
Parallel Programming Using MPI

Short Course on HPC
14th September 2019

Aditya Krishna Swamy
adityaks@iisc.ac.in

SERC, Indian Institute of Science

mailto:adityaks@iisc.ac.in

What is MPI?
• MPI stands for Message Passing Interface
• It is a message-passing specification, a standard, for the vendors to

implement
• In practice, MPI is a library consisting of C functions and Fortran

subroutines (Fortran) used for exchanging data between processes
• An MPI library exists on ALL parallel computing facilities so it is highly

portable
• Also available for Python (mpi4py.scipy.org), R (Rmpi)

Why use MPI? 
• General

• MPI-1 ’92-’94, MPI-2 ~2008, MPI-3 2012. Has been around for ~25 years
• Widely used parallel model
• Libraries and algorithms readily available
• Very scalable: 1 ~ 300,000 cores
• Portable
• Works well with Hybrid models (MPI+X. X=OpenMP, CUDA, OpenACC,

OpenCL…)
• Your problem

• Want to speed up your calculation
• Want to scale up your problem size
• Your problem size is too large for a single node

MPI Implementations
• MPICH

• ANL, (foss) mpich.org/
• Intel, (free 1-year student license)
• Cray
• IBM

• OpenMPI, (foss)
• open-mpi.org/

• MVAPICH (free, BSD)
• mvapich.cse.ohio-state.edu/

MPI
Context: Distributed memory parallel
computers

– Each processor has its own memory and
cannot access the memory of other
processors

– A copy of the same executable runs as
MPI process (on each processor core)

– All variables are private to each process
– Any data to be shared must be explicitly

transmitted from one to another

Cluster - 90’s

Modern HPC Facilities

MPI only Hybrid

Terminology
OS/Software

Hardware

Process Independent stream of instructions.
OS provides dedicated resources

Thread(s) Created by process
Shares resources with process/fellow threads

core “instruction stream processing unit”

“Processor/CPU” Single die that sits on a “Socket” (has 1 or more cores)

Node ~ “mother board”. With 1 or more sockets

Blade 1 or more Nodes

Cabinet Several blades

Basic MPI
• Basic functionality in a parallel program

• Start processes
• Send messages
• receive messages
• Synchronize

A simple program in C
#include <stdio>
#include <stdlib>

int main(int argc, char *argv[])
{

 printf(“Hello \n”)

return 0;
}

Any PC
$./a.out

Hello

A simple MPI program in C
#include <stdio>
#include <stdlib>
#include “mpi.h"

int main(int argc, char *argv[])
{
 int nproc, myrank;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 printf(“Hello from %d. \n”,myrank)

 /* Finalize */
 MPI_Finalize();
 return 0;
}

Any Cluster
$ mpirun -n 8 ./a.out
SahasraT
$ aprun -n 8 ./a.out

Hello from 0.
Hello from 1.
Hello from 2.
Hello from 3.
Hello from 4.
Hello from 5.
Hello from 6.
Hello from 7.

Header file
#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Defines MPI-related parameters and functions
• Must be included in all routines calling MPI functions
• Can also use include file:
 include mpif.h

Initialization
#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Must be called at the beginning of the code
before any other calls to MPI functions

• Sets up the communication channels between the
processes and gives each one a rank.

How many processes do we have?

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Returns the number of processes available under
MPI_COMM_WORLD communicator

• This is the number used on the mpiexec (or mpirun)
command:

 mpiexec –n nproc a.out

What is my rank?

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Get my rank among all of the nproc processes under
MPI_COMM_WORLD

• This is a unique number that can be used to distinguish this
process from the others

Termination

#include "mpi.h"
int main(int argc, char *argv[])
{
 int nproc, myrank;
 /* Initialize MPI */
 MPI_Init(&argc,&argv);
 /* Get the number of processes */
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 /* Get my process number (rank) */
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 Do work and make message passing calls…

 /* Finalize */
 MPI_Finalize();
 return 0;
}

• Must be called at the end of the properly
close all communication channels

• No more MPI calls after finalize

MPI Communicators
• An MPI Function: MPI_Comm_size(MPI_COMM_WORLD, &nproc);
• MPI_COMM_WORLD - communicator
• A communicator is a group of processes

