their include files automatically from the current used
module environment

Use them exactly like you would use the original compiler

E.g. To compile progl.foo0:
S> ftn —o myprog myprog.fo0

Compiler Driver Wrappers (2)

* The scripts choose which compiler to use from the PrgEnv module loaded

Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC
PrgEnv-intel Intel Composer Suite ifort, icc, icpc
PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++
PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

e Use module swap to change PrgEnv, e.g.
$> module swap PrgEnv-cray PrgEnv-intel

* PrgEnv-cray isloaded by default at login. This may differ on other Cray systems.
— usemodule 1ist tocheck what is currently loaded

* The Cray MPI module is loaded by default (cray-mpich).
— To support SHMEM load the cray-shmem module.

Which compiler do | use?

e All compilers provide Fortran, C, C++ and OpenMP
support

e Experiment with the various compilers
e Mixing binaries created by different compilers may cause issues

Compiler Versions

* There are usually multiple versions of each compiler available to users.

— The most recent version is usually the default and will be loaded when swapping
the PrgEnv.

— To change the version of the compiler in use, swap the Compiler Module. e.g.
module swap cce cce/8.7.0

PrgEnv-cray cce
PrgEnv-intel intel
PrgEnv-gnu gcc

PrgEnv-pgi pgi

EXCEPTION: Cross Compiling Environment

* The wrapper scripts, ftn, cc, and CC, will create a highly optimized
executable tuned for the Cray XC’s compute nodes (cross compilation).

* This executable may not run on the login nodes (nor pre/post nodes)
— Login nodes do not support running distributed memory applications
— Some Cray architectures may have different processors in the login and compute
nodes. Typical error is ‘... illegal Instruction ...’

* You must not build for execution of codes on login nodes

About the -I, -L and -1 flags

* For libraries and include files being triggered by module files, you
should NOT add anything to your Makefile

— No additional MPI flags are needed (included by wrappers)

— You do not need to add any -1, -1 or —-L flags for the Cray provided
libraries

* If your Makefile or Cmake needs an input for —L to work correctly,
try using

 If you really, really need a specific path, try checking ‘module
show <X>’ for some environment variables

Dynamic vs. Static linking

Currently, static linking is default.

To decide how to link,
— Either set CRAYPE LINK TYPE tostatic ordynamic
— Orpassthe -static or -dynamic option to the wrappers cc, CC or ftn.
The —shared option is used to create shared libraries *.so

Features of dynamic linking :

— smaller executable, automatic use of new libs

— Might need longer startup time to load and find the libs

— Environment (loaded modules) should be the same between your compiler setup and your batch script (eg. when switching to PrgEnv -
intel)

Features of static linking :

— Larger executable (usually not a problem)
— Faster startup
— Application will run the same code every time it runs (independent of environment)

If you want to hardcode the rpath into the executable use
— Set CRAY _ADD RPATH=yes during compilation
— This will always load the same version of the lib when running, independent of the version loaded by modules

The three styles of dynamic linking

Shared libraries mean applications may use a different versions of a library at runtime than was
linked at compile time. On the Cray XC40 there are three ways to control which version is used

1. Default — Follow the default Linux policy and at runtime use the system default version of
the shared libraries (so may change as and when system is upgraded)

2. pseudo-static — Hardcodes the path of each library into the binary at compile time.
Runtime will attempt to use this version when the application start (as long as lib is still
installed). Set CRAY_ADD_RPATH=yes at compile

3. Dynamic modules — Allow the currently loaded PE modules to select library version at
runtime. App must not be linked with CRAY_ADD_RPATH=yes and must add “export
LD _LIBRARY_PATH=SCRAY_LD_LIBRARY_PATH:SLD LIBRARY_PATH” to run script

OpenMP

* OpenMP is support by all of the PrgEnvs.

— CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by default. If you have OpenMP directives in
your application but do not wish to use them, disable OpenMP recognition with —hnoomp.

Enable OpenMP Disable OpenMP

PrgEnv-cray -homp -hnoomp
PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

PrgEnv-pgi -mp

* Intel OpenMP spawns an extra helper thread which may cause oversubscription. Hints on that will follow.