– Each process has a unique rank within a specific communicator
– Rank starts from 0 and has a maximum value of (nproc-1). Fortran programmers

beware!
– Internal mapping of processes to processing units
– Necessary to specify communicator when initiating a communication by calling an MPI

function or routine.
• Default communicator MPI_COMM_WORLD, which contains all available

processes.
• Several communicators can coexist

– A process can belong to different communicators at the same time, but has a unique
rank in each communicator

A sample MPI program in Fortran 90
Program mpi_code
 ! Load MPI definitions
 use mpi (or include mpif.h)

 ! Initialize MPI
 call MPI_Init(ierr)

 ! Get the number of processes
 call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

 ! Get my process number (rank)
 call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

 Do work and make message passing calls…

 ! Finalize
 call MPI_Finalize(ierr)

end program mpi_code

When hello-mpi runs

Any Cluster
$ mpirun -n 8 ./a.out
SahasraT
$ aprun -n 8 ./a.out

Hello from 0.
Hello from 4.
Hello from 2.
Hello from 1.
Hello from 3.
Hello from 6.
Hello from 7.
Hello from 5.

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

#include “mpi.h"
int main(int argc, char *argv[]){

 int nproc, myrank;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&nproc);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
 printf(“Hello from %d. \n”,myrank)
 MPI_Finalize();
 return 0;
}

How much do I need to know?
• MPI is large: MPI-1 has over 125 functions/subroutines. MPI-3 has over

400
• MPI is small: Can actually most work with about 6 functions!
• Collective functions are EXTREMELY useful since they simplify the

coding and vendors optimize them for their interconnect hardware
• One can access flexibility when it is required.
• One need not master all parts of MPI to use it.

Do I need a Supercomputer?
• To learn MPI and develop MPI application - No. Your laptop/PC will suffice.

• Any number of MPI processes can be started even on a laptop
• Same accuracy, but not efficient

• Test your real application - Laptop, PC, Workstation, Cluster, Supercomputer
• Production runs - Laptop, PC, Workstation, Cluster, Supercomputer

Is communication needed?  
Domain Decomposition

• Most widely used method for grid-based calculations

Is communication needed?  
“Coloring”

• Useful for particle simulations

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4

MPI Function Categories
• MPI calls to exchange data

• Point-to-Point communications
– Only 2 processes exchange data
– It is the basic operation of all MPI calls

• Collective communications
– A single call handles the communication between all the processes in a communicator
– There are 2 types of collective communications

• Data movement (e.g. MPI_Bcast)
• Reduction (e.g. MPI_Reduce)

• Synchronization:
• MPI_Barrier
• MPI_Wait

Send Message: MPI_Send
MPI_Send(&numToSend,1,MPI_INT,0,10,MPI_COMM_WORLD);

&numToSend Pointer to whatever information to send. In this case, an integer

1 the number of items to send. If sending a vector of 10 int's, we
would point to the first one in the above argument and set this to the
size of the array.

MPI_INT the type of object we are sending. In this case, an integer

0 Destination of the message. In this case, Rank 0

10 Message Tag. Useful to identify/sort messages

MPI_COMM_WORLD We don’t have any subsets yet. We just choose the “default”

Point to point: 2 processes at a time

MPI_Recv(recvbuf,count,datatype,source,tag,comm,status)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
 recvbuf,recvcount,recvtype,source,recvtag,comm,status)

Datatypes are:
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…
C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

Collective communication:  
Broadcast

• One process (called “root”) sends data to all the other processes in the same
communicator

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast

Collective communication:  
Gather

• One root process collects data from all the other processes in the same communicator
• Must be called by all the processes in the communicator with the same arguments
• “sendcount” is the number of basic datatypes sent, not received (example above would

be sendcount = 1)
• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather

Collective communication:  
Gather to All

• All processes within a communicator collect data from each other and end up with the
same information

• Must be called by all the processes in the communicator with the same arguments
• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
 recvtype,comm,info)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather

Collective communication:  
Reduction

• One root process collects data from all the other processes in the same communicator and
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more
• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3

Collective communication:  
Reduction to All

• All processes within a communicator collect data from all the other processes and
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

More MPI collective calls
One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,
 recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index.
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,
 recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive
MPI_Barrier(comm,ierr)

How to time your MPI code
• Several possibilities but MPI provides an easy to use function called

“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of time in
the past.

 FORTRAN: double precision MPI_WTIME()
 C: double MPI_Wtime()

 starttime=MPI_WTIME()
 … program body …
 endtime=MPI_WTIME()
 elapsetime=endtime-starttime

Blocking communications
• The call waits until the data transfer is

done
– The sending process waits until all

data are transferred to the system
buffer (differences for eager vs
rendezvous protocols...)

– The receiving process waits until all
data are transferred from the system
buffer to the receive buffer

• All collective communications are
blocking

Non-blocking

• Returns immediately after the
data transferred is initiated

• Allows to overlap computation
with communication

• Need to be careful though
– When send and receive buffers

are updated before the transfer
is over, the result will be wrong

Debugging tips
Use “unbuffered” writes to do “printf-debugging” and always write out the process
id:
 C: fprintf(stderr,”%d: …”,myid,…);
 Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The
errorcode is returned to the calling environment so it can be any number.
 C: MPI_Abort(MPI_Comm comm, int errorcode);
 Fortran: call MPI_ABORT(comm, errorcode, ierr)

Use a parallel debugger such as Totalview or DDT

References

• Keywords for search “mpi”, or “mpi standard”, or “mpi tutorial”…
• https://www.mpich.org/static/docs/latest/
• http://www.mpi-forum.org (location of the MPI standard)
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/

• MPI on Linux clusters:
– MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Open MPI (http://www.open-mpi.org/)

https://www.mpich.org/static/docs/latest/
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi/
http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/

Example: calculating π using numerical integration
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 FILE *ifp;

 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 printf("number of intervals = %d\n",n);

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = 1; i <= n; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = mypi;
 printf("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 return 0;
}

C version

#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main(int argc, char *argv[])
{
 int n, myid, numprocs, i, j, tag, my_n;
 double PI25DT = 3.141592653589793238462643;
 double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
 FILE *ifp;
 MPI_Status Stat;
 MPI_Request request;

 n = 1;
 tag = 1;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 tt0 = MPI_Wtime();
 if (myid == 0) {
 ifp = fopen("ex4.in","r");
 fscanf(ifp,"%d",&n);
 fclose(ifp);
 //printf("number of intervals = %d\n",n);
 }
 /* Global communication. Process 0 "broadcasts" n to all other processes */
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads input
and broadcast to

all

Each process calculates its section of the integral and adds up
results with MPI_Reduce

…
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 pi = 0.; /* It is not necessary to set pi = 0 */

 /* Global reduction. All processes send their value of mypi to process 0
 and process 0 adds them up (MPI_SUM) */
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 ttf = MPI_Wtime();
 printf("myid=%d pi is approximately %.16f, Error is %.16f time = %10f\n",
 myid, pi, fabs(pi - PI25DT), (ttf-tt0));

 MPI_Finalize();
 return 0;
}

Thank you...

Non-blocking send and receive
Point to point:
 MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)
 MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)
The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication
 MPI_Wait(request,status,ierr)
 MPI_Test(request,flag,status,ierr)
MPI_Wait returns when the operation identified by “request” is complete. This is a non-local operation.
MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it returns
“flag = false”. This is a local operation.
MPI-3 standard introduces “non-blocking collective calls”

MPI + OpenMP
• By default, MPI assumes no threaded execution.
• MPI_Init(int *argc, char ***argv) old.
• MPI_Init_thread(int *argc,char ***argv,int required,

int *provided)
• required = MPI Thread Support level
• Levels of MPI Thread Support
•

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute

MPI_THREAD_FUNNELED Process may be multi-threaded, but only the main
thread will make MPI calls (calls are “funneled”
to main thread). *Default*

MPI_THREAD_SERIALIZE Process may be multi-threaded, and any thread
can make MPI calls, but threads cannot execute
MPI calls concurrently; they must take turns
(calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no
restriction.