Compiler man Pages

* For more information on individual compilers

I N R N

PrgEnv-cray man craycc man crayCC man crayftn
PrgEnv-intel man icc man icpc man ifort
PrgEnv-gnu man gcc man g++ man gfortran
PrgEnv-pgi man pgcc man pgCC man pgfoe
Wrappers man cc man CC man ftn

* To verify that you are using the correct version of a compiler, use:
— -V option on a cc, CC, or ftn command with PGlI, Intel and Cray
— --version option on a cc, CC, or ftn command with GNU

Steps to compile application for CPU architecture

* Do not call compilers directly. Use cray compiler drivers
m cc : Forcprogramming language
= CC : For C++ programming language
= ftn : For fortran programming language

* Check list of modules needed for your program/ application
Eg :- module switch PrgEnv-cray/6.0.4 PrgEnv-gnu

* Load related CPU architecture module. If not loaded, application will be
compiled for x86 64 architecture

Eg:- module load craype-haswell

* Check Makefile for compilers and related flags
Eg:- Use standard language wrappers and related compiler flags

For details on the programming environment on SahasraT access
Link:

http://www.serc.iisc.ac.in/software/programming-environment-cray/

Application Execution on SahasraT
http://www.serc.iisc.ac.in/pbspro-batch-
scheduler-cray/

http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/
http://www.serc.iisc.ac.in/pbspro-batch-scheduler-cray/

Modes of program execution

Interactive program execution:

— Most of us know of executing our program by typing out the executable name on the
cursor prompt in a terminal window and hitting the return key!

— The current state of the execution is observed by the contents displayed in the terminal
window where program execution was initiated.

— Most probably the output, if any, generated by the program is also displayed in this
window.

— Return to displaying the cursor prompt is an indication that the program execution is
completed.

Whatif there are other programs already running on the system?

Whatif your program initiates execution on multiple machines/nodes of a
system?

Many HPC systems do not support interactive program execution!

Batch execution

Batch mode of execution refers to program execution in background.
Most HPC jobs can use resources of multiple nodes.

Time sharing a resource across multiple jobs is possible, it may not
however yield deterministic performance for all jobs.

Given the HPC systems cost to acquire and maintain, it makes economic
sense to reduce idle time on the system.

Most resource policies on the HPC systems tend to be exclusive.

User jobs are accepted and typically wait in queues before adequate
resources are available to the job and then it is scheduled for execution.

Jobs on SahasraT

e SahasraT accepts only jobs in batch mode through PBS job scripts.

* Ajob script contains all that is necessary for a job to execute, like
— Environment setup
— Execution resources and how the job wants to use the resources
— Description of input, output and error files associated with the job.

* Procedure to execute:
— Prepare a job script
— Submit to PBSPro workload manager
— PBSPro puts your job in job queues waiting for necessary resources to become available

— Once resources are available job is released for execution based on the system policy of
usage

— After a job is completed it is deleted from the PBSPro batch system.

PBS resources on SahasraT

* There are different types of resources that can be used by a job on
SahasraT.

— Login nodes: mostly used to prepare and submit jobs: DO NOT EXECUTE on
login nodes

— Service nodes: invisible to users but necessary for jobs to successfully get
submitted and execute applications

— Compute nodes: nodes which provide the resources for submitted jobs

e CPU nodes: Pure Intel Haswell cores used mainly by OpenMP/MPI jobs
* GPU nodes: Nvidia K40 nodes meant to execute CUDA codes
e KNL nodes: Intel KNL nodes meant to execute OpenMP/MPI codes

PBS Job Scripts

* User job scripts typically contain two types of statements

1. PBS directives that provide information to the workload manager
on the type, number and nature of resources your job requires.
Other information associated with aspects of job requirements
also get to be specified by these directives.
2. Serial commands that are executed by the login node, e.g.
 Job environment setup and I/O staging commands
. e.g. (rm, cd, mkdir etc.)

3. Parallel executables that run on compute nodes
. Launched using a special command (aprun)

Sample PBS job script

#!/bin/sh

#PBS -N jobname

#PBS -l select=10:ncpus=24 //select 10 compute nodes with 24 cores each
#PBS -l walltime=4:00:00 //maximum walltime for a job to run 4 hours
#PBS -l place=scatter // node topology description asked for job

#PBS -l accelerator_type="None“ // type of compute node specification
//add the above line only for idqueue,small,small72,medium queue

. Jopt/modules/default/init/sh //can include module load command for env
cd {/path of executable} // restrict this to use /mnt/lustre on this machine
#Launch the parallel job

aprun -j 1 -n 240 -N 24 ./name_of executable
//Using 240 MPI processes and 24 MPI processes per node

PBS and ALPS on the SahasraT (Introduction)

SahasraT uses the PBS workload manager and the Application Level Placement Scheduler (ALPS)

Most useful commands for your daily work:

gqsub - Submit a batch script to PBS.

aprun - Run parallel jobs within the script.
gdel - Signal jobs under the control of PBS
gstat - information about running jobs

Detailed information can be found in the corresponding man pages on the system

The entire information about your simulation execution is contained in a batch script which is submitted via
gsub.

The batch script contains one or more parallel job runs executed via aprun.

Any questions?
mailto: helpdesk.serc@auto.iisc.ac.in

